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ABSTRACT

Spectral bias, the tendency of neural networks to learn low frequencies first,
can be both a blessing and a curse. While it enhances the generalization capa-
bilities by suppressing high-frequency noise, it can be a limitation in scientific
tasks that require capturing fine-scale structures. The delayed generalization phe-
nomenon known as grokking is another barrier to rapid training of neural networks.
Grokking has been hypothesized to arise as learning transitions from the NTK to
the feature-rich regime. This paper explores the impact of preconditioned gradient
descent (PGD), such as Gauss-Newton, on spectral bias and grokking phenomena.
We demonstrate through theoretical and empirical results how PGD can mitigate
issues associated with spectral bias. Additionally, building on the rich learning
regime grokking hypothesis, we study how PGD can be used to reduce delays
associated with grokking. Our conjecture is that PGD, without the impediment
of spectral bias, enables uniform exploration of the parameter space in the NTK
regime. Our experimental results confirm this prediction, providing strong evi-
dence that grokking represents a transitional behavior between the lazy regime
characterized by the NTK and the rich regime. These findings deepen our under-
standing of the interplay between optimization dynamics, spectral bias, and the
phases of neural network learning.

1 INTRODUCTION

Neural networks (NNs) are cornerstones of modern machine learning, demonstrating remarkable
generalization performance using highly over-parameterized networks across a wide range of tasks,
including image classification, natural language processing, and scientific applications. Though
already mature, major challenges still plague the training of NNs. One difficulty is the tendency
of NNs to learn low-frequency components first before slowly converging to high-frequencies, the
so-called “spectral bias” or “F-Principle” (Rahaman et al., 2019; Xu et al., 2019).

One explanation of spectral bias is through the lens of the neural tangent kernels (NTKs), where (Ja-
cot et al., 2018) argues that the mode-dependent convergence results from disparities in the eigen-
values of a kernel. In some sense, spectral bias serves as a buttress against overfitting, allowing NNs
to learn general patterns rather than overfitting on noise, and without relying on other techniques
like regularization or dropout. However, not all applications using neural networks desire slow con-
vergence to high frequency data. As a result, there has been debate over the usefulness of using
higher-order optimization methods (Wadia et al., 2021; Amari et al., 2020; Buffelli et al., 2024).
Throughout this document we use the phrase “higher-order” to indicate optimizers beyond gradient
descent and its relatives, most notably Adam. Specifically we explore the use of Gauss-Newton and
Levenberg-Marquardt that use curvature information from the Hessian or its approximate.

The discussion of generalization of higher-order methods extends to the concept of grokking, a phe-
nomenon where generalization on test data occurs long after the model has memorized the training
data. First seen in algorithmic datasets (Power et al., 2022), many theories have been suggested
which attempt to explain the delay including regularization with weights, dynamics of adaptive op-
timizers, and circuit efficiencies. We focus on two interpretations (Kumar et al., 2024; Zhou et al.,
2024), which argue that grokking arises as a result of transitioning from “lazy” NTK-dominated
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regime to a “rich”, feature-learning regime. In light of these two interpretations, we argue that
higher-order gradient descent methods allow for faster exploration of the NTK subspace as dia-
grammed in Figure 2, thereby allowing training to enter rich regime faster. We show theoretical and
numerical evidence that higher-order methods can explore the NTK regime rapidly, but numerical
evidence indicates they can struggle with generalization.

In this paper, we investigate the interplay between spectral bias, grokking, and higher-order methods,
focusing specifically on preconditioned gradient descent (PGD) in the forms of Gauss-Newton and
Levenberg-Marquardt. Specifically, we:

• Show that using PGD allows one to greatly accelerate convergence to all frequency modes
in the lazy, or NTK, regime (Figure 3).

• Provide evidence that grokking is a transitional behavior by using PGD to explore the
lazy regime uniformly, without spectral bias, thereby eliminating the characteristic delay in
generalization (Figure 5).

• Propose that the lack of generalization observed in (Wadia et al., 2021; Buffelli et al., 2024)
stems from higher-order methods remaining close to the lazy regime. However, perhaps
counterintuitively, we find that generalization can be achieved by transitioning to first-order
methods after the lazy regime is exhausted (Figure 7).

We aim to provide an in-depth analysis of how these factors influence the training dynamics and
generalization capabilities of neural networks.

2 BACKGROUND

Spectral Bias and the Neural Tangent Kernel

Spectral bias, the tendency of neural networks to learn lower-frequency components faster than
higher-frequency ones, has emerged as a crucial aspect of understanding implicit regularization and
generalization in deep learning (Rahaman et al., 2019; Xu et al., 2019; Murray et al., 2022). This
inherent inductive bias arises from the interplay between architecture, initialization, and gradient
dynamics (Jacot et al., 2018; Allen-Zhu et al., 2019; Huang and Yau, 2020; Roberts et al., 2022).
While spectral bias can act as a form of implicit regularization in some tasks, it becomes a hindrance
in scientific and engineering applications where convergence to high-frequency solutions is essen-
tial (Xu et al., 2025; Wang et al., 2022). Theoretical analyses have further elucidated the mechanisms
behind this spectral learning, linking it to the eigenstructure of the Neural Tangent Kernel (NTK)
and the evolution of the Fourier spectrum of the learned function during training (Bowman, 2023).
Consequently, understanding and potentially mitigating this spectral bias has become a significant
area of research, particularly for tasks that require accurate reconstruction of fine-scale structure.
The proposed approaches to combat this issue range from architectural adjustments (Jagtap and
Karniadakis, 2020; Trask et al., 2022; Sitzmann et al., 2020; Hong et al., 2022; Wang and Lai, 2024)
to optimization techniques that reshape the loss landscape or rescale the gradient flow (Tancik et al.,
2020; Amari et al., 2020; Chen et al., 2024).

Beyond Gradient Descent

Stochastic gradient descent takes steps in a single direction scaled by a single learning rate. Progress
is limited by the slowest NTK eigenmode, corresponding to the flattest direction in the parameter
space, so training lingers in the “lazy” regime before transitioning into the feature-rich regime. The
Adam optimizer speeds up the convergence by assigning each parameter its own learning rate, so
small gradients receive higher effective learning rates (Kingma and Ba, 2014). This effectively
shortens the lazy regime, but still ignores cross-parameter interactions, so that convergence in the ill-
conditioned directions still remains relatively slow. Curvature-aware methods replace a fixed/static
learning rate with a smarter rescaling of the gradients, e.g. (Wadia et al., 2021; Amari et al., 2020;
Buffelli et al., 2024), incorporating cross-parameter interaction to improve convergence. Given an
operator Mt that approximates local curvature of the loss function L, the optimization parameter
update becomes

θn+1 = θn − ηM−1
t ∇θL. (1)

For symmetric positive definite (SPD) Mt, several equivalent interpretations of eq. (1) exist:
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(i) one can view it as a gradient computed in the Mt-induced product;
(ii) as the “natural gradient” arising in a Riemannian space with non-Euclidean distance metric,

which adjusts the descent path to reflect local curvature (Amari, 1998);
(iii) or finally as a change-of-basis, where parameters are transformed by

√
Mt, gradients are

computed in the transformed space, and the result is mapped back to the original space (Cun
et al., 1998; Desjardins et al., 2015).

Choosing an effective Mt is a central challenge. Substituting the Hessian matrix for Mt gives
the classical Newton step, which has quadratic convergence near minima, but comes with a high
computational price. Natural-gradient descent, stemming from the Fisher Information Matrix, also
encodes second-order curvature information and is positive-definite by construction (Amari, 1998;
Amari et al., 2019), making it a preferred operator to second-order methods. For mean square error
(MSE) loss, the Fisher information matrix (FIM) coincides with the Gauss-Newton method (Martens,
2020; Schraudolph, 2002) which only requires the Jacobian. Levenberg-Marquardt (LM) modifies
the Gauss-Newton approach by adding a diagonal damping term guaranteeing numerical stability
and preventing overly aggressive parameter updates (Benzi, 2002; Moré, 2006). Kronecker-Factored
Approximation Curvature (K-FAC) approximates the FIM using a block-diagonal matrix based on
the products of layer-wise statistics (Martens and Grosse, 2015; Botev et al., 2017).

Ultimately, the goal is to choose a computable Mt that conditions the optimization landscape so that
the error is reduced uniformly across all modes.

Grokking

Grokking is a phenomenon of delayed generalization first observed in algorithmic tasks (Power et al.,
2022). During training, a model will first overfit the training data, showing poor test performance.
Then after a prolonged period with minimal further reduction in training loss, the model suddenly be-
gins to generalize, leading to an increase in test accuracy. Several hypotheses have been proposed to
explain the delayed generalization. For instance, some theories point to the dynamics of adaptive op-
timizers (Thilak et al., 2022), or architectural bias in transformers that favors simpler, low-sensitivity
functions that generalize better (Bhattamishra et al., 2022). Another line of research suggests that
grokking happens because, over time, training gradually pushes the model away from memorization
patterns towards simpler and more general representations that explain the data better (Barak et al.,
2022; Varma et al., 2023; Liu et al., 2022b).

Two recent papers provide complementary views on grokking from a spectral bias perspective. The
first, by (Kumar et al., 2024), hypothesizes that grokking occurs as a result of inefficient training
which initially stays confined to the NTK subspace and spectral bias limits it to learning only the
lowest-frequency features. Only later does the model escape this regime and move towards the
generalization manifolds, resulting in a sudden improvement in test accuracy. The second, by (Zhou
et al., 2024), argues that grokking mainly arises from a spectral mismatch in the training and test
data. Due to spectral bias, the model first learns low-frequency modes that are dominant in the train
set but may not be predictive for the test set. The generalization emerges once the model begins to
learn higher-frequency components that coincide with the test data.

3 EXPLORING THE NTK REGIME

3.1 MITIGATING SPECTRAL BIAS WITH PRECONDITIONING

Here we discuss how spectral bias can be tempered by the use of PGD. Let f(x,θ) : R× Rp → R
be a standard MLP where x is the input and θ ∈ Rp the network parameters. Specifically, f is an
MLP of depth L and constant width W with the form

f(x,θ) = θ(L)σ

 1√
W

θ(L−1)σ

(
. . . σ

(
1√
W

θ(1)x+ βb(1)
)
. . .

)
+ βb(L−1)

+ βb(L).

We assume the same initialization and scaling of the weight matrices as those discussed in (Jacot
et al., 2018).1 Define f(θ) as the vectorized-shorthand of the quantities {f(xi,θ)}Ni=1. For sim-

1While the theory highly depends on the NTK initialization for strict analysis, the experiments use more
standard initializations unless otherwise indicated.
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plicity, we consider the least-squares regression problem minθ L(θ) with L(θ) = 1
2

∥∥f(θ)− y
∥∥2,

where y is the N dimensional labels. We consider the continuous gradient flow underlying gradient
descent by taking step size η → 0

θn+1 = θn − η∇θf(θn)
T (f(θn)− y) =⇒ ∂θ

∂t
= −∇θf(θ(t))

T (f(θ(t))− y),

with θ(t) signifying the continuous flow of the weights. For sake of notation, let Jt = ∇θf(θ(t))
be the N × p Jacobian matrix at time t. Thus, in function space, we have the usual dynamics

∂f(θ(t))

∂t
=

∂f(θ(t))

∂θ

∂θ(t)

∂t
= −JtJ

T
t (f(θ(t))− y). (2)

Now define the error e(t) = f(θ(t))− y and the (time-dependent) NTK matrix Kt := JtJ
T
t . Note

that Kt is symmetric positive semi-definite (assuming sufficiently overparametrized), Kt is also
strictly positive definite with high probability (Bowman, 2023; Telgarsky, 2021)), with an orthogonal
basis of eigenvectors. Then from (2) we can write out an error evolution equation with respect to the
eigendecomposition of Kt.
Lemma 3.1. For 1 ≤ i ≤ n, let Λ = diag(λi) ≥ 0 be the eigenvalues of Kt, and êi the error
constant associated with the ith eigenvector. Then continuous gradient flow of êi takes the form

∂

∂t
êi = −λi(e)êi.

Here we have that λi depends on e because the matrix Kt and the corresponding eigenvalue and
basis of eigenmodes are evolving nonlinearly with e. However, as the width W of f tends towards
infinity, we have that Kt → K∞ where K∞ is the (constant in time) symmetric positive definite
neural tangent kernel (NTK). In this regime, we arrive at a linear decoupled evolution in error modes,

∂

∂t
êi = −λiêi. (3)

Equation (3) precisely describes spectral bias, because the convergence of each mode is defined
by the corresponding eigenvalue of K∞, and global error convergence is defined by the condition
number of the NTK matrix. In particular, the learning rate must be small enough for stable evolution
of the largest eigenvalue of K∞, but this means error modes associated with small eigenvalues
converge like 1− λk/λN ≪ 1 for k ≪ N . Empirically, only O(1) eigenvalues are “large”, so most
modes converge slowly (Murray et al., 2022) .

As in standard numerical linear algebra though, we can apply preconditioning to normalize contours
towards a more isotropic landscape for convergence (Benzi, 2002). Let µ > 0 be a regularization
parameter, and consider the Levenberg-Marquardt (LM) algorithm (Moré, 2006), which evolves the
weights according to θn+1 = θn − η(µI + JT

t Jt)
−1JT

t (f(θ)− y). In the context of least squares,
this is akin to ridge regression (Hoerl and Kennard, 1970). We note that the inversion of the matrix
is well-defined due to the inclusion of the µ factor. Performing similar gradient flow manipulations
as above, we arrive at the following continuous dynamics for the LM-preconditioned error evolution
∂
∂te = −Jt(µI + JT

t Jt)
−1JT

t e, where Jt implicitly depends on e. The following shows that
the conditioning of the dynamics is greatly improved, meaning that spectral bias during training is
reduced.
Lemma 3.2. Let Λ and êi(t) be as before. Then the LM-preconditioned continuous gradient flow
of êi takes the form

∂

∂t
êi = − λi(e)

µ+ λi(e)
êi. (4)

As before, in the NTK/infinite width regime, we may drop the dependence of λi on e. Then, we see
that the mapping from λi → λi

µ+λi
greatly improves the conditioning compared with Equation (3).

Assuming λ1 > 0, for gradient descent we have the condition number κGD = λN

λ1
, whereas for LM,

we have κLM := λN

λ1

(
λ1+µ
λN+µ

)
≪ κ in general. In particular, if µ = λ1, then κLM ≈ 2.

As µ → 0, LM converges to a Gauss-Newton (GN) iteration, which takes the form θn+1 = θn −
η(JT

t Jt)
†JT

t (f(θ)−y), where † denotes the matrix pseudoinverse due to the fact that the Jacobian
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may be extremely ill-conditioned or singular. We assume that the pseudo-inverse is calculated with
a cutoff of ε. Note that the LM dynamics can be interpreted as a trust region variation of the GN
optimization steps.
Lemma 3.3. Let Λ and êi(t) be as before, then if Gauss-Newton preconditioned gradient descent
is used, then

∂

∂t
êi = −1λi(e)>εêi.

This means that the GN dynamics result in essentially all modes converging at a uniform rate (up to
conditioning tolerance ε), at a cost of the smallest eigenvalues (and typically geometrically highest
frequencies) λi < ε not converging due to numerical necessity of the pseudo-inverse.

Of course, in practice for GN or LM, the additional computation is not trivial. Inverting the large
matrix (µI + JT

t Jt) can be computationally expensive. To address this, the resulting linear system
is typically solved with iterative methods such as the conjugate gradient algorithm (Gargiani et al.,
2020; Cai et al., 2019), or by applying identities like the Sherman-Morrison-Woodbury formula (Ren
and Goldfarb, 2019). These solvers are often paired with a line search to determine an appropriate
step size (Müller and Zeinhofer, 2023; Jnini et al., 2024); detailed computational discussions are
deferred to the appendix.

While the above analysis is straightforward, the results are primarily meaningful in the NTK regime
where Kt is linear or nearly linear in its evolution (e.g., either via initialization, scaling or large
width (Chizat et al., 2019; Jacot et al., 2018)). This is the case even with more sophisticated con-
vergence analyses, e.g., (Cayci, 2024), with convergence in the rich regime a largely open question.
However, this theory demonstrates how early preconditioning can accelerate training and exploration
of the NTK or a generally linear regime.

3.2 GROKKING BEYOND THE NTK REGIME

Kumar et al. (2024) first showed that neither weight norms nor adaptive optimizers are necessary for
grokking. In Figure 1, we see the classical grokking behavior on MNIST (Deng, 2012) as described
in Liu et al. (2022b) using a two-layer MLP with AdamW, Adam and PGD with LM dynamics. The
exact values of the accuracy notwithstanding2, note that the weight norms can increase, decrease
or stay the same depending on the optimizer as one trains and the model generalizes. The same
grokking behavior appears for non-adaptive gradient descent, meaning grokking can occur in spite
of adaptivity or weight decay (Thilak et al., 2022).

Zhou et al. (2024) and Kumar et al. (2024) both argue that grokking occurs due to a mismatch
between “ideal” training dynamics and reality. By “ideal”, we refer to an optimization scenario
where feature learning occurs immediately and uniformly across all relevant modes, without delays
caused by suboptimal model initialization and optimizer dynamics. In reality, the practical behavior
of neural networks is quite different; convergence is often biased toward certain modes or delayed
due to suboptimal initiation and optimization dynamics. The former argues that grokking occurs
due to frequency-dependent convergence, where spectral bias causes the model to fit low-frequency
components first, delaying generalization of higher frequency modes present in the test data. The
latter argues that neural networks tend to stay in the lazy training regime, characterized by the
subspace defined by

f(x,θ) ≈ f(x,θ0) + J0(θ − θ0) (5)
where θ0 are the initial weights. The authors hypothesized that feature learning can only occur after
escaping the lazy regime. Both views argue that grokking stems from spectral bias combined with
prolonged confinement to the lazy training regime.

Building upon these theories, we present additional evidence through the usage of PGD as detailed
in the diagram in Figure 2. As discussed theoretically in Section 3.1, preconditioning accelerates
convergence in the NTK regime, particularly in the attenuation of spectral bias. If grokking stems
from frequency mismatch and prolonged lazy-regime confinement, then PGD should reduce the
time-to-generalization by accelerating NTK exploration. This is observed in Figures 5 and 6. While
PGD compresses the delay, final generalization can be lower; switching to first-order methods after

2The test accuracy of the PGD can be worse compared to first-order methods as discussed in (Buffelli et al.,
2024; Wadia et al., 2021).
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Figure 1: MNIST grokking induced by multiplying the initialization by α. Top left: Train (solid)
and test (dotted) accuracy for different optimizers for α = 8. LM is able to shorten generalization
delay, but cannot obtain as high a generalization accuracy. Top right: Weight norms corresponding
to top left; grokking occurs regardless of whether norms grow, decay, or remain stable. Bottom left:
AdamW exhibits a pronounced delay between train and test accuracy. Bottom Right: LM (µ fixed)
compresses the test-delay across α, but attains lower final test accuracy than first-order methods.

w0
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NTK

w∗

w∗
µ

Spectral bias No spectral bias

w0

w∗
NTK

Precond.

w0

w∗
NTKµ → 0

w0

w∗
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Figure 2: Top-left: With SGD, spectral bias reflects ill-conditioned NTK curvature, resulting in
the trajectory from w0 to w∗

NTK that bends along level sets, so progress differs across directions.
Top-middle: Preconditioning (LM, µ > 0) uses curvature/Hessian information (Gauss-Newton) to
rescale directions, producing a more direct path. Top-right: As µ → 0 (GN), updates nearly equal-
ize progress across directions on the NTK manifold, effectively removing spectral bias. Bottom:
Optimization first approaches the NTK solution w∗

NTK on the lazy subspace (plane); the LM/GN end-
point w∗

µ can under-generalize relative to the true target w∗. Switching to a first-order method moves
off-subspace and recovers final generalization.

the lazy regime restores accuracy – opposite to typical PDE practice where one often finishes with
second-order.
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4 EXAMPLES

To evaluate the theoretical predictions and discussions from Section 3, we consider convergence and
grokking experiments. These experiments show how different optimization approaches behave in
the NTK/lazy regime and highlight transitions into the feature-rich regime, where our assumptions
begin to fail. The results from Section 4.1 are:

• Higher-order PGD methods such as LM and GN accelerate convergence of all frequency
modes relative to SGD/Adam performance, this confirms predictions outlined in Sec-
tion 3.1: GN achieves uniform exponential decay across all frequencies (Lemma 3.3) while
LM interpolates between SGD and GN behavior depending in the damping parameter µ
(Lemma 3.2).

• Higher-order methods’ efficacy is limited to the NTK/lazy regime. The methods have di-
minished performance when transitioning into the rich regime, where non-linear feature
learning dominates and the linear curvature approximation in Equation (5) does not apply.

To further understand the connection between optimizers and generalization, we investigate
grokking behavior in the context of training and test loss across multiple tasks. The main obser-
vations from Section 4.2 are:

• Preconditioning greatly compresses the delay between memorization and generalization
seen in grokking across a range of tasks, by providing uniform convergence through each
mode in the NTK subspace.

• This supports recent theories proposed by (Kumar et al., 2024; Zhou et al., 2024), that
overfitting or adaptivity are not the main reason for grokking. We propose that spectral
bias plays an important role.

4.1 CONVERGENCE RESULTS

To numerically realize the effects of Lemmas 3.2 and 3.3, consider the regression problem of fitting
a MLP to u(x) = 1

3

∑3
k=1 k sin((2k+1)πx− k) on a uniform grid of 100 points drawn from [0, 1].

We employ MSE as our loss function for a NN consisting of two layers and a hidden dimension
of 80. The network is initialized using Glorot normal, and trained using SGD3 or a preconditioned
variant with constant learning rate η = 1e-2. Of particular interest is the error in the frequency space
ei(t) :=

1
n

∣∣∣FFTi

(
u(x)− f(θ(t), x)

)∣∣∣ .
The first ten modes are plotted in Figure 3. In particular, the slope of the error is in accordance
with Lemmas 3.2 and 3.3 with GN’s errors converging at a uniform, exponential rate for all frequen-
cies, and with LM converging to GN as µ → 0. There also appears a clear demarcation between the
NTK convergence and rich regime, with preconditioning’s effectiveness ending in the rich regime.

Figure 3: Mode-wise FFT error (first 10 frequencies) under SGD, LM (µ ∈ {0.5, 0.1}), and GN.
Higher-order PGD attenuates spectral bias: GN yields near-uniform decay across modes; LM inter-
polates between SGD and GN.

3Adam and other Adam-like optimizers can be interpreted as preconditioned gradient descent. Using them
with GN or LM preconditioning can cause unexpected results as the application of two preconditioners is not
well understood.
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We next solve the Poisson equation on [0, 1]2 with homogeneous Dirichlet boundary condition using
PINNs (Raissi et al., 2019) with a shallow network consisting of width 256 dimensions with various
forcing functions corresponding to differing frequency solutions. We choose forcing functions such
that the solutions are u(x, y) = sin(πnx) sin(πmy) with (n,m) ∈ {(1, 1), (2, 2), (3, 3)}. In Fig-
ure 4, we show the loss arising from using SGD, Adam and the LM optimizers with learning rates
of 1e-3, 1e-2 and 1e-1 respectively.

SGD and Adam initially show fast loss decay, likely due to fast elimination of dominant low-
frequency error modes. In contrast, the LM training takes a more tempered path. The LM opti-
mizer performs noticeably better compared to Adam as frequency increases, in particular, note that
the slope with which the error decreases seems to be uniform with respect to different frequencies,
which suggests superior handling of higher frequency components as derived in Lemma 3.2.

Figure 4: PINNs training loss SGD, Adam and LM dynamics with µ = 0.1 for low (blue), medium
(orange) and high (green) frequency forcing functions.

4.2 GROKKING

We present additional evidence that grokking is due to the need to explore the NTK regime efficiently
before generalizing, and that PGD reduces grokking. We repeat several grokking experiments in the
literature, such as those introduced in Kumar et al. (2024); Liu et al. (2022b); Zhou et al. (2024).
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Figure 5: Accuracy of the modulo task trained using SGD and LM with similar initialization. The
LM dynamics is highlighted in the box. Without preconditioning, grokking is observed as α becomes
larger which is considerably alleviated by applying PGD.

We first consider a modular addition task, consisting of fitting a shallow MLP to the values for addi-
tion under the ring. Grokking is induced through the use of scaling the model output by α2, which
has a larger NTK regime as α → ∞ (Chizat et al., 2019). In Figure 5, we show the train/test accu-
racy and losses obtained using SGD and LM. The boxed area indicates the the curves corresponding
to the LM method. While it is not surprising that train loss decreases much faster when using higher-
order methods, the fact that testing dynamics are similar with respect to scaling α suggest that the
ability to explore the NTK at a uniform rate is highly valuable to accelerate generalization.

This can be more clearly seen through the high-dimensional polynomial regression task as presented
in (Kumar et al., 2024, §5). Grokking is again induced via scaling the output of the shallow MLP.
The left two plots of Figure 6 again show that the simple usage of preconditioning greatly reduces
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Figure 6: Polynomial regression grokking induced by output scaling α. Left two: Train (solid) vs.
test (dotted) loss. As α → ∞, SGD shows an increasing delay between train and test (grokking).
LM explores the lazy NTK regime faster, reducing the delay across α. Right two: Error in the
largest FFT frequency along 1D subspace. The solid lines indicate the subspace {cxi | 0 ≤ c ≤ 1}
where xi is in the train set, and the dashed lines indicate the same subspace where xi = (1, . . . , 1).
SGD decreases the training and “testing” errors at different times while PGD greatly attenuates the
disparity between train and test error.

the delay when α → ∞. The gap between training loss and generalization is independent of α as
the NTK regime is explored at a more uniform rate.

In the right plots of Figure 6, we show the error in the largest FFT frequency along two different
1D subspaces: the first subspace spanned by the one piece of training data, and the second along
the vector (1, . . . , 1) “test” data. In the case of SGD, the error in the training subspace quickly con-
verges while the testing subspace has error dependent on the scaling α. This suggests that spectral
bias is causing slower convergence of those unseen modes. However, in the case of PGD, the train-
ing/testing subspaces all converge at roughly the same time as all modes converge at roughly the
same rate.
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Figure 7: Levenberg-Marquardt reduces grokking but doesn’t generalize alone. Left: Accuracy on
MNIST using LM for the first 2000 iterations before switching to AdamW, demarcated by the verti-
cal black bar. For reference, the shaded dotted lines denote the continuation of LM without AdamW.
Higher-order methods effectively reduces the delay but tend to remain near the lazy regime, which
results in a final generalizability gap. However, applying AdamW after LM recovers the generaliz-
ability, leveraging the benefits of first-order methods in the final stages. Right: Corresponding loss.

We replicate the classical grokking experiment as presented in Power et al. (2022) which demon-
strated grokking on the modular arithmetic task using a two-layer decoder transformer with vanilla
Adam and cross-entropy loss.4 In Figure 8, we see that the introduction of PGD reduces when gen-
eralization happens, but again, it seems full generalization is not achievable using just strict PGD.
In fact, it can be seen on the loss values on the right that the validation loss seems to be static (and
even slightly increasing) as more PGD iterations are used, further suggesting that using Hessian

4Cross-entropy loss necessitates the use of generalized Gauss-Newton.
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Figure 8: Classical modular addition example using a transformer. Solid lines indicate train and
dashed indicate validation. Left: Using generalized Gauss-Newton results in a faster rise in vali-
dation but final validation stagnates severely (45% for GGN compared to 100% for Adam). Right:
Loss values for GGN seems to be more tempered for the validation set, however, increasing iter-
ation count of GGN doesn’t seem to encourage generalization. No weight decay is used for both
optimizer.

information can reduce the time which generalization happens, but has a tendency to greatly overfit.
One can recover full generalization by switching to Adam again, which we show in Appendix D.

Finally, let us examine the grokking induced on MNIST by scaling initial weights by α as introduced
in (Liu et al., 2022b); here α corresponds to the “size” of the NTK regime with α → ∞ correspond-
ing to larger lazy regime (Chizat et al., 2019). We see on the middle and right plots of Figure 1
that the delay is again uniformly reduced by using PGD, however the final generalization is clearly
far weaker. This is observed for the full MNIST dataset and other architectures in (Wadia et al.,
2021; Buffelli et al., 2024). Fortunately, we are able to recover the exact (or better) testing data
performance by using first-order methods after the higher-order methods, which is seen in Figure 7,
where we use 2000 iterations of LM iterations before 20000 AdamW iterations. This again suggests
that GN tend to stick near the NTK subspace rather than explore the rich regime, reinforcing those
observations of (Wadia et al., 2021; Buffelli et al., 2024).

5 LIMITATIONS AND CONCLUSIONS

We showed that PGD, in theory and empirically, reduces the effect of spectral bias in the NTK/lazy
regime. Using this lens, we reinforced the theories suggested by Kumar et al. (2024); Zhou et al.
(2024) that grokking arises as a result of the NNs’ tendency to slowly explore the NTK first, by show-
ing that PGD uniformly reduces the delay to generalization. Our approach does not address another
likely contributor to grokking: train/test dataset sizes. This is also not a wholesale endorsement of
the use of high-order methods: while they accelerate entry into the rich regime, they often struggle
to achieve high, final generalization. We recover strong generalization by switching to a first-order
method (e.g., Adam) after using high-order methods, thus suggesting training procedures that begin
with PGD and then transition to first-order methods once the lazy/linear regime is exhausted. Further
work, especially the study of convergence results in the rich regime (Woodworth et al., 2020), is of
particular interest.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shun-ichi Amari, Ryo Karakida, and Masafumi Oizumi. Fisher information and natural gradient
learning in random deep networks. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 694–702. PMLR, 2019.

Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny
Wu, and Ji Xu. When does preconditioning help or hurt generalization? arXiv preprint
arXiv:2006.10732, 2020.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

Stefania Bellavia, Greta Malaspina, and Benedetta Morini. Inexact gauss-newton methods with
matrix approximation by sampling for nonlinear least-squares and systems. Mathematics of Com-
putation, 2025.

Michele Benzi. Preconditioning techniques for large linear systems: a survey. Journal of computa-
tional Physics, 182(2):418–477, 2002.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
and their ability to learn sparse boolean functions. arXiv preprint arXiv:2211.12316, 2022.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pages 557–565. PMLR, 2017.

Benjamin Bowman. On the Spectral Bias of Neural Networks in the Neural Tangent Kernel Regime.
University of California, Los Angeles, 2023.

Davide Buffelli, Jamie McGowan, Wangkun Xu, Alexandru Cioba, Da-shan Shiu, Guillaume Hen-
nequin, and Alberto Bernacchia. Exact, tractable gauss-newton optimization in deep reversible
architectures reveal poor generalization. arXiv preprint arXiv:2411.07979, 2024.

Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
Gram-gauss-newton method: Learning overparameterized neural networks for regression prob-
lems. arXiv preprint arXiv:1905.11675, 2019.

Coralia Cartis, Jaroslav Fowkes, and Zhen Shao. A randomised subspace gauss-newton method for
nonlinear least-squares. arXiv preprint arXiv:2211.05727, 2022.

Semih Cayci. Gauss-newton dynamics for neural networks: A riemannian optimization perspective.
arXiv preprint arXiv:2412.14031, 2024.

Wenqian Chen, Amanda A Howard, and Panos Stinis. Self-adaptive weights based on balanced
residual decay rate for physics-informed neural networks and deep operator networks. arXiv
preprint arXiv:2407.01613, 2024.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Y Le Cun, L Bottou, G Orr, and K Muller. Efficient backprop, neural networks: tricks of the trade.
Lecture notes in computer sciences, 1524(5-50):23, 1998.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al. Natural neural networks. Advances
in neural information processing systems, 28, 2015.

Matilde Gargiani, Andrea Zanelli, Moritz Diehl, and Frank Hutter. On the promise of the stochastic
generalized gauss-newton method for training dnns. arXiv preprint arXiv:2006.02409, 2020.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qingguo Hong, Jonathan W Siegel, Qinyang Tan, and Jinchao Xu. On the activation function
dependence of the spectral bias of neural networks. arXiv preprint arXiv:2208.04924, 2022.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierar-
chy. In International conference on machine learning, pages 4542–4551. PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. Advances in neural information processing systems, 31, 2018.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5), 2020.

Anas Jnini, Flavio Vella, and Marius Zeinhofer. Gauss-newton natural gradient descent for physics-
informed computational fluid dynamics. arXiv preprint arXiv:2402.10680, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mikalai Korbit, Adeyemi D Adeoye, Alberto Bemporad, and Mario Zanon. Exact gauss-newton
optimization for training deep neural networks. arXiv preprint arXiv:2405.14402, 2024.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics, 2024. URL https://arxiv.org/abs/2310.
06110.

Fei-Fei Li, Justin Johnson, Ehsan Adeli, and Zane Durante. Cs231n: Convolutional neural networks
for visual recognition. https://cs231n.github.io/, 2025. URL https://cs231n.
github.io. Stanford University, Course Notes. Accessed: 2025-06-17.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. Advances in Neural
Information Processing Systems, 35:34651–34663, 2022a.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022b.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approx-
imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,
2015.

Jorge J Moré. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical
analysis: proceedings of the biennial Conference held at Dundee, June 28–July 1, 1977, pages
105–116. Springer, 2006.

Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
gradient descent. In International Conference on Machine Learning, pages 25471–25485. PMLR,
2023.

Michael Murray, Hui Jin, Benjamin Bowman, and Guido Montufar. Characterizing the spectrum of
the NTK via a power series expansion. arXiv preprint arXiv:2211.07844, 2022.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pages 5301–5310. PMLR, 2019.

12

https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2310.06110
https://cs231n.github.io/
https://cs231n.github.io
https://cs231n.github.io


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Yi Ren and Donald Goldfarb. Efficient subsampled gauss-newton and natural gradient methods for
training neural networks. arXiv preprint arXiv:1906.02353, 2019.

Daniel A Roberts, Sho Yaida, and Boris Hanin. The principles of deep learning theory, volume 46.
Cambridge University Press Cambridge, MA, USA, 2022.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neu-
ral computation, 14(7):1723–1738, 2002.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Matus Telgarsky. Deep learning theory lecture notes. https://mjt.cs.illinois.edu/
dlt/, 2021. Version: 2021-10-27 v0.0-e7150f2d (alpha).

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua Susskind. The
slingshot mechanism: An empirical study of adaptive optimizers and the grokking phenomenon.
arXiv preprint arXiv:2206.04817, 2022.

Nathaniel Trask, Amelia Henriksen, Carianne Martinez, and Eric Cyr. Hierarchical partition of
unity networks: fast multilevel training. In Mathematical and Scientific Machine Learning, pages
271–286. PMLR, 2022.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pages 1747–1756. PMLR, 2016.

Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explaining
grokking through circuit efficiency. arXiv preprint arXiv:2309.02390, 2023.

Neha Wadia, Daniel Duckworth, Samuel S Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.
Whitening and second order optimization both make information in the dataset unusable dur-
ing training, and can reduce or prevent generalization. In International Conference on Machine
Learning, pages 10617–10629. PMLR, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Yongji Wang and Ching-Yao Lai. Multi-stage neural networks: Function approximator of machine
precision. Journal of Computational Physics, 504:112865, 2024.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pages 3635–3673. PMLR, 2020.

Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in
frequency domain. In Neural Information Processing: 26th International Conference, ICONIP
2019, Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part I 26, pages 264–274.
Springer, 2019.

Zhi-Qin John Xu, Lulu Zhang, and Wei Cai. On understanding and overcoming spectral biases of
deep neural network learning methods for solving pdes. arXiv preprint arXiv:2501.09987, 2025.

Zhangchen Zhou, Yaoyu Zhang, and Zhi-Qin John Xu. A rationale from frequency perspective for
grokking in training neural network. arXiv preprint arXiv:2405.17479, 2024.

13

https://mjt.cs.illinois.edu/dlt/
https://mjt.cs.illinois.edu/dlt/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS IN SECTION 3.1

We first present the proofs for the results in Section 3.1.

Proof of Lemma 3.2. Consider the SVD Jt = UtΛ
1/2
t V T

t where for notational purposes, we repre-
sent the singular values in their square root form Λ

1/2
t . Then by direct calculation

Jt(µI + JtJ
T
t )−1JT

t = UtΛ
1/2
t V T

t (µVtV
T
t + VtΛtV

T
t )−1VtΛ

1/2
t UT

t

= UtΛ
1/2
t (µI +Λt)

−1Λ
1/2
t UT

t

= UtΛ̃tU
T
t

where Λ̃t = diag
(

λi(e)
µ+λi(e)

)
.

Proof of Lemma 3.3. Using the same SVD as the above proof, let (JT
t JT )

† = VtΛ̃
−1
t V T

t be the
pseudo-inverse where the diagonal matrix is defined entree-wise

Λ̃−1
t =

λ′
i(e) | λ′

i(e) =

{
0 if λi(e) < ε

1
λi(e)

otherwise
, λi(e) ∈ Λt


with ε some user-chosen truncation parameter. Thus,

Jt(J
T
t Jt)

†JT
t = UtΛ̃

−1
t ΛUT

t

where now the singular values are either 1s or 0s depending on the magnitude relative to ε.

B COMPUTATIONAL DETAILS

Since in the case of the pure Gauss-Newton steps, the pseudo-inverse is hard to compute and we
only perform it for the simplest models and batch sizes. In such cases, the Jacobian matrices are
constructed and the SVD is taken as described above. There are recent work which focuses on
Gauss-Newton using inexact or randomized methods (Cartis et al., 2022; Bellavia et al., 2025), but
we choose to focus more on the Levenberg-Marquardt formulations as we found it, not only to be
easier to compute, but also more stable in its training dynamics.

Computing the inverses for Levenberg-Marquardt (µI + JT
t Jt)

−1 naively is memory intensive
for even moderately-sized batch sizes and models. There are several ways to skirt around this issue,
including using conjugate gradient (Gargiani et al., 2020), the Sherman-Morrison-Woodbury (SMW)
identity (Ren and Goldfarb, 2019), the Duncan-Guttman identity (Korbit et al., 2024), or, departing
from the PGDs discussed earlier, techniques like Kronecker products in K-FAC (Martens and Grosse,
2015).

In general, we opted to use a SMW approach, meaning that one needs to compute

(µI + JT
t Jt)

−1 =
1

µ
I − 1

µ2
JT
t

(
I +

1

µ
JtJ

T
t

)−1

Jt. (6)

In particular, note that JtJ
T is n × n; in general, the batch size n are far smaller than the number

of parameters p meaning the matrix inverse scales far better.

Furthermore, modern ML frameworks allow one to reuse the computational graphs constructed after
doing backpropagation. In particular, the products against Jt and JT

t in Equation (6) can be done in
a matrix-free manner; for example using vjp, jvp from Jax. For simplicity, we opted to construct
the inner matrix-inverse explicitly, but one in theory could apply matrix-free conjugate gradient to
avoid that too.

In the case of cross-entropy loss, the so called generalized Gauss-Newton (GGN) need to be used.
In particular, the preconditioner is now JT

t HtJt where H is the second derivative of the loss with
the usual modifications for the Levenberg-Marquardt stabilization of adding a scaled identity. We
refer the reader to Botev et al. (2017) for more details regarding GGN.
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Figure 9: Plot of the residuals in the first ten frequencies of the FFT of residuals for SGD, and
preconditioning with GN on a problem with slowly decaying Fourier modes for fitting Equation (7).

B.1 2D REGRESSION AND REGRESSION HYPERPARAMETERS

The results of Section 4.1 holds true even in functions with slowly decaying modes, such as a 2D
function with discontinuities. Using the same network as in the 1D case, we fit it to the following
discontinuous function on [0, 1]2

u(x, y) =


1.0 if x+ y < 0.5

2.0 if x+ y > 1.5

0.75 if x < 0.5 and y ≥ 0.5

0.0 otherwise

. (7)

A total of 1600 points were sampled. Again, to verify the lemmas from above, we show the residual
in the function’s frequency space, which we plot in Figure 9 only for the case of SGD and GN.
As predicted, the errors decay in a uniform manner for the Gauss-Newton method, implying an
exponential convergence for all modes to the “end” of the lazy regime.

The details for the 1D and 2D regression are the same, and is detailed in Table 1.

Table 1: Hyperparameters for regression problems

Parameter Value
Number of Layers 2
Hidden Dimension 80
Kernel Initialization Kaiming Uniform
Bias Initialization Zeros
Activation Function tanh
Output Dimension 1
Learning Rate 1× 10−2

Batch Size (1D) 100 (full batch)
Batch Size (2D) 400

B.2 PINNS HYPERPARAMETERS

The usage of PGD in PINNs is not new, and one can obtain great performance using GN/LM meth-
ods methods compared to Adam and BFGS on PINNs problem by using a dynamic line search for
the learning rate (Jnini et al., 2024; Müller and Zeinhofer, 2023). We chose LM with fixed learn-
ing rate (rather than dynamic line-search) to better emulate continuous time dynamics. We found
experimentally that Gauss-Newton, without regularization can be unstable for a fixed learning rate.

The details for the PINNs example is shown in Table 2.
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Table 2: Hyperparameters for PINNs

Parameter Value
Number of Hidden Layers 1
Hidden Dimension 256
Kernel Initialization Kaiming Uniform
Bias Initialization Zeros
Activation Function tanh
Learning Rate 1× 10−3, 1× 10−2, 1× 10−1

Total interior points 640
Total boundary points 40
Batch Size 200

B.3 GROKKING HYPERPARAMETERS

B.3.1 MODULAR ARITHMETIC

We follow the experiment as used in (Chizat et al., 2019); in particular, the shallow MLP uses a
quadratic activation, and the outputs are scaled with the scale and divided by the input dimension
and hidden dimension. The remaining details are shown in Table 3.

Table 3: Hyperparameters for Modular Arithmetic Model

Hyperparameter Value
Modulo parameter 23
Input dimension 46
Train Data Fraction 0.9
Hidden Dimension 100
Epochs 1000
Scale s {0.5, 1.0, 1.5, 2.0}
Learning Rate 10−2/s2

Batch size Full batch
LM Regularization Parameter {0.07, 0.0125, 0.005, 0.0025}

We also considered the modular addition task and model exactly as described in Power et al. (2022)
and implemented with standard PyTorch modules with no further changes. However, we had to
implement three additional changes compared to the other examples due to the model size and
complexity of transformers. The first, as discussed in the main text, is the change from vanilla Gauss-
Newton to Generalized Gauss-Newton due to the cross-entropy loss. The slightly larger model size
of transformers (4× 105 parameters) also mean we had to use conjugate gradient to solve

(µI + JT
t HtJt)⃗h = g⃗

rather than the SMW approach from above. Finally, we also use an Armijo line search as we found
without the line search, the losses and accuracies tended to oscillate more. As such, we use a large
learning rate. The damping schedule is a smooth decay schedule over 200 iterations to 10−1 starting
at 1:

λ(i) =

10−1 if i ≥ 200

exp
(
ln(100) + i

200 · (ln(10−1)− ln(100))
)

otherwise
.

The remaining hyperparameters are detailed in Table 4.

B.3.2 POLYNOMIAL REGRESSION

The main implementations are based (Kumar et al., 2024, §5) which we refer the reader to for model
definition, and exact data generation formulation. The remaining hyperparameters are shown in
Table 5.
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Table 4: Hyperparameters for Transformer Modular Addition

Hidden Dimensions 128
Layers 2
Head 4
Modulo Parameter p 97
Training Percentage of Dataset 50%
Learning Rate (Adam) 10−3

Learning Rate (LM) 1
Weight Decay (All) 0
Batch Size 512
Conjugate Gradient max iters 150, residual threshold 10−6

Line Search c = 10−4, τ = 0.5, max iters 10

Table 5: Polynomial Regression Parameters

Input Dimension 100
Hidden Layer Neurons 500
Scaling ϵ 0.25
Training Data Points 450
Test Data Points 1000
Learning Rate 0.5×N
Training Iterations 60000
Batch size Full batch
LM Regularization Parameter 0.1/α

B.3.3 MNIST CLASSIFICATION

When considering the lack of generalization when using PGD in the MNIST task (Figure 1 vs
Figure 7), a natural question is what is the loss value? In Figure 10, we show the loss plots from a
pure PGD run versus an AdamW run. Interestingly, the loss values are generally lower for PGD and
is clearly decreasing even as the classification error fails to noticeably change. This is indicative of
the draw backs of ℓ2 loss regression in a classification problem (Van Den Oord et al., 2016; Li et al.,
2025).

Our implementation is based on (Liu et al., 2022b). For the regularization parameter in LM, we
opted to use a dynamically scaling. We found that the best performances is achieved when the
regularization is small, however, if using a constant learning rate, rather than an adaptive line search
for example, this can be unstable. We hence use a logarithmic interpolation to ease the parameter
down over 500 iterations using the following

λ(i) =

10−4 if i ≥ N

exp
(
ln(10−2) + i

500 · (ln(10−4)− ln(10−2))
)

otherwise

which ensures a smooth decay. When we perform the switching from preconditioned training to
AdamW, we use the same learning rate as if training using AdamW for the entire time. The remain-
ing details are shown in Table 6.

C MNIST WITH CROSS-ENTROPY

Typically, MNIST classification is performed using cross-entropy loss, however our experiment
above uses MSE loss. The motivation for our choice of MSE is to replicate the experiments presented
in Liu et al. (2022a;b), where grokking on the MNIST dataset was first introduced. In Appendix E
of the latter paper Liu et al. (2022b), the authors discussed how the use of cross entropy loss also
allows for grokking, albeit in a more limited fashion. However, we found that the grokking induced
using cross entropy on the MNIST dataset required a small dataset (only 200 total samples are used)
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Table 6: Hyperparameters for the MNIST grokking experiment.

Hidden Layer Width 250
Layers 2
Activation Function Relu
Kernel Initializer Glorot
Training Points 1000
Batch Size 200
Learning Rate (SGD, LM) 10−4

Learning Rate (Adam/AdamW) 10−3

Weight Decay (for AdamW) 0.1

Table 7: Hyperparameters for the MNIST grokking experiment with cross-entropy. The changes in
width, layers, weight scaling, and training points are all obtained from Liu et al. (2022b).

Hidden Layer Width 200
Layers 3
Activation Function Relu
Kernel Initializer Glorot
Initial weight scaling α 100
Training Points 200
Batch Size 200
Learning Rate (SGD/Adam) 10−3

Learning Rate (LM) 10−2

Damping parameter for LM (λ(i)) 1
Weight Decay (for all) 0.01

yielding a training loss is equal to zero. Meaning that generalization is strictly achieved through
weight norm decrease.5

In Figure 11, we show data from the MNIST grokking using cross-entropy as discussed in Liu et al.
(2022b); full hyperparameters are detailed in Table 7. The accuracies in Figure 11a all plateaus
around 55% before a subsequent jump to 75%, which the authors of Liu et al. (2022b) argue is still
grokking. The mechanism of the generalization, as seen on in Figures 11b and 11c is clearly due
to to the weights decaying to zero, forcing the network to generalize as the losses are machine zero.
In such case, the use of different optimizers will have similar performance as the only changes in
gradients come from the weight decay implementation. We observe that SGD and GGN behave

5The fact that grokking is entirely due to weight norm changes doesn’t refute our above observation that
weight norm alone is not necessary in all cases.

Figure 10: Plot of loss resulting from MNIST data; AdamW on the left and PGD on the right. The
loss values attained by PGD is lower than AdamW, however the classification error doesn’t seem to
reflect this.
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Figure 11: Grokking behavior on MNIST using cross-entropy under different optimizers. Grokking
can only be induced artificially by using very small training sets, leading to training losses of zero,
meaning an optimizer will not impact performance for the grokking portion. Top: accuracy and loss
trajectories. Bottom: weight norm decay driving generalization.

essentially like Adam, with generalization arising solely from weight norm decay. We were not able
to replicate this behavior as we increase the dataset size. This suggests that, at least for the MNIST
dataset, MSE does “reveal” more grokking. Nevertheless, we show in the modular arithmetic exam-
ple, that Gauss-Newton seems to reduce the generalization point even for transformers.

D CONTINUATION FOR TRANSFORMER MODULAR ARITHMETIC

We observed in Figure 8 that PGD shortens the gap between training accuracy reaching 100% and
validation accuracy rising. However, GaussNewton optimization substantially reduces the achiev-
able validation accuracy (roughly 45%, compared to nearly 100% for Adam). In the MNIST setting
(Figure 7), we were able to continue training from the PGD-found minimum and recover strong
generalization simply by switching to AdamW.

In the transformer modular-arithmetic task, however, the minimum identified by PGD appears to
lie “far” from a generalizing solution. As shown in Figure 12, performing the same continuation
strategy-switching from PGD to Adam (without weight decay, to match the original setup) requires a
comparable amount iterations before achieving full generalization as usual Adam, and the validation
loss spikes dramatically in the process. This suggests that, at least in this modular example, the
GaussNewton minimum is not easily continued into a generalizing one. We emphasize that our
results are not intended as an endorsement for fully adopting pseudosecond-order methods such as
GGN, but rather as an investigation into their optimization dynamics.
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Figure 12: Accuracy and loss from the modular addition using transformer task where “Continue”
indicates using GGN for the first 3000 gradient steps, and switching to Adam. For reference, the
pure Adam is also plotted. The black bar indicates where the switching takes place.
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Figure 13: Plots of Figures 1 and 7 with additional seeds. Top plot corresponds to Figure 1 and
bottom plot corresponds to Figure 7. Shaded area indicate range, and lines indicate median.

E ADDITIONAL SEEDS

In Figure 13, we show the same plots from Figures 1 and 7 replicated with 5 more seeds. The
areas between the min/max are shaded, and the median lines are plotted for each quantity. Note that
variation is minimal, indicating robustness across this and other experiments.
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