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Abstract
We consider the problem of learning a target func-
tion corresponding to a deep, extensive-width,
non-linear neural network with random Gaussian
weights. We consider the asymptotic limit where
the number of samples, the input dimension and
the network width are proportionally large. We
propose a closed-form expression for the Bayes-
optimal test error, for regression and classifica-
tion tasks. We further compute closed-form ex-
pressions for the test errors of ridge regression,
kernel and random features regression. We find,
in particular, that optimally regularized ridge re-
gression, as well as kernel regression, achieve
Bayes-optimal performances, while the logistic
loss yields a near-optimal test error for classifica-
tion. We further show numerically that when the
number of samples grows faster than the dimen-
sion, ridge & kernel methods become suboptimal,
while neural networks achieve test error close to
zero from quadratically many samples.

1. Introduction
Learning with neural networks has proven to be an extraordi-
narily versatile tool to approximate (learn) non-trivial func-
tions from data. Many fundamental theoretical questions,
however, remain open. For instance, the determination, for a
given target function, of just how many training data samples
are needed in order to learn the target to a given precision?
This is tantamount to determining the minimal error that can
be achieved from a training set of a given size.

While for a generic target function and generic training
set this question is very challenging, valuable insight can
be accessed by studying simplified settings with Gaus-
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sian input data and specific target functions with known
functional forms. Of particular interest is the rich class
of functions given by random neural networks. The low-
est achievable test error is known to be obtained through
Bayesian inference of the parameters of the target function,
assuming (as we will) the distribution of the parameters
is given. The Bayes-optimal test error corresponds to the
information-theoretically minimal test error that any algo-
rithm can achieve. In the context of Gaussian data, with
target functions being single-layer random neural networks
the problem was studied as early as in (Opper & Haussler,
1991; Seung et al., 1992; Watkin et al., 1993; Schwarze,
1993). More recently, (Barbier et al., 2017) provide a rig-
orous characterization of the Bayes-optimal error in the
asymptotic proportional regime, where the number of sam-
ples is proportional to the input dimension and both of them
are large with a fixed ratio α. These results were then ex-
tended in (Schwarze, 1993; Aubin et al., 2018) to neural
networks with one narrow hidden layer, whose width re-
mains of order one in the above limit of large dimension
and a proportional number of samples.

In practice, neural networks are trained using Empirical
Risk Minimization (ERM) methods, and it is hence also im-
portant to know whether those methods are able to achieve
the Bayes-optimal error. (Thrampoulidis et al., 2018; Mon-
tanari et al., 2019; Hastie et al., 2019; Mei & Montanari,
2019; Aubin et al., 2020; Loureiro et al., 2021), between
others, addressed this question for Gaussian data, providing
closed-form formulas for the ERM test error for generalized
linear models for target functions corresponding to single-
layer neural network with random weights from a number
of samples proportional to the dimension.

Here, we pursue these lines of work and study a target func-
tion given by a deep non-linear neural network with random
weights, in the limit where the layers-widths and the input
dimension are comparably large, hereafter referred to as the
extensive-width regime. We call such target function the
deep extensive-width random network. We consider Gaus-
sian input data. Our main question is the characterization of
the test error that can be achieved information-theoretically
from a given number of samples, as well as its reachability
with ERM approaches. While the assumptions of Gaussian
input data and the prescribed target function seem far from
current machine-learning practice, from a theoretical point
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of view, these questions remain challenging and widely open
even in such a simplified setting (even for a single hidden
layer). It is hard to imagine that we could obtain a plausible
theory of deep learning without being able to answer such
questions first.

Main contributions For the target function corresponding
to the deep extensive-width random network and random
Gaussian input data we obtain the following results:

• We conjecture a closed-form characterization for the
asymptotic Bayes-optimal error, for regression and classifi-
cation tasks, in the proportional regime where the number
of samples n scales linearly with the input dimension d.
• A fundamental step in our derivation, of independent
interest, is the deep (Bayes) Gaussian Equivalence Property
conjecture (GEP) , which specifies the Gaussian statistics of
the output of deep networks whose weights are Gaussian, or
sampled from the Bayes posterior. We show how the GEP
follows from Bayes theory and the asymptotic concentration
of random variables in the proportional regime.
• We contrast the Bayes-optimal test error to test errors
achieved by simple ERM methods. For regression, ridge and
kernel regression are found to achieve the Bayes-optimal
mean-squared error, provided they are optimally regularized.
An explicit formula for optimal regularization is provided.
These results establish that it is impossible to learn more
than a linear estimator of the target extensive-width network
from linearly many samples. In the case of classification,
logistic and ridge classification are found to yield test errors
close (but not equal) to the Bayes error.
• We provide a numerical exploration of the regime where
the number of samples n tends to infinity faster than linearly
with the input dimension d, in which the deep (Bayes) GEPs
can no longer be employed. We show that ridge and kernel
methods then cease to be optimal, while gradient-trained
neural networks manage to almost perfectly learn the target,
evidencing the superiority of neural nets.

A repository with the code employed in the present work
can be found here.

1.1. Related works
Bayesian learning of neural networks It is well known
that Bayesian learning using networks of infinite width (i.e.
width much larger than the number of samples and the input
dimension) is equivalent to kernel regression (Neal, 1994;
Lee et al., 2018; 2019; de G. Matthews et al., 2018; Hron
et al., 2020). A theoretical analysis for extensive-width,
however, proved for a long time a challenging endeavor.
(Yaida, 2019; Roberts et al., 2021; Zavatone-Veth et al.,
2021) computed (perturbative) first-order corrections to
the mean test error with respect to the infinite width limit,
but only accommodate a finite number of training samples.
The recent work of (Zavatone-Veth et al., 2022; Hanin &
Zlokapa, 2022) respectively provide an asymptotic and non-

asymptotic study of Bayesian learning, but are limited to
linear activations. (Li & Sompolinsky, 2021) and (Ariosto
et al., 2022) conjecture that in the proportional regime, i.e.
n ∼ d, the estimator yielded by extensive-width networks
with ReLU or sign activations is still given by the associated
Gaussian Process (GP) kernel, with the width only rescaling
the variance term in the test error. We note that these works
rely on a heuristic Gaussianity assumption and provide
expressions depending explicitly on the entire dataset. Here
instead we address specifically the Bayes-optimal perfor-
mance for a random network target function and Gaussian
inputs, which allows us to provide closed-form scalar for-
mulae and leverage the principled GEP to characterize the
statistics. Finally, while all the previously cited work study
the case of Bayesian regression with a square log likelihood,
the present work also covers classification settings.

Replica method in ML The replica method has been
applied in a sizeable body of work to access asymptotic
characterizations of the test error (Bayes or ERM) in a
variety of setups (Seung et al., 1992; Watkin et al., 1993).
While being heuristic, its predictions have been proven
rigorously in many cases, e.g. (Talagrand, 2006; Barbier
et al., 2017). This toolbox has been successfully deployed
to analyze architectures with one trainable layer, including
generalized linear models (Advani & Ganguli, 2016; Aubin
et al., 2020; Cui et al., 2019; Maillard et al., 2020; Loureiro
et al., 2021), narrow networks with frozen readout (Aubin
et al., 2018), random features (RF) (Gerace et al., 2020) and
kernel methods (Canatar et al., 2020; Cui et al., 2021; 2022).
Recently (Zavatone-Veth et al., 2022) studied the multiple
layers case, in the framework of linear networks. Here we
go a step further and analyze deep non-linear networks.

The proportional regime The proportional n ∼ d regime
has been investigated for shallow networks in a sizeable
body of work, leveraging tools like the convex gaussian
minimax theorem (Thrampoulidis et al., 2018; Aubin et al.,
2020; Loureiro et al., 2021; Montanari et al., 2019), random
matrix theory (El Karoui, 2008; Pennington & Worah, 2019;
Louart et al., 2017) or approximate message-passing (Aubin
et al., 2018; Gabrié, 2019), in addition to the replica method.

Gaussian Equivalence The equivalence between the
asymptotic test error of simple ERM algorithms with that of
the associated problem where the data samples are replaced
by Gaussian covariates with matching population covariance
has been observed in many situations, starting with the semi-
nal work (El Karoui, 2008) on kernel matrices. In particular,
(Goldt et al., 2021; 2022; Montanari & Saeed, 2022; Hu &
Lu, 2022a) have proven a Gaussian Equivalence principle
that shows that, in the proportional regime, one can often re-
place projected data with Gaussian ones. Such equivalences
were used, for instance, in (Loureiro et al., 2021) to char-
acterize the ERM test error in a variety of setups, in terms
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solely of the population covariances of the target/learner
networks. Concomitant works (Schröder et al., 2023; Bosch
et al., 2023) characterize the Gaussian universality of the
test error of deep learners with fixed random weights and
trainable readout.

2. Setting
We consider the problem of learning from a train set
D = {xµ, yµ}nµ=1, with n independently sampled Gaus-
sian covariates xµ ∈ Rd ∼ N (0,Σ). The covariance Σ
is assumed to admit a well-defined limiting spectral distri-
bution µ as d → ∞ with finite non-zero first and second
moments. The labels yµ are assumed to be generated by
a L-layers deep network with random weights. Denoting
ξ ∼ N (0,∆) a Gaussian additive output noise, we have

yµ = f?

[ 1√
kL

a>? (φ?L ◦ · · · ◦ φ?2 ◦ φ?1)︸ ︷︷ ︸
L

(xµ) + ξ
]
, (1)

with layers φ?` (x) = σ`

(
1√
k`�1

W ?
` · x

)
.

(σ`)
L
`=1 is a sequence of activation functions, which are

assumed to be odd for simplifying technical reasons. The
readout function f?(·) will be taken to be the identity func-
tion for regression, and the sign function for classification.
The width of the ℓ-th layer is denoted k`, and the associated
weight matrix is W ?

` ∈ Rk`�k`−1 , with elements sampled
i.i.d from N (0,∆`). Similarly, the readout weight vector
a? is sampled from N (0,∆aIkL).

We wish to characterize the Bayes-optimal test errors when
learning on data produced by the target function (1). We con-
sider that all the hyperparameters L, k`, σ`,∆a,∆`,∆ of
the architecture (1) are known, but the weights a?, {W ?

` }L`=1

are not known to the learner.

Throughout Sec. 3 to 4, we consider the proportional
regime: the high-dimensional asymptotic limit where
∀ℓ, n, d, k` → ∞ with fixed O(1) ratios α ≡ n/d and
γ?` ≡ k`/d. The parameters L,∆`,∆a,∆ are assumed to be
O(1). The quadratic regime n ∼ d2 ∼ k2

` is numerically
explored in Sec. 5. It is known that learning a target of
large width k (resp. using a network of large width) with
a finite number of samples n = Ok(1) simplifies drastically
to the problem of learning a Gaussian process (resp. kernel
regression) (Neal, 1994; Lee et al., 2018; de G. Matthews
et al., 2018). We consider here widths {k`}L`=1 at most
comparable, and not very large compared to, the input
dimension d and the number of samples n, which makes
for a non-trivial, and much richer, learning problem.

3. Bayes-optimal Error
The Bayes-optimal error for data generated using the target
function (1) is achieved by sampling the weights a, {W`}`

from a posterior measure involving a neural network of
matching architecture. We thus define

ŷ(x) =
1√
kL

a> (φL ◦ φL�1 ◦ · · · ◦ φ2 ◦ φ1)︸ ︷︷ ︸
L

(x), (2)

with layers φ`(x) = σ`

(
1√
k`�1

W` · x

)
. (3)

The Bayes-optimal Mean Squared Error (MSE) is then

ϵBO
g,reg =ED,fW?

` g
L
`=1,a?

Ex,y

[(
y−〈ŷ(x)〉a,fW`gL`=1�P

)2]
(4)

where x, y should be understood as a test sample. The
Bayes-optimal classification error (defined as the probability
to wrongly classify a test sample) is given by

ϵBO
g,class = ED,fW?

` g
L
`=1,a?

Px,y

[
y 6= sign

(
〈sign(ŷ(x))〉a,fW`gL`=1�P

)]
. (5)

In (4,5), the learner network is averaged over the posterior

P
[
a, {W`}L`=1|D

]
∝ e
� ||a||

2

2∆a
�
∑̀ ||W`||

2
F

2∆`

×
n∏
µ=1

∫
dξe�

1
2∆ ξ

2

√
2π∆

δ [yµ − f?(ŷ(xµ) + ξ)] . (6)

The Bayes errors (4) and (5) provide information-theoretic
lower bounds on the test error for learning the target (1),
in the sense that no learning algorithm can reach better
performance when learning from the dataset D.

Accessing numerically the Bayes errors (4) and (5) requires
sampling an O(d2)-dimensional distribution, a difficult
task. It is on the other hand possible to theoretically de-
rive closed-form formulas using the replica method (Parisi,
1979; Mézard & Montanari, 2002) that allows characteriz-
ing the Bayes error in terms of the moments of independent
instances of ŷ(x) (the eponymous replicas) drawn from the
posterior eq. (6). In the replica calculation, one averages
over the randomness in the model and in order to be able
to carry out such averages in a closed form, the Gaussian
equivalence property described in the next section is crucial.

3.1. The Bayesian Gaussian Equivalence Property
A seminal step in our analytical approach is the property that
we can replace the statistics of the output ŷ(x) with respect
to the randomness of the input x by Gaussian, with a co-
variance depending linearly on the covariance of the weight
matrices Wl. In fact, (Li & Sompolinsky, 2021; Ariosto
et al., 2022) do rely on a related Gaussianity assumption,
which (Ariosto et al., 2022) heuristically justify for L = 1
using the Breuer-Major theorem, for generic datasets. Since
in the present work, we consider the specific Bayes-optimal
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setting, we are in a position to state a more principled con-
jecture which follows from the GEP (Goldt et al., 2020) and
the Nishimori identities (Nishimori, 2001; Iba, 1998).

Conjecture 3.1. (Shallow Bayes GEP) Consider x a
random Gaussian vector. Then for L = 1, in the
extensive-width asymptotic limit d, k1 → ∞ with fixed
O(1) ratio γ1 = k1/d, any finite number of repli-
cas ŷ1(x;W 1

1 ,a
1), ..., ŷs(x;W s

1 ,a
s) independently drawn

from the Bayes posterior (6) are jointly Gaussian. Further-
more, their correlation reads Exŷ

a(x)ŷb(x) = aa>Ωab1 ab/k1

where Ωab1 is the population covariance of the last layer
post-activations Exφ

a
1(x)φb1(x)> that reads

Ωab1 =
(
κ

(1)
1

)2 W a
1 ΣW b>

1

d
+ δa,b

(
κ

(1)
�

)2

Ik1
, (7)

where κ
(1)
1 = Ez [zσ1(z)]/r1 and (κ

(1)
� )2 = Ez

[
σ1(z)2

]
−

r1(κ
(1)
1 )2, with r1 = ∆1

Tr Ω1/d and z ∼ N (0, r1).

We now explain how Conjecture 3.1 is motivated. In the
proportional regime, for a = b, conditional on the matrix
W1, the Gaussian Equivalence Theorem of (Goldt et al.,
2021; Hu & Lu, 2022a; Montanari & Saeed, 2022) prove
indeed that the model (2) for L = 1 shares the same second-
order post-activation statistics as the noisy linear network
ŷ = aT (κ

(1)
1

W1x/
p
d + κ

(1)
� Z) (with Z a random Gaussian

variable), thus leading to the covariance (7). This so-called
one-dimensional central limit theorem (1dCLT) (Goldt et al.,
2021; Hu & Lu, 2022a; Montanari & Saeed, 2022) holds
under some strict assumptions on the weight matrix W1,
that are satisfied in particular for random matrices with
independent entries.

In the Bayesian setting one needs to integrate over the pos-
terior distribution of the matrix W1, learned from the data.
For Conjecture 3.1 to be valid, the conditions of the 1dCLT
must be satisfied with high probability over the learned ma-
trices, which is by no means a trivial requirement. This
is where the properties of Bayes-optimal inference come
in handy: indeed, a classic property of Bayesian learning
(often called the Nishimori property (Nishimori, 2001; Iba,
1998; Zdeborová & Krzakala, 2015)) is that the statistics of
weights drawn from the Bayes posterior is exactly the same
as the one of the target network weights. This is a direct
consequence of the Bayes formula (see e.g. section 1.2.3.
in (Zdeborová & Krzakala, 2015)). As a consequence, the
learned matrices are following Gaussian statistics as well
(given this is the statistics of the target ones by definition),
and thus respect the conditions of the 1dCLT.

When considering different replicas (a 6= b), the Nishimori
conditions ensure that one of the two replicas can be taken,
without loss of generality, to be the target weight W ?

1 . Since
W1 is learnt and therefore generically correlated with the
target weights W ?

1 , the assessment of the covariance Ωab1 is a

challenging task. However, the results of (Aubin et al., 2018)
suggest that W1 is asymptotically uncorrelated with W ?

1

for sample complexities α ≲ k1. Since we consider here
α = O(1)� k1, this motivates the following conjecture:
Conjecture 3.2. (Non-specialization) for L = 1, in the
asymptotic limit n, d, k1 → ∞ with fixed O(1) ratio
γ1 = k1/d and α = n/d, let W1 be sampled from the Bayes
posterior (6). Then with high probability W1 has vanishing
overlap with W ?

1 , i.e.

1

d
max

1�i,j�k1

(
W ?

1 ΣW>1
)
i,j

= O (1/
p
d) . (8)

3.2 implies that the second term in the right-hand side of (7)
is only present for a = b. The detailed derivation of (7) is
presented in Appendix A

3.2. Deep (Bayesian) Gaussian Equivalence Property
We next discuss how these results generalize to deep net-
works (L ≥ 2). While a sizeable body of work has been
devoted to the distribution induced by the random weights
for fixed inputs (Lee et al., 2018; de G. Matthews et al.,
2018; Hanin & Zlokapa, 2022; Hanin, 2022; Yaida, 2019),
little is known, in the deep case, for the distribution induced
by the input distribution, for fixed weights. While there is
no proof of the equivalence of the 1dCLT of (Goldt et al.,
2021; Hu & Lu, 2022b) for L≥2, we provide, in App. A,
numerical evidence of the following conjecture:
Conjecture 3.3. The output ŷ(x) of a deep random net-
work, conditional on its Gaussian weights {W`}L`=1,a, in
the extensive-width limit d→∞ and ∀ℓ, k` →∞ with fixed
ratios γ` = k`/d, is asymptotically Gaussian with respect to
x.

Conjecture 3.3 thus extends the first part of 3.1 to the deep
setting. This intuitively follows from the fact that higher or-
der cumulants of the post-activations at intermediary layers
are asymptotically suppressed (as shown in (Fischer et al.,
2022)) and thus approximately Gaussian – allowing one to
iterate 3.1. App. A further establishes a closed-form expres-
sion for the variance of ŷ(x), which like the shallow case 3.1
is amenable to being interpreted in terms of an equivalent
noisy network. We defer the discussion of the latter to the
subsection 3.3. Finally, the Nishimori property again en-
sures that conjecture 3.3 transfers to weights sampled from
the Bayes posterior (6). Defining the following recursion on
{r`}L`=1, {κ(`)

1 }L`=1 and {κ(`)
� }L`=1:

r`+1 = ∆`+1Ez�N (0,r`)

[
σ`(z)2

]
,

κ
(`)
1 =

1

r`
Ez�N (0,r`) [zσ`(z)] ,

κ
(`)
� =

√
Ez�N (0,r`) [σ`(z)2]− r`

(
κ

(`)
1

)2

, (9)

with r1 ≡ ∆1
tr Σ/d, the deep version of (3.1) and 3.2 reads:
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Conjecture 3.4. (Deep Bayes GEP) in the extensive width
asymptotic limit d→∞ and ∀ℓ, k`→∞ with fixed ratios
γ`=k`/d, let ŷ1(x), ..., ŷs(x) be any finite number of repli-
cas independently drawn from the Bayes posterior eq. (6).
Then ŷ1(x), ..., ŷs(x) are jointly Gaussian with correlation
Exŷ

a(x)ŷb(x) = aa>ΩabL ab/k1, where the population covari-
ance ΩabL ≡ Ex(φaL ◦ ...φa1(x))(φbL ◦ ...φb1(x))> is given
by

Ωab` =
(
κ

(`)
1

)2W a
` Ωab`�1W

b>
`

k`�1
+ δab

(
κ

(`)
�
)2Ik` . (10)

Finally, defining Ωa?` ≡ Ex(φa` ◦ ...φa1(x))(φ?` ◦ ...φ?1(x))>

for any a, there is no specialization, i.e. with high probabil-
ity

1

d
max

1�i,j�k`

(
W a
` Ωa?`�1(W ?

` )>
)
i,j

= O (1/
p
d) . (11)

In (10), Ωab0 ≡ Σ. The derivation of (10) can be found
in Appendix A, eqs (51) and (64). We precise that 3.4
holds for any sequence of activations {σ`}L`=1 satisfying
∀ℓ, Ez�N (0,r`) [σ`(z)] = 0. This is in particular always
true for odd activations. We adopt in this work the latter
(stronger) assumption for the sake of definiteness and clarity.
An important note is that the population covariance between
post-activations at any two layers 1 ≤ ℓ, ℓ0 ≤ L (not just
ℓ = ℓ0 = L) can be generically computed. Because the
post-activations result from the propagation of the Gaussian
variable x through several non-linear layers, this computa-
tion (which we detail in App. A) is non-trivial for L ≥ 2
and of independent interest.

3.3. Bayes-optimal errors
Conjectures 3.1 and 3.4 are used in equations (81) of App. B
for shallow networks and (126) of App. C for deep networks,
allowing to characterize the Bayes error in terms of the sole
second-order statistic q = ED,W?

1 ,a?
〈Exŷ

a(x)ŷb(x)〉P. q
is known as the self overlap in the statistical physics liter-
ature. The replica computation then proceeds in a rather
standard way, provided one employs the so-called replica-
symmetry ansatz, which is always correct in Bayes-optimal
settings (see e.g. (Zdeborová & Krzakala, 2015)). One
finally reaches the following characterizations in Apps. B
and C.

For regression, the Bayes-optimal MSE reads

ϵBO
g,reg=

L∏
`=1

(
κ

(`)
1

)2(
∆a

( ∫
zdµ(z)

) L∏
`=1

∆` − q
)

+ ϵr (12)

with the self-overlap q satisfying the equation

q =
1

2

∫ α
L∏
`=1

(
κ

(`)
1

)2

z2∆2
a

L∏
`=1

∆2
`

ϵBO
g,reg + α

L∏
`=1

(
κ

(`)
1

)2

z∆a

L∏
`=1

∆`

dµ(z). (13)

We have denoted the residual error

ϵr≡
L�1∑
`0=1

(
κ

(`0)
�
)2

∆a

L∏
`=`0+1

(
κ

(`)
1

)2
∆`+

(
κ

(L)
�
)2

∆a+∆. (14)

For classification, the Bayes-optimal error reads

ϵBO
g,class =

1

π
arccos


√

L∏
`=1

(
κ

(`)
1

)2

q√
∆a

∫
zdµ(z)

L∏
`=1

(
κ

(`)
1

)2
∆` + ϵr

 ,

(15)
where the self-overlap q satisfies the system of equations

q =
∫ q̂∆2

a

L∏
`=1

∆2
`z

2

q̂z∆a

L∏
`=1

∆`+1

dµ(z)

q̂ =
2α

L∏
`=1

(
κ

(`)
1

)2

∆a

∫
zdµ(z)

L∏
`=1

(
κ

(`)
1

)2
∆`+εr�

L∏
`=1

(
κ

(`)
1

)2
q

∫
dξ

(2π)
3
2

2e

− 1
2

∆a
∫
zdµ(z)

L∏
`=1

(κ(`)
1 )

2
∆`+εr+

L∏
`=1

(κ(`)
1 )

2
q

∆a
∫
zdµ(z)

L∏
`=1

(κ(`)
1 )

2
∆`+εr−

L∏
`=1

(κ(`)
1 )

2
q

ξ2

1�erf


L∏
`=1

κ
(`)
1
√
qξ√√√√2

(
∆a

∫
zdµ(z)

L∏
`=1

(κ(`)
1 )

2
∆`+εr−

L∏
`=1

(κ(`)
1 )

2
q

)


.

Equivalent shallow network Remarkably, the Bayes er-
rors (12) and (15) are equal to the Bayes errors of a simple
single-layer target function with random weights

yeq(x) = f?

(√
ρθ> x
√
d

+
√
ϵrξ

)
, (16)

where ξ ∼ N (0, 1) and θ is a Gaussian weight vector with
independent Gaussian entries of unit variance. We have
defined the effective signal strength

ρ ≡ ∆a

L∏
`=1

(
κ

(`)
1

)2

∆`.

We refer the reader to App. D for a derivation of this equiv-
alence. To gain intuition on this equivalence, observe that
the deep Bayes GEP 3.4 applied to a single replica implies
that the deep non-linear network (1) is characterized by the
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same second-order activations statistics as a network with
noisy linear layers

φeq.
` (x) = κ

(`)
1

1√
k`�1

W ?
` · x+κ

(`)
� N (0, Ik`). (17)

In turn, this deep noisy network reduces equivalently to
the shallow network (16). Interestingly, note that while the
multilayer target (1) is deterministic for a given instance of
the weights, the equivalent target (16) displays a stochastic
output noise ξ. This noise subsumes the effect of the higher
order terms introduced by the non-linearities, which are not
learnt in the proportional regime (Mei et al., 2021).

Fig. 1 shows the Bayes MSE, eq. (12), for networks with
tanh activation, with L = 1, 2 hidden layers. This is con-
trasted to the MSE achieved by an expressive neural network
(NN) with twice the target width, optimized end-to-end with
full batch gradient descent. Fig. 3 presents the same exper-
iment in the classification setting. As expected, even this
expressive learning algorithm cannot achieve a lower error
than the information-theoretic lower bounds (12), (15).

4. ERM with Linear Methods
Eqs. (12) and (15) provide the information-theoretic min-
imal error for deep extensive-width targets (1). However,
(Barbier et al., 2017; Aubin et al., 2018) evidenced that the
Bayes error is not always attainable, in practice, by known
polynomial time algorithms. In this section, we investigate
the performance of some standard ERM methods. We pro-
vide a tight asymptotic characterization of the test error of
each algorithm and show that for regression the Bayes error
is, in fact, also achievable algorithmically. We address in
succession: ridge regression, RF regression, kernel regres-
sion, logistic regression and ridge classification.

We give, for each of the considered ERM algorithms, a sharp
asymptotic characterization of the associated test error. The
fact that the deep non-linear target (1) shares the same Bayes
error as the equivalent shallow model (16) suggests that the
test error of ERM methods should also be identical. Apply-
ing Theorem 1 of (Loureiro et al., 2021) on the equivalent
shallow target (16) thus leads to the formulas provided here.
This heuristic line of reasoning is put on a firm basis in
some settings in the concomitant work of (Schröder et al.,
2023), where the formulas characterizing the performance
of the considered ERM methods are derived. We discuss
this further in App. E.

4.1. Ridge regression
We first consider ridge regression, corresponding to the
minimization of the risk

R(w) =

n∑
µ=1

(
yµ − w · xµ√

d

)2

+
λ

2
||w||2, (18)

0
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Figure 1. Targets (1) with L = 1 (top) and L = 2 (bottom) hidden
layers , with σ1,2(x) = tanh(2x) activation, widths k1,2 = 700,
and ∆a = ∆1,2 = 1, ∆ = 0, in dimension d = 500. The
Bayes-optimal MSE (12) (dashed black) is contrasted to the replica
predictions and simulations for optimally regularized ridge regres-
sion (19) (red), optimally regularized random features (23) with
σ(x) = tanh(2x) non-linearity (blue), and optimally regularized
kernel regression (24) with σ(x) = tanh(2x) non-linearity (or-
ange). Green dots represent simulations for a one (top) and two
(bottom) hidden layers neural network of width 1500, optimized
with full-batch GD, learning rate η = 8.10−3 and weight decay
λ = 0.1. Dashed grey lines represent the residual error ϵr (14).
Error bars represent one standard deviation over 30 trials.

with a ℓ2 regularization term of strength λ. The associated
test error can be computed by combining the deep GEP (9)
and the theorem of (Loureiro et al., 2021), as

ϵg =ρ

∫
zdµ(z) + q − 2

L∏
`=1

κ
(`)
1 m + ϵr, (19)

where m, q, V are the solutions of the system of equations


V̂ = α

1+V

q̂ = α
εg

(1+V )2

m̂ =

L∏
`=1

κ
(`)
1 α

1+V



V =
∫

z
λ+V̂ z

dµ(z)

q=
∫ ∆a

L∏
`=1

∆`m̂
2z3+q̂z2

(λ+V̂ z)2
dµ(z)

m=∆a

L∏
`=1

∆`m̂
∫

z2

λ+V̂ z
dµ(z)

(20)

The derivation and further discussion are provided in App. E.

Ridge regression is Bayes-optimal The optimal regular-
ization λ? leading to minimal test error is shown in App. F
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= -0.24

Figure 2. Arccosine kernel regression on a two-layers target of
width k1 = 700, ∆a = ∆1 = 1, ∆ = 0, with σ1(x) = tanh(2x)
activation, in dimension d = 500. Different curves correspond to
different regularizations λ = 0.5, 0.1 and the optimal λ⋆ � �0.24
(25). Solid lines correspond to the replica predictions (24). The
learning curve for the optimal negative regularizer λ⋆ (red) super-
imposes with the Bayes-optimal MSE (12). Error bars represent
one standard deviation over 30 trials.

to admit the compact expression

λ? =
ϵr
ρ
. (21)

The expression (21) mirrors the result of (Sahraee-Ardakan
et al., 2022) for GP targets, see App. E. Eq. (21) intuitively
corresponds to requiring that the regularization λ used in
the ERM (18) should be equal to the true noise-to-signal
ratio of the equivalent target (16).

For λ = λ?, the equation (20) reduces to (12), implying
that optimally regularized ridge regression achieves the
Bayes-optimal MSE. The solution of (19), (20), (21), with
the corresponding numerical simulations, is plotted in Fig. 1,
and can indeed be seen to exactly fall on the Bayes-optimal
baseline (12). This implies that in the proportional
high-dimensional limit n ∼ d, no algorithm can learn
more accurately the non-linear function (1) than optimally
regularized linear regression. This echoes the claims of
(Sahraee-Ardakan et al., 2022) when the target is a GP.

4.2. Random Features
Random features learning (Rahimi & Recht, 2007) was
initially introduced as a means to speed up kernel methods.
They correspond to the ERM

R(w)=

n∑
µ=1

(
yµ − 1√

k
w · σ

(F · xµ√
d

))2

+
λ

2
||w||2, (22)

where σ is a nonlinearity with associated GEP coefficients
(9) κ1, κ�, and F ∈ Rk�d is the random feature matrix,
assumed in the following to possess i.i.d Gaussian entries.
RF learning corresponds formally to ridge regression in
a k−dimensional space, often taken larger than the d−

dimensional input space to allow for overparametrization.
Again, we consider the proportional regime n, d, k → ∞
and introduce the width/dimension ratio γ ≡ k/d. In the
following, for simplicity, we restrict ourselves to the case
of isotropic covariates Σ = Id. Sharp asymptotics for the
test error of such models have been provided in (Mei &
Montanari, 2019; Gerace et al., 2020) for single-layer targets.
We tie those results in with (9) in the case of the deep random
target (1). The asymptotic test error is shown in App. E to
be given again by (19), where q,m satisfy

V̂ =
α
γ

1+V

q̂ = α
γ

εg
(1+V )2

m̂ =

√
∆a

L∏
`=1

∆`
√
γ

L∏
`=1

κ
(`)
1

α
γ

1+V

(23)



V = 1
V̂
− λ

V̂ 2κ2
1

g
(
−λ+V̂ κ2

∗
V̂ κ2

1

)
q = m̂2+q̂

V̂ 2
− 1

κ2
1V̂

2

(
2λ(m̂2+q̂)

V̂
+ m̂2κ2

�

)
g
(
−λ+V̂ κ2

∗
V̂ κ2

1

)
+ λ
κ4

1V̂
3

(
λ(m̂2+q̂)

V̂
+ m̂2κ2

�

)
g0
(
−λ+V̂ κ2

∗
V̂ κ2

1

)
m =

√
γ m̂
V̂

[
1− 1

κ2
1

(
λ
V̂

+ κ2
�

)
g
(
−λ+V̂ κ2

∗
V̂ κ2

1

)]
.

g(z) is the Stieljes transform of the Marchenko-Pastur
distribution with aspect ratio γ. The solution of (23) is
plotted in Fig. 1, with the regularization λ being numerically
optimized over, and is observed to yield higher MSE than
the optimal (12). Intuitively, this is because from (16)
the target function (1) effectively acts as a linear function
on the original space, while the RF transformation σ(F ·)
(22) introduces a mismatch between the original basis
where the target acts and the features basis in which the
linear regression readout is carried out. This intuition is
formalized in App. F. This mismatch can be shown to be
benign only in the infinite overparametrization (infinite
width) γ →∞ limit, has discussed in the next subsection.

4.3. Kernels
In the γ →∞ limit, RF learning (22) becomes equivalent to
kernel regression (Neal, 1994; Lee et al., 2018). The saddle-
point equations (23) characterizing the generalization error
(19) then reduce to


V̂ = α

1+V

q̂ = α
εg

(1+V )2

m̂ = α

L∏
`=1

κ
(`)
1

1+V



V =
κ2
∗
λ +

κ2
1

λ+V̂ κ2
1

q =
∆a

L∏
`=1

∆`m̂
2κ4

1+q̂κ4
1

(λ+V̂ κ2
1)2

m = ∆a

L?∏
`=1

∆`m̂
κ2

1

λ+V̂ κ2
1

. (24)

A complete derivation of the eqs (24) is given in App. E.

Kernel regression is Bayes-optimal The regularization λ
minimizing the test error (19) for kernel regression (24) can
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be shown as in the ridge case to admit the simple expression

λ? = κ2
1

(
ϵr
ρ
− κ2

�
κ2

1

)
. (25)

We discuss the connection of this formula with the one
provided in (Sahraee-Ardakan et al., 2022) for GP targets
in App. B. Again, the expression (25) also admits a
very intuitive interpretation. An informal takeaway from
(Mei et al., 2021; Hu & Lu, 2022b) is indeed that in the
linear n ∼ d regime, kernel regression can be seen as
effectively implementing ridge regression with an implicit
ℓ2 regularization equal to λ+ κ2

∗/κ2
1. Requiring this implicit

regularization to match the true target noise-to-signal ratio
(16) naturally leads to (25). The test error (19) evaluated
at the solution of (24), at the optimal regularization (25),
is plotted in Fig. 1, and can be seen to exactly superimpose
with the Bayes-optimal baseline (12).

When the activation σ of the kernel is very non-linear (as
quantified by the ratio κ2

∗/κ2
1) and implements too strong an

implicit regularization (Wu & Xu, 2020; Hastie et al., 2019)
compared to the actual target noise, the optimal regulariza-
tion (25) can be negative. This negative ridge phenomenon
can for example be observed when learning a target 2−layer
network with tanh activation with a kernel using the more
non-linear sign activation, see Fig. 2. Note that even in such
cases where the optimal explicit regularization λ is negative,
the risk remains convex due to the implicit ℓ2 regularization.

4.4. Logistic and ridge classification
This last subsection addresses ERM in the classification
setting. We consider two standard classification methods,
namely logistic regression and ridge classification. They
correspond to ERM on the risk

R(w) =

n∑
µ=1

ℓ

(
yµ,

w · xµ√
d

)
+

λ

2
||w||2 (26)

with ℓ(y, z) = ln(1 + e�yz) and ℓ(y, z) = 1/2(y − z)2

respectively. For simplicity, we assume the noiseless ∆ = 0
setting. An asymptotic expression for the test error of logis-
tic regression can again be reached and is detailed in App. H.
These theoretical predictions are plotted in Fig. 3, and
contrasted to the Bayes-optimal baseline (15). At odds with
the regression case, the learning curves of logistic regression
and ridge classification do not exactly superimpose with
the Bayes-optimal baseline but lie extremely close. Fig. 3
shows that for a σ(x) = tanh(2x) activation the difference
is of order of 10�4 (for logistic regression) and 10�3 (for
ridge classification). Such a gap has also been observed by
(Aubin et al., 2020) for targets without hidden layer.

5. Beyond the Proportional Regime
Section 4 establishes that ridge regression and kernel re-
gression are Bayes-optimal in the linear n ∼ d regime for

0 1 2 3 4 5 6 7
0.20

0.25

0.30

0.35

0.40

0.45

0.50

g

Bayes error
logistic (theory)
ridge (theory)
logistic
ridge
NN

2 × 10 3

10 4

Figure 3. Learning curves for classification, with a three-layers
target (1) with tanh(2�) activation and width k1,2 = 700, ∆a =
∆1,2 = 1, ∆ = 0, in dimension d = 500. The black dashed line
represents the Bayes-optimal error (15). The theoretical learning
curves for optimally regularized logistic regression (ridge clas-
sification) are shown in red (blue), alongside the corresponding
numerical simulations. Green dots show the test error of a three
layers fully connected network trained end-to-end with full-batch
Adam, learning rate 0.003 and weight decay 0.01, after 2000
epochs. Error bars represent one standard deviation over 30 tri-
als. (inset) Zoom in on the theoretical learning curves for logistic
regression (red) and ridge classification (blue), with the Bayes-
optimal baseline (15) subtracted. Logistic regression and ridge
classification can be seen to be very close, but not equal, to the
Bayes-optimal baseline (up to 10−4 and 10−3 respectively).

the target (1). These conclusions and the ones of (Sahraee-
Ardakan et al., 2022) in the context of GP targets, and are
reminiscent on a high level of the empirical observations of
(Arora et al., 2020) that neural networks can only marginally
outperform kernel methods for small train sets on several
benchmark real datasets. Note that the study (Lee et al.,
2020) also employs networks with comparable width to the
dataset size & dimension, and reaches similar conclusions.

In fact, the information-theoretic optimality of linear/kernel
ERM methods is essentially due to the fact that a propor-
tional number of samples n ∼ d is not enough to learn fea-
tures beyond linear approximations. The conclusions drawn
in other scaling regimes are anticipated to be very different.
In particular, beyond the linear n ∼ d regime, the test error
should pick up, and depend on, non-Gaussian asymptotic
corrections to the GEP (Goldt et al., 2021), Bayes GEP 3.1,
and deep Bayes GEP 3.4. Besides, information-theoretic
intuition suggests that since the target (1) is parametrized by
O(d2) real numbers, a quadratic number of samples n ∼ d2

is needed, and sufficient, to learn it perfectly. In other
words, one expects the Bayes-optimal error to vanish in the
quadratic regime. This means in particular that kernel meth-
ods (which are known to learn at best a quadratic approx-
imation of the target in this scaling regime (Misiakiewicz,
2022; Xiao & Pennington, 2022; Hu & Lu, 2022b)), and
ridge regression (which learns a linear approximation) will
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Figure 4. MSE of regression on a ReLU (top) erf(2x) (bottom)
2�layers target of width k1 = 20, ∆a = ∆1 = 1, ∆ = 0, in
dimension d = 30. Dots represent simulations for optimally regu-
larized ridge regression (orange), optimally regularized arccosine
(top), and arcsine (bottom) kernel (green). Dashed lines represent
the theoretical predictions for the MSE of the kernel in polynomial
regimes of (Hu & Lu, 2022a). Purple dots indicate the MSE of a
2�layers fully connected neural network of width k = 30 trained
end-to-end using Adam (purple), batch size n/3 and learning rate
η = 3.10−3, over 2000 epochs. Error bars represent one standard
deviation over 10 trials. For a quadratic number of samples n � d2

the network learns the target perfectly (up to errors of order 10−5)
while kernel regression only learns a quadratic approximation of
the target and yields MSEs larger by an order of 103. Ridge re-
gression can only learn the best linear approximation and leads to
even higher MSE.

cease to be optimal. In this section, this intuition is further
explored numerically.

Fig. 4 contrasts the MSE of an Adam-optimized neural net-
work, optimally regularized ridge regression, and optimally
regularized arcosine kernel regression, in the n ∼ d2 regime,
for a ReLU network target with one hidden layer. For com-
pleteness, we also plot the theoretical predictions for the
test error for kernel regression derived in (Hu & Lu, 2022b).
While ridge (kernel) regression can only learn the best linear
(quadratic) approximation of the non-linear target, the neu-
ral network manages to learn the target almost perfectly (up
to an MSE of O(10�5)). These results show the superiority
of neural networks over kernel methods in the quadratic

regime for the multi-layer target (1), and complement simi-
lar superiority results (see e.g. (Ghorbani et al., 2019; 2020))
for single-layer targets.

Conclusion
We investigate the problem of learning a deep, non-linear,
extensive-width random neural network. We propose asymp-
totic expressions for the Bayes-optimal error and the test
error of linear / kernel ERM methods, for classification and
regression. The technical backbone of the derivations is
the deep Bayes GEP conjecture 3.4, and novel closed-form
formulae for second-order population statistics of network
post-activations. The conclusion is that kernel methods are
optimal in this regime. We showed, however, that the situa-
tion is drastically different in the quadratic sample regime,
and evidence the onset of feature learning leading to a van-
ishing test error for neural nets, while kernel methods can
learn only quadratic approximation and thus become subop-
timal. This marks a clear separation in the power of neural
nets with respect to kernels as soon as n ∼ d2.

From a theoretical standpoint, a quantitative analysis of
the learning curve for the quadratic regime is challenging.
In particular, Gaussian universality results such as (Goldt
et al., 2021; Hu & Lu, 2022a; Mei & Montanari, 2019),
cease to hold outside of the proportional regime and would
need to be extended. Building a theory for extensive-width
networks in these superlinear sample regimes could unveil
rich behavior and properties, and constitutes in the authors’s
point of view a crucial challenge in machine learning theory.
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Clarté, L., Loureiro, B., Krzakala, F., and Zdeborová, L. A
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A. Deep Gaussian Equivalence Principles
In this Appendix, we provide a discussion of the deep GEP 3.4. We first provide a derivation for the closed form expressions
of the population covariances of the network activations, from which (10) can be deduced as a particular case. We then
provide strong numerical support for the 1dCLT 3.1.

A.1. Setting

In this section, we provide a reminder of the notation. Since the matrix identities are applied also in section 4, where the
learner network does not necessarily possess the same architecture as the target (1), we generically study the correlations
between any pair of activations of two networks. For clarity, in this appendix, we will denote all target hyperparameters by a
star ⋆, to distinguish them with the parameters of the learner.

We consider a L? layers target (teacher) function

y(x) =
1√
k?L?

a>?
(
φ?L? ◦ φ?L?�1 ◦ · · · ◦ φ?2 ◦ φ1

)︸ ︷︷ ︸
L?

(x) (27)

where the ℓ-th layer is

φ?` (x) = σ?`

(
1√
k?`�1

W ?
` · x

)
(28)

(σ?` )L
?

`=1 is a sequence of odd activation functions. The width of the ℓ-th layer is denoted k`, and the associated weight matrix
is W ?

` ∈ Rk`�k`−1 . In contrast to the main text, for clarity, we use a star ⋆ superscript for all the parameters related to the
target function. Unstarred variables shall conversely refer to the learner (hereafter referred to as the student) network.

The student network is also taken to be a random network, with trainable last layer:

y(x) =
1√
kL

a> (φL ◦ φL�1 ◦ · · · ◦ φ2 ◦ φ1)︸ ︷︷ ︸
L

(x), (29)

with layers

φ`(x) = σ`

(
1√
k`�1

W` · x

)
. (30)

In the main text, we consider a student network with the same architecture as the target in section 3 (L = L? and
∀ℓ, k` = k?` ), where the Bayes errors are derived. In section 4 on the other hand, the student shall correspond to a
linear single layer (L = 0) network (for ridge regression, logistic regression and ridge classification) or a one-hidden-
layer (L = 1) network with frozen Gaussian first layer (for random features). We denote the ℓ-th layer post-activation
h`(x) = (φ` ◦ ... ◦ φ1)(x) (for student) h?` (x) = (φ?` ◦ ... ◦ φ?1)(x) (for the teacher), and introduce the covariances

Ω` = 〈h`(x)h>` (x)〉x, Ψ` = 〈h?` (x)h?>` (x)〉x Φ`?` = 〈h?`?(x)h>` (x)〉x, (31)

which we shall characterize for any ℓ. Note that we could also compute correlations of the form
〈h`(x)h`′

>(x)〉x,〈h?` (x)h?`′
>(x)〉x for generic ℓ 6= ℓ0, i.e. population covariances between activations of the same network,

but at different layers. Since these matrices however never enter our main discussion, and are furthermore a straightforward
extension away from the results presented here, we choose to skip the discussion thereof for clarity purposes.

We further suppose the data x is i.i.d Gaussian
x ∼ N (0,Σ), (32)

with a covariance Σ of extensive Frobenius norm and trace, i.e. there exists constant c, c0 so that asymptotically (noting
k0 = d)

c <
1

d
tr Σ2 =

1

d
||Σ||2F < c0 <∞, c <

1

d
tr Σ < c0 <∞. (33)
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In terms of the limiting spectral density µ, these assumptions imply that the first and second moments are finite and non
zero. Finally, all weights are assumed to be Gaussian:

W ?
`
i.i.d.∼ N (0,∆?

` ), W`
i.i.d.∼ N (0,∆`). (34)

Note that this last assumption is made for simplicity and definiteness. An exhaustive study of the most generic distribution
for the weights under which (10) holds is a research line of independent interest, and falls out of the scope of the present
manuscript.

A.2. Closed-form formulas for second order population statistics

We now re-state the recursion relation allowing to compute the covariances (31). Consider the sequence of variances defined
by the recurrence

r
(?)
`+1 = ∆

(?)
`+1EN (0,r`)

z

[
σ

(?)
` (z)2

]
, (35)

with the initial condition

r
(?)
1 = ∆

(?)
1

1

d
tr Σ. (36)

r
(?)
` physically corresponds to the average squared norm of the post-activations after layer ℓ. Then introduce the coefficients

κ
`(?)
1 =

1

r
(?)
`

EN (0,r`)
z

[
zσ

(?)
` (z)

]
, κ

`(?)
� =

√
EN (0,r`)
z

[
σ

(?)
` (z)2

]
− r

(?)
`

(
κ
`(?)
1

)2

. (37)

For the first layer (ℓ = 1), these coefficient correspond to the coefficients introduced by the seminal works of (Pennington &
Worah, 2019; Louart et al., 2017), sometimes referred to as GET coefficients (Goldt et al., 2020; Gerace et al., 2020). These
coefficients also appear in the characterization of the spectrum of the conjugate kernel of random multi-layer networks in
(Fan & Wang, 2020). The layer-wise covariances Ω,Ψ (31) are then defined by the following recursion

Ω`+1 = κ`21
W`+1Ω`W

>
`+1

k`
+ κ`2� Ik`+1

, (38)

Ψ`+1 = κ?`21

W ?
`+1Ψ`W

?>
`+1

k?`
+ κ?`2� Ik?`+1

, (39)

with initialization

Ω0 = Ψ0 = Σ. (40)

The teacher/teacher student correlation Φ admits the closed form expression

Φ`?` =
∏̀
r=1

`?∏
s=1

κr1κ
s?
1 ×

W`? · ... ·W ?
1 · Σ ·W>1 · ... ·W>`

`�1∏
r=0

`?�1∏
s=0

√
krk?s

. (41)

Example for L = 2 For definiteness, let us provide an example for L? = 1, L = 2 (one hidden layer teacher, two hidden
layers student). The recursions (38)(41) then translate to the compact formulas

Ω2 = (κ1
1)2(κ2

1)2W2W1ΣW>1 W>2
k1d

+ (κ2
1)2(κ1

�)
2W2W

>
2

k1
+ (κ2

�)
2Ik1

, (42)

Ψ1 = (κ1?
1 )2W

?
1 ΣW ?>

1

d
+ (κ1?

� )2Ik?1 , (43)

Φ1,2 = κ1
1κ

2
1κ

1?
1

W ?
1 ΣW>2 W>1
d
√
k1

. (44)
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A.3. Derivation for Ω,Ψ

In this subsection, we detail the derivation of the recursion (10). We first derive a preliminary results, describing the
evolution of the data covariance through propagation of a single layer, and subsequently iterate thereupon to reach (10). Note
that because the student and teacher share the same architecture and model definition, the treatment of the teacher/teacher
covariance Ψ and the student/student covariance Ω is identical. In the following, we therefore only discuss the student/student
covariance Ω.

Preliminary: propagating through one layer Consider the auxiliary single-layer problem

h(x) = σ

(
1√
d
W · x

)
(45)

with x ∼ N (0,Σ). The covariance of the post-activation h(x) reads

Ωij = 〈hi(x)hj(x)〉x =

∫
e

� 1
2

(
u v

)w>i Σwi
d

w>i Σwj
d

w>i Σwj
d

w>j Σwj
d


−1u

v


√√√√det 2π

(
w>i Σwi

d
w>i Σwj

d
w>i Σwj

d

w>j Σwj
d

) σ(u)σ(v). (46)

Note that the random variable w>Σw
d concentrates, as w is i.i.d Gaussian of variance ∆. We indeed have that

Ew
w>Σw

d
=

∆

d
tr Σ ≡ r (47)

and (diagonalizing Σ = UΛU>) and noting that U>w is still Gaussian with independent entries

Vw
[
w>Σw

d

]
=

1

d2

d∑
i=1

λ2
iVw

[
(U>w)2

i

]
=

2∆

d2
tr Σ2 =

2∆

d

||Σ||2F
d

= O
(

1

d

)
(48)

provided jjΣjj2F/d is finite. We used the fact that the variance of a 1−degree of freedom χ2 variable is 2. Plugging the
definition of r into the above yields, for an off-diagonal entry i 6= j:

Ωij =

∫
e
� 1

2
1

r2−O( 1
d )

(ru2+rv2)

e

1

r2−O( 1
d )

w>i Σwj
d uv

2π
√
r2 −O

(
1
d

) σ(u)σ(v)

=

(∫
e�

1
2r z

2

√
2πr

σ(z)

)2

+
1

r

w>i Σwj
d

(∫
e�

1
2r z

2

√
2πr

zσ(z)

)2

+O
(

1

d

)
= κ2

1 ×
w>i Σwj

d
. (49)

On the diagonal,

Ωii =

∫
e�

1
2r z

2

√
2πr

σ(z)2 = κ2
� + rκ2

1. (50)

Therefore,

Ω = κ2
1

WΣW>

d
+ κ2
�Ik, (51)

where

κ1 =
1

r
EN (0,r)
z [zσ(z)] κ2

� = EN (0,r)
z

[
σ(z)2

]
− r × κ2

1 (52)

This extends the single-layer GET (Gerace et al., 2020) to arbitrary input covariances. A similar generalization was reported
in (d’Ascoli et al., 2021) in the special case of Σ which spectral density is equal to a finite sum of Dirac atoms.
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Iterating layer to layer (9) and (10) follow by straightforward recursion from the single-layer results (52) and (51),
by making the strong assumption that all post-activations can be treated as Gaussian variables. This assumption is
supported, at a physics level of rigor, by the work of (Fischer et al., 2022), which establishes that cumulants of order ≥ 4 are
asymptotically suppressed at least as 1/k2

` . One then just needs to connect (35) to the single-layer variance r (47).

r`+1 = ∆`
1

k`
tr Ω`

= ∆`+1

(
1

k`

(
κ`1
)2

tr

[
W`Ω`�1W

>
`

k`�1

]
+
(
κ`�
)2)

= ∆`

((
κ`1
)2

r` +
(
κ`�
)2)

= ∆`EN (0,r`)
z

[
σ(z)2

]
. (53)

We used

1

k`
tr

[
W`Ω`�1W

>
`

k`�1

]
=

1

k`�1

k`−1∑
i=1

λ`�1
i

1

k`

(
U>W>` W`U

)
ii

=
1

k`�1

k`−1∑
i=1

λ`�1
i ∆`

= ∆`
1

k`�1
tr Ω`�1 = r` (54)

Finally, one must check that the assumption on Σ that jjΣjj2F/d, tr Σ/d = O(1) carries over to Ω. Because WΣW> is positive
semi definite it is straightforward that

1

k

∥∥∥∥κ2
1

WΣW>

d
+ κ2
�Ik

∥∥∥∥2

F

≥ κ2
� > 0. (55)

The upper bound can be established using the triangle inequality and the submultiplicativity of the Frobenius norm, as

1

k

∥∥∥∥κ2
1

WΣW>

d
+ κ2
�Ik

∥∥∥∥2

F

≤ 1

k

∥∥∥∥κ2
1

WΣW>

d

∥∥∥∥2

F

+ κ2
�

≤ κ2
� +
||W ||4F
d2

||Σ||2F
k

≤ κ2
� + c0 <∞. (56)

We used that jjW jj2F/dk = 1 almost surely asymptotically. Moving on to the trace,

1

k
Tr

[
κ2

1

WΣW>

d
+ κ2
�Ik

]
= κ2

� +
κ2

1

kd
Tr
[
ΣW>W

]
. (57)

Bounding

0 ≤ κ2
1

kd
Tr
[
ΣW>W

]
=

κ2
1

kd

k∑
i=1

w>i Σwi = κ2
1

1

d
Tr{Σ} ≤ κ2

1c
0, (58)

where the last bound holds asymptotically almost surely. As discussed in the main text, this derivation carries over to the
case where W is sampled from the Bayes posterior (5), with the Nishimori identities (Nishimori, 2001; Iba, 1998) ensuring
its statistics are Gaussian.

A.4. Derivation sketch for Φ

This subsection deals with the cross-covariance Φ, which is needed to connect with the results of (Loureiro et al., 2021) to
compute closed-form sharp asymptotics for the test error of linear ERM procedures. We first derive two preliminary results,
corresponding to propagations through single layers, and conclude by constructing the straightforward recursion.
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Two Gaussians propagating through two layers Consider two jointly Gaussian variables u ∈ Rd, v ∈ Rk

(u, v) ∼ N
(

Ψ Φ
Φ> Ω

)
(59)

each independently propagated through a non-linear layer

h?(u) = σ?

(
1√
d?

W? · u
)
, h(v) = σ

(
1√
d
W · v

)
. (60)

The weights W? ∈ Rk?�d? and W ∈ Rk�d have independently sampled Gaussian entries, with respective variance ∆? and
∆. The i, j−th element of the cross-covariance Φh can be expressed as

Φhij = 〈h?i (u)hj(v)〉u,v =

∫
e

� 1
2

(
x y

)
w?>i Σw?i

d?

w?>i Σwjp
d?d

w?>i Σwjp
d?d

w>j Σwj
d


−1x

y


√√√√√det 2π

w?>i Σw?i
d?

w?>i Σwjp
d?d

w?>i Σwjp
d?d

w>j Σwj
d


σ?(x)σ(y). (61)

As before, the random variables w?>i Σw?i/d? and w>j Σwj/d concentrate around their mean value

r? ≡
∆?

d?
tr Ψ, r ≡ ∆

d
tr Ω. (62)

Plugging these definitions into the above:

Φhij =

∫
e
� 1

2
1

r?r−O( 1
d )

(rx2+r?y
2)

e

1

r?r−O( 1
d )

w?>i Φwjp
d?d

xy

2π
√

r?r −O
(

1
d

) σ?(x)σ(y)

=

(∫
e�

1
2r?

z2

√
2πr?

σ?(z)

)(∫
e�

1
2r z

2

√
2πr

σ(z)

)
+

1

r?r

w?>i Φwj√
d?d

(∫
e�

1
2r?

z2

√
2πr?

zσ?(z)

)(∫
e�

1
2r z

2

√
2πr

zσ(z)

)
+O

(
1

d

)
:= κ1κ

?
1 ×

w?>i Φwj√
d?d

, (63)

yielding

Φh = κ1κ
?
1

W?ΦW>√
d?d

, (64)

with

κ1 =
1

r
EN (0,r)
z [zσ(z)] κ1 =

1

r?
EN (0,r?)
z [zσ?(z)] . (65)

One Gaussian propagating through one layer Consider two jointly Gaussian variables u ∈ Rd? , v ∈ Rd

(u, v) ∼ N
(

Ψ Φ
Φ> Ω

)
(66)

with only v being propagated through a non linear layer

h(v) = σ

(
1√
k
W · v

)
. (67)
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The entries W ∈ Rk�d are independently sampled from a Gaussian distribution with variance ∆. The i, j−th element of
the cross-covariance Φ between h(v) and u can be expressed as

Φhij = 〈uihj(v)〉u,v =

∫
e

� 1
2

(
x y

) Ψii
Φiwjp
k

Φiwjp
k

w>j Σwj
k


−1x

y


√√√√det 2π

(
Ψii

Φiwjp
k

Φiwjp
k

w>j Σwj
k

) xσ(y). (68)

Again, the random variable w>j Σwj/k concentrate around its mean value

r ≡ ∆

k
tr Ω. (69)

Plugging this definition into the above:

Φhij =

∫
e
� 1

2
1

Ψiir−O( 1
d )

(rx2+Ψiiy
2)

e

1

Ψiir−O( 1
d )

Φiwj√
k
xy

2π
√

Ψiir −O
(

1
d

) xσ(y)

=

(∫
e
� 1

2Ψii
z2

√
2πΨii

z

)(∫
e�

1
2r z

2

√
2πr

σ(z)

)
+

1

Ψiir

Φiwj√
k

(∫
e
� 1

2Ψii
z2

√
2πΨii

z2

)(∫
e�

1
2r z

2

√
2πr

zσ(z)

)
+O

(
1

d

)
:= κ1 ×

Φiwj√
k

(70)

yielding

Φh = κ1
ΦW>√

k
(71)

with

κ1 =
1

r
EN (0,r)
z [zσ(z)] . (72)

Iterating Iterating (71) L times under Gaussianity assumptions on the post-activations yields the cross-covariance between
the last layer post-activations of the teacher and the input of a linear ERM (in the present work, ridge regression/classification,
and logistic regression), which can in turn be plugged into (Loureiro et al., 2021) to access sharp error asymptotics. The
exact expressions for the covariances Ψ,Φ and Ω used are detailed on a case-per-case basis in Appendix E and H.

Applying (64) and then (71) L− 1 times yields the cross covariance between the last layer post-activations of the teacher
and the random features in the framework of random features regression. This extends the results of (Gerace et al., 2020) to
a multilayer target function.

This result carries over to the case where W,W? are sampled from the Bayes posterior (or, because of the Nishimori identites
(Nishimori, 2001; Iba, 1998), when W? is a the target weight), assuming non-specialization 3.2. The latter ensures that the
term w?>i Φwj/

p
dd? stay of order 1/

p
d for all i, j.

A.5. Numerical evidence of the closed-form recursions

We close the discussion on the closed-form formulae for the population covariances by providing numerical evidence of
their validity. Figures 5, 6 and 7 show the first 10 rows and columns of the numerically estimated population covariance
Ωemp., estimated from the sample covariance of N = 105 Gaussian samples x, and the closed-form formula (10), for a
rectangular network in dimension d = 500 and tanh/sign/erf activations. These covariances concern the activations at layers
ℓ = 4 and ℓ = 7. In all these plots, for clarity, a matrix t`Ik` was substracted, with

t` =

`�1∑
`0=1

(
κ`

0

�

)2 L∏
`′=`0+1

(
κ`
′

1

)2

∆`′ +
(
κL�
)2

+

∫
zdµ(z)

∏̀
`0=1

(
κ`

0

1

)2

∆`0 . (73)
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Figure 5. First 10 rows of the population covariance matrix of activations at layers ℓ = 4 (left) and ℓ = 7(right), for a random network
with tanh activation and architecture 8ℓ, γℓ = 1, in dimension d = 500.Top: numerically computed population covariance Ωemp.

ℓ

estimated from N = 105 samples. Bottom: theoretical Ωℓ, computed from the closed-form formula (10).

t` is the theoretical average value of tr Ω`/d. The visual agreement between the numerically estimated Ωemp.
` and the theoreti-

cal Ω` is very good, with small relative distances jjΩemp.
` � Ω`jj2F/jjΩemp.jj2F ≈ 0.005 for tanh, jjΩemp.

` � Ω`jj2F/jjΩemp.jj2F ≈ 0.008
for sign, and jjΩemp.

` � Ω`jj2F/jjΩemp.jj2F ≈ 0.004 for erf.

A.6. Numerical test of the 1dCLT

We provide numerical evidence of the 1dCLT 3.3, namely that the output ŷ(x) of a deep random Gaussian network is
Gaussian. Note that from the closed-form formula (10), the theoretical variance of the output reads

q̌ =

L�1∑
`=1

(
κ`�
)2 L∏

`′=`+1

(
κ`
′

1

)2

∆`′ +
(
κL�
)2

+

∫
zdµ(z)

L∏
`=1

(
κ`1
)2

∆`. (74)

The empirical histograms of the scaled output ŷ(x)/
p
q̌ of networks with L = 3 and L = 9 hidden layers are plotted in Fig. 9

(for tanh activation) and Fig. 8 (for sign activation). In all cases, the widths are taken equal to the input dimension d. Several
sizes d are plotted. As supplementary confirmation, quantile-quantile (QQ) plots are also included. Fig. 10 further shows,
for a depth L = 3 network with tanh activation, that the higher order cumulants of the output distribution is asymptotically
suppressed.. These numerical simulation provide compelling evidence that as d→∞ the distribution of ŷ(x)/

p
q̌ converges

to a normal distribution.

A.7. Towards rigorous proofs

It would be desirable to rigorously prove the conjectured formulae discussed in this paper. There are a few difficulties that
we discuss now briefly.

Concerning the single layer conjecture 3.1(Shallow Bayes GEP), a full theorem can probably be within reach of current
techniques with, however, one difficulty, summarized in conjecture 3.2. Indeed, the Gaussian equivalence theorem applied
to two neural nets with weights W1 and W2 implies that both of them are effectively linear so that, in terms of second-order
statistics, σ(W1x) ≈ κ

(1)
1 W1X + κ

(1)
� Z1 and σ(W2x) ≈ κ

(1)
1 W2X + κ

(1)
� Z2, with Z1,2 Gaussian-distributed. When W1

and W2 are independent, so are Z1 and Z2. However, when W1 and W2 are correlated then Z1 and Z2 becomes correlated
Gaussians as well, thus complicating the rigorous analysis. As noted in the main text, the work of (Aubin et al., 2018) shows
that this is not expected to happens, but a rigorous control remains so far elusive, and is left for future work.

The deep conjecture requires significantly more work, as an additional difficulty arises. While conjecture 3.4 should also
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Figure 6. First 10 rows of the population covariance matrix of activations at layers ℓ = 4 (left) and ℓ = 7(right), for a random network with
sign activation and architecture 8ℓ, γℓ = 1, in dimension d = 500.Top: numerically computed population covariance Ωemp.

ℓ estimated
from N = 105 samples. Bottom: theoretical Ωℓ, computed from the closed-form formula (10). Due to the nature of the sign activation,
the finite size effects are slightly stronger than for the tanh activation (Fig.5).
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Figure 7. First 10 rows of the population covariance matrix of activations at layers ℓ = 4 (left) and ℓ = 7(right), for a random network
with erf activation and architecture 8ℓ, γℓ = 1, in dimension d = 500.Top: numerically computed population covariance Ωemp.

ℓ estimated
from N = 105 samples. Bottom: theoretical Ωℓ, computed from the closed-form formula (10).
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Figure 8. We study the rescaled output ŷ(x)/√q̌of a random Gaussian network, L = 3 (top) and L = 9 (bottom) hidden layers, sign
activations, and widths k1 = ... = kL = d. From left to right, the dimension d is varied from d = 10 to d � 1000. (top) Histogram of
the output. The red line represents a normal distribution. (bottom) Quantile-Quantile plot. The x axis represent the theoretical quantiles of
a normal distribution QN (0,1), while the empirical quantiles are plotted on the y axis.
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Figure 9. We study the output ŷ(x)/√q̌ of a random Gaussian network, L = 3 (top) and L = 9 (bottom) hidden layers, tanh activations,
and widths k1 = ... = kL = d. From left to right, the dimension d is varied from d = 10 to d � 1000. (top) Histogram of the output.
The red line represents a normal distribution. (bottom) Quantile-Quantile plot. The x axis represent the theoretical quantiles of a normal
distribution QN (0,1), while the empirical quantiles are plotted on the y axis.
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Figure 10. Order 4, 6, 8 of the output ŷ(x)/√q̌ of a random Gaussian network of depth L = 3 with tanh activations, and widths
k1 = ... = kL = d. The cumulants were evaluated from N = 5.104 samples, for one realization of the weights. Note that
because of the fact that the activation is odd, all odd cumulants are vanishing.

be amenable to a rigorous treatment similar to the one of conjecture 3.1, we are still lacking a control of a deep GET as
expressed in 3.3 (10). While much progress has been attained on the topic, giving very strong indication for its validity (see
e.g. (Fan & Wang, 2020; Schröder et al., 2023; Bosch et al., 2023)) this is still an open problem mathematically.

B. Replica computation for shallow networks
This appendix provides a detailed derivation of the asymptotic formula for the test error of the Bayes optimal MSE using the
replica method (Parisi, 1979; Zdeborová & Krzakala, 2015; Gabrié, 2019). The replica method has been leveraged in a
very large body of works (Seung et al., 1992; Watkin et al., 1993; Talagrand, 2006; Barbier et al., 2017; Advani & Ganguli,
2016; Aubin et al., 2020; Cui et al., 2019; Maillard et al., 2020; Loureiro et al., 2021; Aubin et al., 2018; Gerace et al., 2020;
Canatar et al., 2020; Cui et al., 2021; 2022; Zavatone-Veth et al., 2022) to access exact asymptotic characterizations of
accuracy metrics in simple learning tasks, for both Bayesian learning and ERM.

In this appendix, we consider the case of a two-layer target

yµ ∼ Pout

(
·| 1

k?
a>? σ?

(
1√
d
W>? xµ

))
and study Bayesian learning using a two-layer network

ŷ(x) =
1

k
a>? σ

(
1√
d
W>xµ

)
.

Note that the large part of the computation is detailed for the generic case where the student architecture is not required to
match that of the target, i.e. k 6= k?. We denote by Pout the Gaussian measure of variance ∆, corresponding to the Gaussian
additive channel (1). Similarly, we adopt the notation Pw(·) (resp. Pa(·)) for the Gaussian distribution of variance ∆w (resp.
∆a). In the last sections, we specialize to the Bayes optimal setting σ = σ? and k = k? to derive the Bayes-optimal MSE
(12). The general case with deep target and student is discussed in Appendix C.

The exact computation of the Bayes posterior measure (6) is generically intractable. However, it is possible to compute the
associated free energy

f ≡ −Ea?,fW?
` gED lnZ

where Z is the partition function associated to the measure (6), i.e.

Z =

∫
da

∫
dWPw(W )Pa(a)Pout(y

µ|ŷ(xµ)). (75)
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We introduced the priors

Pw(W ) ∝ e�
1

2∆w
jjW`jj2F , Pa(a) ∝ e�

1
2∆a
jjajj2 , (76)

and the posteriors

Pout(y|ŷ) ∝ e�
1

2∆ (y�ŷ)2

(77)

The computation of the free energy yields asymptotic characterizations of the overlaps

qw = E
∥∥∥∥〈a>W√

kd

〉∥∥∥∥2

, qa = E

〈∥∥∥∥ a√
k

∥∥∥∥2
〉
, mw = E

〈
a>W

〉
W>? a?√

kk?d
,

which fully describe the asymptotic average test error. In order to compute the free energy, the replica trick (Parisi, 1979;
1983)

lnZ = lim
s!0

Zs − 1

s

can be employed.

B.1. Replica trick

The replicated partition function reads

Zs =

∫ s∏
a=1

dW adaaPw(W a)Pa(aa) Efxµgµ
∫ n∏
µ=1

P?out

(
yµj 1p

k?
a>? σ?

(
1√
d
W?x

µ
)) n∏

µ=1

∏s
a=1 Pout

(
yµj 1√

k
a>a σ?

(
1√
d
Wax

µ
))

︸ ︷︷ ︸
�

.

(78)

The expectation with respect to the train set in the energetic part can be carried out as:

∗ =
∏
µ

[
Eλ?,fλagsa=1

∫
dyP ?out(y|λ?)

s∏
a=1

Pout(y|λa)

]
. (79)

We have introduced the local fields

λ? ≡
1√
k?

a>? σ?

(
1√
d
W?x

µ

)
, λa =

1√
k
a>a σ?

(
1√
d
Wax

µ

)
. (80)

B.2. GET-linearization of the hidden layer

The shallow Bayes GEP (3.1) implies that these s + 1 fields are jointly Gaussian and have statistics
〈λaλb〉 = κ2

1
1
kda
>
aWaΣW>b ab + δabκ

2
�

1
ka
>
a ab

〈λaλ?〉 = κ1κ
?
1

1
dka
>
aWaΣW>? a?

〈λ?λ?〉 = κ?21
1
kda
>
? W?ΣW>? a? + κ?2�

1
ka
>
? a?

, (81)

where


κ1 = 1

Tr Σ

∆
−1
w d

E
N
(

0, Tr Σ

∆
−1
w d

)
z [zσ(z)]

κ� =

√
E
N
(

0, Tr Σ

∆
−1
w d

)
z [σ(z)2]− κ2

1
Tr Σ

∆−1
w d


κ?1 = 1

∆w
Tr Σ
d

EN(0,∆w
Tr Σ
d )

z [zσ(z)]

κ?� =

√
E
N
(

0, Tr Σ

∆
−1
w d

)
z [σ(z)2]− κ2

1∆w
Tr Σ
d

, (82)

see (9).
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We introduce the order parameters:

qwab =
1

kd
a>aWaΣW>b ab mw

a =
1

kd
a>? W?ΣW>? a? qaab = δab

1

k
a>a ab (83)

ρw =
1

kd
a>? W?ΣW>? a? ρa =

1

k
a>? a? (84)

Introducing Diracs in their Fourier transform form to enforce those definitions, the replicated partition function reads

Zs =

∫ ∏
a�b

dqwabdq
a
ab

∏
a

dmw
a e
�
∑
a
m̂wam

w
a +

∑
a≤b

(q̂wabq
w
ab+q̂

a
abq

a
ab)︸ ︷︷ ︸

esdΨt∫ s∏
a=1

dWadaaPw(Wa)Pa(aa)e

∑
a≤b

q̂wab
a>a WaΣW>b ab

k +
∑
a≤b

q̂aab
a>a ab
γ +

∑
a
m̂wa

a>a WaΣW>? a?√
kk?

︸ ︷︷ ︸
esdΨw∏

µ

[
Eλ?,fλagsa=1

∫
dyP ?out(y|λ?)

s∏
a=1

Pout(y|λa)

]
︸ ︷︷ ︸

esdΨy

(85)

B.3. Entropic potential

We first compute the entropic potential Ψw.

esdΨw =

∫ s∏
a=1

dWadaaPw(Wa)Pa(aa)e

∑
a≤b

q̂wab
a>a WaΣW>b ab

k +
∑
a≤b

q̂aab
a>a ab
γ +

∑
a
m̂wa

a>a WaΣW>? a?√
kk? (86)

=

∫ s∏
a=1

daaPa(aa)e

∑
a≤b

q̂aab
a>a ab
γ

︸ ︷︷ ︸
(a)

d∏
j=1

∫ s∏
a=1

dwaPw(wa)e

∑
a≤b

σj q̂
w
ab

(a>a wa)(a>b wb)
k +

∑
a
σjm̂a

(a>a Wa)(a?>w?j )
√
kk?


︸ ︷︷ ︸

(b)

(87)

We have used the fact that the prior Pw(·), being Gaussian, factorizes over the d columns {wj}dj=1 of the first layer weights
W,W ?. Also, Σ has been without loss of generality supposed to be diagonal, i.e. Σ = diag(σ1, ..., σd). Note that all
the final expression hold for generic Σ, and that one can carry out the computation in full detail without this shortcut by
introducing Σ = Udiag(σ1, ..., σd)U

> and U− rotating W,W ?. Defining

ηa =
a>a wa√

k
(88)

and remembering Pw(w) = e�
∆−1
w
2 w>w, it follows that the variables {ηa}sa=1 are jointly Gaussian with statistics{

〈ηa〉 = 0

〈ηaηb〉 = δab
qaaa
∆−1
w

.
(89)

It then follows that

(b) =

∫  s∏
a=1

dηa√
2π

qaaa
∆−1
w

e
� 1

2

∆−1
w
qaaa

η2
a

 e
σj
∑
a≤b

q̂wabηaηb+σj
a?>w?j√

k?

∑
a
m̂aηa

(90)

= e
1
2σ

2
j

(
a?>w?j√

k?

)2

m̂>
[
diag

(
∆−1
w
qaaa

)
�σj�(2Is)�Q̂w

]−1

m̂� 1
2 ln det

[
Is�σjdiag

(
∆−1
w
qaaa

)
(2Is)�Q̂w

]
. (91)
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B.4. Replica-symmetric ansatz

Since the integral for Zs involves exponentials with arguments of order d, Laplace method suggests that the integral
concentrates over the maximizer of the exponent Ψt + Ψw + Ψy. Since explicitly carrying out the optimization over the
order parameters qwab, q

a
ab,m

w
ab is hard, we look for solutions of the form

q̂wab = δab

(
− r̂w

2
− q̂w

)
+ q̂w (92)

q̂aab = −δab
r̂a
2

(93)

m̂w
a = m̂w (94)

and

qwab = δab(rw − qw) + qw (95)
qaab = δabra (96)
mw
a = mw. (97)

This ansatz is standardly known as the replica symmetric ansatz. For convenience, we further define the variances

Vw = rw − qw, Va = ra, V̂w = r̂w + q̂w, V̂a = r̂a. (98)

B.5. RS free energy

Entropy potential We first recall as a preliminary statement two linear algebra results for matrices of the form (δab(r −
q) + q)1�a,b�s:

(δab(r − q) + q)�1
ab =

(
δab

(
r + (s− 2)q

(r − q)2 + sq(r − q)
+

q

(r − q)2 + sq(r − q)

)
− q

(r − q)2 + sq(r − q)

)
ab

(99)

and

det(δab(r − q) + q)
�1
ab = (r + (s− 1)q)(r − q)s�1 (100)

These identities can be leveraged to simplify the two terms in (89) as

m̂>
[
diag

(
∆�1
w

qaaa

)
− σj × (2Is)� Q̂w

]�1

m̂ = σ2
j sm̂

2 1

σj V̂w + ∆−1
w

ra

(101)

and

ln det

[
Is − σjdiag

(
∆�1
w

qaaa

)
(2Is)� Q̂w

]
= s ln

(
ra

∆�1
w

V̂wσj + 1

)
− s

σj q̂w

σj V̂w + ∆−1
w

ra

. (102)

Thus

d∏
j=1

(b) = e

sm̂2

2 Tr

Σ2 W
>
? a?a

>
? W?

k?

V̂wΣ+
∆
−1
w
ra

Id

� s2 ln det

[
ra

∆
−1
w
V̂wΣ+Id

]
+ s

2 Tr

 q̂wΣ

V̂wΣ+
∆
−1
w
ra

Id


(103)

Computing now the (a) term:

(a) =

k∏
j=1

∫ s∏
a=1

daa√
2π 1

∆−1
a

e
�∆−1

a
2

s∑
a=1

a2
a�

r̂a
2γ

s∑
a=1

a2
a

 = e
� ks2 ln

(
1+ V̂a

γ∆
−1
a

)
(104)
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The entropic potential thus reads

Ψw =
1

ds
ln

(a)

d∏
j=1

 (b) = −γ

2
ln

(
1 +

V̂a

∆�1
a

)
(105)

+
m̂w

2

2d
Tr

Σ2W
>
? a?a

>
?W?

k?

V̂wΣ + ∆−1
w

ra
Id

− 1

2d
ln det

[
ra

∆�1
w

V̂wΣ + Id

]
+

1

2d
Tr

[
q̂wΣ

V̂wΣ + ∆−1
w

ra
Id

]
(106)

where for readability we redefined V̂a ← V̂a/γ.

Trace terms It is straightforward to obtain

Ψt =
1

2
(r̂wrw + q̂wqw) +

γ

2
(r̂ara)− m̂wmw (107)

Loss potential The loss potential is identical to (Loureiro et al., 2021), provided the relevant overlap are plugged in:

Ψy =

∫
Dξ

∫
dyZ?

(
y,
κ1κ

?
1mw√
κ2

1qw

ξ,κ?2
1 ρw+κ?2

∗ ρa�
(κ1κ

?
1mw)2

κ2
1qw

)
lnZ` (y,

√
κ2

1qwξ,κ
2
1Vw+κ2

∗Va) (108)

with

Z`/?(y, ω, V ) = EN (ω,V )
x P

/?
out(y|x). (109)

B.6. Finite temperature free energy

The free energy thus reads

f = extr
Vw,qw,mw,Va,V̂w,q̂w,m̂w,V̂a

− 1

2
(V̂wVw + V̂wqw − q̂wVw)− γ

2
V̂aVa + m̂wmw +

γ

2
ln

(
1 +

V̂a

∆�1
a

)

− 1

2d
Ea?,W?

Tr

m̂2
wΣ2W

>
? a?a

>
?W?

k?
+ q̂wΣ

V̂wΣ + ∆−1
w

Va
Id

+
1

2d
ln det

[
Va

∆�1
w

V̂wΣ + Id

]

− α

∫
Dξ

∫
dyZ?

(
y,
κ1κ

?
1mw√
κ2

1qw

ξ,κ?2
1 ρw+κ?2

∗ ρa�
(κ1κ

?
1mw)2

κ2
1qw+κ2

∗qa

)
lnZ`

(
y,
√
κ2

1qwξ,κ
2
1Vw+κ2

∗Va
)
.

(110)

In the next section, we specialize this expression to the Bayes optimal setting, for regression. Appendix H provides in
parallel the specialization for the Bayes optimal classification case.

B.7. Bayes-Optimal setting

For the linear readout f? = id and Gaussian additive noise considered in the regression case, Z(y, ω, V ) admits a compact
expression

Z(y, ω, V ) =

∫
dx√

2πV
√

2π∆
e�

(x−ω)2

2V � 1
2∆ (y�x)2

=
1√

2π(∆ + V )
e�

(ω−y)2

2(∆+V ) . (111)

B.8. Nishimori identities

Since we consider the Bayes optimal case, the Nishimori identities hold, yielding

ra = ρa = ∆a, rw = ρw =
∆w∆a

d
Tr Σ, r̂a,w = 0 (112)

qa,w = ma,w, q̂a,w = m̂a,w, (113)

27



Bayes-optimal Learning of Deep Random Networks of Extensive-width

causing the free energy to simplify to

f = extr
qw q̂w

[
1

2
qw q̂w −

1

2d
Tr

[
∆w∆aq̂

2
wΣ2 + q̂wΣ

q̂wΣ + 1
∆w∆a

Id

]
+

1

2d
ln det [∆w∆aq̂wΣ + Id] +

α

2
ln
(
∆ + κ2

1(ρw − qw) + κ2
�ρa
)]

(114)

i.e.

f = extr
qw q̂w

[
1

2
qw q̂w −

1

2
q̂wρw +

1

2d
ln det [∆w∆aq̂wΣ + Id] +

α

2
ln
(
∆ + κ2

1(ρw − qw) + κ2
�ρa
)]

(115)

B.9. Bayes-optimal saddle points

The extremization in (115) can be carried out by imposing that the gradient with respect to each optimization parameter be
vanishing, yielding q̂w =

ακ2
1

∆+κ2
1(ρw�qw)+κ2

∗ρa

qw = 1
d Tr

[
∆2
w∆2

aq̂wΣ2

Id+∆w∆aq̂wΣ

] . (116)

The equation (116) can be recovered by plugging the first line into the second, and remembering that the excess prediction
error can be evaluated as

ϵg −∆ = κ2
1(ρw − qw) + κ2

�ρa. (117)

Indeed, the Bayes optimal estimator is given by the averaged output of the student network over the posterior measure (6)〈
1√
k
a>σ

(
1√
d
Wx

)〉
a,W�P

and the corresponding test error reads
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+ ∆
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�ρa. (118)

In going from the second line to the third, we used the covariance identities (10).
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C. Replica computation for deep networks
C.1. Generalization to multi-layer nets

In this section we generalize the discussion of Appendix B to deep networks with L ≥ 2 hidden layers. We use the same
notations as the main text (1)(2). To treat simultaneously regression and classification, it is useful to introduce generic
notations for the priors

Pw(W`) ∝ e
� 1

2∆`
jjW`jj2F , Pa(a) ∝ e�

1
2∆a
jjajj2 , (119)

and the posteriors

Pout(y|ŷ) ∝ e�
1

2∆ (y�ŷ)2

(120)

for regression. In Appendix H, for classification, the output channel will be

Pout(y|ŷ) ∝
∫

dξe�
1

2∆ ξ
2

√
2π∆

Θ (y × sign(ŷ + ξ)) . (121)

With a slight abuse of notations, we omit for readability the layer index ℓ in the prior Pw, with the correct variance ∆` of the
Gaussian distribution being implied by the argument W` thereof. Besides, we keep the notation Pw also for the marginal
distribution of the rows of the weight matrices.

C.2. Tower of order parameters

Replicated partition function By the same token, we employ the replica trick, and write the replicated multi-layer
partition function as

Zs =

∫ s∏
a=1

L∏
`=1

dW a
` Pw(W a

` )daaPa(aa) Efxµgµ
∫ n∏

µ=1

P ?out (yµ|ŷa?(xµ))

n∏
µ=1

s∏
a=1

Pout (yµ|ŷa(xµ))︸ ︷︷ ︸
�

. (122)

Carrying out the expectation with respect to the train set D :

∗ =
∏
µ

[
Eλ?,fλagsa=1

∫
dyPout(y|λ?)

s∏
a=1

Pout(y|λa)

]
. (123)

We have introduced the local fields

λ? ≡
1√
kL?

a>?
(
φ?L? ◦ φ?L?�1 ◦ · · · ◦ φ?2 ◦ φ?1

)︸ ︷︷ ︸
L?

(x), λa =
1√
kL

a>
(
φaL ◦ φaL�1 ◦ · · · ◦ φa2 ◦ φa1

)︸ ︷︷ ︸
L

(x). (124)

φa` denotes the a−th replica of the ℓ−th layer, i.e.

φa` (x) = σ`

(
1√
k`�1

W a
` · x

)
(125)

Local fields statistics The second order statistics are given by an application of the deep Bayes GEP (3.4) as

〈λaλb〉 =

L∏
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(
κ

(`)
1

)2
a>a

(
1∏
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)
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κ
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κ

(L)
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 , (126)
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and

〈λaλ?〉 =

L∏
`=1

κ
(`)
1

L?∏
`=1

κ
(`)?
1
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(
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)
a?

L∏
`=0

√
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√
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. (127)

By the same token the teacher variance reads

〈λ2
?〉 =
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+
(
κ
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�
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(128)

These statistics warrant the introduction of the order parameters ma, {
(
qL`
)
ab
}L`=1, q

a
ab, {ρL

?

` }L
?

`=1, ρa as
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Σ
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p
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p
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(
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`0∏
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(
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`

)
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?

`0
=
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(
`0∏

`=L?
W?
`

)
Σ

(
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`=`0

W?>
`

)
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k?`

ρa =
a>? a?
k?
L?

(129)

Note that qL`0s corresponds to the overlap between the products of weights from layer ℓ0 (included) to layer L (included, i.e.
the last layer before readout), with similar intuition holding for the ρL

?

`0
s.

C.3. Replica Symmetry

Similarly to the two-layers case, we assume replica symmetry. The order parameters are taken of the form

(
q̂L1
)
ab

= δab

(
− r̂L1

2
− q̂L1

)
+ q̂L1 , (130)

∀ℓ ≥ 2,
(
q̂L`
)
ab

= −δab
r̂L`
2
, (131)

q̂aab = −δab
r̂a
2
, (132)

m̂a = m̂, (133)
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while the non-hatted overlap read (
qL1
)
ab

= δab
(
rL1 − qL1

)
+ qL1 , (134)

∀ℓ ≥ 2,
(
qL`
)
ab

= δabr
L
` , (135)

qaab = δabra, (136)
ma = m. (137)

(138)

C.4. Multilayer Loss potential

The computation of the loss potential Ψy follows rather tightly the one detailed in (Loureiro et al., 2021) and leads to

Ψy =

∫
Dξ

∫
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κ
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2
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)
. (139)

C.5. Layer-wise entropy

The computation of the entropy potential Ψw follows the same lines as for the two-layer case, see Appendix B. In practice,
one has to first integrate the first layer, then the middle layers and the readout. For clarity purposes, we decompose Ψw into
the following series of terms

Ψw = Ψ1(q̂L1 , r̂
L
1 , q

L
2 ) +

L∑
`=2

Ψ`(r̂
L
` , q

L
`+1) + Ψa(r̂a) (140)

and proceed to evaluate each sequentially.

First layer We focus on ℓ = 1 first:

esdΨ1 =

d∏
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∫ s∏
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dw1
aPw(w1

a)e

∑
a≤b
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aaa

)
×
(
w1>
b

L∏
`=2

W`
b ab

)
L∏
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√
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(141)

Introducing the local fields

ηa ≡
w1>
a

L∏
`=2

W `
aaa

L∏
`=1

√
k`

, (142)

which inherit from Pw(·) the statistics

〈ηaηb〉 = δab

(
qL2
)
aa

∆�1
1

, (143)

it follows that

esdΨ1 =

d∏
j=1

e

1
2σ

2
j

 a?>
2∏

`=L?
W?>
` (w?1)j

L?∏
`=1

√
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`


2
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[
diag

(
∆
−1
1

(qL2 )aa

)
�σj�(2Is)�Q̂L1

]−1

m̂� 1
2 ln det

[
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(
∆
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1

(qL2 )aa

)
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]
.

(144)
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Finally,

Ψ1 =
1

d
Tr


q̂L1 Σ + m̂2Σ2

1∏
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` a?a

>
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(145)

Middle layers We know provide the derivation for ℓ ≥ 2 (middle layers). The corresponding potential reads

esdΨ`0 =

∫ s∏
a=1

dW a
`0Pw(W a

`0)e

s∑
a=1

(q̂L` )
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=
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. (147)

Introducing the local fields

ηa =

w>
L∏

`=`0+1

W`aa

L∏
`=`0

√
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, (148)

it follows that

Ψ` = −γ`�1

2
ln

(
1 +

rL`+1r̂
L
`

∆�1
`

)
. (149)

Readout The readout layer entropy can be computed as in the two layer case yielding

Ψa = −γL
2

ln

(
1 +

r̂a

∆�1
a

)
, (150)

see Appendix B

Summary: multilayer entropic potential Assembling these results, the total entropic action reads
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C.6. Finite T multilayer free energy

Finally, the complete free energy at finite temperature reads
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C.7. Bayes-Optimal setting

Nishimori identities For matching teacher/student the Nishimori identities guarantee that

{
qL1 = m

q̂L1 = m̂
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(
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(153)

The Bayes-Optimal free energy accordingly simplifies to
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For a linear readout, and a noisy teacher channel with Gaussian additive noise of variance ∆ (1):
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C.8. Bayes-Optimal Saddle point equations

The saddle-point equations corresponding to the extremization (155) read
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The Bayes optimal MSE can be computed along the same lines as the two-layers case. Recall that h?L(x) and hL(x)
designate the post activations at the last layer for an input x, respectively for the teacher (1) and student (2) networks. The
Bayes optimal estimator is then 〈a>hL(x)〉/

√
kL, where the expectation is carried out over the Bayes posterior measure (6).

The MSE then reads
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Replacing the ρL` order parameters by their definitions, one finally reaches
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which is equation (12).

D. Equivalent shallow network
In this appendix, we show that the shallow network (16)

ylin(x) = f?

(√
ρθ>x
√
d

+
√
ϵrξ

)
, (158)

possesses the same Bayes free energy as the deep network (1), implying in particular that they are characterized by the same
Bayes error. Again, let us defined the notations

Pw(w) ∝ e�
1
2 jjwjj

2

(159)

34



Bayes-optimal Learning of Deep Random Networks of Extensive-width

and the posterior

P 0out(y|z) ∝
∫

dξ√
2πϵr

e�
1

2εr
ξ2

δ(y − f?(z + ξ)) (160)

. We will again resort to the replica trick. While this exact replica computation has not, to the authors’ knowledge, been
detailed in previous work, it is nevertheless very standard and close to existing studies, e.g. (Barbier et al., 2017; Loureiro
et al., 2021). For these reasons, we shall frequently point to related computations and be concise.

The replicated partition function reads
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Define the overlap matrix

qab =
w>a Σwb

d
ma =

θ>Σwa
d

(162)

and the associated Dirac conjugates {q̂ab}, {m̂a}, the partition function becomes
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edsΨw+αdsΨy (163)

where we introduced the entropic potential Ψw

edsΨw =

∫ s∏
a=1

dwaPw(wa)dθPw(θ)e

∑
a≤b

q̂abw
>
a Σwb+

∑
a
m̂aθ

>Σwa
(164)

and the loss potential Ψy

eαdsΨy = Efλa,µ
∫

dyP 0out(y|µ)

s∏
a=1

P 0out(y|λa) (165)

where the local fields {λa}, µ are Gaussian with statistics

〈µ2〉 = 1, 〈µλa〉 = ma, 〈λaλb〉 = qab. (166)

We assume the replica symmetric ansatz with the Nishimori identities

qab = (ρ− q)δab + q (167)
ma = q (168)
m̂a = q̂ (169)
q̂ab = q̂(1− δab) (170)

The computation of Ψy is standard and leads to (see e.g. (Loureiro et al., 2021))

Ψy =

∫
Dξ

∫
dyZ 0

(
y,
√
qξ, ρ

∫
zdµ(z)− q

)
lnZ 0

(
y,
√
qξ, ρ

∫
zdµ(z)− q

)
(171)

with

Z 0(y, ω, V ) = EN (ω,V )
x P 0out(y|x) =

∫
DxDξδ(y − f?(

√
ϵrξ +

√
V x + ω))

=

∫
DxDξδ(y − f?(

√
∆ξ +

√
V + ϵr −∆x + ω))

= Z`(y, ω, V + ϵr −∆) (172)
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Z` (109) has been introduced in Appendix C. As for the entropic potential, introducing the Hubbard Stratonovitch field η,
and using the notation D for integrands with normal distributions,

esdΨw =

∫
DθDη

[∫
dw

1

(2π)
d
2

e�
1+ρq̂Σ

2 w>w+ρq̂θ>Σw+
p
ρq̂w>Σ

1
2 η

]s
=

∫
DθDηe�

s
2 ln det(1+q̂Σ)+ s

2 (
p
ρq̂Σ

1
2 η+ρq̂Σθ)>(1+ρq̂Σ)−1(

p
ρq̂Σ

1
2 η+ρq̂Σθ)

= e�
s
2 ln det(1+ρq̂Σ)

∫
dz√

det 2π(ρq̂Σ + ρ2q̂2Σ2)
e�

1
2 z
>(ρq̂Σ+ρ2q̂2Σ2)−1z+ s

2 z
>(1+ρq̂Σ)−1z

= e�
s
2 ln det(1+ρq̂Σ)� 1

2 ln det[I�s(ρq̂Σ+ρ2q̂2Σ2)(1+ρq̂Σ)−1]. (173)

Finally

Ψw =
1

2
ln det(1 + ρq̂Σ)− 1

2
Tr
[
(ρq̂Σ + ρ2q̂2Σ2)(1 + ρq̂Σ)�1

]
(174)

Putting everything together

f = extr
q,q̂
− 1

2
q̂q +

1

2d
ln det

[
1 + ∆a

∏
`

∆`

∏
`

(
κ

(`)
1

)2

q̂Σ

]
− 1

2d
Tr

∆a
∏̀

∆`

∏̀(
κ

(`)
1

)2
q̂Σ+

(
∆a
∏̀

∆`

∏̀(
κ

(`)
1

)2
)2

q̂2Σ2

1 + ∆a

∏̀
∆`

∏̀ (
κ

(`)
1

)2

q̂Σ


+ α

∫
Dξ

∫
dyZ

(
y,
√
qξ, ρ

∫
zdµ(z)− q

)
lnZ

(
y,
√
qξ, ρ

∫
zdµ(z)− q

)

= extr
q,q̂
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2
q̂q +

1

2d
ln det

[
1 + ∆a

∏
`

∆`q̂Σ

]
− 1

2d
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 q̂Σ+∆a
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∆`q̂
2Σ2

1∏̀(
κ

(`)
1

)2 + q̂Σ


+ α

∫
Dξ

∫
dyZ

(
y,

√∏̀(
κ

(`)
1

)2
qξ,
∏̀(

κ
(`)
1

)2
(rL1 �q)+εr�∆

)
lnZ`

(
y,

√∏̀(
κ

(`)
1

)2
qξ,
∏̀(

κ
(`)
1

)2
(rL1 �q)+εr�∆

)

= extr
q,q̂
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2
q̂q +

1

2d
ln det

[
1 + ∆a

∏
`

∆`q̂Σ

]
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2d
Tr

 q̂Σ+∆a
∏̀

∆`q̂
2Σ2

1∏̀(
κ

(`)
1

)2 + q̂Σ


+ α

∫
Dξ

∫
dyZ

(
y,

√∏̀(
κ
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1

)2
qξ,
∏̀(

κ
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1
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(
κ

(`0)
∗

)2
∆a

L∏
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(
κ

(`)
1

)2
∆`+(κ(L)
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2
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lnZ`

(
y,

√∏̀(
κ

(`)
1

)2
qξ,
∏̀(
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1
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(rL1 �q)+
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∗

)2
∆a

L∏
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κ

(`)
1
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2
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(175)

which is exactly the Bayes free energy (154) for the multi-layer target. The expressions of the Bayes MSE and classification
errors for the single layer network are known (Loureiro et al., 2021) and exactly recover the expressions (12) and (5).

E. ERM : the shallow case
In this appendix, we contrast the Bayes optimal MSE for regression (12) obtained in Appendix B and C to the test error
achieved by linear ERM methods. Are successively described ridge regression, and random features regression (Rahimi &
Recht, 2007), alongside its infinite width limit, kernel regression. Sharp asymptotics for the test error of those ERM methods
can be accessed by combining the multi-layer linearization (10) (see also Appendix A) with the results of (Loureiro et al.,
2021).

We start by reviewing the results of (Loureiro et al., 2021). They consider learning from the dataset {vµ, yµ}nµ=1, where
vµ ∈ Rp represent the student features, assuming that the labels are generated from a generalized linear model as

yµ = f?

(
1

kL
a>? h

?µ
L

)
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with h?µL ∈ RkL . Finally, suppose that h?µL , vµ are jointly Gaussian(
h?µL
vµ

)
∼ N

(
0,

[
Ψ Φ

Φ> Ω

])
.

The trains set can be learnt resorting to ERM with loss function g(·)

ŵ = argmin
w

n∑
µ=1

g

(
yµ,

w>vµ
√
p

)
+

λ

2
||w||2

with the test error being measured as

ϵg = EDEv,h?L

[
ĝ

(
f̂

(
ŵ>vµ
√
p

)
, f?

(
1

kL
a>? h

?µ
L

))]
for some metric ĝ and estimator function f̂ . Finally, the proportional limit p, kL, n→∞ with finite ratios α := n/p, γ :=
kL/p. Then the theorem of (Loureiro et al., 2021) states that

ϵg → E(ν,λ)

[
ĝ(f̂(λ), f?(ν)

]
where (

ν
λ

)
∼ N

(
0,

[
a>? Ψa?
kL

m

m q

])
.

The self-overlap q and the magnetization m are two scalar values characterized as the solutions of a system of scalar
saddle-point equations, depending only on Ω,Φ, the loss function g and the output channel f?. (Loureiro et al., 2021)
provide detailed examples of these saddle-point equations for standard loss functions, which we do not replicate here for
conciseness.

This provide a very versatile framework to evaluate the sharp asymptotics of the test error of linear ERM methods, provided
one crucially assumes that the student features v and the last layer post-activations h?L are jointly Gaussian. Such Gaussian
equivalence results are known to hold rigorously for a variety of settings (Mei & Montanari, 2019; Hu & Lu, 2022a);
(Loureiro et al., 2021; Cui et al., 2021; 2022) have also provided heuristic and numerical evidence of this equivalence holding
for more intricate set-ups. The results of the present manuscript fit in this last line of works, and establishes heuristically and
numerically that the equivalence holds for the presently considered multilayer network targets, and linear ERM methods. A
rigorous proof thereof falls beyond the scope of the present paper.

Assuming the Gaussian equivalence, the test error of ERM methods on the target (1) can be accessed by evaluating the
covariances Ψ,Ω,Φ using the result (10) (see also Appendix (A) for a detailed discussion and derivation), and inject these
expressions in the saddle-point equations of (Loureiro et al., 2021). In the following, we sequentially detail the final saddle
point equations for ridge regression, random features regression, and kernel regression.

Linear regression The sharp asymptotics for the test error in (Loureiro et al., 2021) can be applied, leveraging the
characterization (10) for the covariances. This straightforwardly yields, in the notations of (Loureiro et al., 2021):

ρ = κ?21 ρw + κ?2� ρa + ∆,

Ω = Σ

Φ =
√

∆a∆wκ
?
1Σ,

with the corresponding saddle-point equations reading


V̂ = α

1+V

q̂ = α
κ?21 ρw+κ?2∗ ρa+q�2κ?1m+∆

(1+V )2

m̂ =
κ?1α
1+V


V =

∫
dµ(z) z

λId+V̂ z

q =
∫

dµ(z)∆a∆wm̂
2z3+q̂Σ2

(λId+V̂ z)2

m = ∆a∆wm̂
∫

dµ(z) z2

λId+V̂ z

(176)

The generalization error is
ϵg = κ?21 ρw + κ?2� ρa + q − 2κ?1m (177)
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Random Features Denoting F ∈ Rk�d the RF matrix, which we will take N (0,∆f ), and denoting

κ1 =
1

∆f
Tr Σ
d

EN(0,∆f
Tr Σ
d )

z [zσ(z)] κ� =

√
EN(0,∆f

Tr Σ
d )

z [σ(z)2]− κ2
1∆f

Tr Σ

d
(178)

the GET coefficients associated to the RF non linearity σ(·) (9), the covariances read (10) (see Appendix A)
ρ = κ?21 ρw + κ?2� ρa + ∆,

Ω = κ2
1
FΣF>

d + κ2
�Ik

Φ =
√

∆a∆wκ1κ
?
1ΣF>p

d
.

From which it follows, leveraging the asymptotic results of (Loureiro et al., 2021),


V̂ =

α
γ

1+V

q̂ = α
γ
κ?2

1 ρw+κ?2
∗ ρa+q�2κ?1m+∆
(1+V )2

m̂ =
√
γ
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α
γ

1+V
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1
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1
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∗Ik)

]
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FΣ2F>
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∗Ik)

] (179)

The error is the same as for ridge regression (177). In the case where Σ = Id (which we assume from now on), FΣF> and
FΣ2F> a jointly diagonalizable and introducing the spectral density ρ(s) of FF>/d:

V̂ =
α
γ

1+V

q̂ = α
γ
κ?21 ρw+κ?2

∗ ρa+q�2κ?1m+∆
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2
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2
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2
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. (180)

Introducing the Stieljes transform

g(z) =

∫
dρ(s)

1

s− z
, (181)

Then the saddle point equations can be expressed as
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α
γ

1+V
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γ
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.

Kernels We know consider the infinite width limit γ → ∞ limit of (180), corresponding to GP kernel regression. For
Gaussian projection, ρ(·) is Marcenko-Pastur, and reads

ρ(s) =

(
1− 1

γ

)
δ(s) + ν(s) (182)

where

ν(s) =
1

γ2π∆f

√
(s−∆f (

√
γ − 1)2)(∆f (

√
γ + 1)2 − s)

s
1∆f (

p
γ�1)2�s�∆f (

p
γ+1)2 . (183)

The measure ν(·) simplifies in the γ →∞ limit. For any test function h(·):

∫
dν(x)h(x) =

σ2(γ+2
p
γ+1)∫

σ2(γ�2
p
γ+1)

dx

2πγ∆f

√
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√
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x
h(x)

=

1∫
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π
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√
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γ + 2
√
γx

=
h(∆fγ)

γ
+O

(
1
√
γ

)
(184)
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meaning

ρ(s) ≈
(

1− 1

γ

)
δ(s) +

1

γ
δ(s− γ∆f ). (185)

The saddle point equation become approximately
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(186)

Rescaling

V̂ , q̂ ← γV̂ , γq̂ m̂← √γm̂ (187)

The equations (186) reduce to


V̂ = α

1+V

q̂ = α
κ?2

1 ρw+κ?2
∗ ρa+q�2κ?1m+∆
(1+V )2

m̂ = α
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κ2
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κ2
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1∆f
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2κ4
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f
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1∆f )2
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κ2
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λ+V̂ κ2
1∆f

. (188)

F. Optimality of kernel ERM on shallow targets
In this appendix, we demonstrate that optimally regularized ridge regression and kernel regression achieve the Bayes optimal
MSE, and provide a derivation of the explicit formulas for the oprimal regularizations (21) and (25). Note that this extends
the very closely related results of (Sahraee-Ardakan et al., 2022), which were derived for a GP target, corresponding to the
infinite width limit of (1). In fact, (21) and (25) can be heuristically derived by evaluating the formulas of (Sahraee-Ardakan
et al., 2022) on the equivalent linear teacher (16).

F.1. Ridge ERM achieves Bayes optimal error

We first show that optimally regularized ridge regression achieves the Bayes optimal MSE (12). As a side result, the formula
(21) is obtained.

Optimal regularization for ridge Combining (177) and (176), one can derive a self-consistent equation for ϵg:

ϵg = κ2
�ρa +

∫
dµ(z)

κ2
1∆w∆aV̂

2z3+q̂z2�2κ2
1∆w∆aλV̂ z

2�2κ2
1∆w∆aV̂

2z3+κ2
1∆w∆aλ

2z+κ2
1∆w∆aV̂

2z3+2κ2
1∆w∆aλV̂ z

2

(λId + V̂ z)2

λ̃� λ
V̂= κ2
�ρa +

∫
dµ(z)

κ2
1∆a∆wλ̃

2z +
εg
α z

2

(λ̃Id + z)2
(189)

Requiring ϵg to be minimal with respect to λ (equivalently, λ̃):

0 =

∫
dµ(z)

2κ2
1∆w∆aλ̃z

(λ̃Id + z)2
− 2

2κ2
1∆w∆aλ̃

2z +
εg
α z

2
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(190)

=

∫
dµ(z)

z2

(λ̃Id + z)3
× 2κ2

1∆w∆a

(
λ̃− ϵg

ακ2
1∆w∆a

)
(191)

It follows the relation

λ =
V̂ ϵg

ακ2
1∆w∆a

=
ϵg

κ2
1∆w∆a(1 + V )

. (192)
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Explicit characterization of the optimal regularization We now proceed to show (21). Rewrite (192) as

ϵg = ακ2
1∆w∆aλ̃, (193)

where we remind the auxilary variable λ̃ ≡ λ/V̂ . Replacing ϵg in (189) for λ̃, one reaches
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κ2
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λ̃z
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)
(194)

On the other hand, the saddle point equations for V̂ , V (176) can be rewritten as

1

V̂
=

1

α

(
1 +

1

V̂

∫
dµ(z)

z

λ̃Id + z

)
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Multiplying by λ on both sides:

λ̃ =
1

α

(
λ +

∫
dµ(z)

λ̃z

λ̃Id + z

)
(196)

Identifying (194) and (196) yield

λ =
κ2
�∆a + ∆

∆w∆aκ2
1

, (197)

which is (21) for L = 1 hidden layer.

Connection to (Sahraee-Ardakan et al., 2022) In the two layer case, this result interestingly corresponds to the optimal
regularization given by Theorem 4.1 in (Sahraee-Ardakan et al., 2022), provided it is applied to the GP corresponding to the
infinite-width limit of the target. Following (Sahraee-Ardakan et al., 2022), the optimal regularization for ridge regression
over such a GP reads

λ =
c0 + σ2

c2
,

which translating into our notations with

c2 = ∆w∆aκ
2
1 c0 = ∆aκ

2
� σ2 = ∆ (198)

leads back to
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�∆a + ∆

∆w∆aκ2
1

. (199)

Equivalence Ridge/Bayes Finally, we show that ridge regression, regularized with (21), achieves the Bayes optimal
MSE (12). We will show to this end that −κ2

1qw = q − 2κ1m, taking inspiration from (116) to define q̂w = ακ2
1/ϵg =

(V̂ ∆w∆a)/λ. In the following, λ is understood as the ridge optimal regularization (21).
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(200)

which corresponds to the equation (116). Renaming qw := −q � 2κ1m/κ2
1 allows to recover the two-layer Bayes MSE.
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F.2. Kernels achieve Bayes optimal error

This subsection similarly addresses the case of kernels.

Optimal regularization for RF kernel ERM Combining (177) and (188), one can as in the ridge case derive a self-
consistent equation for the generalization error:
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(201)

Requiring ∂εg
∂λ̃

= 0 leads to
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(202)

The optimal regularization thus reads

λ =
V̂ ϵgκ

2
1∆f

∆w∆aακ?21

=
ϵgκ

2
1∆f

∆w∆aκ?21 (1 + V )
. (203)

Explicit characterization for the optimal regularization One is now in position to derive (25). Combining (201) and
(203), the optimal λ for kernel regression is the solution on the λ variable of the system of equations

λ =
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2
1∆f

∆w∆aακ?21
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Introducing the variable λ̃ ≡ λ/V̂ , and plugging the first line into the second, this simplifies to
ϵg = α∆w∆a
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Substracting the third line from the second yields an expression for λ:

∆fκ
2
1

∆wκ?21

(
κ?2� +

∆

∆a

)
= λ + κ2

�. (206)

In other words, the optimal regularization is explicitly given by

λ = κ2
1∆f

(
∆aκ

?2
� + ∆

κ?21 ∆w∆a
− κ2

�
κ2

1∆f

)
(207)

Alternative argument using (Sahraee-Ardakan et al., 2022) Theorem 2.1 of (Sahraee-Ardakan et al., 2022) shows that
regularizing a kernel method with λGP yields the same test error as ridge regression with regularization λr, provided these
two regularization are related as

λGP = c2 × λr − c0, (208)

i.e. in our notations
λGP = ∆fκ

2
1 × λr − κ2

�. (209)

Taking λr to be the optimal regularizer for ridge regression derived in the previous subsection, this leads to
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(210)
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Equivalence kernel/BO We now show the optimally regularized error achieves the Bayes optimal MSE (12). More
precisely, we show qw = −(q − 2κ?1m)/κ?21 :
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εg
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1 + ∆w∆aq̂w
(211)

which is exactly the update for qw (116).

F.3. A short RMT argument for finite width RF

We provide in this subsection a short argument, at a physics level of rigor, that RF cannot achieve Bayes optimality away
from the infinite width (kernel) limit, for simplicity in the isotropic Σ = Id case. Remember that, in the framework of
(Loureiro et al., 2021), the covariance between the student features is Ω = κ2

1FF>/d + κ2
�Ip, while the average effective

cross-covariance between teacher and student features can be taken as Φ = κ1κ
?
1F
>/
√
d. The labels are generated from the

target features (last layer post-activation), and not from the student features, rendering the setting slightly intricate. However,
under the assumption that the student features and teacher post-activations are jointly Gaussian, (Clarté et al., 2022) provide
an equivalent model where the labels are generated directly from the student features. Introduce the effective teacher

θ̌ ≡ Ω�
1
2 Φ>a? (212)

and the effective noise variance

∆̌ =
1

d
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[
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(
−κ2
�
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1

)]
, (213)

where g(·) is the Stieljes transform of the Marcenko Pastur law. Note that ∆̌ = O(1) even in the γ → ∞ limit. Then
random feature regression on a two-layer target is equivalent to the ERM problem

y ∼ 1
√
p
θ̌>u +

√
∆̌N (0, 1),

Ř(w) =

n∑
µ=1

1

2

(
yµ − 1

√
p
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)2

+
λ

2
w>w, u ∼ N (0,Ω). (214)

Absorbing the Ω dependence into the weights, this problem is further equivalent to

y ∼ 1√
d
a>? Φu +

√
∆̌N (0, 1),

Ř(w) =
1

2∆̌

n∑
µ=1

(
yµ − 1√

d
w>uµ

)2

+
∆̌λγ

2
w>Ω�1w, u ∼ N (0, Ip) (215)

Note that when a? ∼ N (0, Id), then Φ>a? ∼ N (0,Φ>Φ/γ). As discussed in the main text, ERM using a linear model and
a square loss, as implied by (215), is equivalent to conducting Bayesian inference, with prior ∆̌ over the additive noise and
prior 1/λγ∆̌Ω over the weights. Note that this prior matches the ground truth covariance if and only if ∃λ, Φ>Φ/γ = 1/λγ∆̌Ω.
This requires at least the spectra to match, i.e

(κ?1)
2

γ
spec

(
κ2

1FF>/d
)
∝ 1

γλ
spec

(
κ2

1FF>/d
)

+
κ2
�

γλ
, (216)

which can only be verified asymptotically as γ →∞, when the spectrum has a finite fraction 1/γ of O(γ) eigenvalues and
(γ − 1)/γ of zero eigenvalues, i.e. in the infinite width (kernel) limit. This implies that doing finite width RF regression
is equivalent to doing Bayes inference with mismatched prior over the effective weights, and that therefore the test error
achieved by RF regression cannot be Bayes optimal. This is numerically obersved in Fig. 1, where the test error of RF is
bounded away from the Bayes MSE baseline (12).
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G. ERM : the deep case
In this section, we extend the discussion of Appendix E and F to the general multi-layer case.

G.1. Ridge regression

Similarly to the two-layer case, these results leverage the asymptotics of (Loureiro et al., 2021), using, in their notations,
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The replica saddle-point equations for a ridge student then read:
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(217)

The generalization error is in the multilayer case
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Optimal regularization for ridge Combining (20) and (19), a self-consistent equation for ϵg can be reached:
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Requiring ϵg to be minimal with respect to λ (equivalently, λ̃):
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It follows the relation
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V̂ ϵg
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One is now in position to derive the optimal regularization (21).

Rewrite (222) as

ϵg = αλ̃∆a

L∏
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(
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∆`,

43



Bayes-optimal Learning of Deep Random Networks of Extensive-width

where we remind the auxilary variable λ̃ ≡ λ/V̂ . Replacing ϵg in (219) for λ̃, one reaches
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On the other hand, the saddle point equations for V̂ , V (176) can be rewritten as
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Multiplying by λ on both sides:
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Identifying (223) and (225) yield

λ =
ϵr

∆a

L∏
`=1

(
κ

(`)
1

)2

∆`

(226)

which is (21).

Equivalence Ridge/BO We now show that under the optimal regularization (21), the saddle point equations for ridge
regression (20) reduce to (13). It then straightforwardly follow that ridge regression achieves the Bayes optimal MSE. In the
following, λ is understood as the ridge optimal regularization (21). Define

q̂ =

α
L∏
`=1

(
κ

(`)
1

)2

ϵg
=

V̂ ∆a

L∏
`=1

∆`

λ

to connect with (13). Then
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which is exactly the Bayes Optimal equation (13).

G.2. Random nets / features

The linearization (10), further detailed in Appendix A, translate in the framework of (Loureiro et al., 2021) into
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G.3. GP kernels

By generalizing the 2-layer equations to the multi-layer case,
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Optimal regularization for RF kernel ERM Combining (177) and (188), one can as in the ridge case derive a self-
consistent equation for the generalization error:
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Requiring ∂εg
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= 0 leads to
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The optimal regularization thus reads
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The optimal λ is therefore the solution on the λ variable of the system of equations
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Introducing the variable λ̃ ≡ λ/V̂ , and plugging the first line into the second, this simplifies to
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Substracting the third line from the second yields an expression for λ:
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In other words the optimal regularization is explicitly given by
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corresponding to (25).

Equivalence GP kernel/BO Under optimal regularization (25) the saddle-point equations for the Bayes-optimal MSE can
be recovered:
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which recovers (116).

H. Classification
H.1. Bayes-optimal error for classification

In this section, we treat the case of classification, corresponding to a sign readout f?(x) = sign(x) in (1). Since the finite
temperature free energy of Appendix C is derived under no assumption over the output channel, it is amenable to being
readily specialized to the present setting. The output partition function reads

Z(y, ω, V ) =
1

2

[
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. (239)

The saddle point equations can be massaged into the compact form
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The interested reader is referred to (Cui et al., 2019) for a full derivation in a closely related case.

47



Bayes-optimal Learning of Deep Random Networks of Extensive-width

H.2. Bayes optimal classification error

We detail here the derivation of the Bayes misclassification error (15). The Bayes optimal estimator for a test input x is
(Opper & Haussler, 1991)

sign
[〈

sign
(
a>hL(x)

)〉
a,fW`g`�P

]
(240)

where hL(x) is the post-activation of the student network and P is the Bayes posterior
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The computation of the bracketed average can be carried out using the replica trick, observing〈
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where ŷ1 is the first replica of the student (2), with weights aa, {W a
` }. It follows that〈
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with the power k effectively introducing a second level of replication.
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µ|ŷaα(xµ)) Ex

k∏
α=1

sign
(
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Following the discussion in Appendix A (see also Section 2 in the main text), and under the assumption that ŷ1α(x), y(x)
may be as a first approximation treated as Gaussian variables, it follows from the linearization (10) that ŷ1α(x), y(x) can be
replaced inside the expectation Ex in (a) by their equivalent linear models,
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where ξ
?/α
` ∼ N (0, Ik`) are independently sampled Gaussian noise vectors. Note that the replication procedure leading to

the introduction of the second replication level, indexed by α, means that the ξα are also mutually independent. Finally, one
can write

(a) = Ex,fξα` g`,α,fξ?` g`
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ŷ1α

lin(x)
)

Θ(v × ylin(x)). (246)

The full equation for the test error is then
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We henceforth focus on computing (b). Resuming the replica computation,
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Define the local fields
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so that
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Enforcing the definitions of the local fields using the Fourier representation of Dirac peaks, (b) becomes
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The computation for the trace and energy potentials Ψt,y follows the same steps as detailed in Appendix C, leading to the
same contributions to the multi-layer free energy. On the other hand, the entropy potential Ψw is changed, as it now includes
the second line. As in Appendix C, we decompose Ψw in input, hidden, and readout layer contributions and detail the
derivation for each.

Input layer . We detail the computation of the entropy contribution at the input layer Ψ̃1, where the tilde distinguishes the
ẑ dependent potential from the one computed in Appendix C. Note crucially that in particular Ψ̃1 has a part which is not
proportional to the first replica index s, and therefore contributes non-vanishingly in the s→ 0 limit.
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Again, we assume replica symmetry with respect to the double replica, which together with the Nishimori conditions imply(
q̂L1
)
aα,bβ

= δabδαβ q̂, (253)

together with m̂ = q̂. As in Appendix C, introduce the local fields
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with statistics

〈ηaαηbβ〉 = δabδαβ∆1ρ
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ẑα1

=

∫
dη√
2π

e�
η2

2

k∏
α=1

e 1
2

d∑
j=1

x2
j
d

∆1ρ
L
2 +q̂σj

((∆1ρ
L
2 )−1+σj q̂)
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(256)

where we introduced a Hubbard-Stratonovitch field η in the last line and took the s→ 0 limit.

Hidden layers In this paragraph, we turn to the middle layers ℓ ≥ 2.
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Introducing the local field
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with the statistics
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this becomes
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Readout layer By the same token, the new readout layer entropy potential reads
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End of the computation Finally, putting all the pieces together, the computation of (b) follows as
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We introduced the shorthands
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Note that the quantities d∑
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We introduced
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This concludes the computation of (b). Returning to the computation of the classification error:
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The average squared label can be computed as
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where we used the fact that the scalar products in the first line all concentrate asymptotically, leveraging the assumption on
Σ. The teacher/student correlation term can be computed as
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where we used the definition of η� and the self-averaging of the scalar product in going from the first to the second line.
Finally, the averaged squared student output is
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Putting these contributions together, one finally reaches
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(270)

which is (15).

H.3. ERM

In full similarity to the regression case discussed in Appendix E, sharp asymptotics of the classification error can be obtained
by leveraging the covariance formulae (10) in the framework of (Loureiro et al., 2021), using in their notations
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.

We recall that we consider, for classification, the noiseless case ∆ = 0. The test error is given by
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 , (271)

with ρ and q being given by a risk-dependent system of equations. We examine in succession ridge classification and logistic
regression.

Ridge classification The saddle point equations which need to be solved in order to access the asymptotic limit of the test
error for ridge classification then read
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(272)
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Logistic regression By the same token, introducing following (Loureiro et al., 2021) the auxiliary functions

Z(y, ω, V ) :=
1

2
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yω√
2V

))
and f(y, ω, V ) defined as the solution of
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.

Using the abuse of notations
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f := f(y,
√
qξ, V ) (274)

the corresponding saddle point equations read
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