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ABSTRACT

Spectral bias, the tendency of neural networks to learn low frequencies first,
can be both a blessing and a curse. While it enhances the generalization capa-
bilities by suppressing high-frequency noise, it can be a limitation in scientific
tasks that require capturing fine-scale structures. The delayed generalization phe-
nomenon known as grokking is another barrier to rapid training of neural networks.
Grokking has been hypothesized to arise as learning transitions from the NTK to
the feature-rich regime. This paper explores the impact of preconditioned gradient
descent (PGD), such as Gauss-Newton, on spectral bias and grokking phenomena.
We demonstrate through theoretical and empirical results how PGD can mitigate
issues associated with spectral bias. Additionally, building on the rich learning
regime grokking hypothesis, we study how PGD can be used to reduce delays
associated with grokking. Our conjecture is that PGD, without the impediment
of spectral bias, enables uniform exploration of the parameter space in the NTK
regime. Our experimental results confirm this prediction, providing strong evi-
dence that grokking represents a transitional behavior between the lazy regime
characterized by the NTK and the rich regime. These findings deepen our under-
standing of the interplay between optimization dynamics, spectral bias, and the
phases of neural network learning.

1 INTRODUCTION

Neural networks (NNs) are cornerstones of modern machine learning, demonstrating remarkable
generalization performance using highly over-parameterized networks across a wide range of tasks,
including image classification, natural language processing, and scientific applications. Though
already mature, major challenges still plague the training of NNs. One difficulty is the tendency
of NNs to learn low-frequency components first before slowly converging to high-frequencies, the
so-called “spectral bias” or “F-Principle” (Rahaman et al., 2019; Xu et al., 2019).

One explanation of spectral bias is through the lens of the neural tangent kernels (NTKs), where (Ja-
cot et al., 2018) argues that the mode-dependent convergence results from disparities in the eigen-
values of a kernel. In some sense, spectral bias serves as a buttress against overfitting, allowing NNs
to learn general patterns rather than overfitting on noise, and without relying on other techniques
like regularization or dropout. However, not all applications using neural networks desire slow con-
vergence to high frequency data. As a result, there has been debate over the usefulness of using
higher-order optimization methods (Wadia et al., 2021; Amari et al., 2020; Buffelli et al., 2024).
Throughout this document we use the phrase “higher-order” to indicate optimizers beyond gradient
descent and its relatives, most notably Adam. Specifically we explore the use of Gauss-Newton and
Levenberg-Marquardt.

The discussion of generalization of higher-order methods extends to the concept of grokking, a phe-
nomenon where generalization on test data occurs long after the model has memorized the training
data. First seen in algorithmic datasets (Power et al., 2022), many theories have been suggested
which attempt to explain the delay including regularization with weights, dynamics of adaptive op-
timizers, and circuit efficiencies. We focus on two interpretations (Kumar et al., 2024; Zhou et al.,
2024), which argue that grokking arises as a result of transitioning from “lazy” NTK-dominated
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regime to a “rich”, feature-learning regime. In light of these two interpretations, we argue that higher-
order gradient descent methods allow for faster exploration of the NTK subspace, thereby allowing
training to enter rich regime faster. We show theoretical and numerical evidence that higher-order
methods can explore the NTK regime rapidly, but numerical evidence indicates they can struggle
with generalization.

In this paper, we investigate the interplay between spectral bias, grokking, and higher-order methods
like preconditioned gradient descent (PGD). Specifically, we:

• Show that using PGD allows one to greatly accelerate convergence to all frequency modes
in the lazy, or NTK, regime (Figure 3).

• Provide evidence that grokking is a transitional behavior by using PGD to explore the
lazy regime uniformly, without spectral bias, thereby eliminating the characteristic delay in
generalization (Figure 5).

• Propose that the lack of generalization observed in (Wadia et al., 2021; Buffelli et al., 2024)
stems from higher-order methods remaining close to the lazy regime. However, perhaps
counterintuitively, we find that generalization can be achieved by transitioning to first-order
methods after the lazy regime is exhausted (Figure 7).

We aim to provide an in-depth analysis of how these factors influence the training dynamics and
generalization capabilities of neural networks.

2 BACKGROUND

Spectral Bias and the Neural Tangent Kernel

Spectral bias, the tendency of neural networks to learn lower-frequency components faster than
higher-frequency ones, has emerged as a crucial aspect of understanding implicit regularization and
generalization in deep learning (Rahaman et al., 2019; Xu et al., 2019; Murray et al., 2022). This
inherent inductive bias arises from the interplay between architecture, initialization, and gradient
dynamics (Jacot et al., 2018; Allen-Zhu et al., 2019; Huang and Yau, 2020; Roberts et al., 2022).
While spectral bias can act as a form of implicit regularization in some tasks, it becomes a hindrance
in scientific and engineering applications where convergence to high-frequency solutions is essen-
tial (Xu et al., 2025; Wang et al., 2022). Theoretical analyses have further elucidated the mechanisms
behind this spectral learning, linking it to the eigenstructure of the Neural Tangent Kernel (NTK)
and the evolution of the Fourier spectrum of the learned function during training (Bowman, 2023).
Consequently, understanding and potentially mitigating this spectral bias has become a significant
area of research, particularly for tasks that require accurate reconstruction of fine-scale structure.
The proposed approaches to combat this issue range from architectural adjustments (Jagtap and
Karniadakis, 2020; Trask et al., 2022; Sitzmann et al., 2020; Hong et al., 2022; Wang and Lai, 2024)
to optimization techniques that reshape the loss landscape or rescale the gradient flow (Tancik et al.,
2020; Amari et al., 2020; Chen et al., 2024).

Beyond Gradient Descent

Stochastic gradient descent takes steps in a single direction scaled by a single learning rate. Progress
is limited by the slowest NTK eigenmode, corresponding to the flattest direction in the parameter
space, so training lingers in the “lazy” regime before transitioning into the feature-rich regime. The
Adam optimizer speeds up the convergence by assigning each parameter its own learning rate, so
small gradients receive higher effective learning rates (Kingma and Ba, 2014). This effectively
shortens the lazy regime, but still ignores cross-parameter interactions, so that convergence in the ill-
conditioned directions still remains relatively slow. Curvature-aware methods replace a fixed/static
learning rate with a smarter rescaling of the gradients, e.g. (Wadia et al., 2021; Amari et al., 2020;
Buffelli et al., 2024), incorporating cross-parameter interaction to improve convergence. Given an
operator Mt that approximates local curvature of the loss function L, the optimization parameter
update becomes

θn+1 = θn − ηM−1
t ∇θL. (1)

For symmetric positive definite (SPD) Mt, several equivalent interpretations of eq. (1) exist:
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(i) one can view it as a gradient computed in the Mt-induced product;
(ii) as the “natural gradient” arising in a Riemannian space with non-Euclidean distance metric,

which adjusts the descent path to reflect local curvature (Amari, 1998);
(iii) or finally as a change-of-basis, where parameters are transformed by

√
Mt, gradients are

computed in the transformed space, and the result is mapped back to the original space (Cun
et al., 1998; Desjardins et al., 2015).

Choosing an effective Mt is a central challenge. Substituting the Hessian matrix for Mt gives
the classical Newton step, which has quadratic convergence near minima, but comes with a high
computational price. Natural-gradient descent, stemming from the Fisher Information Matrix, also
encodes second-order curvature information and is positive-definite by construction (Amari, 1998;
Amari et al., 2019), making it a preferred operator to second-order methods. For mean square error
(MSE) loss, the Fisher information matrix (FIM) coincides with the Gauss-Newton method (Martens,
2020; Schraudolph, 2002) which only requires the Jacobian. Levenberg-Marquardt (LM) modifies
the Gauss-Newton approach by adding a diagonal damping term guaranteeing numerical stability
and preventing overly aggressive parameter updates (Benzi, 2002; Moré, 2006). Kronecker-Factored
Approximation Curvature (K-FAC) approximates the FIM using a block-diagonal matrix based on
the products of layer-wise statistics (Martens and Grosse, 2015; Botev et al., 2017).

Ultimately, the goal is to choose a computable Mt that conditions the optimization landscape so that
the error is reduced uniformly across all modes.

Grokking

Grokking is a phenomenon of delayed generalization first observed in algorithmic tasks (Power et al.,
2022). During training, a model will first overfit the training data, showing poor test performance.
Then after a prolonged period with minimal further reduction in training loss, the model suddenly be-
gins to generalize, leading to an increase in test accuracy. Several hypotheses have been proposed to
explain the delayed generalization. For instance, some theories point to the dynamics of adaptive op-
timizers (Thilak et al., 2022), or architectural bias in transformers that favors simpler, low-sensitivity
functions that generalize better (Bhattamishra et al., 2022). Another line of research suggests that
grokking happens because, over time, training gradually pushes the model away from memorization
patterns towards simpler and more general representations that explain the data better (Barak et al.,
2022; Varma et al., 2023; Liu et al., 2022).

Two recent papers provide complementary views on grokking from a spectral bias perspective. The
first, by (Kumar et al., 2024), hypothesizes that grokking occurs as a result of inefficient training
which initially stays confined to the NTK subspace and spectral bias limits it to learning only the
lowest-frequency features. Only later does the model escape this regime and move towards the
generalization manifolds, resulting in a sudden improvement in test accuracy. The second, by (Zhou
et al., 2024), argues that grokking mainly arises from a spectral mismatch in the training and test
data. Due to spectral bias, the model first learns low-frequency modes that are dominant in the train
set but may not be predictive for the test set. The generalization emerges once the model begins to
learn higher-frequency components that coincide with the test data.

3 EXPLORING THE NTK REGIME

3.1 MITIGATING SPECTRAL BIAS WITH PRECONDITIONING

Here we discuss how spectral bias can be tempered by the use of PGD. Let f(x,θ) : R× Rp → R
be a standard MLP where x is the input and θ ∈ Rp the network parameters. Specifically, f is an
MLP of depth L and constant width W with the form

f(x,θ) = θ(L)σ

 1√
W

θ(L−1)σ

(
. . . σ

(
1√
W

θ(1)x+ βb(1)
)
. . .

)
+ βb(L−1)

+ βb(L).

We assume the same initialization and scaling of the weight matrices as those discussed in (Jacot
et al., 2018).1 Define f(θ) as the vectorized-shorthand of the quantities {f(xi,θ)}Ni=1. For sim-

1While the theory highly depends on the NTK initialization for strict analysis, the experiments use more
standard initializations unless otherwise indicated.
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plicity, we consider the least-squares regression problem minθ L(θ) with L(θ) = 1
2

∥∥f(θ)− y
∥∥2,

where y is the N dimensional labels. We consider the continuous gradient flow underlying gradient
descent by taking step size η → 0

θn+1 = θn − η∇θf(θn)
T (f(θn)− y) =⇒ ∂θ

∂t
= −∇θf(θ(t))

T (f(θ(t))− y),

with θ(t) signifying the continuous flow of the weights. For sake of notation, let Jt = ∇θf(θ(t))
be the N × p Jacobian matrix at time t. Thus, in function space, we have the usual dynamics

∂f(θ(t))

∂t
=

∂f(θ(t))

∂θ

∂θ(t)

∂t
= −JtJ

T
t (f(θ(t))− y). (2)

Now define the error e(t) = f(θ(t))− y and the (time-dependent) NTK matrix Kt := JtJ
T
t . Note

that Kt is symmetric positive semi-definite (assuming sufficiently overparametrized), Kt is also
strictly positive definite with high probability (Bowman, 2023; Telgarsky, 2021)), with an orthogonal
basis of eigenvectors. Then from (2) we can write out an error evolution equation with respect to the
eigendecomposition of Kt.
Lemma 3.1. For 1 ≤ i ≤ n, let Λ = diag(λi) ≥ 0 be the eigenvalues of Kt, and êi the error
constant associated with the ith eigenvector. Then continuous gradient flow of êi takes the form

∂

∂t
êi = −λi(e)êi.

Here we have that λi depends on e because the matrix Kt and the corresponding eigenvalue and
basis of eigenmodes are evolving nonlinearly with e. However, as the width W of f tends towards
infinity, we have that Kt → K∞ where K∞ is the (constant in time) symmetric positive definite
neural tangent kernel (NTK). In this regime, we arrive at a linear decoupled evolution in error modes,

∂

∂t
êi = −λiêi. (3)

Equation (3) precisely describes spectral bias, because the convergence of each mode is defined
by the corresponding eigenvalue of K∞, and global error convergence is defined by the condition
number of the NTK matrix. In particular, the learning rate must be small enough for stable evolution
of the largest eigenvalue of K∞, but this means error modes associated with small eigenvalues
converge like 1− λk/λN ≪ 1 for k ≪ N . Empirically, only O(1) eigenvalues are “large”, so most
modes converge slowly (Murray et al., 2022) .

As in standard numerical linear algebra though, we can apply preconditioning to normalize contours
towards a more isotropic landscape for convergence (Benzi, 2002). Let µ > 0 be a regularization
parameter, and consider the Levenberg-Marquardt (LM) algorithm (Moré, 2006), which evolves the
weights according to θn+1 = θn − η(µI + JT

t Jt)
−1JT

t (f(θ)− y). In the context of least squares,
this is akin to ridge regression (Hoerl and Kennard, 1970). We note that the inversion of the matrix
is well-defined due to the inclusion of the µ factor. Performing similar gradient flow manipulations
as above, we arrive at the following continuous dynamics for the LM-preconditioned error evolution
∂
∂te = −Jt(µI + JT

t Jt)
−1JT

t e, where Jt implicitly depends on e. The following shows that
the conditioning of the dynamics is greatly improved, meaning that spectral bias during training is
reduced.
Lemma 3.2. Let Λ and êi(t) be as before. Then the LM-preconditioned continuous gradient flow
of êi takes the form

∂

∂t
êi = − λi(e)

µ+ λi(e)
êi. (4)

As before, in the NTK/infinite width regime, we may drop the dependence of λi on e. Then, we see
that the mapping from λi → λi

µ+λi
greatly improves the conditioning compared with Equation (3).

Assuming λ1 > 0, for gradient descent we have the condition number κGD = λN

λ1
, whereas for LM,

we have κLM := λN

λ1

(
λ1+µ
λN+µ

)
≪ κ in general. In particular, if µ = λ1, then κLM ≈ 2.

As µ → 0, LM converges to a Gauss-Newton (GN) iteration, which takes the form θn+1 = θn −
η(JT

t Jt)
†JT

t (f(θ)−y), where † denotes the matrix pseudoinverse due to the fact that the Jacobian
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Figure 1: MNIST grokking induced by multiplying the initialization by α. Left: Train (solid)
and test (dotted) accuracy with weight norms (dot-dashed) across LM, AdamW, and LM – grokking
occurs regardless of whether norms grow, decay, or remain stable. Middle: AdamW exhibits a
pronounced delay between train and test accuracy (grokking). Right: LM (µ fixed) compresses the
test-delay across α, but attains lower final test accuracy than first-order methods.

may be extremely ill-conditioned or singular. We assume that the pseudo-inverse is calculated with
a cutoff of ε. Note that the LM dynamics can be interpreted as a trust region variation of the GN
optimization steps.

Lemma 3.3. Let Λ and êi(t) be as before, then if Gauss-Newton preconditioned gradient descent
is used, then

∂

∂t
êi = −1λi(e)>εêi.

This means that the GN dynamics result in essentially all modes converging at a uniform rate (up to
conditioning tolerance ε), at a cost of the smallest eigenvalues (and typically geometrically highest
frequencies) λi < ε not converging due to numerical necessity of the pseudo-inverse.

Of course, in practice for GN or LM, the additional computation is not trivial. Inverting the large
matrix (µI + JT

t Jt) can be computationally expensive. To address this, the resulting linear system
is typically solved with iterative methods such as the conjugate gradient algorithm (Gargiani et al.,
2020; Cai et al., 2019), or by applying identities like the Sherman-Morrison-Woodbury formula (Ren
and Goldfarb, 2019). These solvers are often paired with a line search to determine an appropriate
step size (Müller and Zeinhofer, 2023; Jnini et al., 2024); detailed computational discussions are
deferred to the appendix.

While the above analysis is straightforward, the results are primarily meaningful in the NTK regime
where Kt is linear or nearly linear in its evolution (e.g., either via initialization, scaling or large
width (Chizat et al., 2019; Jacot et al., 2018)). This is the case even with more sophisticated con-
vergence analyses, e.g., (Cayci, 2024), with convergence in the rich regime a largely open question.
However, this theory demonstrates how early preconditioning can accelerate training and exploration
of the NTK or a generally linear regime.

3.2 GROKKING BEYOND THE NTK REGIME

Kumar et al. (2024) first showed that neither weight norms nor adaptive optimizers are necessary for
grokking. In Figure 1, we see the classical grokking behavior on MNIST (Deng, 2012) as described
in Liu et al. (2022) using a two-layer MLP with AdamW, Adam and PGD with LM dynamics. The
exact values of the accuracy notwithstanding2, note that the weight norms can increase, decrease
or stay the same depending on the optimizer as one trains and the model generalizes. The same
grokking behavior appears for non-adaptive gradient descent, meaning grokking can occur in spite
of adaptivity or weight decay (Thilak et al., 2022).

Zhou et al. (2024) and Kumar et al. (2024) both argue that grokking occurs due to a mismatch
between “ideal” training dynamics and reality. By “ideal”, we refer to an optimization scenario

2The test accuracy of the PGD can be worse compared to first-order methods as discussed in (Buffelli et al.,
2024; Wadia et al., 2021).
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Precond.

w0

w∗
NTKµ → 0

w0

w∗
NTK

Figure 2: Top-left: With SGD, spectral bias reflects ill-conditioned NTK curvature, resulting in
the trajectory from w0 to w∗

NTK that bends along level sets, so progress differs across directions.
Top-middle: Preconditioning (LM, µ > 0) uses curvature/Hessian information (Gauss-Newton) to
rescale directions, producing a more direct path. Top-right: As µ → 0 (GN), updates nearly equal-
ize progress across directions on the NTK manifold, effectively removing spectral bias. Bottom:
Optimization first approaches the NTK solution w∗

NTK on the lazy subspace (plane); the LM/GN end-
point w∗

µ can under-generalize relative to the true target w∗. Switching to a first-order method moves
off-subspace and recovers final generalization.

where feature learning occurs immediately and uniformly across all relevant modes, without delays
caused by suboptimal model initialization and optimizer dynamics. In reality, the practical behavior
of neural networks is quite different; convergence is often biased toward certain modes or delayed
due to suboptimal initiation and optimization dynamics. The former argues that grokking occurs
due to frequency-dependent convergence, where spectral bias causes the model to fit low-frequency
components first, delaying generalization of higher frequency modes present in the test data. The
latter argues that neural networks tend to stay in the lazy training regime, characterized by the
subspace defined by

f(x,θ) ≈ f(x,θ0) + J0(θ − θ0) (5)

where θ0 are the initial weights. The authors hypothesized that feature learning can only occur after
escaping the lazy regime. Both views argue that grokking stems from spectral bias combined with
prolonged confinement to the lazy training regime.

Building upon these theories, we present additional evidence through the usage of PGD as detailed
in the diagram in Figure 2. As discussed theoretically in Section 3.1, preconditioning accelerates
convergence in the NTK regime, particularly in the attenuation of spectral bias. If grokking stems
from frequency mismatch and prolonged lazy-regime confinement, then PGD should reduce the
time-to-generalization by accelerating NTK exploration. This is observed in Figures 5 and 6. While
PGD compresses the delay, final generalization can be lower; switching to first-order methods after
the lazy regime restores accuracy – opposite to typical PDE practice where one often finishes with
second-order.

4 EXAMPLES

To evaluate the theoretical predictions and discussions from Section 3, we consider convergence and
grokking experiments. These experiments show how different optimization approaches behave in
the NTK/lazy regime and highlight transitions into the feature-rich regime, where our assumptions
begin to fail. The results from Section 4.1 are:

• Higher-order PGD methods such as LM and GN accelerate convergence of all frequency
modes relative to SGD/Adam performance, this confirms predictions outlined in Sec-
tion 3.1: GN achieves uniform exponential decay across all frequencies (Lemma 3.3) while
LM interpolates between SGD and GN behavior depending in the damping parameter µ
(Lemma 3.2).
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• Higher-order methods’ efficacy is limited to the NTK/lazy regime. The methods have di-
minished performance when transitioning into the rich regime, where non-linear feature
learning dominates and the linear curvature approximation in Equation (5) does not apply.

To further understand the connection between optimizers and generalization, we investigate
grokking behavior in the context of training and test loss across multiple tasks. The main obser-
vations from Section 4.2 are:

• Preconditioning greatly compresses the delay between memorization and generalization
seen in grokking across a range of tasks, by providing uniform convergence through each
mode in the NTK subspace.

• This supports recent theories proposed by (Kumar et al., 2024; Zhou et al., 2024), that
overfitting or adaptivity are not the main reason for grokking. We propose that spectral
bias plays an important role.

4.1 CONVERGENCE RESULTS

To numerically realize the effects of Lemmas 3.2 and 3.3, consider the regression problem of fitting
a MLP to u(x) = 1

3

∑3
k=1 k sin((2k+1)πx− k) on a uniform grid of 100 points drawn from [0, 1].

We employ MSE as our loss function for a NN consisting of two layers and a hidden dimension
of 80. The network is initialized using Glorot normal, and trained using SGD3 or a preconditioned
variant with constant learning rate η = 1e-2. Of particular interest is the error in the frequency space
ei(t) :=

1
n

∣∣∣FFTi

(
u(x)− f(θ(t), x)

)∣∣∣ .
The first ten modes are plotted in Figure 3. In particular, the slope of the error is in accordance
with Lemmas 3.2 and 3.3 with GN’s errors converging at a uniform, exponential rate for all frequen-
cies, and with LM converging to GN as µ → 0. There also appears a clear demarcation between the
NTK convergence and rich regime, with preconditioning’s effectiveness ending in the rich regime.

Figure 3: Mode-wise FFT error (first 10 frequencies) under SGD, LM (µ ∈ {0.5, 0.1}), and GN.
Higher-order PGD attenuates spectral bias: GN yields near-uniform decay across modes; LM inter-
polates between SGD and GN.

We next solve the Poisson equation on [0, 1]2 with homogeneous Dirichlet boundary condition using
PINNs (Raissi et al., 2019) with a shallow network consisting of width 256 dimensions with various
forcing functions corresponding to differing frequency solutions. We choose forcing functions such
that the solutions are u(x, y) = sin(πnx) sin(πmy) with (n,m) ∈ {(1, 1), (2, 2), (3, 3)}. In Fig-
ure 4, we show the loss arising from using SGD, Adam and the LM optimizers with learning rates
of 1e-3, 1e-2 and 1e-1 respectively.

SGD and Adam initially show fast loss decay, likely due to fast elimination of dominant low-
frequency error modes. In contrast, the LM training takes a more tempered path. The LM opti-
mizer performs noticeably better compared to Adam as frequency increases, in particular, note that
the slope with which the error decreases seems to be uniform with respect to different frequencies,
which suggests superior handling of higher frequency components as derived in Lemma 3.2.

3Adam and other Adam-like optimizers can be interpreted as preconditioned gradient descent. Using them
with GN or LM preconditioning can cause unexpected results as the application of two preconditioners is not
well understood.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: PINNs training loss SGD, Adam and LM dynamics with µ = 0.1 for low (blue), medium
(orange) and high (green) frequency forcing functions.

4.2 GROKKING

We present additional evidence that grokking is due to the need to explore the NTK regime efficiently
before generalizing, and that PGD reduces grokking. We repeat several grokking experiments in the
literature, such as those introduced in Kumar et al. (2024); Liu et al. (2022); Zhou et al. (2024).
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Figure 5: Accuracy of the modulo task trained using SGD and LM with similar initialization. The
LM dynamics is highlighted in the box. Without preconditioning, grokking is observed as α becomes
larger which is considerably alleviated by applying PGD.

We first consider a modular addition task, consisting of fitting a shallow MLP to the values for addi-
tion under the ring. Grokking is induced through the use of scaling the model output by α2, which
has a larger NTK regime as α → ∞ (Chizat et al., 2019). In Figure 5, we show the train/test accu-
racy and losses obtained using SGD and LM. The boxed area indicates the the curves corresponding
to the LM method. While it is not surprising that train loss decreases much faster when using higher-
order methods, the fact that testing dynamics are similar with respect to scaling α suggest that the
ability to explore the NTK at a uniform rate is highly valuable to accelerate generalization.

This can be more clearly seen through the high-dimensional polynomial regression task as presented
in (Kumar et al., 2024, §5). Grokking is again induced via scaling the output of the shallow MLP.
The left two plots of Figure 6 again show that the simple usage of preconditioning greatly reduces
the delay when α → ∞. The gap between training loss and generalization is independent of α as
the NTK regime is explored at a more uniform rate.

In the right plots of Figure 6, we show the error in the largest FFT frequency along two different
1D subspaces: the first subspace spanned by the one piece of training data, and the second along
the vector (1, . . . , 1) “test” data. In the case of SGD, the error in the training subspace quickly con-
verges while the testing subspace has error dependent on the scaling α. This suggests that spectral
bias is causing slower convergence of those unseen modes. However, in the case of PGD, the train-
ing/testing subspaces all converge at roughly the same time as all modes converge at roughly the
same rate.

Finally, let us examine the grokking induced on MNIST by scaling initial weights by α as introduced
in (Liu et al., 2022); here α corresponds to the “size” of the NTK regime with α → ∞ corresponding
to larger lazy regime (Chizat et al., 2019). We see on the middle and right plots of Figure 1 that
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Figure 6: Polynomial regression grokking induced by output scaling α. Left two: Train (solid) vs.
test (dotted) loss. As α → ∞, SGD shows an increasing delay between train and test (grokking).
LM explores the lazy NTK regime faster, reducing the delay across α. Right two: Error in the
largest FFT frequency along 1D subspace. The solid lines indicate the subspace {cxi | 0 ≤ c ≤ 1}
where xi is in the train set, and the dashed lines indicate the same subspace where xi = (1, . . . , 1).
SGD decreases the training and “testing” errors at different times while PGD greatly attenuates the
disparity between train and test error.

Figure 7: Higher-order methods effectively reduces the delay but tend to remain near the lazy regime,
which limits final generalizability. However, applying AdamW after LM, it is possible to recover
full generalizability. leveraging the benefits of first-order methods in the final stages.

the delay is again uniformly reduced by using PGD, however the final generalization is clearly
far weaker. This is observed for the full MNIST dataset and other architectures in (Wadia et al.,
2021; Buffelli et al., 2024). Fortunately, we are able to recover the exact (or better) testing data
performance by using first-order methods after the higher-order methods, which is seen in Figure 7,
where we use 2000 iterations of LM iterations before 20000 AdamW iterations. This again suggests
that GN tend to stick near the NTK subspace rather than explore the rich regime, reinforcing those
observations of (Wadia et al., 2021; Buffelli et al., 2024).

5 LIMITATIONS AND CONCLUSIONS

We showed that PGD, in theory and empirically, reduces the effect of spectral bias in the NTK/lazy
regime. Using this lens, we reinforced the theories suggested by Kumar et al. (2024); Zhou et al.
(2024) that grokking arises as a result of the NNs’ tendency to slowly explore the NTK first, by show-
ing that PGD uniformly reduces the delay to generalization. Our approach does not address another
likely contributor to grokking: train/test dataset sizes. This is also not a wholesale endorsement of
the use of high-order methods: while they accelerate entry into the rich regime, they often struggle
to achieve high, final generalization. We recover strong generalization by switching to a first-order
method (e.g., Adam) after using high-order methods, thus suggesting training procedures that begin
with PGD and then transition to first-order methods once the lazy/linear regime is exhausted. Further
work, especially the study of convergence results in the rich regime (Woodworth et al., 2020), is of
particular interest.
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A APPENDIX

A.1 PROOFS IN SECTION 3.1

We first present the proofs for the results in Section 3.1.

Proof of Lemma 3.2. Consider the SVD Jt = UtΛ
1/2
t V T

t where for notational purposes, we repre-
sent the singular values in their square root form Λ

1/2
t . Then by direct calculation

Jt(µI + JtJ
T
t )−1JT

t = UtΛ
1/2
t V T

t (µVtV
T
t + VtΛtV

T
t )−1VtΛ

1/2
t UT

t

= UtΛ
1/2
t (µI +Λt)

−1Λ
1/2
t UT

t

= UtΛ̃tU
T
t

where Λ̃t = diag
(

λi(e)
µ+λi(e)

)
.

Proof of Lemma 3.3. Using the same SVD as the above proof, let (JT
t JT )

† = VtΛ̃
−1
t V T

t be the
pseudo-inverse where the diagonal matrix is defined entree-wise

Λ̃−1
t =

λ′
i(e) | λ′

i(e) =

{
0 if λi(e) < ε

1
λi(e)

otherwise
, λi(e) ∈ Λt


with ε some user-chosen truncation parameter. Thus,

Jt(J
T
t Jt)

†JT
t = UtΛ̃

−1
t ΛUT

t

where now the singular values are either 1s or 0s depending on the magnitude relative to ε.

A.2 COMPUTATIONAL DETAILS OF PGD

Since in the case of the pure Gauss-Newton steps, the pseudo-inverse is hard to compute and we
only perform it for the simplest models and batch sizes. In such cases, the Jacobian matrices are
constructed and the SVD is taken as described above. There are recent work which focuses on
Gauss-Newton using inexact or randomized methods (Cartis et al., 2022; Bellavia et al., 2025), but
we choose to focus more on the Levenberg-Marquardt formulations as we found it, not only to be
easier to compute, but also more stable in its training dynamics.

Computing the inverses for Levenberg-Marquardt (µI + JT
t Jt)

−1 naively is memory intensive
for even moderately-sized batch sizes and models. There are several ways to skirt around this issue,
including using conjugate gradient (Gargiani et al., 2020), the Sherman-Morrison-Woodbury (SMW)
identity (Ren and Goldfarb, 2019), the Duncan-Guttman identity (Korbit et al., 2024), or, departing
from the PGDs discussed earlier, techniques like Kronecker products in K-FAC (Martens and Grosse,
2015).

In general, we opted to use a SMW approach, meaning that one needs to compute

(µI + JT
t Jt)

−1 =
1

µ
I − 1

µ2
JT
t

(
I +

1

µ
JtJ

T
t

)−1

Jt. (6)

In particular, note that JtJ
T is n × n; in general, the batch size n are far smaller than the number

of parameters p meaning the matrix inverse scales far better.

Furthermore, modern ML frameworks allow one to reuse the computational graphs constructed after
doing backpropagation. In particular, the products against Jt and JT

t in eq. (6) can be done in a
matrix-free manner; for example using vjp, jvp from Jax. For simplicity, we opted to construct
the inner matrix-inverse explicitly, but one in theory could apply matrix-free conjugate gradient to
avoid that too.
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Figure 8: Plot of the residuals in the first ten frequencies of the FFT of residuals for SGD, and
preconditioning with GN on a problem with slowly decaying Fourier modes for fitting Equation (7).

A.3 2D REGRESSION AND REGRESSION HYPERPARAMETERS

The results of Section 4.1 holds true even in functions with slowly decaying modes, such as a 2D
function with discontinuities. Using the same network as in the 1D case, we fit it to the following
discontinuous function on [0, 1]2

u(x, y) =


1.0 if x+ y < 0.5

2.0 if x+ y > 1.5

0.75 if x < 0.5 and y ≥ 0.5

0.0 otherwise

. (7)

A total of 1600 points were sampled. Again, to verify the lemmas from above, we show the residual
in the function’s frequency space, which we plot in Figure 8 only for the case of SGD and GN.
As predicted, the errors decay in a uniform manner for the Gauss-Newton method, implying an
exponential convergence for all modes to the “end” of the lazy regime.

The details for the 1D and 2D regression are the same, and is detailed in table 1.

Table 1: Hyperparameters for regression problems
Parameter Value
Number of Layers 2
Hidden Dimension 80
Kernel Initialization Kaiming Uniform
Bias Initialization Zeros
Activation Function tanh
Output Dimension 1
Learning Rate 1× 10−2

Batch Size (1D) 100 (full batch)
Batch Size (2D) 400

A.4 PINNS HYPERPARAMETERS

The usage of PGD in PINNs is not new, and one can obtain great performance using GN/LM meth-
ods methods compared to Adam and BFGS on PINNs problem by using a dynamic line search for
the learning rate (Jnini et al., 2024; Müller and Zeinhofer, 2023). We chose LM with fixed learn-
ing rate (rather than dynamic line-search) to better emulate continuous time dynamics. We found
experimentally that Gauss-Newton, without regularization can be unstable for a fixed learning rate.

The details for the PINNs example is shown in Table 2.
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Table 2: Hyperparameters for PINNs
Parameter Value
Number of Hidden Layers 1
Hidden Dimension 256
Kernel Initialization Kaiming Uniform
Bias Initialization Zeros
Activation Function tanh
Learning Rate 1× 10−3, 1× 10−2, 1× 10−1

Total interior points 640
Total boundary points 40
Batch Size 200

A.5 GROKKING HYPERPARAMETERS

A.5.1 MODULAR ARITHMETIC

We follow the experiment as used in (Chizat et al., 2019); in particular, the shallow MLP uses a
quadratic activation, and the outputs are scaled with the scale and divided by the input dimension
and hidden dimension. The remaining details are shown in table 3.

Table 3: Hyperparameters for Modular Arithmetic Model
Hyperparameter Value
Modulo parameter 23
Input dimension 46
Train Data Fraction 0.9
Hidden Dimension 100
Epochs 1000
Scale s {0.5, 1.0, 1.5, 2.0}
Learning Rate 10−2/s2

Batch size Full batch
LM Regularization Parameter {0.07, 0.0125, 0.005, 0.0025}

A.5.2 POLYNOMIAL REGRESSION

The main implementations are based (Kumar et al., 2024, §5) which we refer the reader to for model
definition, and exact data generation formulation. The remaining hyperparameters are shown in
table 4.

Table 4: Caption
Input Dimension 100
Hidden Layer Neurons 500
Scaling ϵ 0.25
Training Data Points 450
Test Data Points 1000
Learning Rate 0.5×N
Training Iterations 60000
Batch size Full batch
LM Regularization Parameter 0.1/α

A.5.3 MNIST CLASSIFICATION

When considering the lack of generalization when using PGD in the MNIST task (fig. 1 vs fig. 7),
a natural question is what is the loss value? In fig. 9, we show the loss plots from a pure PGD run
versus an AdamW run. Interestingly, the loss values are generally lower for PGD and is clearly
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Figure 9: Plot of loss resulting from MNIST data; AdamW on the left and PGD on the right. The
loss values attained by PGD is lower than AdamW, however the classification error doesn’t seem to
reflect this.

decreasing even as the classification error fails to noticeably change. This is indicative of the draw
backs of ℓ2 loss regression in a classification problem (Van Den Oord et al., 2016; Li et al., 2025).

Our implementation is based on (Liu et al., 2022). For the regularization parameter in LM, we
opted to use a dynamically scaling. We found that the best performances is achieved when the
regularization is small, however, if using a constant learning rate, rather than an adaptive line search
for example, this can be unstable. We hence use a logarithmic interpolation to ease the parameter
down over 500 iterations using the following

λ(i) =

10−4 if i ≥ N

exp
(
ln(10−2) + i

500 · (ln(10−4)− ln(10−2))
)

otherwise

which ensures a smooth decay. When we perform the switching from preconditioned training to
AdamW, we use the same learning rate as if training using AdamW for the entire time. The remain-
ing details are shown in table 5.

Table 5: Hyperparameters for the MNIST grokking experiment.
Hidden Layer Width 250
Layers 2
Activation Function Relu
Kernel Initializer Glorot
Training Points 1000
Batch Size 200
Learning Rate (SGD, LM) 10−4

Learning Rate (Adam/AdamW) 10−3

Weight Decay (for AdamW) 0.1
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