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Abstract

It is widely known that machine learning models only achieve sub-optimal
performance when testing data exhibit distribution shift against training i.e.,
Prtrain(X,Y ) ̸= Prtest(X,Y ). Although Graph Neural Networks (GNNs) have
become de facto models for semi-supervised learning tasks, they suffer even more
from distribution shift because multiple types of shifts origin from not only node
features but graph structures. Existing domain adaptation methods only work for
specific type of shifts. In response, we propose Shift-Robust Node Classification
(SRNC) - a unified domain adaptation framework for different kinds of distribution
shifts on graph. Specifically, we co-train an unsupervised cluster GNN, which cap-
tures the data distribution by graph homophily on target graph. Then a shift-robust
classifier is optimized on training graph and pseudo samples from target graph,
which are provided by cluster GNN. Compared to the existing domain adaptation
algorithms on graph, our approach works for both open-set and close-set shifts
with convergence guarantees. In our experiments, the classification accuracy is
improved at least 3% against the second-best baseline under open-set shifts. On
time-evolving graph with close-set shift, existing domain adaption algorithms can
barely improve the generalization if not worse. SRNC is still able to mitigate
the negative effect (> 2% absolute improvements) of the shift across different
testing-times.

1 Introduction

Graph Neural Networks (GNNs) [11, 27, 7] have achieved enormous success for node classification,
these models experience performance drops if training and testing data are not identically and
independently distributed (i.i.d.) - distribution shift [13]. In real-world GNN applications, the
robustness towards distribution shift has become a pressing topic [39, 18, 32] when distribution shift
between structures and features can both deteriorate the performance. In this work, we consider two
different kinds of shifts according to whether label space Y is changed or not - (1) open-set shift:
there are emerging new classes in the graph (e.g., new COVID variant in community transmission);
(2) close-set shift: time-augmented test graph has substantially different class distributions (e.g.,
time-evolving Twitter and Academia graphs).

Despite the popularity and importance of GNNs, only a few domain adaption algorithms are proposed
to make GNNs robust to distribution shifts. Most of them are designed to account for a specific type
of distribution shift. For example, open-set classification [2, 33, 17] can recognize objects of unseen
classes during testing. SRGNN [39] and UDA-GCN [32] are two representative methods adopted
from invariant representation learning [15, 16, 35] for close-set shifts. Nevertheless both methods
works for only one kind of close-set shift - covariate shift where class-conditional distributions of
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hidden representations are same during training and testing. Robust graph neural networks against
distribution shifts are in great need, but there is still no go-to method regarding different kinds of
shifts.
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Figure 1: A unified domain adaption perspective for
open-set shift and close-set shift. graph homophily is
universally hold on source and target indicated by ∥ cut.

Being aware of the aforementioned challenge,
we are wondering whether it is possible to de-
sign a domain adaption framework with the least
amount of assumption of distribution shifts. To
the light of this issue, graph structure enjoys nu-
merous nice topological properties, while none
of the existing work incorporate these proper-
ties to mitigate the limitation of prior knowledge
on distribution shifts. As a consequence, these
algorithms present even worse result than base
model without domain adaptation (see results of
domain-invariant baselines in Table 1 for more
details).

In this paper, we propose a unified domain adap-
tion framework for shift-robust node classifica-
tion, where unlabeled target (testing) graph is used to facilitate model generalization. First, we
consider the joint probability on node and label Pr(hi, yi) on graph, where h is the output embedding
from a graph neural network. The modeling of joint probability avoids tackling different assumptions
on different marginal distributions Pr(yi|hi) one by one. Figure 1 gives a toy example that both
open-set and close-set can be interpreted in one joint form. Second, we observe similar degrees
of graph homophily [38] (e.g., neighbors with same labels) between homophilic source and target
graphs. In other words, most real-world applications (e.g. time-evolving social networks) would
not expect target graph of weak homophily while source graph with strong homophily. Based on
graph homophily, we propose to use graph clustering to identify latent classes [3, 26] by breaking
less frequent edges (possibly heterophily) between potential clusters (right side of Figure 1). If such
graph clustering can capture the joint probability on source graph, it would probably generalize well
on target graph with comparable degree of homophily. Therefore, our proposed model, which we
call SRNC (Section 4.1), co-trains two graph neural networks (GNNs): an shift-robust classification
GNNΘ for unified domain adaption and a clustering GNNΦ (Section 4.2) for homophily-based cluster-
ing - (a) The clustering memberships inferred by the clustering GNN on source data QΦ(C

s|Xs, As)
should be close to training conditional distribution Prtrain(Y

s|Xs, As). For instance, on the ride of
Figure 2, the KL-divergence between above two probabilities are minimized to push the clustering
result consistent with training data; (b) In the other direction, the classifier is optimized on both
training graph and target graph for domain adaptation. The targets samples are sampled from
clustering GNN to improve the generalization on target graph. In SRNC optimization, the two
modules improve each other through variational training. Convergence of the iterative optimization
between two modules is theoretically justified in Section 4.3.

Our experiments illustrate that the shift-robust classifier trained in proposed way can detect more than
70% open-set samples on three widely used benchmarks. For close-set shift, we use early snapshot
(prior to 2011) of ogb-arxiv [9] network as training graph and testing on more recent graphs (14-16/16-
18/18-20). SRNC is the only method that can consistently reduce the negative effect (outperform base
model) of shift in our evaluation. Meanwhile we show progressively utilizing classifier’s prediction
as pseudo labels (our ablation without clustering component) on target graph [33, 17] is much worse
than proposed method.

To summarize, we propose the first unified domain adaption GNN framework for multiple types
of distribution shift. We implement the framework by co-training a shift-robust classifier with a
variational cluster. The latter one captures target data distribution and approximates the source class-
conditional distribution simultaneously. Extensive experiments show that our method is significantly
better out-of-distribution generalization on two different distribution shifts. Additional case study
reveals its potential to discover new classes and improve label space design.
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2 RELATED WORK

Out-of-Distribution Generalization. In literature, the training and testing distribution is often
referred as in-distribution and out-of-distribution when there is a distribution shift. Many research
topics are invented to improve the out-of-distributitaon (OOD) generalization, of which two most
well-known ones are domain adaptation and domain generalization. Domain generalization [30]
requires to train a robust and generalizable predictors on unseen domain assuming training data
(graphs) from multiple domains are available. Domain adaption [1] requires only one source domain
but the access of the unlabeled target (testing) data. In terms of node classification, the assumption
of domain adaption generally holds because it only requires one training graph and usually whole
testing graph is available. In this paper, we focus our discussion on domain adaptation.

Close-set Distribution Shift. There has been a recent surge on discussing GNNs generalization [6,
29, 18, 30]. The generalization and stability of GCNs is found to be related with graph filters [29].
The H-divergence [1] and discrepancy measures [19] are invented to measure the generalization
bound between source and target domains. To bridge the gap between source and target, Domain
Invariant Representation (DIR) Learning aims to minimize these discrepancy measures on source
and (unlabeled) target data by adversarial learning [5] or regularization (e.g. CMD [35], MMD [15,
16]). In graph neural networks [30], DIR is frequently used for domain adaptation. For example,
DANE [37] adds a domain classifier on top of GNN outputs. UDA-GCN [32] further proposes a
dual-gnn architecture and inter-graph attention to obtain unified representations across source and
target graphs. For covariate shift, SRGNN [39] adopts two shift-robust techniques - CMD and
importance sampling for non-IID training data. SOGA [20] assumes a well-trained GNN model
without the access of source graph and enforces maximal mutual information and structural proximity
on target. Besides, generative algorithm DGDA [4] introduces variational graph auto-encoders to
recover and disentangle domain and semantic latent variables for adaptation. We also use unlabeled
target data in our framework, but we propose a clustering component to generate pseudo samples
specifically for graph structured data.

Open-set Distribution Shift. Early open set recognition and classification [23, 2] require classifiers
to detect unknown objects during testing on image domain. These studies [8] focus on addressing
the overconfidence issue of deep neural networks for unknown classes, such as OpenMax [2] and
DOC [25]. On graph structured data, most of the GNNs work under semi-supervised learning. Hence,
over confidence issue is less likely to occur. Instead, the topological structure poses challenges
for open-set classification. To this end, OpenWGL [33] employs an uncertainty loss in the form
of graph reconstruction loss [12] on unlabeled data. PGL [17] address the conditional shifts by
episodic pseudo labels and domain adversarial regularization with graph neural networks. Yet, none
of open-set learning on graph has explored modeling more than one unseen classes distribution on
target graph as ours.

3 Problem Definition & Preliminary

G = {V,A,E,X} is defined as a graph with nodes V , their features (X ∈ R|V |×|F |) and edges E
between nodes (e.g., adjacency matrix A,A ∈ R|V |×|V |). Each GNN layer takes node embeddings H
and adjacency matrix A as input, aggregates the neighborhood information and outputs representation
Hk. For example, in GCN [11],

Hk = σ
(
D̂− 1

2 ÂD̂− 1
2Hk−1W (k)

)
, (1)

where H0 = X , Â = A+ I and D̂ii =
∑

j Âij .

Given a source graph Gs and the output of a k-layer graph neural network is hk. Semi-
supervised GNNs perform node classification via a cross-entropy loss over labeled source data
Ds = {(h1, y1), ...(hn, yn)}.

L =
1

|Ds|

n∑
i=1

N∑
j=1

yij log ŷij , ŷij = softmax(f(hk
i )). (2)
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Figure 2: Training framework of SRNC. The left and right block illustrate the training process of classification
and clustering GNNs, respectively.

Definition 3.1 (Distribution Shift in Node Classification). Assume node representations Ht =
{ht

1, ..., h
t
m} are output from graph neural network on target graph Gt with m nodes. The label space

on source and target graph are Y s and Y t, respectively. Distribution shift occurs if Prtrain(H
s, Y s) ̸=

Prtest(H
t, Y t)1.

In general, there are two basic types of distribution shifts: (1) open-set shift - new classes arise during
test-time, i.e. Y s ⊂ Y t. (2) close-set shift - Y s = Y t and joint probability changes between training
and testing, Prtrain(H

s, Y ) ̸= Prtest(H
t, Y ).

Definition 3.2 (graph homophily ratio [38]). The graph homophily ratio τh = {(u,v):(u,v)∈E∧yu=yv}
|E|

is the fraction of edges in a graph which connect nodes with the same class label.

Recent study [38] has shown graph homophily is the main reason of the superior performance of graph
neural networks on node classification. Motivated by this phenomenon, we design our shift-robust
classifier for domain adaptation on homophilic graphs. When the graph homophily ratio is low, most
of the graph neural networks perform not well [38]. Hence, we leave the heterophilic graph extension
of our framework as future work.

4 Method

In this section, we present our framework for shift-robust node classification. In Figure 2, SRNC
co-trains two GNN modules (1) a semi-supervised classification GNNΘ on the left side (Section 4.1)
and (2) an unsupervised clustering GNNΦ (Section 4.2) on the right side. The classification GNN is
optimized on labeled source graph Gs and pseudo labels on target graph Gt for better generalization
against possible distributional shifts. Meanwhile, the clustering GNN is optimized on target graph Gt

and regularized with predictions from the classifier on source graph Gs. Finally in Section 4.3 and
Algorithm 1, we summarize how we optimize SRNC via iterative optimization between both modules.
We also provide convergence analysis of the co-training by Expectation-Maximization (EM). In the
remaining of the paper, we call training data as source and testing data as target interchangeably.

4.1 Shift-Robust Node Classification

We first propose the domain adaption loss for semi-supervised node classification towards distribution
shifts. Later in the paper, we always denote θ, ϕ as parameter of categorical distribution which are
parameterized via Graph Neural Networks. For example, Classifier PΘ = Pθ ◦ GNNΘ minimize a
negative cross-entropy loss on GNN embeddings,

Pθ(yi|hi) = − log
exp(hi,yi

)
N∑
j=1

exp(hi,j)

, hi = GNNΘ(xi,A), (3)

1We study the distribution shift in final latent space H and refer Pr(H,Y ) as joint probability in the paper.

4



where hi ∈ RN and hi,j is the j-th entry of the vector.

We have source loss Ls
Θ on training data (hs

i , y
s
i ), and target loss Lt

Θ|Φ on pseudo samples (ht
i, ŷ

t
i)

from target (testing) data.

LΘ =

|Ds|∑
i=1

− logPθ(y
s
i |hs

i )︸ ︷︷ ︸
Ls

Θ

+ Ei∼U{1,|V t|},ŷi
t∼Qϕ(·|zt

i )

[
− logPθ(ŷ

t
i |ht

i)
]︸ ︷︷ ︸

Lt
Θ|Φ

.

(4)

We denote under-script Θ|Φ as the forward pass relies on both GNNs {Θ,Φ} while backward pass
only updates Θ. For example, in Figure 2,loss term Ls

Θ|Φ receives samples from cluster block QΦ

but the back-propagation only update parameters of GNNΘ The sampling process in the second
term first uniformly sample same amount of nodes as training {xt

i}
|Ds|
i=1 from target graph. Then we

obtain their node embeddings {zti} and pseudo labels {ŷti} through cluster GNNΦ and softmax layer
Qϕ(yi|zi). We will discuss how to align the identity of cluster C = {1..K} and classes Y = {1..N}
at the end of clustering co-training (Section 4.2). In left part of Figure 2, PΘ is first trained on source
graph and jointly optimized on pseudo target samples. Note that source and target graph can be same
(semi-supervised) or different (supervised).

Our framework works for both kinds of distribution shifts that we deem essential in the paper.
Specifically, for open-set shift, we set number of cluster larger than known classes, i.e. K > N . After
alignment between clusters and classes, target samples in unmatched clusters are pseudo labeled as
new class ŷ = |Y |+ 1. For close-set shift, we simply set number of cluster and classes equal in two
modules.

4.2 Graph Clustering Co-training

In this section, we will explain how to approximate the true target data distribution (ht
i, yi

t) ∼ Pt

with Qϕ and the connection between graph homophily and clustering. The sufficient condition of
uniform sampling from target Pt requires an unbiased estimation of Pt(yti |zti) if we uniformly sample
node i from target graph. Although underlying Pt(yti |zti) is unknown, similar nodes likely appear in
the same cluster based on graph homophily. Hence, we decompose the approximation into two steps:
(a) homophily-based clustering to group nodes into different clusters (b) co-training mechanism to
match the identity of clusters to known label space on source graph.

Modularity [22] measures the strength of division of a graph into clusters by comparing random
distributed edges between clusters. Graph homophily ensures both source and target graph yields large
modularity if grouped by ground truth labels. Given the cluster membership matrix C ∈ {0, 1}|V |×C ,
the modularity measure [22] S quantifies the divergence between the number of intra-cluster edges
and the expected number in a random graph. By maximizing the modularity, the nodes are densely
connected within each cluster:

S =
1

2|E|
∑
ij

[
Aij −

didj
2|E|

]
δ(ci, cj), (5)

where ci and cj is the cluster membership of node i and j and di ∈ R|V | is the degree of the node.
Direct optimizing the binary cluster membership matrix C is NP-Hard. In GNNΦ, we model node k’s
soft cluster membership ck following [26]. We parameterize QΦ(ck|xk, A) as Qϕ ◦ GNNϕ, using
output embeddings and a softmax layer - Qϕ(ck|zk) ∼ Categorical(ϕ),

Qϕ(ck|zk) = softmax(WT zk), zk = GNNΦ(xk,A), (6)

Lt
Φ =

1

2|E|
Tr

(
Q⊺

ϕd
⊺dQϕ −Q⊺

ϕA
tQϕ

)
, (7)

The optimized cluster distribution is the soft cluster membership output by the GNN in Equation 6.

Given cluster distribution Qt
Φ(ci|xt

i, A
t) on target graph, we are interested in its correlations with

true Pt(yti |xt
i, A

t). In practice, graph homophily-based clustering algorithm would work consistently
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good on source and target w.r.t., that is, Qs
Φ(ci|xs

i , A
s) ≈ Ps(ysi |xs

i , A
s) ↔ Qt

Φ(ci|xt
i, A

t) ≈
Pt(yti |xt

i, A
t). Besides the modularity clustering, lots of the graph clustering algorithms either

explicitly or implicitly preserves graph homophily. The choices of clustering algorithms are very
flexible as shown in Section D.3.

To approximate the class conditional probability on source, first we need to build a mapping from the
graph clusters C to the class labels Y using source graph. The number of clusters is set to be equal
or greater than number of classes N (K ≥ N ). Thus, we could build a bipartite mapping between
the clusters {cKk=1} and the classes {yNn=1}. We use the KL divergence to measure the distance
between cluster ck and class yn over source data. Specifically, we search for the optimal mapping
M∈ {0, 1}K×N by solving a linear sum assignment cost [14] between them, defined as follows,

min
∑
k

∑
n
Tk,nMk,n,

Tk,n = KL (Pθ(yn|Hs)||Qϕ(ck|Zs)) ,
subject to ∀

∑
k

Mk,n ≤ 1,
∑
n
Mk,n ≤ 1

(8)

Thus we can map some clusters to classes, i.e., CL → Y,CL ⊆ C, |CL| = N . After this step, the
clusters on source graph are “colored” in Figure 2. In order to achieve similar class distribution on
source data (Qs

Φ ≈ Ps), we add a regularization term on clustering,

Ls
Φ|Θ =

B∑
i=1

KL (Ps(y|hs
i )||Qϕ(c|zsi )) . (9)

If labels are all known in source data, we random sample B nodes and {Ps(ysi |hs
i )} is a one-hot

vector. Otherwise (semi-supervised), we use current classifier’s inference probability on source data
Pθ(y|hs

i ).

4.3 Model Optimization

In this section, we summarize the training objective for classification and clustering modules. Follow-
ing Equation 4, the overall loss for classification is,

LΘ = Ls
Θ + Lt

Θ|Φ + αLs
Θ|Φ, (10)

where the last term (pseudo samples (xs
i , ŷ

s
i ) on unknown source nodes) is added to ensure training

convergence. We have α = 1 for semi-supervised α = 0 for full-supervised source data.

Similarly, the overall loss for clustering also includes both source and target data,

LΦ = Lt
Φ + Ls

Φ|Θ, (11)

Joint Optimization. As we can see in the loss function, both modules require inference result
(freezing parameters) from the other. Therefore, we initialize both models with Ls

Θ and Lt
Θ|Φ, that is

pre-training classification with labeled source graph and clustering with unlabeled target graph. We
then iteratively train the classification module and clustering module w.r.t. LΘ and LΦ. In Lt

Θ|Φ, we
sample same amount of nodes as labeled source data Ds on target. In regularization loss Ls

Φ|Θ, we
train clustering GNNΦ for T steps and sample B nodes each step. Lastly, Algorithm 1 summarizes
the joint optimization algorithm.

Convergence. With the Variational-EM model [21], we now discuss the convergence of graph
clustering co-training on source graph. In the previous sections, we use categorical distribution
Pθ,Qϕ over hidden representation H,Z for two modules. To analyze the convergence, we need
to detail both terms with all of their parameters as PΘ(y|Xs,As) = Pθ(y|GNNΘ(X

s,As)) and
QΦ(c|Xs,As) = Qϕ(c|GNNΦ(X

s,As)) For simplicity, we denote G = (Xs,As) as inputs on
source data. In this analysis, clustering GNN serves as a variational distribution to approximate an
intractable probability distribution PΦ. Essentially, we optimize the evidence lower bound (ELBO)
of the log-likelihood as follows,

logPΘ(y|Xs,As) ≥
EQΦ(y|Xs,As) [logPΘ(y|Xs,As)− logQΦ(y|Xs,As)] ,

(12)
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In t-th E-step, regarding the Equation 12, the optimal Q(t+1)
Φ is,

logQ
(t+1)
Φ (y|G) = E

Q
(t)
Φ (y|G)

[
logP

(t)
Θ (y|G)

]
+ const, (13)

The solution of the above E-step is,

Q
(t+1)
Φ (y|G) = argminKL(P(t)

Θ (y|G)||Q(t)
Φ (y|G)).

In practice, we achieve this update by sample B nodes on source graph, which is exactly the
regularization term Ls

Φ|Θ (Equation 9).

In t-th M-step, we update the output distribution on source from classifier P(t+1)
Θ with Q

(t+1)
Φ (y|G).

To estimate the expectation term in Equation 12, we sample (xs
j , ŷ

s
j ) ∼ QΦ to compute the log-

likelihood and update parameter Θ of the classifier. Given the alignment between cluster and classes
in Section 4.2. Interestingly, we describe the same sampling process on target in Lt

Θ|Φ and now
we add Ls

Θ|Φ in final loss (Equation 10) of classifier to accomplish the M-step. Therefore, at each
episode, the joint optimization is equivalent to perform variational EM alternatively. The convergence
is proven in the original paper [21].

Discussion. Micro-graph [36] employs similar clustering and EM optimization between node and
motif representations for the purpose of contrastive learning. The main difference is that we adopt EM
between classification and clustering to achieve domain invariant learning under similar homophily
ratios. Limitation of our method are two folds: (a) it requires access of test data as other domain
adaptation algorithm (b) the performance of clustering co-training is not guaranteed when testing
graph is more heterophily compared with training.

Complexity. Compared with common domain adaptation algorithms, our main difference in com-
putation comes from graph clustering co-training. Hereby, we analyze the additional computation
cost of Q in each episode. Let O(E) be the time GNNs take to compute a single node embedding
and class or cluster membership for each node. Assuming there are |V t| nodes in target graph and
node degree is constant order (i.e. O(|V t|) ̸= O(E)), the pre-training of clustering takes O(|V t| · E).
During iterative optimization, the KL-divergence regularization costsO(2 · E ·B ·T ), T is the number
steps in Algorithm 1. Overall, the extra complexity O((|V t| + 2 · B · T ) · E) is in linear of target
graph size |V t|, because usually 2 · B · T ≪ |V t|. It is the same as most other domain adaption
algorithms [33, 32], where target node representations are calculated each episode as well.

5 Experiments

5.1 Experimental Setting

Datasets. In our experiments, we perform semi-supervised node classification on four benchmark
networks (see Table 4). These four networks are: Cora, Citeseer, PubMed [24] and ogb-arxiv [9]. We
conduct open-set shift experiments on first three datasets and close-set shift on ogb-arxiv, because
ogb-arxiv naturally has distribution shift across different time periods.

Parameter Settings and Reproducibility. In experiments, we use the GCN [11] and add self-loop in
graph for all compared algorithms including ours. The Adam SGD [10] optimizer is used for training
with learning rate as 0.01 and weight decay as 0.0005. The hidden size of all GNN models including
SRNC is 128. We set cluster number as 16 in cluster GNNΦ for open-set experiment and same as
number of classes in close-set experiment. The pre-training epochs of episode 0 (Algorithm 1) for
classification and clustering are set as 200 and 1000, respectively. Besides, B is set as the same as
number of training nodes and T = 500 in co-training. Note that none of Cora, Citeseer and Pubmed
has 16 classes, which do not favor our method as a fair comparison.

To provide a comprehensive study of SRNC, we design two ablations of our algorithms:

• SRNC w.o Φ: a bootstrapping ablation, where we pseudo label the same amount of data on
target using model θ predictions instead of co-trained clustering Φ in Equation 4.

• SRNC Ep.1: we stop the algorithm after episode 1 to verify the effectiveness of iterative
optimization.
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Table 1: Performance under close-set shift on ogb-arxiv.

Method ogb-arxiv
2014-2016 2016-2018 2018-2020

DGI 52.6 ± 0.4 48.3 ± 1.9 50.9 ± 1.4
DGI-DANN 48.9 ± 1.5 44.4 ± 3.1 28.2 ± 0.7
DGI-CMD 44.5 ± 0.6 36.5 ± 1.0 31.0 ± 1.9
DGI-SRGNN 50.5 ± 1.8 49.7 ± 2.7 47.7 ± 2.2

GCN 56.2 ± 0.5 55.7 ± 0.8 53.8 ± 1.2
GCN-DANN 54.3 ± 1.0 50.4 ± 3.2 46.2 ± 5.0
GCN-CMD 50.7 ± 0.6 48.7 ± 1.5 50.0 ± 2.3
GCN-SRGNN 54.4 ± 0.6 53.3 ± 1.1 55.0 ± 1.1
GCN-UDA 57.3 ± 0.4 56.5± 0.5 57.5 ± 1.6
GCN-EERM 50.4 ± 1.6 50.4± 2.7 51.0 ± 2.8

SRNC w.o Φ 57.3 ± 0.2 58.0 ± 0.8 55.6 ± 1.7
SRNC Ep.1 56.9 ± 0.1 56.0 ± 0.4 54.5 ± 0.1
SRNC 58.1 ± 0.3 58.7 ± 0.8 59.1 ± 1.3

5.2 Close-Set Shift on Dynamic Graph

Compared Algorithms. On close-set shift, we provide the result from multiple close-set domain
adaption methods on both supervised and unsupervised GNNs: GCN, DGI [28] with DANN [5],
CMD [35], SRGNN [39], UDAGCN [32] and EERM [34]. The first three methods are model-agnostic,
so we applied to both GNNs. The latter two require end-to-end training witn GNNs.

Evaluation Setting. On ogb-arxiv, we split the train, validation and test nodes by year. There are
total 12974 (-2011, train), 28151 (2011-2014, validation), 28374 (2014-2016, test set 1), 51241
(2016-2018, test set 2) and 48603 (2018-2020, test set 3) paper, respectively. In testing, each test
graph contains all previous nodes such that train graph is a subset of all test graphs. This dynamic
graph setting is close to real world applications, where model is trained on an earlier snapshot (source)
and deployed on more recent ones (target).

Results. Most of close-set domain adaption baselines in comparison (i.e. DANN, CMD, SRGNN),
focus on learning invariant feature representations between source and target. However, as we
stressed before, conditional shifts presumably exist in real-world graphs so regularization (CMD) and
adversarial head (DANN) make the performance even worse compared with original model. Then we
are wondering whether unsupervised representation learning is more robust to (close-set) distribution
shifts. We optimize the mutual information objective in DGI on training graph to obtain testing
set node embeddings and train a multi-layer perceptron (MLP) classifier with training data. From
Table 1, we can observe the testing performance of DGI is worse than GCN across different testing
periods. Similarly, existing domain invariant approach only makes the result worse on DGI. The
performance drop is even larger than their GCN counterparts. It is probably because the distribution
shifts happen mostly in GNN encoders and adaption method can not mitigate the shifts in pre-trained
graph encoders.

The performance of SRNC is significantly better than other baselines across all test period because we
are able to capture the joint distribution Prtest(X,Y ) on target data. Besides our method, GCN-UDA
is the second best method, it also considers graph structure information via inter-graph attention and
therefore, outperforms DANN (domain classifier only) a lot. EERM reports the similar performance
of the original paper on ogb-arxiv dataset, but only present consistent but not superior performance.
As ablations, the bootstrapped pseudo labels (SRNC w.o. Φ) from classifier can only marginally
improve the performance and the improvement on GCN is much smaller as shifts become larger(2018-
2020 split). SRNC Ep.1 also reports worse results since the algorithm is not converged yet. Our
results demonstrate that our framework is effective under different close-set shift introduced by
dynamic graph.

5.3 Open-Set Classification

Compared algorithms. Since most of the close-set domain adaption algorithms cannot deal with
open-set shift, we apply a different set of open-set classification baselines: THS [8], DOC [25],
PGL [17], OpenWGL [33].
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Table 2: Open-set classification on three different citation networks. Numbers reported are all percentage (%).

Method Cora Citeseer PubMed
Micro-F1↑ Macro-F1↑ ∆F1↓ Micro-F1↑ Macro-F1↑ ∆F1↓ Micro-F1↑ Macro-F1↑ ∆F1↓

DGI-IID 83.4± 3.0 81.1 ± 1.7 0 75.3 ± 2.3 68.9 ± 4.9 0 80.2 ± 0.6 80.2 ± 0.5 0
DGI-THS 70.2 ± 4.2 68.9 ± 4.0 13.2 62.9 ± 5.1 56.4 ± 10.7 12.4 63.8 ± 7.4 58.0 ± 3.1 16.4
DGI-DOC 71.2 ± 3.6 70.7 ± 3.0 12.2 56.6 ± 8.1 57.0 ± 8.5 18.7 58.0 ± 4.6 57.4 ± 2.3 22.2

GCN-IID 82.0 ± 3.0 79.7 ± 1.6 0 75.0 ± 2.4 68.0 ± 4.4 0 79.3 ± 0.3 78.8 ± 0.3 0
GCN-THS 72.4 ± 3.7 71.7 ± 3.7 9.6 66.7 ± 3.4 61.5 ± 7.0 8.3 64.2± 2.8 58.9 ± 6.2 15.1
GCN-DOC 72.8 ± 3.4 72.8 ± 3.0 9.2 66.0 ± 5.0 63.8 ± 7.1 9.0 58.5 ± 7.0 47.5 ± 2.0 20.8
GCN-PGL 72.1 ± 4.4 70.9 ± 4.8 9.9 67.0 ± 5.2 60.0 ± 9.4 8.0 63.6 ± 3.8 57.8 ± 7.0 15.7
OpenWGL 66.7 ± 6.1 64.3 ± 5.7 15.3 64.5 ± 3.8 56.1 ± 7.0 11.5 64.2 ± 2.9 64.1 ± 2.5 15.1

SRNC w.o Φ 71.7 ± 6.4 70.2 ± 3.6 10.3 65.5 ± 4.7 56.2 ± 4.5 9.5 65.8 ± 1.6 60.5 ± 7.4 13.5
SRNC Ep.1 76.0 ± 4.7 75.2 ± 2.9 6.0 69.2 ± 5.8 60.4 ± 6.0 1.9 67.3 ± 5.1 68.0 ± 3.9 12.0
SRNC 77.4 ± 4.0 75.9 ± 3.6 4.6 70.7 ± 4.0 63.4 ± 7.4 4.3 69.1 ± 4.4 69.4 ± 2.5 10.2

Evaluation Setting. We create open-set shift by removing 3 classes on Cora/Citeseer and one class
on PubMed from training data. In testing, nodes from the masked classes are all re-labeled as the
unknown class. For each known class, we random sample 20 nodes for training and report the mean
and standard deviation of micro-F1 and macro-F1 for 10 runs. Besides, we report the performance
of GCN and DGI with the unknown label in training data (GCN-IID and DGI-IID) in Table 2, and
relative performance drop (of other methods) in Micro (∆F1). In validation set, we have nodes from
the unknown class and use it to select the best hyper parameters all of the baselines and SRNC. For
example, in PGL, we use validation to pick the best threshold α among each episodes {αk} and label
nodes with lower probabilities into unknown class. SRNC has an explicit class for unknown, so we
use the Micro-F1 on validation to stop the iterative optimization.

Results. Compared with reference IID version (GCN-IID and DGI-IID), all methods experience
performance drop due to open-set shift. Among the baselines, threshold based methods GCN-PGL
and GCN-THS perform better than the others. OpenWGL, to our surprise, reports much worse
performance in semi-supervised learning , it is probably because the uncertainty difference between
known classes and unknown class is not that significant without enough training data. We also notice
the open-set shift is more severe in PubMed, although its unknown ratio (1/3) is lower than the other
two. In literature, when training data is IID (no open-set shift), unsupervised or contrastive learning is
even better than semi-supervised GNNs with the same amount of training data. However, end-to-end
supervised GNNs (GCN) is more robust than unsupervised GNNs (DGI) when there is open-set shift.
It is consistent with the close-set observations and for the same reason semi-supervised GNNs can
enjoy more improvements from domain adaptation algorithms.

On average, SRNC outperforms all the other representative open-set algorithms for at lease 4% and
2% in micro-F1 and macro-F1, respectively. From the comparison between our own ablations, we
find that the graph clustering co-training(SRNC vs. SRNC w.o. Φ) contributes the most to the
performance gains. This ablation performs bootstrapping that randomly samples pseudo unknown
nodes from classifier’s low confident predictions. In other words, our co-training design is clearly
better than bootstrapping and drawing samples from unseen clusters is the key towards better open-set
generalization. Moreover, the iterative brings more improvement (1∼3% F1) on top of SRNC Ep.1
ablation since variational EM takes several round to converge in practice.

6 Conclusion

In this paper, we proposed a general framework, SRNC, to enable graph neural networks for
distributional shift. Different from existing work on either open-set shift or close-set shift, SRNC
works for both scenario with a novel graph clustering co-training component. Accordingly, SRNC
employ a latent variable model (i.e. cluster GNN) to model the latent structure and allows the
clustering GNN to improve the generalization of shift-robust classification GNN. Future work
includes applying the model to applications such as medical diagnosis and molecular dynamics,
where robustness towards distribution shifts are in critical need.
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A Algorithm details

Algorithm 1: Pseudo code for SRNC optimization
1 /* Episode 0 */
2 Pre-train the classifier GNNΘ via Ls

Θ and the cluster GNNΦ via Lt
Φ;

3 /* Iterative optimization, episode 1,2...*/
4 while Micro-F1 on validation increases do
5 /* update cluster GNNΦ for T steps each episode */
6 for t = 1 to T do
7 Sample B nodes (xs

i , y
s
i ) from source

8 Φ
−←− ∇ΦLs

Φ +∇ΦLt
Φ|Θ

9 end
10 /* update shift-robust classifier GNNΘ */
11 Sample |Ds| nodes (xt

i, ŷ
t
i) from target

12 while LΘ not converge do
13 Θ

−←− ∇ΘLs
Θ +∇ΘLt

Θ|Φ +∇ΘαLs
Θ|Φ

14 end
15 end

In addition, we provide the comparison between domain adaptation graph neural networks in Table 3.

Table 3: Comparison of graph neural networks on domain adaptation. open-set shift: Recognizing new classes
in testing data. covariate shift: Handling distribution shifts when class-conditional distribution does not change,
Prtrain(Y |X) = Prtest(Y |X). conditional shift: Handling distribution shifts when class-conditional distribution
does change, Prtrain(Y |X) ̸= Prtest(Y |X).

SRNC PGL [17] UDA [32] SRGNN [39] EERM [34]

open-set ✔ ✔
covariate ✔ ✔ ✔ ✔

conditional ✔ ✔ ✔

B Experimental Setups

B.1 Dataset Details

Table 4: Overall Dataset Statistics

Dataset # Nodes # Edges # Classes # Train

Cora 2,708 5,429 7 140
Citeseer 3,327 4,732 6 120
PubMed 19,717 44,325 3 100
ogb-arxiv 169,343 2,501,829 40 12974

B.2 Evaluation Metrics.

In our experiments, we have {(xt, yt)} in testing (target) data Dt and calculate Micro-F1 and
Macro-F1 on predictions ŷ from target data,

Micro-F1 =
|x ∈ Dt ∧ ŷ = yt|
|(x, y) ∈ Dt|

(14)

Macro-F1 =
1

Ntest

Ntest∑
i=1

|x ∈ Dt ∧ ŷ = yt|
|x ∈ Dt ∧ yt = i|

(15)
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Notice that in open-set shift, target data Dt has one more class than training - the unknown class
(Ntest = Ntrain + 1)).

C Additional Experiments

C.1 Unseen Class Discovery

Table 5: Top paper titles from discovered clusters on DBLP dataset. We choose the two most similar clusters for
comparison. (x) indicates the paper is not consistent with the area of other papers in the same cluster.

suggested unseen SRNC Constrained K-Means (DGI)

Computational
Mathematics

• a meshless method for solving nonlinear two-dimensional • upper and lower bounds for dynamic cluster assignment
... domains using radial basis functions with error analysis for multi-target tracking in heterogeneous wsns(x)
• application of the ritz-galerkin method ... wave equation • multi-rate multicast ... multi-radio wireless mesh networks(x)
• a generalized moving least square reproducing kernel method • matrix equations over (r,s)-symmetric and ... symmetric matrices
• multi-rate multicast ... multi-radio wireless mesh networks (x) • a tau approach for solution of the ... fractional diffusion equation
• numerical solution of the higher-order ... variable coefficients • a meshless method for solving nonlinear two-dimensional
equation with variable coefficients ... domains using radial basis functions with error analysis

Networks &
Distributed

Systems

• an implementation and evaluation ... mobile ad-hoc networks • a pattern-based ... for a multi-core system development(x)
• trustworthiness among peer ... distributed agreement protocol • model checking prioritized timed systems(x)
• reduction of processing ... synchronize multmedia replicas • learning-based adaptation to ... reconfigurable network-on-chip (x)
• quorum-based replication of multimedia ... distributed systems • design issues in a performance ... embedded multi-core systems (x)
• dynamic clusters of servers to reduce total power consumption • the architecture of parallelized cloud-based ... testing system
• experimentation of group communication protocols • counterexample-guided assume-guarantee synthesis learning (x)
• a dynamic energy-aware server selection algorithm • mechanism design ... allocation in non-cooperative cloud systems
• trustworthiness ... in peer-to-peer(p2p) overlay networks • a qos-aware uplink scheduling paradigm for lte networks

Use Case. DBLP is a computer science bibliography website. We construct a heterogeneous network
upon three types of nodes: (A)Author, (P)Paper and (T)Term. There are five types of papers labeled
by the corresponding venues2 - Data Mining (DM), Database (DB), Artificial Intelligence (AI),
Natural Language Processing (NLP) and Computer Vision (CV). We sampled 50,000 papers between
2010 and 2015, then use the venue information to label 5567 of them into 5 classes. After filtering
out rare authors and terms, there are 20601 papers, 5158 authors and 2000 terms in total. In this
subset, we observed only 30 % of 20,000 papers are labeled into known categories. In other words,
the majority of nodes in the DBLP graph belong to unseen classes. This is a real situation where
people do not know the label space in advance and it poses an open-set challenge for practitioners.
One biggest advantange of SRNC is the capability of unseen class discovery clustering GNN GNNΦ.
Unlike any other open-set classification algorithms, a graph clustering component can further partition
the unknown objects into different groups based on their structural and semantic similarities.

Results. In Table 5, we show the paper in DBLP dataset that are assigned to the (unmatched) clusters,
discovered by our Cluster GNNΦ and Constrained-KMeans + DGI embeddings. Two methods
utilize the same amount of supervision of known classes and we set total number of clusters as
10. Interestingly, from the five clusters that are supposed to belong to unseen classes, we find two
shared clusters about “Computational Mathematics” and “Network & Distributed System” from
both algorithms. The results show ad-hoc semi-supervised clustering on node embeddings produces
erroneous cluster membership even for the top-ranked items. For example, it contains almost half
papers from the computer architecture in “Network & Distributed System”, whereas unseen classes
suggested by our GNN clusterring are much more consistent. Traditional clustering on off-the-shelf
network embeddings lack rationales of objects within the same clusters. When our method optimize
the ELBO between classification and clustering results on seen classes, it adopts the similar rationales
in unseen clusters. The clustering result also provides insight for designing the new label space or
active learning paradigms.
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Table 6: Open-set performance improvement when number of cluster changes from 16 to 7 (best hyper-
parameter) on Cora.

Cora (1 unseen class) Cora (3 unseen classes)
Micro-F1 Macro-F1 Micro-F1 Macro-F1

∆ +4.73 +3.79 +1.62 +1.15

D Model Analysis and Parameter Study

D.1 Parameter Sensitivity.

Among all the hyper-parameters, the pre-defined number of clusters |C| seems to be the most crucial
in open-set scenario. Now we provide the performance of SRNC with varied numbers of clusters
k, i.e. 7 (optimal) vs. 16 (used in experiment) in Table 6. Both Micro-F1 and Macro-F1 are further
boosted, since seven is the ground truth number of classes. On the one hand, SRNC is not sensitive
to the choice of |C| and better than baselines regardless, especially when there are multiple missing
classes (closer to the real-world setting). On the other, an accurate estimation of |C| can facilitate the
model training.

(a) pre-train done, no unseen class
(b) discover unseen during train-
ing

(c) classifier component con-
verges

(d) pre-train, no regularization
(e) distinct cluster during co-
training (f) cluster component converges

Figure 3: Visualization of training process on DBLP dataset (Best viewed in color). The same color indicates
the aligned class/cluster (Red: AI, Blue: CV, Cyan: DB, Green: DM, Purple: NLP). Color yellow represents the
unseen class detected by the classifier.

D.2 Effectiveness of iterative optimization.

In Figure 3, we demonstrate the learning procedure on DBLP dataset. Each column shows the
predicted labels from classification GNN (upper) and the cluster assignments from the cluster GNN
(lower). We project the node embeddings onto two dimensions using t-SNE. In this example, we set
number of clusters to six. In Figure 3a, the pre-trained classification GNN predicts all papers into 5
seen classes. Our cluster GNN shows 6 initial clusters. During the training, the clusters in Figure 3e
gradually align with the classifier’s predictions in same color. The classifier presented in Figure 3b
starts to recognize nodes of unseen class with pseudo samples from cluster corresponds to unseen
class (yellow) in Figure 3e. When the training converges, the clusters in Figure 3f are separated
clearly.

2DM: SIGKDD, ICDM DB: SIGMOD, VLDB NLP:ACL, EMNLP, NAACL AI: AAAI, IJCAI, ICML CV:
ECCV, ICCV, CVPR
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(a) Modularity Clustering (b) DGI+DEC

Figure 4: Varying GNNs and clustering methods on Cora.

D.3 Applicability of SRNC framework.

As we discusses in section 4, SRNC is not tailored for one specific GNN architectures or unsupervised
graph clustering algorithms. In this set of experiments, we investigate four different classification
models for GNNθ (GCN [11], GraphSAGE [7], GAT [27], SGC [31]). These four GNN models
are widely used for different applications and effective on the Cora dataset we used in this study.
Besides, we investigate two rather different clustering algorithms on graph - DMoN [26] (used in
main experiment), DGI+DEC [28] in Figure 4. Deep embedding clustering (DEC) is a self-trained
clustering algorithms. We use K-means on the DGI node representations to initialize the cluster
centers and DEC updates the cluster centers and same soft assignment Q matrix in Equation 7.
We observed that in general, all of these variations are at least (2% on Micro-F1) better than the
best performed baseline in the open-set experiments (Table 2). Specifically, four different GNN
architectures yield similar performance except GAT, which is a bit complicated for domain adaptation
on small graphs. Moreover, two different graph clustering algorithms report close numbers. It
validates the convergence of variational EM is empirically reachable as long as the underlying class
distributions are well captured by clustering algorithms.
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