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Abstract
Image-text contrastive models like CLIP have001
wide applications in zero-shot classification,002
image-text retrieval, and transfer learning.003
However, they often struggle on compositional004
visio-linguistic tasks (e.g., attribute-binding or005
object-relationships) where their performance006
is no better than random chance. To address007
this, we introduce SDS-CLIP, a lightweight008
and sample-efficient distillation method to en-009
hance CLIP’s compositional visio-linguistic010
reasoning. Our approach fine-tunes CLIP us-011
ing a distillation objective borrowed from large012
text-to-image generative models like Stable-013
Diffusion, which are known for their strong014
visio-linguistic reasoning abilities. On the chal-015
lenging Winoground benchmark, SDS-CLIP016
improves the visio-linguistic performance of017
various CLIP models by up to 7%, while on018
the ARO dataset, it boosts performance by up019
to 3%. This work underscores the potential of020
well-designed distillation objectives from gen-021
erative models to enhance contrastive image-022
text models with improved visio-linguistic rea-023
soning capabilities.024

1 Introduction025

In recent years, multimodal models like CLIP (Rad-026

ford et al., 2021a) have excelled in tasks such as027

zero-shot classification, image-text retrieval, and028

image-captioning (Mu et al., 2021; Yu et al., 2022;029

Li et al., 2022; Mokady et al., 2021). These mod-030

els are also crucial components in various state-of-031

the-art pipelines for tasks like segmentation and032

object detection (Wang et al., 2021; Lüddecke033

and Ecker, 2021; Minderer et al., 2022; Zhong034

et al., 2021). However, they struggle with visio-035

linguistic reasoning tasks, such as determining036

the spatial relationships between objects in an037

image (Yuksekgonul et al., 2023; Huang et al.,038

2023). Notably, CLIP’s performance on the chal-039

lenging Winoground (Thrush et al., 2022; Diwan040

et al., 2022), a benchmark designed to assess visio-041

linguistic reasoning, is close to random chance.042

This shortcoming is attributed to CLIP’s contrastive 043

objective which prioritizes shortcuts for retrieval, 044

and thus impacts its ability to understand fine- 045

grained object details and their positions (Diwan 046

et al., 2022; Thrush et al., 2022). 047

In contrast, text-to-image models like Stable 048

Diffusion (Rombach et al., 2021) excel in visio- 049

linguistic tasks, likely due to their text condition- 050

ing enhanceing semantic consistency in its cross- 051

attention maps (Li et al., 2023; Clark and Jaini, 052

2023). Li et al. (2023) recently demonstrated this 053

on the Winoground benchmark, reliably matching 054

captions to images with fine-grained spatial differ- 055

ences using denoising diffusion scores (see Fig 1). 056

Similar results have been shown for other text-to- 057

image models, including Imagen (Clark and Jaini, 058

2023), with almost all of these methods outperform- 059

ing CLIP variants on the same tasks. 060

While these works have shown the potential of 061

using generative text-to-image models for visio- 062

linguistic tasks, it remains computationally inten- 063

sive. For instance, computing the denoising diffu- 064

sion score for image-text matching involves multi- 065

ple passes through a UNet model (approximately 066

892M parameters) with varying noise levels and 067

time-steps. On an entry-level GPU, this can take up 068

to a minute for a single image-text matching task, 069

making it impractical for real-world and real-time 070

applications. In contrast, CLIP models can classify 071

images up to 18 times faster (see Fig 1), requir- 072

ing only one pass through both image and text en- 073

coders. A promising research direction, therefore, 074

lies in finding methods that combine the strong 075

visio-linguistic capabilities of text-to-image mod- 076

els with the rapid inference of CLIP. 077

To this end, we introduce SDS-CLIP, a 078

lightweight and sample-efficient fine-tuning ap- 079

proach for CLIP which distills knowledge from Sta- 080

ble Diffusion, and enhances CLIP’s visio-reasoning 081

capabilities. Specifically, we add a regularization 082

term to CLIP’s standard contrastive loss based 083
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Figure 1: CLIP variants underperform on
Winoground, a visio-linguistic reasoning benchmark,
compared to Diffusion Score from Stable Diffusion.
The diffusion score is computed from Stable Diffusion’s
loss function. Note that Diffusion Score takes 18×
more time than CLIP variants for inference (using 50
samplings during diffusion score computation).

on score-distillation sampling (SDS) (Poole et al.,084

2022). This regularization encourages CLIP’s em-085

beddings to be aligned with the denoising diffusion086

loss from a text-to-image model. By fine-tuning087

CLIP with this regularized objective on a small088

paired image-text dataset, specifically 118k image-089

text pairs from MS-COCO, we demonstrate an 1.5-090

7% performance gain compared to vanilla CLIP091

on Winoground and ARO, two highly challenging092

visio-linguistic reasoning benchmarks. Notably,093

this is achieved by only updating CLIP’s Layer-094

Norm parameters. Furthermore, we show that SDS-095

CLIP’s zero-shot performance is not impacted on a096

wide range of downstream datasets.097

In summary, our contributions are as follows:098

• We introduce SDS-CLIP, a novel sample-099

efficient and parameter-efficient fine-tuning100

method that integrates a distillation-based reg-101

ularization term from text-to-image models.102

• We empirically validate our approach on chal-103

lenging benchmarks and demonstrate an im-104

provement in CLIP’s visio-linguistic reason-105

ing, without harming its zero-shot capabilities.106

2 Denoising Diffusion Score for107

Visio-Linguistic Reasoning108

The Winoground benchmark establishes a challeng-109

ing image-text matching task to measure a model’s110

visio-linugistic reasoning abilities: given an im-111

age x, the model must match it with the correct112

caption c∗ from a set of captions C = {ci}ni=1, 113

where all caption contains the same words but each 114

describes a different spatial arrangement of the 115

objects, with only one being correct. Concurrent 116

works (Clark and Jaini, 2023; Li et al., 2023; Kro- 117

jer et al., 2023) to this paper have showed that it is 118

possible to use the denoising diffusion score from 119

text-to-image generative models to perform such 120

an image-matching task. This can be formalized as 121

follows: for an image x and caption c, the denois- 122

ing diffusion score, denoted by d(x, c), is defined 123

as: 124

d(x, c) = Et∼T,ϵ∼N (0,I)[∥ϵθ(vα(x), t, c)− ϵ∥2]
(1) 125

This denoising diffusion score can then be used to 126

select a correct caption c∗ from C as: 127

c∗ = argmin
c∈C

Et∼T,ϵ∼N (0,I)[∥ϵθ(vα(x), t, c)−ϵ∥2]
(2) 128

where t is the sampled time-step, ϵθ is the noise 129

prediction UNet, vα is an encoder (e.g., VQ-VAE) 130

which maps the image x to a latent code and ϵ is the 131

sampled Gaussian noise. Previous works (Krojer 132

et al., 2023) have demonstrated that by adopting 133

this approach, text-to-image models performing 134

strongly on visio-linguistic reasoning benchmarks 135

like Winoground, outperforming contrastive mod- 136

els like CLIP by a significant margin (see Fig 1). 137

For ARO, we obtain an accuracy of 0.63 with the 138

diffusion score which is better than CLIP models. 139

3 SDS-CLIP: Our Method 140

The core idea of our approach is to regularize the 141

contrastive objective in CLIP with the denoising 142

diffusion score from Stable Diffusion (see Eq.(1)). 143

Our method builds on the recent work of (Poole 144

et al., 2022) which maps the output of a 3D NeRF 145

model into the input space of Stable Diffusion’s 146

UNet and optimizes its parameteres with the de- 147

noising diffusion loss, also known as the score- 148

distillation sampling (SDS). In a similar vein, we 149

fine-tune the parameters of CLIP using SDS. In- 150

tuitively, our set-up can be viewed as a form of 151

knowledge distillation where the teacher is the text- 152

to-image model and the student is CLIP. As a re- 153

sult, in inference, CLIP can benefit from the visio- 154

linguistic reasoning capabilities that are already 155

learned by text-to-image diffusion models. 156

Formally, we map the output of CLIP’s image en- 157

coder to the input space of Stable Diffusion’s UNet. 158

Specifically, we pass a given image x through 159
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Model Wino-Overall Object Relation Both 1 Main Pred 2 Main Preds ARO-Overall ARO-Relation ARO-Attribution

ViT-B/16(CLIP) 0.24 0.28 0.18 0.57 0.29 0.11 0.57 0.52 0.62
FT with LCLIP 0.23 0.27 0.19 0.56 0.30 0.11 0.56 0.51 0.62

FT with LCLIP + LSDS 0.31 0.35 0.25 0.69 0.36 0.16 0.58 0.535 0.63

ViT-B/32(CLIP) 0.30 0.35 0.22 0.80 0.34 0.18 0.55 0.50 0.61
FT with LCLIP 0.28 0.31 0.20 0.76 0.31 0.16 0.55 0.50 0.60

FT with LCLIP + LSDS 0.32 0.38 0.23 0.69 0.36 0.20 0.575 0.53 0.62

ViT-L/14(CLIP) 0.28 0.27 0.25 0.57 0.29 0.24 0.57 0.53 0.61
FT with LCLIP 0.26 0.27 0.25 0.56 0.30 0.23 0.57 0.53 0.61

FT with LCLIP + LSDS 0.295 0.32 0.25 0.53 0.32 0.18 0.595 0.55 0.64

ViT-L/14-336(CLIP) 0.27 0.32 0.21 0.57 0.30 0.19 0.57 0.53 0.61
FT with LCLIP 0.23 0.28 0.19 0.53 0.26 0.17 0.57 0.53 0.61

FT with LCLIP + LSDS 0.285 0.34 0.23 0.56 0.31 0.21 0.585 0.54 0.63

ResNet-50(CLIP) 0.25 0.29 0.19 0.5 0.27 0.18 0.58 0.53 0.63
FT with LCLIP 0.24 0.27 0.20 0.49 0.27 0.16 0.575 0.52 0.63

FT with LCLIP + LSDS 0.265 0.30 0.21 0.42 0.29 0.19 0.60 0.55 0.66

Table 1: Our fine-tuning method SDS-CLIP improves CLIP performance on the Winoground benchmark by
1.5% to 7% and upto 3% for the ARO-Relation and Attribution tasks across various CLIP variants. Specifically,
we find that our method improves on the sub-categories involving object-swap and relational understanding which
comprise of the majority of the tasks in Winoground. Note that only fine-tuning with image-text pairs from MS-
COCO without the distillation loss does not lead to any improvements. OpenCLIP results in Appendix I.

CLIP’s image encoder fϕ and map its <CLS> em-160

bedding through a linear map hw ∈ Rd×4×64×64161

into the input space of Stable Diffusion’s UNet162

ϵθ. This can be formalized as ϵθ(hw(fϕ(x)), t, c)163

where t is the time step and c is the corresponding164

text caption for the given image. We then use this165

term in place of ϵθ(vα(x), t, c) in Eq. (2) to arrive166

as a denoising diffusion loss LSDS which encour-167

ages image-text binding with feedback from the168

diffusion loss:169

LSDS = Et∼T,ϵ∼N (0,I)[∥ϵθ(hw(fϕ(x)), t, c)−ϵ∥2
(3)170

We practically implement this by adding this LSDS171

loss to the original contrastive objective of CLIP172

such that it acts as a regularizer:173

Ltotal = LCLIP + λLSDS (4)174

where LCLIP is defined in Appendix C.1 and λ is175

a hyper-parameter that can be set with a grid search.176

We note that there are multiple ways to incorporate177

a diffusion loss into CLIP’s objective. We found178

that as an additional loss term led to the best results,179

however, we include the full set of design choices180

we considered in the Appendix.181

Similar to differentiable image parameteriza-182

tions (Mordvintsev et al., 2018) where a given func-183

tion is optimized by backpropogation through the184

image generation process, the UNet parameters θ185

are kept frozen during the optimization process.186

Specifically, given Ltotal(ϕ, γ, w, θ):187

ϕ∗, γ∗, w∗ = min
ϕ,γ,w

Ltotal(ϕ, γ, w, θ) (5)188

where ϕ, γ, w are the learnable parameters of 189

CLIP’s image encoder, text encoder and the linear 190

map between CLIP and Stable Diffusion’s UNet. 191

4 Experiments 192

In this section, we empirically validate our pro- 193

posed method SDS-CLIP on two types of tasks: 194

i) visio-linguistic reasoning using two challenging 195

benchmarks (Winoground, ARO) and ii) zero-shot 196

image classification using a suite of downstream 197

datasets (ImageNet, CIFAR-100, and others). Over- 198

all, we show that our method improves CLIP’s per- 199

formance significantly on Winoground and some 200

key tasks in ARO, while also marginally improving 201

downstream zero-shot classification performance. 202
4.1 Experimental Setup 203

CLIP Models. We consider the following CLIP 204

variants in our experiments: (i) CLIP ViT-B/16; (ii) 205

CLIP ViT-B/32; (iii) CLIP-ViT-L-14; (iv) CLIP- 206

ViT-L-14 336px; (v) CLIP-ResNet-50. 207

Implementation Details. Due to computational 208

limit, we fine-tune CLIP from a publicly avail- 209

able checkpoint instead of training from scratch. 210

Notably, we only fine-tune CLIP’s LayerNorm 211

parameters following (Basu et al., 2023) along 212

with the linear transformation hw – accounting 213

for only ≈ 8M trainable parameters. We fine- 214

tune these parameters using image-text pairs from 215

MSCOCO (Lin et al., 2014). In particular, we 216

choose MSCOCO as it is relatively small and less 217

noisy than other image-text datasets such as CC- 218

12M (Sharma et al., 2018). Both these factors 219

make our fine-tuning method extremely sample- 220

and parameter-efficient. 221
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Figure 2: Our fine-tuning method does not harm the zero-shot abilities of CLIP. In fact for certain downstream
datasets (e.g., ImageNet, CIFAR-10, MNIST, Aircraft) – we observe an improvement in the zero-shot performance
between 1%− 8% for ViT-B/16. For other CLIP models, we find no drop in zero-shot performance.

Baselines. We compare our method with two222

different baselines: (i) pre-trained (vanilla) CLIP223

checkpoints; and (ii) CLIP fine-tuned on MS-224

COCO with the standard contrastive loss without225

the regularization term.226

4.2 Results227

Winoground. We evaluate SDS-CLIP on the228

challenging visio-linguistic reasoning benchmark,229

Winoground (Thrush et al., 2022). In Table (1),230

we find that our approach consistently improves231

performance across all Winoground sub-categories232

and CLIP variants, yielding absolute improvements233

ranging from 1.5% to 7%. The largest gain of 7% is234

observed in ViT-B/16 (CLIP), with other CLIP vari-235

ants showing consistent improvements of 1.5% to236

2%. In the Appendix( Table 2), we provide results237

for CLIP variants pre-trained on public data, where238

similar improvements are observed. On further in-239

spection of the Winoground sub-categories, we find240

that SDS-CLIP shows consistent improvements241

in “object-swap" and “relation". It is worth not-242

ing that the “both” sub-category, which combines243

both “object-swap" and “relation" tags, makes up244

only 5̃% of all tasks, thus are potentially not fully245

representative of all scenarios involving both ob-246

ject swaps and relational understanding. We also247

analyse SDS-CLIP’s robustness to the number of248

predicates in captions and find that overall, it en-249

hances performance in tasks where there are both250

one and two predicates.251

ARO. The ARO dataset (Yuksekgonul252

et al., 2023) comprises tasks for (i) attribute-253

understanding and (ii) relational-understanding.254

In Table 1, we find that SDS-CLIP enhances255

performance by 1%-3% in the "attribute-binding"256

and "relational understanding" tasks.257

Impact on CLIP’s zero-shot performance.258

From Fig 2, we find that SDS-CLIP’s zero-shot 259

classification capbilities are not impacted, relative 260

to vanilla CLIP. In fact, we find that ViT-B/16’s 261

zero-shot performance improves across a range of 262

downstream datasets (with up to 8% improvement 263

for MNIST). 264

While Stable-Diffusion is pre-trained on a much 265

larger set of image-text pairs than CLIP, in Ap- 266

pendix K, we show that the CLIP variants pre- 267

trained on LAION-2B still suffer on Winoground. 268

In fact, we show that using SDS-CLIP can im- 269

prove compositional reasoning of such CLIP vari- 270

ants. In Appendix H, we show results with fine- 271

tuning on the larger CC-3M (Sharma et al., 2018). 272

5 Related Works 273

While CLIP models (Radford et al., 2021a) are 274

renowned for their robust zero-shot classifica- 275

tion, recent research (Thrush et al., 2022; Di- 276

wan et al., 2022) has exposed their limitations 277

in visio-linguistic reasoning. In contrast, recent 278

studies have demonstrated that text-to-image mod- 279

els (Clark and Jaini, 2023; Li et al., 2023; Krojer 280

et al., 2023; Chen et al., 2023) outperform CLIP 281

in reasoning tasks. These models in fact lever- 282

age scores computed from the diffusion objective. 283

We note that while (Poole et al., 2022) use score- 284

distillation sampling for text to 3D generation, ours 285

is the first work to adapt the formulation as a regu- 286

larizer and improve compositional abilities in CLIP. 287

288
6 Conclusion 289

Our paper introduces SDS-CLIP, a novel data 290

and parameter-efficient method that effectively en- 291

hances CLIP’s visio-linguistic reasoning abilities 292

by distilling knowledge from text-to-image models, 293

without compromising its zero-shot abilities. 294
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7 Limitations295

The primary limitation of our method is the inabil-296

ity to use large batch-sizes on moderate size GPUs.297

This is due to the fact that the regularizer LSDS298

requires a full backward pass through the UNet,299

even though its parameters are frozen. We also find300

that while the original diffusion score is good at301

object-understanding, attribute-understanding and302

relational-understanding tasks, it does not perform303

well on ordering tasks from the ARO dataset. For304

this reason, distillation from Stable-Diffusion po-305

tentially may not be effective in improving CLIP’s306

performance on ordering tasks. Similar results are307

also observed in concurrent works such as (Krojer308

et al., 2023).309

8 Ethical Considerations310

Vision-language models such as CLIP have been311

known for inheriting biases (Agarwal et al., 2021)312

due to their training data. Our work uses a well-313

known widely used dataset (MS-COCO) for the314

fine-tuning procedure and therefore does not in-315

troduce any additional bias. In fact, our distilla-316

tion method mitigates some of the inherited bias in317

CLIP which earlier did not lead to good reasoning318

capabilities.319
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A Benchmark Datasets438

A.1 Benchmark datasets439

Winoground (Thrush et al., 2022; Diwan et al.,440

2022) is a challenging vision-language dataset441

for evaluating the visio-linguistic characteristics442

of contrastively trained image-text models. The443

dataset consists of 400 tasks, where each task con-444

sists of two image-text pairs. The objective is to445

independently assign the correct text caption to446

each image. Each task is also annotated with meta-447

data corresponding to whether the task requires448

object-understanding, relational-understanding or449

both. The tasks in Winoground are challenging450

as the images differ in fine-grained ways and as-451

signing the correct text captions requires inherent452

compositional visual reasoning.453

ARO (Yuksekgonul et al., 2023) similarly tests454

visio-linguistic reasoning and consists of three455

types of tasks: (i) Visual Genome Attribution to test456

the understanding of object properties; (ii) Visual457

Genome Attribution to test for relational under-458

standing between objects; and (iii) COCO-Order459

and Flickr30k-Order to test for order sensitivity of460

the words in a text, when performing image-text461

matching. We highlight that Winoground though462

slightly smaller in size than ARO is more challeng-463

ing as it requires reasoning beyond visio-linguistic464

compositional knowledge (Diwan et al., 2022).465

A.2 Does distilling features directly from466

UNet help?467

Previous works such as (Xu et al., 2023) find that468

the frozen features of the UNet contain structural469

information about the image. Motivated by this,470

we also investigate if distilling knowledge directly471

from the frozen UNet features is beneficial, Given472

an image x and its caption c, the frozen features473

f from the UNet (where I(x, c) = ϵθ(vα(x), t, c),474

similar to (Xu et al., 2023)) can be extracted. We475

then use these frozen internal representations from476

the UNet to regularize features of the image en-477

coder in CLIP. In particular:478

Ltotal = LCLIP + λ∥hw(fϕ(x)− I(x, c))∥22 (6)479

However, we find that distillation in this way480

does not lead to improved performances for visio-481

linguistic reasoning. In fact, for ViT-B/16 (CLIP)482

we find the Winoground score to decrease from483

0.24 to 0.23. This result shows that using score-484

distillation sampling which involves backpropoga-485

tion through the UNet is critical to distill knowl- 486

edge from diffusion models to other discriminative 487

models. 488

B SDS-CLIP: Algorithm 489

Algorithm 1 Algorithm to fine-tune CLIP with dis-
tillation from Stable-Diffusion for improved visio-
linguistic reasoning

Require: D: image-text pairs, fϕ: CLIP’s image-
encoder, gγ : CLIP’s text-encoder, ϵθ: UNet; N:
Number of Epochs; λ: Hyper-parameter for the
regularizer; |B|: Batch-size.
while i ̸= N do
{xj , yj}|B|j=1 ← Sample a batch from D
t← Sample time-steps using DDPM
ϵ← Sample Gaussian noise ϵ ∼ N (0, I)
Lclip← Compute contrastive loss as in eq. (7)
LSDS ← Compute SDS loss as in eq. (3)
Ltotal ← Lclip + λLSDS

Ltotal.backward() ▷ Backprop
ϕ, γ, w ← Update the relevant parameters
i← i+ 1

end while

C Preliminaries 490

C.1 CLIP 491

CLIP (Radford et al., 2021b) is a image-text model 492

which is pre-trained using a contrastive objective, 493

typically on internet-scale data. The core intu- 494

ition of the training objective is to align the text 495

and image embeddings of image-text pairs in a 496

shared embedding space. To do this, CLIP con- 497

sists of two components: (i) an image encoder 498

fϕ which transforms a raw image xi into an im- 499

age embedding eimg(xi) = fϕ(xi) ∈ Rd, also 500

denoted by the <CLS> token; and (ii) a text en- 501

coder gγ which transforms a raw text caption ci 502

into a text embedding etext(ci) = gγ(ci) ∈ Rd 503

also denoted by <EOS> token, both of which 504

map to an embedding dimensionality d. Given 505

a dataset D = {(xi, ci)}Ni=1 of image-text pairs, 506

where (xi, yi) is the ith image-text pair, CLIP uses 507

a contrastive objective to pull the image and text 508

embeddings of matched pairs together, while push- 509

ing those of unmatched pairs apart. Formally, the 510

contrastive objective can be defined as: 511

LCLIP = Limage−text + Ltext−image (7) 512
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where:513

Limage−text = −
1

2N

N∑
j=1

log{
exp(eimg(xj)

T etext(cj)/τ)∑N
k=1

exp((eimg(xj)T etext(ck)/τ))
}

(8)514515

Ltext−image = −
1

2N

N∑
j=1

log{
exp(eimg(xj)

T etext(cj)/τ)∑N
k=1

exp((eimg(xk)
T etext(cj)/τ))

}

(9)516

where τ is a trainable temperature parameter. Usu-517

ally D is an internet-scale dataset consisting of518

millions of image-text pairs. Furthermore, during519

pre-training, the embeddings eimg(xi) and etext(ci)520

are normalized to have a unit-norm.521

D When does distillation not help CLIP?522

While we find that distilling knowledge from523

Stable-Diffusion to CLIP helps in object-swap,524

relational-understanding and attribution-binding525

visio-linguistic tasks, it does not help on tasks526

where the order of the text is perturbed (e.g. the527

COCO-Order and Flickr-Order tasks in the ARO528

dataset). In fact, we find that the denoising diffu-529

sion score in Equation (1) leads to accuracies of530

0.24 for COCO-Order and 0.34 for Flickr-Order531

which is in fact lower than CLIP models. Concur-532

rent works (Krojer et al., 2023) has shown similarly533

low performance for text-ordering tasks. A poten-534

tial reason could be that ordering tasks only test535

for grammatical understanding which current text536

encoders cannot effectively model. Another reason537

could be that the denoising diffusion score is not538

affected by word ordering as the image semantics539

are not changed as a result.540

E Notes on Fine-tuning Dataset541

We use MS-COCO (Lin et al., 2014) which is542

widely used for multimodal learning. This dataset543

does not contain any names or uniquely identifies544

individual people or offensive content.545

F More Experimental Details546

Hyper-parameters. We perform a hyperparameter547

sweep for the learning rate and the regularization548

hyperparameter λ for ViT-B/16. We use these same549

hyperparameters for different CLIP variants in-550

cluding ViT-B/32, ViT-B/14, ViT-L/14-336px and551

ResNet-50. In particular, we set λ = 0.001 and set552

the learning rate as 5× 10−5. We use a batch-size553

of 32 for all the different CLIP models. We use554

Stable-Diffusion v1-4 as the teacher model in our555

experiments.556

Note on Full Fine-tuning. All our experiments557

were primarily done by fine-tuning only the Layer-558

Model Overall Object Relation Both 1 Main Pred 2 Main Preds

ViT-B/16(LAION 400M) 0.24 0.29 0.17 0.59 0.28 0.11
COCO FT with LCLIP 0.24 0.26 0.21 0.54 0.31 0.10

COCO FT with LCLIP + LSDS 0.30 0.34 0.23 0.55 0.33 0.14

Table 2: Additional results on Winoground with
ViT-B/16 CLIP pre-trained on public data (LAION-
400M).

Norm parameters. In the initial phase of the project, 559

we also fine-tune all the parameters of the text and 560

image encoder in CLIP, however it results in worse 561

performances than those reported in Table. (1). Po- 562

tentially, this can be due to overfitting issues when 563

used in conjunction with the new regularizer. We 564

therefore run all the experiments with LayerNorm 565

tuning as it leads to the best results. 566

Total GPU Hours. For all our experiments we 567

use NVIDIA-A6000 and each fine-tuning experi- 568

ment takes ≈6 hours. 569

G Additional Results with 570

Stable-Diffusion-v2-1 571

In particular, with our distillation strategy with 572

Stable-Diffusion v-2.1 as a teacher – we obtain 573

the following results on Winoground: (i) ViT-B/16: 574

0.35; (ii) ViT-B/32: 0.33; (iii) ViT-L/14: 0.31; (iv) 575

ViT-L/14-336px: 0.31; (iv) ResNet-50: 0.28; All 576

the scores are higher than the fine-tuned model 577

with Stable-Diffusion-v1-4 as the teacher, there- 578

fore highlighting that a teacher with better com- 579

positional generation capabilities will be a better 580

choice. 581

H Fine-tuning with Conceptual Captions 582

We primarily use MS-COCO as : (i) It’s a rela- 583

tively small dataset which can keep the fine-tuning 584

steps relatively smaller and scaling the fine-tuning 585

dataset will increase fine-tuning time; (ii) It’s a 586

well-established, relatively diverse and well anno- 587

tated image-text dataset which is used by the com- 588

munity. We also fine-tuned with CC-3M (Sharma 589

et al., 2018), but found the improvements to be 590

similar in lines to that using MS-COCO. For e.g., 591

On Winoground with CC-3M, we find the fol- 592

lowing performance after distillation with Stable- 593

Diffusion-v1-4: (i) ViT-B/16: 0.32; (ii) ViT-B/32: 594

0.32; (iii) ViT-L/14: 0.30; (iv) ViT-L/14-336px: 595

0.28; (iv) ResNet-50: 0.27. These scores are 596

only marginally better than using MS-COCO, al- 597

though the dataset size is more than 30 times – 598

which shows that a high-quality dataset such as 599
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Model Overall Object Relation Both 1 Main Pred 2 Main Preds

ViT-B/16(LAION 2B) 0.27 0.32 0.19 0.61 0.29 0.12
COCO FT with LCLIP + LSDS 0.31 0.36 0.24 0.53 0.36 0.17

Table 3: CLIP (Pre-trained with 2B images) still un-
derperforms on Winoground. We show the CLIP even
when trained with LAION-2B (similar scale of training
data as Stable-Diffusion) still underperforms the diffu-
sion score from Stable-Diffusion. This shows that scale
of data alone cannot be useful in mitigating reasoning
capabilities in CLIP.

MS-COCO is sufficient for improving composi-600

tional abilities in CLIP.601

I Results with OpenCLIP602

In Table 2, we show that our method is compatible603

with OpenCLIP. In particular, we find that distil-604

lation to OpenCLIP improves its visio-linguistic605

score from 0.24 to 0.30. These results highlight the606

generalizability of our distillation method.607

J Additional Results on CLEVR608

We apply our fine-tuned model on the CLEVR609

task (Johnson et al., 2016) – which consists of im-610

ages of 3D shapes isolating phenomena such as611

spatial reasoning or attribute binding. We find that612

the diffusion-score leads to a score of 0.67, whereas613

the best CLIP variant in our test-bed (CLIP ViT-614

L/14) scored 0.63. With our distillation loss during615

fine-tuning – this score improved to 0.65 with a 2%616

gain.617

K Is it the Scale of Pre-Training Data618

Which Helps?619

In Table 3, we show that CLIP models even620

when trained at the same scale of pre-training data621

as Stable-Diffusion (LAION-2B) struggle on the622

Winoground dataset. We specifically highlight that623

CLIP (when pre-trained on 2B image-text pairs)624

obtain a score of 0.27, whereas the diffusion model625

when trained on similar pre-training corpus obtains626

a score of 0.35. This clearly shows that at a similar627

pre-training scale, diffusion models (with their dif-628

fusion objective) are better compositional learners629

than CLIP like models. Our distillation method630

from Stable-Diffusion improves the Winoground631

score from 0.27 to 0.31 on CLIP(pre-trained on 2B632

image-text pairs).633

L Beyond CLIP 634

We find that Open-CoCa (Yu et al., 2022) pre- 635

trained on 2B image-text pairs obtains a score of 636

0.30 on Winoground. With our distillation strategy, 637

we find that the score improves to 0.33 highlighting 638

that our distillation strategy can be used for models 639

beyond CLIP. A full investigation of the impact of 640

our distillation method on various vision-language 641

models is deferred towards future work. 642
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