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Abstract

This paper introduces MedExQA, a novel001
benchmark in medical question-answering, to002
evaluate large language models’ (LLMs) under-003
standing of medical knowledge through expla-004
nations. By constructing datasets across five005
distinct medical specialties and further incorpo-006
rating multiple explanations for each question-007
answer pair, we address a major gap in cur-008
rent medical QA benchmarks which is the ab-009
sence of comprehensive assessments of LLMs’010
ability to generate nuanced medical explana-011
tions. Our work highlights the importance of012
explainability in medical LLMs, proposes an ef-013
fective methodology for evaluating models be-014
yond classification accuracy, and sheds light on015
one specific domain, speech language pathol-016
ogy, where current LLMs including GPT4 lack017
good understanding. Our results show gen-018
eration evaluation with multiple explanations019
aligns better with human assessment, highlight-020
ing an opportunity for a more robust automated021
comprehension assessment for LLMs. To di-022
versify open-source medical LLMs (currently023
mostly based on Llama2), this work also pro-024
poses a new medical model, MedPhi-2, based025
on Phi-2 (2.7B). The model outperformed med-026
ical LLMs based on Llama2-70B in generating027
explanations, showing its effectiveness in the028
resource-constrained medical domain. We will029
share our benchmark datasets and the trained030
model.031

1 Introduction032

Recent advancements in large language models033

(LLMs) have not only enhanced their understand-034

ing of medical domain text but also improved035

their ability to generate coherent text with cor-036

rect medical knowledge (Tu et al., 2023; Singhal037

et al., 2023). Chatbots, powered by these advanced038

LLMs, have emerged as indispensable tools, of-039

fering unprecedented opportunities to enhance pa-040

tient care, streamline clinical decision-making pro-041

cesses, and medical knowledge retrieval for the042

Figure 1: 3D tSNE plot for MedExQA specialties.

general public (Achiam et al., 2023; OpenAI, 2023; 043

Groves et al., 2023). Moreover, open-source med- 044

ical LLMs further enhance the usability of such 045

technologies in hospitals by resolving the privacy 046

concerns associated with patient data (Toma et al., 047

2023; Kweon et al., 2023; Chen et al., 2023). 048

This research in medical LLMs has been facil- 049

itated by the introduction of question-answering 050

(QA) datasets that serve as benchmarks for evaluat- 051

ing the model’s understanding of medical domain 052

knowledge (Hendrycks et al., 2020; Jin et al., 2021; 053

Pal et al., 2022; Singhal et al., 2023). The bench- 054

mark QA datasets typically consist of multiple- 055

choice questions (MCQ), enabling researchers to 056

readily assess the capabilities of LLMs in com- 057

prehending and responding to diverse medical in- 058

quiries. Thus, the diversity of medical scenarios 059

and inquiries within these datasets is a key com- 060

ponent in creating a rigorous assessment bench- 061

mark for complex medical concepts. Nonetheless, 062

certain areas within the medical domain, such as 063

speech language pathology, still remain uncovered 064

by the current benchmark datasets. 065

As current medical QA benchmarks are often 066

structured as MCQ, classification accuracy is used 067

as an evaluation metric. However, classification 068

accuracy alone may not adequately assess whether 069
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LLMs possess the nuanced medical expertise re-070

quired for reasoned responses. The explanation and071

rationale behind the selection of a particular choice072

by an LLM would provide a deeper understanding073

of the model’s capabilities and limitations in gener-074

ating responses to intricate medical questions. This075

comprehensive evaluation, delving into the expla-076

nation and rationale, is especially important in clini-077

cal settings where misleading information can have078

serious consequences. LLMs have the potential079

to produce convincing false medical information,080

known as hallucinations, leading to erroneous deci-081

sions that are challenging to rectify. Thus, under-082

standing the rationale behind the model’s responses083

is essential for mitigating potential harms and en-084

suring the safe deployment of LLMs in clinical085

practice.086

In order to assess the quality of the model ex-087

plainability, the dataset should include a golden088

explanation for the reasoning behind the answer.089

Additionally, since there are often multiple ways to090

express the same rationale in text, an ideal dataset091

would provide a multiple set of explanations for092

a single QA pair. However, current benchmark093

datasets are not focused on providing explanations094

as they often lack explanations entirely or only a095

subset of the dataset comes with an explanation096

(Hendrycks et al., 2020; Jin et al., 2021; Pal et al.,097

2022). This limitation highlights the need for im-098

proved datasets that are explicitly designed to in-099

clude comprehensive explanations.100

To address this issue, this paper presents a novel101

QA benchmark, MedExQA, with two sets of expla-102

nations, aiming to provide a more comprehensive103

evaluation of LLMs in the medical domain. The104

benchmark consists of five datasets that cover novel105

specialties within medical domains: biomedical106

engineering, clinical l laboratory science, clinical107

psychology, occupational therapy, and speech lan-108

guage pathology. In this work, the datasets were109

used to benchmark the performance of an extensive110

list of LLMs, including those trained with medi-111

cal domain text. With this comprehensive bench-112

mark evaluation, we explored the effects of medical113

domain-specific training. Additionally, to diversify114

the pool of open-source medical LLMs which are115

currently almost all based on the Llama2 model,116

we introduce our own trained model, MedPhi-2,117

a Phi-2 model trained with medical domain text.118

Our MedPhi-2 model outperformed medical LLMs119

based on Llama2-70B model in generating expla-120

nations for the rationale behind the answer.121

The contributions of this paper are as follows: 122

1. MedExQA novel datasets with explana- 123

tions. We constructed a benchmark with 5 124

distinct specialties within the medical domain. 125

The datasets include two explanations for each 126

question and answer pairs. 127

2. Comprehensive Benchmark. We evaluated 128

an extensive list of models: 18 baseline open- 129

source models with various sizes (from 2.7B 130

to 70B), 3 OpenAI GPT models, as well as 131

our model (detailed below). In terms of eval- 132

uation approach, classification accuracy, gen- 133

erated explanation performance, and human 134

evaluations are considered. To highlight, this 135

is the first benchmark using multiple expla- 136

nations, and the results demonstrate that our 137

benchmark dataset can better evaluate lan- 138

guage models’ understanding of medical do- 139

main knowledge. 140

3. MedPhi-2 model. We trained a small 141

language model (SLM) based on Phi-2 142

model, with medical pretraining corpus and 143

instruction-tuning datasets. The model outper- 144

formed medical LLMs based on Llama2 70B 145

in generating explanations. 146

4. Open source. We will release the datasets, 147

model weights, and codes to facilitate the re- 148

search in medical large language modeling. 149

2 Related Works 150

2.1 MMLU 151

MMLU (Massive Multitask Language Understand- 152

ing) (Hendrycks et al., 2020) is a benchmark de- 153

signed to measure the model’s ability in knowledge- 154

intensive QA across 57 subjects. These subjects 155

cover various levels of education: high school, 156

college, and professional level. Questions in the 157

dataset are structured as four-way MCQs, offering 158

a standardized format for evaluation. Within the 159

extensive list of subjects, there are nine healthcare- 160

related subjects which are college medicine, pro- 161

fessional medicine, clinical knowledge, anatomy, 162

high school biology, college biology, medical ge- 163

netics, nutrition, and virology. Collectively, these 164

nine subjects comprise a total of 1,871 questions in 165

the test set. However, it’s worth noting that while 166

MMLU provides a comprehensive set of questions, 167

it lacks explanations for the answers, thereby limit- 168

ing the dataset’s evaluation to mere multiple-choice 169

classification accuracy. 170
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2.2 MedQA171

MedQA (Jin et al., 2021) is an open-ended MCQ172

dataset made from professional medical doctor li-173

cense exams. The dataset is available in three ver-174

sions, one of which is an English version sourced175

from the United States Medical License Exams176

(USMLE). While MMLU’s professional medicine177

subject also includes questions from USMLE prac-178

tice examinations, MedQA’s English version sets179

itself apart by incorporating questions drawn from180

both real exams and mock tests for USMLE. 1,273181

USMLE-style questions are provided as the test182

dataset to benchmark the model’s ability to answer183

medical questions at the professional level. Each184

question is accompanied by four or five answer185

choices and corresponding relevant document col-186

lections, intended to help models in generating ac-187

curate responses. As a result, similar to MMLU,188

MedQA does not include explanations for assess-189

ing the ability to generate rationale behind the an-190

swer.191

2.3 MedMCQA192

MedMCQA (Pal et al., 2022) is a benchmark with193

questions sourced from postgraduate-level Indian194

medical school entrance exams (AIIMS and NEET195

PG). Covering a breadth of medical specialties,196

the dataset has questions about 2,400 healthcare197

topics and 21 subjects within the medical domain.198

4,183 MCQ, each offering four answer choices, are199

provided for evaluation. Although MedMCQA is200

known to have explanations, it is noteworthy that201

nearly half of the dataset lacks explanations, and in-202

stances of duplicate explanations are also observed.203

In fact, in their paper, accuracy is only reported as204

the evaluation metric, and explanation is not used in205

the evaluation process entirely. Therefore, MedM-206

CQA is not primarily designed for the assessment207

of generating explanations.208

3 MedExQA Datasets209

We introduce MedExQA, a novel QA benchmark210

designed to tackle the limitations of existing bench-211

marks by incorporating two sets of explanations.212

This approach aims to offer a more thorough evalu-213

ation of performance in five novel specialties in the214

medical domain: Biomedical Engineering, Clinical215

Laboratory Science, Clinical Psychology, Occupa-216

tional Therapy, and Speech Language Pathology.217

Specialty Questions
Biomedical Engineering 148
Clinical Laboratory Science 377
Clinical Psychology 111
Occupational Therapy 194
Speech Language Pathology 135
Total 965

Table 1: Number of questions for each specialty in
MedExQA.

3.1 Datasets Preparation 218

The raw data was manually collected from diverse 219

freely accessible online sources, including mock 220

tests and online exams tailored to each medical pro- 221

fessional specialty. The pass mark for the collected 222

mock tests and online exams was 60 percent. 223

To ensure data integrity, rigorous preprocess- 224

ing was conducted, including the removal of du- 225

plicate questions and explanations. Additionally, 226

similar questions were identified and eliminated 227

using BERT cosine similarity analysis. Questions 228

containing keywords specific to laws or regulations 229

were filtered out using a manually curated list of 230

words. Following fair use regulations1, answer 231

options were systematically shuffled to maintain 232

fairness and uphold the integrity of the dataset. Fur- 233

thermore, to enhance the quality and coherence of 234

the datasets, two sets of explanations as well as the 235

questions underwent thorough human validation. 236

This validation process aimed to ensure that the 237

explanations exhibited distinct writing styles and 238

provided comprehensible reasoning for the correct 239

answer selection. 240

The resulting datasets have a total of 965 ques- 241

tions. Table 1 provides a detailed breakdown of 242

the number of questions for each specialty. These 243

datasets were split into a few-shot development set 244

and a test set. Specifically, the few-shot develop- 245

ment set has 5 questions per specialty, while the 246

test set consists of 940 questions in total. It is note- 247

worthy that each subject contains a minimum of 248

100 test examples, a length surpassing that of most 249

exams tailored for human assessment. 250

An example of the dataset can be found in the 251

appendix Figure 14. Word clouds can be found in 252

the appendix Figure 8 for the diversity of the most 253

frequent words across specialties. 254

1https://www.copyright.gov/fair-use/more-info.html
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Figure 2: 3D tSNE plot for MedExQA, MedQa,
MedMCQA, and MMLU (Medicine Related 9 subjects)
datasets.

3.2 Comparison of benchmark datasets in255

vector space with tSNE256

In this analysis, MedQA specialty topics were visu-257

alized by their questions in the same vector space258

using t-distributed Stochastic Neighbour Embed-259

ding (tSNE). Each question is represented as a point260

in the vector space (see Table 1) and a vector rep-261

resentation was then obtained for each question262

by using the sklearn package tSNE. We used the263

’all-mpnet-base-v2’ sentence transformer model to264

retrieve vectors from questions and used 2 tSNE265

components. Figure 1 illustrates distinct clusters266

for each specialty, clearly highlighting the diversity267

in our dataset. Clinical Psychology demonstrates268

the strongest clustering away from the center. Oc-269

cupational Theraphy, however, shows the greatest270

overlap of questions spanning across the center.271

We also compare MedExQA with existing bench-272

mark datasets by visualizing their questions in the273

same vector space. 965 questions were randomly274

sampled from each dataset. First, there is a clus-275

ter towards the top region mainly composed of276

questions from MedExQA, which clearly demon-277

strates its novelty compared to existing medical278

QA datasets. In addition, MedExQA questions279

span over a wide space from top to bottom in the280

center which reflects the diversity of our datasets.281

It is notable that MedMCQA also shows a wide282

topic coverage (the middle, disconnected horizon-283

tal space). Clearly, MedExQA and MedMCQA284

complement each other in terms of the distribution285

(i.e., semantics/topics of their questions). MedQA286

questions, on the other hand, overlap greatly with287

those of MedMCQA on the left, indicating their288

similarities. MMLU occupies a unique and rather289

condensed space at the bottom, indicating many of290

its questions have distinct and focused QA topics.291

Figure 3: First three words combination of explanations.
Top: Explanation 1. Bottom: Explanation 2.

3.3 First Three Words Frequency 292

In Figure 3, we present a detailed visualization of 293

the lexical distribution within two distinct explana- 294

tions from MedExQA datasets. For each pie chart, 295

we combined the explanations from all five special- 296

ties. The pie chart encapsulates the hierarchical 297

structure of the explanations, segmented into three 298

concentric circles that correspond to the first, sec- 299

ond, and third words of explanation, respectively. 300

The top pie chart represents the word combination 301

from explanation version 1, and the bottom pie 302

chart represents the explanation version 2. 303

Upon examination, we note a convergence in 304

linguistic choices, evidenced by recurring phrases 305

such as "In the context" and "The correct answer." 306

These phrases serve as linguistic anchors, provid- 307

ing a structured starting point for explanations. De- 308

spite this lexical overlap, the majority of the word 309

choices exhibit significant variability. Some exam- 310

ples of this variability are "A pH meter" marked 311

as orange and "When a patient" marked as purple 312

on the top pie chart. By employing two versions 313

of explanations that are semantically aligned yet 314

lexically distinct, we aim to conduct a more holistic 315

assessment of the model’s generative outputs. 316
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4 Methods317

For all the experiments in this paper, both training318

and evaluation, we used 8 A6000 GPUs.319

4.1 Baseline Models320

We explored 18 baseline models with different sizes321

from 2.7B to 70B. Table 2 provides a comprehen-322

sive overview of the baseline models used in this323

paper, while more detailed descriptions of each324

model are available in the appendix. In cases where325

multiple sizes of a model are used, we distinguish326

each version by appending the model size to the327

model name. For example, the Llama2 models with328

sizes 7, 13, and 70B are denoted as Llama2-7B,329

Llama2-13B, and Llama2-70B, respectively. On330

the other hand, when a model has only one size, we331

refer to it solely by its name. For instance, Clini-332

calCamel denotes the ClinicalCamel 70B model.333

Llama2 Variant Models Model Size
Llama2 (Touvron et al., 2023) 7B, 13B, 70B
ClinicalCamel (Toma et al., 2023) 70B
Asclepius (Kweon et al., 2023) 7B, 13B
Med42 (M42) 70B
AlpaCare (Zhang et al., 2023) 7B, 13B
Meditron (Chen et al., 2023) 7B, 70B
Medinote (Bonnet and Boulenger) 7B, 13B
Other foundational models Model Size
Mistral (Jiang et al., 2023) 7B
Yi (01.AI) 6B
Phi-2 (Microsoft) 2.7B
SOLAR (Kim et al., 2023) 10.7B
InternLm2 (Shanghai AI Lab) 7B

Table 2: Baseline Models. The models are sorted in the
order of release dates.

4.2 Training MedPhi-2334

As far as we know, all the publicly available open-335

source medical LLMs are based on Llama foun-336

dational models, we further extended our work337

to test the effect of medical domain training on338

a different foundational model. Phi-2 model was339

further trained using the medical datasets that are340

publicly available. We pretrained Phi-2 with a341

110M medical-related corpus. We further finetuned342

the continued pretrained model with 239K instruc-343

tions. We refer to the resulting model as MedPhi-2344

throughout our paper. Table 3 summarizes the de-345

tailed composition of our training dataset for con-346

tinued pretraining and supervised fine-tuning. We347

used LLaMaFactory2 and used Deep3 for efficient 348

training. For both pretraining and finetuning, We 349

trained the model with a batch size of 16 and a 350

learning rate of 1e-5 with 3 epochs, which took 36 351

hours in total. 352

Pretrain Tokens
Meditron Medical Guidelines3 48.3M
SNOMED CT descriptions 28.3M
Biomedical Article Abstracts 13.6M
Wikipedia Medical Terms 13.3M
PMC Patients Notes4 6.7M
Finetuning Instructions
Asclepius Instruction5 158,114
AlpaCare Instruction6 52,002
NHS QA and Medical Task7 29,354

Table 3: MedPhi-2 training data. The number of tokens
for pretraining data and the number of instructions for
finetuning data are listed.

4.3 Evaluation 353

We evaluated all models with test datasets except 354

for human evaluation, which was performed on 355

the development datasets. For all the evaluations, 356

we used zero-shot, a batch size of 1, temperature 357

of 0. To benchmark the performance of closed 358

source models we further extended to include 359

OpenAI’s GPT models. We used GPT3.5_1106, 360

GPT4.0_1106, and GPT4.0_0125 APIs8. 361

4.3.1 Classification Accuracy - Logits 362

Classification accuracy of MCQ for generative 363

models relies on classifying the next token using 364

logits. In other words, the token with the highest 365

logit value is selected as the model’s predicted an- 366

swer. This predicted answer is then compared to 367

the expected answer to determine the classification 368

accuracy. However, this approach cannot assess the 369

model’s understanding of the rationale behind the 370

answer. We exclude GPT3.5_1106, GPT4.0_1106, 371

and GPT4.0_0125 for this evaluation, as we are not 372

able to get the logit value for the next token. 373

2https://github.com/hiyouga/LLaMA-Factory
3https://huggingface.co/datasets/epfl-llm/guidelines
4https://huggingface.co/datasets/zhengyun21/pmc-

patients
5https://huggingface.co/datasets/starmpcc/asclepius-

synthetic-clinical-notes
6https://huggingface.co/datasets/casey-

martin/medinstruct
7https://github.com/CogStack/OpenGPT
8https://platform.openai.com/docs/models
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4.4 Classification Accuracy - Chat374

We utilize string-matching to assess the model’s375

proficiency in generating accurate textual re-376

sponses. This approach involves searching for the377

specific phrase corresponding to the answer choice378

or the choice letter within the generated response,379

enabling a more realistic evaluation of the model’s380

performance. We implement the string matching381

using regular expressions and thefuzz package.382

4.4.1 Explanation Generation383

The quality of generated explanations is further384

assessed using a combination of general lexical385

metrics. BLEU (Papineni et al., 2002). measures386

the geometric mean of precision scores of the gen-387

erated explanations compared to reference expla-388

nations based on n-gram matches. ROUGE (Lin,389

2004). assesses the similarity between generated390

and reference explanations, with ROUGE-L, pro-391

viding a score that combines precision and recall392

based on the longest common subsequence. ME-393

TEOR (Banerjee and Lavie, 2005). considers394

the semantic similarity and lexical variations with395

WordNet. BERTScore (Zhang et al., 2019). uses396

contextual embeddings, scibert embedding (Belt-397

agy et al., 2019) for our work, to capture nuances in398

the semantics of the explanations. All the metrics399

are calculated using evaluate package.400

We propose an enhanced methodology for eval-401

uating models’ understanding of medical domain402

knowledge by incorporating classification accuracy403

based on string matches into calculating these met-404

rics. We assign a score of 0 to responses with405

incorrect answers based on string-matching classi-406

fication results.407

4.5 Evaluation - Human Evaluation408

For human evaluation, three human annotators par-409

ticipated in assessing the quality of generated expla-410

nations. The evaluation process involved assigning411

a score for each explanation-answer pair based on412

the following rules:413

1. Score 0 the answer was incorrect, no explana-414

tion was provided, and/or the explanation is415

fully irrelevant.416

2. Score 0.5 the answer was correct, but the ex-417

planation or rationale was incorrect. Also, an418

incomplete explanation that ended with an in-419

complete sentence.420

3. Score 1.0 when both the answer and explana-421

tion were correct.422

Although this human evaluation was performed 423

on a small scale (development dataset: 5 samples 424

for each specialty), this systematic evaluation pro- 425

cess ensured a comprehensive assessment of the 426

models’ performance in providing accurate and co- 427

herent explanations. 428

5 Results and Discussion 429

5.1 Classification Accuracy - Logits 430

Figure 4: Multiple-choice accuracy using logits, which
scales from 0 to 100. The models in the legend are
ordered by macro average from lowest to highest. Only
models passed (60 or above) in at least one of the spe-
cialties are included.

Figure 4 shows the conventional multiple-choice 431

accuracy using logits across different specialties 432

within MedExQA for the models that passed, with 433

an accuracy above 60%, in at least one of the spe- 434

cialties. The models that did not pass this mark 435

are primarily medical LLMs based on Llama-7B 436

and 13B models. Smaller language models demon- 437

strated relatively lower accuracy across specialties 438

compared to larger models, as a result of their re- 439

duced capacity to capture complexity and nuances 440

in language. 441

Med42 showed the best overall performance. It 442

showed outstanding performance in Biomedical En- 443

gineering and Clinical Laboratory Science (83.22% 444

and 84.91% respectively). It performed on par with 445

Meditron-70B in Clinical Psychology (84.91%). In 446

Occupational Therapy, Llama2-70B showed the 447

highest accuracy (80.42%). All models underper- 448

formed in Speech Language Pathology, with SO- 449

LAR performing the best (33.08%). See Appendix 450

Table 4 for detailed results of all models. 451

The effect of continued training is observed only 452

in some models. MedPhi-2 demonstrated better 453
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performance than Phi-2, and this improvement was454

also found in AlpaCare-13B compared to Llama2-455

13B and Med42 compared to Llama2-70B. How-456

ever, ClinicalCamel and Meditron-70B performed457

worse than Llama2-70B. This drop in performance458

could be due to task-specific challenges as some459

models may not effectively handle varied levels of460

specificity in MedExQA.461

Figure 5: Multiple-choice accuracy using chat. The
Figure style is the same as Figure 4.

5.2 Classification Accuracy - Chat462

Accuracy based on the string match of the gen-463

erated response shows slight changes in the per-464

formance of models (Figure 5). Most models465

performed worse in this classification accuracy466

than the conventional classification accuracy us-467

ing logits. Phi-2, Llama2-13B, Yi, InternLM2, and468

Meditron-70B did not pass the pass mark indicat-469

ing these models are not robust. Meditron-70B470

showed the biggest performance drop by 29.28%.471

Llama2-70B also showed a significant performance472

drop in this testing by 28.54%, although it passed473

in Biomedical Engineering. Of the 70B models we474

tested, ClinicalCamel was the most robust model475

(7.67% decrease), and it scored higher than Med42476

by 0.71%.477

Our model, MedPhi-2 was the most robust model478

among the passed ones (0.2% decrease), and it out-479

performed AlpaCare-13B, Meditron-70B, Llama2-480

70B. This result highlights the importance of the481

supervised finetuning with in-domain instructions482

of high quality as more robust models, such as483

AlpaCare, ClinicalCamel, and MedPhi-2, were484

instruction-tuned with medical domain data, while485

Meditron-70B was just further pretrained.486

Closed-source models such as OpenAI’s487

GPT4_0125, GPT4_1106, and GPT3.5_1106 out-488

performed all the open-source models. Even with 489

the addition of high-performing closed-source mod- 490

els, there is still a universal failure in performance 491

for Speech Language Pathology. See Appendix 492

Table 5 for detailed results of all models. 493

5.3 Combining Classification Accuracy with 494

Generated Explanation Performance 495

Figure 6 shows the relationship between model 496

size and accuracy achieved in both MCQ (using 497

logits) and generation performance. Generally, 498

larger models tend to exhibit better performance 499

as 70B models perform better than most of the 500

other smaller models. However, interestingly, all 501

medical LLMs with 13B (AlpaCare, Asclepius, and 502

Meditron) exhibit worse performance in both MCQ 503

accuracy and generation performance compared to 504

their 7B counterparts. In fact, Medinote-13B is 505

the worst-performing model. Also, 70B models do 506

not always perform better than smaller models as 507

Meditron-70B and Llama2-70B performed worse 508

than many smaller models including AlpaCare and 509

our model in the generation of reasonable explana- 510

tions. 511

This result confirms the findings of Section 5.2 512

which highlighted the importance of supervised 513

finetuning with in-domain instructions. In fact 514

our model, MedPhi-2 has performed exceptionally 515

well in generating reasonable explanations and out- 516

performed all medical LLMs including 70B mod- 517

els. 518

5.4 Evaluation - Human Evaluation 519

Human evaluation of generated responses reveals 520

that MedPhi-2 has the best quality among the open- 521

source models (Figure 7). Our model was the 522

only open-source model that passed (a score of 523

3 or above) in all specialties in MedExQA. In fact, 524

MedPhi-2 on par with GPT3.5_1106 in Biomedi- 525

cal Engineering and Clinical Laboratory Science, 526

and with GPT4_1106 in Occupational Therapy. 527

Figure 14 provides an example of generated re- 528

sponses of the models, in the context of Speech- 529

Language Pathology questions. MedPhi-2 and 530

GPT3.5_1106 generated the most coherent and 531

accurate responses. However, other models gen- 532

erated irrelevant sentences or failed to provide ex- 533

planations. Medinote-13B generated a case study 534

example instead of answering the question and pro- 535

viding an explanation and Asclepius-13B halluci- 536

nated and provided an option for the answer that 537

was not present and generated further incorrect ex- 538
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Figure 6: Scatter plot of model performance. The Y-axis is the macro average of accuracy based on logits (Table 4).
The X-axis is the average score of generated explanations (Table 6). The dot size is proportional to the model size.

Figure 7: Human evaluation on the generated explana-
tions, which scales from 0 to 5. The Figure style is the
same as Figure 4.

planations. Appendix Table 7 shows the detailed539

results for all the models.540

The effect of adding additional explanation was541

confirmed by analyzing the Pearson correlation542

between human evaluation and generation perfor-543

mance. When we used just one set of explanations544

the correlation was 0.9347, and this correlation in-545

creased to 0.9385 when we used two versions of546

explanations together. This indicates generation547

evaluation with multiple explanations aligns better548

with human evaluation, which is usually treated as549

the gold standard.550

6 Conclusion551

Our MedExQA benchmark demonstrates the sig-552

nificant potential of LLMs in enhancing medical553

QA with explanations. The findings reveal that 554

the generation of coherent and accurate explana- 555

tions remains a challenging frontier for the cur- 556

rent medical LLMs. We also find that the ‘Speech 557

Language Pathology’ dataset posed challenges for 558

all language models, including GPT4. Through 559

the development and evaluation of our MedPhi-2 560

model, we underscore the importance of targeted 561

pretraining and fine-tuning strategies in improving 562

explanation quality. Our benchmark and model 563

will set the foundation for future advancements in 564

medical research by facilitating the development 565

and evaluation of medical LLMs. 566

Limitation 567

While MedExQA provides a robust benchmark for 568

evaluating LLMs in the context of the medical do- 569

main, the current version only tests the model’s 570

ability in QA task, limiting its applicability in real- 571

world clinical scenarios to a few applications. This 572

limitation results from the manual collection pro- 573

cess. Future work will extend our benchmark to 574

include tasks such as summarizing clinical notes 575

with accompanying explanations. 576

Though we performed the human evaluation of 577

generated explanations of different LLMs through 578

three authors, we performed this at a small scale, at 579

5 samples per specialty. Future work will seek to 580

increase both the volume of samples and the num- 581

ber of annotators to provide a more robust method 582

of assessing models’ performance. 583
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Broader Impacts and Ethics Statement584

We will release MedExQa under a Creative Com-585

mons Attribution-Non Commercial-ShareAlike 4.0586

International License. MedPhi-2 will follow the587

MIT license as it is based on Phi-2. License and588

copyright information and Terms of Use will be589

shared when the dataset and model are released.590

The dataset may be used for non-commercial pur-591

poses and any models trained using the dataset592

should be used only for research purposes.593

Our work does not raise any major ethical con-594

cerns. All LLMs tested, including Phi-2, were used595

for research purposes only. While MedPhi-2 out-596

performed all medical variants of Llama2 models597

in generating accurate medical answers and expla-598

nations, MedPhi-2 is not rigorously tested for use in599

real-world clinical applications or scenarios. Thus,600

MedPhi-2 is not suitable for use in the clinical de-601

cision making process. This restriction of usage602

in clinical care is to mitigate any potential risks or603

harms such as wrong decisions from hallucinations604

which can lead to unwanted situations.605
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Appendix713

.1 Example of MedExQA714

Our dataset has the format of multiple-choice ques-715

tion and 2 sets of explanations. Figure 14 shows an716

example of Speech Language Pathology specialty717

dataset.718

.2 WordCloud719

Word clouds generated from each dataset high-720

light the most frequent terms or phrases. Fig-721

ure 8 demonstrates the different word clouds for722

the 5 specialties present in the dataset. These word723

clouds were generated from the analysis of both the724

questions and answers of the datasets. It is clear725

to see that in MedExQA, words adjacent to the rel-726

evant specialty are the most common, with terms727

such as ‘muscle’ highly prevalent for Occupational728

Therapy orientated questions and ‘cell’ for Clinical729

Laboratory Science related questions. Compared730

to the word clouds of other datasets, seen in the731

Appendix. MedExQA shows a greater breadth of732

topic coverage.733

Figure 8: WordClouds for each specialties in MedExQA

Figure 9: WordCloud for MedExQA Dataset

Figure 10: WordCloud for MMLU Dataset

Figure 11: WordCloud for MedMCQA Dataset

Figure 12: WordCloud for MedQA Dataset

Figure 13: Word Count Distribution Plots for Explana-
tions. Top: Explanation 1. Bottom: Explanation 2.
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Question Which of the following is a correct description of a language learning disability? 

A It shows difficulties in reading and writing. 

B It does not show problems with higher-level language abilities. 

C It occurs due to visual or motor disabilities. 

D It often accompanies autism spectrum disorder. 
 

Correct Answer: A. It shows difficulties in reading and writing. 

Explanation 1 Language learning disabilities, such as dyslexia, are characterized by difficulties with 

reading and writing stemming from issues with processing language. These challenges are 

not directly caused by visual or motor impairments. Although language learning 

disabilities may occur alongside other disorders like autism spectrum disorder, there is no 

one-to-one correlation between the two; individuals with language learning disabilities 

may not have autism, and vice versa. … 

Explanation 2 Language learning disabilities, such as dyslexia, typically involve challenges with reading 

and writing. These difficulties are due to problems with language processing, not 

necessarily related to visual or motor disabilities. While language learning disabilities can 

co-occur with other conditions, including autism spectrum disorder, not all individuals 

with language learning disabilities have autism, and not all individuals with autism have 

language learning disabilities. … 

Medinote-13B 

Score: 0 
A 10-year-old boy with a language-learning disability was assessed...  

Asclepius-13B 

Score: 0 
E. It is a type of specific learning disorder (SLD). … 

AlpaCare-13B 

Score: 0 
The answer is A) It shows difficulty in reading & writing. 

Med42 

Score: 0 
So, the correct answer is: A. It showing difficulties in readings and writings. 

Meditron-70B 

Score: 0 
The following is an open-ended question. You should answer it in your own words… 

ClinicalCamel 

Score: 0.5 
\end{blockquote} think the answer is A. 
… It is not a problem with higher level language abilites. Visual or motor difficulties can 

cause learning difficulties, but they are not the cause of language learning difficulties. 

Language learning difficulties often accompany autism, but this is not the correct 

description. Therefore, the correct answer is option A. 

GPT3.5_1106 

Score: 1 
A. It shows difficulties in reading and writing. 
Explanation: A language learning disability typically involves difficulties in reading and 

writing, such as dyslexia. … While other options may also be associated with learning 

disabilities, the primary characteristic of a language learning disability is the difficulty in 

reading and writing. 

Phi-2 

Score: 0 
Answer: D. It is often accompanied by autism spectrum disorders. 
Explanation: … 

MedPhi-2 

Score: 1 
The answer is A.... Additionally, language learning disorders are not typically caused by 

visual or hearing impairments, but rather by difficulties with processing and using 

linguistic information. Finally, while language learning deficits can be associated with 

autism spectrum disorders, not all individuals with autism have language learning 

problems, ... 
 

Figure 14: Example of data in Speech Language Pathology and Qualitative Analysis Example. Two sets of
explanations, Explanation 1 and Explanation 2, are provided. The score given by humans is provided beneath the
model name. The response with no explanations has a grey font color. Red shows the irrelevant or wrong sentences
or phrases. Yellow demonstrates incoherent phrases or errors. Green highlights coherent and medically correct
sentences.

12



.3 Frequency Plots734

We use frequency plots to demonstrate the word735

count distribution for the two different types of736

explanations in each dataset. For MedExQA, as737

shown in Figure 13, the average length of the words738

in the first set of explanations is 82.50 and in the739

second set of explanations, is 83.17.740

.4 Baseline Models741

.4.1 Llama2 variants742

Llama2 We use Llama2 HuggingFace weights re-743

leased on the Hugging Face model repository9. 7B,744

13B, and 70B models without chat optimization745

are used in this work to assess the effect of con-746

tinued training of the following Llama2 medical747

models with medical domain text. These models748

are trained on 2 trillion pretraining tokens in the749

general domain and have a context length of 4,096.750

ClinicalCamel We use ClinicalCamel 70B751

weights from the Hugging Face model reposi-752

tory. It is a finetuned Llama2-70B model with753

instruction-tuning datasets made from medical ar-754

ticles and MedQA. It uses QLoRA for finetuning.755

The instruction tuning datasets are not released.756

Asclepius We use Asclepius Llama2 weights re-757

leased on the Hugging Face model repository. We758

use both 7B and 13B models which are further759

finetuned Llama2 models using instruction tuning760

dataset made from synthetic clinical notes. The761

synthetic clinical notes are generated from PMC-762

patients using GPT3.5 and turned into instruction-763

tuning datasets using GPT3.5. The synthetic clini-764

cal notes are used due to the privacy concerns of the765

real clinical notes. This training dataset is released.766

Med42 We use Med42 70B weights from the767

Hugging Face model repository. The details of768

the training dataset and training method are not769

available. The only detail available is that it was770

continued trained Llama2-70B model with medical771

domain text.772

AlpaCare We use AlpaCare Llama2 weights773

from the Hugging Face model repository. Llama2774

7B and 13B models were further finetuned on a775

medical self-instruct dataset made from the clinical776

seed set. The dataset is released.777

Meditron We use Meditron weights released on778

the Hugging Face model repository. Both 7B and779

70B models are used in this work. Meditron models780

are continued pretrained with clinical guidelines,781

9https://huggingface.co/meta-llama

medical articles abstracts, and full text of the arti- 782

cles. A subset of clinical guidelines are released. 783

Medinote We use Medinote weights released on 784

the Hugging Face model repository. Both 7B and 785

13B models are used in this work. These models 786

are further finetuned from the Meditron models to 787

generate clinical notes from doctor and patient dia- 788

logues. Their training dataset is a synthetic dialog 789

generated with ChatGPT from PMC-patients data. 790

.4.2 Other baseline models 791

We extended our baseline models to other general 792

domain baseline models with various sizes. 793

Mistral We use Mistral-7B-v0.1 weight released 794

on the Hugging Face model repository. The details 795

of the training dataset remain unknown. However, 796

this model is known to use Grouped Query Atten- 797

tion, which Llama2-70B also uses, and Sliding 798

Window Attention. The model size is known to be 799

7.24B parameters, and this is slightly larger than 800

Llama2-7B, 6.74B. 801

Yi We use Yi-6B weight released on the Hugging 802

Face model repository. The model is trained on 3 803

trillion pretraining tokens in the general domain 804

and has a context length of 4,096. The model size 805

is known to be 6.06B parameters, which is smaller 806

than other 7B models. 807

Phi-2 We use Phi-2 model weight released on 808

the Hugging Face model repository. It has 2.78B 809

parameters and is trained on the augmented text- 810

book corpus, 1.4 trillion tokens. This is the smallest 811

model in our paper. 812

SOLAR We use SOLAR-10.7B-v1.0 model 813

weight released on the HuggingFace model reposi- 814

tory. The model size is 10.7 billion parameters. It 815

uses depth-wise scaling called Depth up-scaling 816

and continued pretraining of the scaled model. 817

However, the pretraining dataset details are un- 818

known. 819

InternLM2 We use InternLM2-7b model weight 820

from the HuggingFace model repository. The de- 821

tails of the training method and data are unknown. 822

.5 Result Tables 823
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Model Size (B) BE CP SLP OT CLS MAvg MiAvg
Medinote 7 33.57 34.91 23.08 38.1 44.62 34.85 37.55
Meditron 7 37.76 46.23 20.77 42.86 43.28 38.18 39.57
Llama2 7 41.96 47.17 22.31 40.21 47.58 39.85 41.7

Asclepius 7 44.76 47.17 27.69 42.86 45.16 41.53 42.45
Medinote 13 46.15 52.83 28.46 49.21 52.42 45.81 47.55
AlpaCare 7 53.15 53.77 26.92 59.79 54.57 49.64 51.49
Asclepius 13 57.34 56.6 25.38 59.79 56.45 51.11 52.98

Phi-2 2.7 61.54 68.87 26.15 64.02 50 54.12 53.4
Llama2 13 63.64 65.09 27.69 60.85 59.41 55.34 56.6

MedPhi-2 2.7 65.73 70.75 23.08 65.08 55.11 55.95 56.06
AlpaCare 13 67.13 69.81 26.92 65.08 61.56 58.1 59.26
Mistral 7 75.52 73.58 32.31 75.66 71.24 65.66 67.66

Meditron 70 78.32 84.91 30.77 69.84 68.55 66.48 66.91
Yi 6 75.52 83.02 30.77 74.07 73.39 67.35 69.04

SOLAR 10.7 74.83 81.13 33.08 73.02 76.08 67.63 69.8
InternLM2 7 77.62 82.08 29.23 74.6 75 67.71 69.79

ClinicalCamel 70 78.32 83.96 28.46 79.89 75.81 69.29 71.38
Llama2 70 78.32 83.96 31.54 80.42 72.85 69.42 70.7
Med42 70 83.22 84.91 31.54 79.37 80.91 71.99 74.57

Table 4: MCQ accuracy using logits. "BE": Biomedical Engineering; "CP": Clinical Psychology; "CLP": Speech
Language Pathology; "OT": Occupational Therapy; "CLS": Clinical Laboratory Science; "MAvg": Macro Average;
"MiAvg": Micro Average.

Model Size (B) BE CP SLP OT CLS MAvg MiAvg
Medinote 13 27.27 22.64 23.85 21.16 32.26 25.44 27.02

Phi-2 2.7 25.87 30.19 28.46 20.63 25 26.03 25.32
Asclepius 13 36.36 23.58 21.54 25.4 33.6 28.1 29.57
Medinote 7 28.67 26.42 29.23 29.63 33.06 29.4 30.43
Asclepius 7 33.57 30.19 26.15 27.51 31.72 29.83 30.21
Llama2 7 32.87 37.74 23.85 27.51 30.11 30.41 30

Meditron 7 30.07 30.19 23.08 32.28 36.56 30.43 32.13
Llama2 13 37.06 22.31 43.92 32.08 41.94 35.46 37.77

Meditron 70 41.96 41.51 25.38 32.8 44.35 37.2 38.72
InternLM2 7 52.45 43.4 23.85 38.62 41.4 39.94 40.32

Llama2 70 67.83 36.79 20.77 35.98 43.01 40.88 41.6
Yi 6 55.24 54.72 31.54 53.44 56.18 50.22 51.91

AlpaCare 7 59.44 55.66 33.08 56.08 54.03 51.66 52.55
AlpaCare 13 62.24 59.43 25.38 60.32 57.26 52.93 54.47
MedPhi-2 2.7 60.14 70.75 23.08 64.55 60.22 55.75 57.13

Mistral 7 64.34 63.21 26.15 69.31 71.24 58.85 62.66
Med42 70 69.23 74.53 26.92 65.61 68.28 60.91 62.87

ClinicalCamel 70 72.03 69.81 23.08 73.54 69.62 61.62 64.36
SOLAR 10.7 74.83 78.3 25.38 71.96 72.85 64.66 67.02

GPT3.5_1106 - 72.03 82.08 29.23 70.37 71.51 65.04 66.7
GPT4_1106 - 86.71 86.79 31.54 88.36 91.67 77.01 81.38
GPT4_0125 - 90.21 91.51 30.77 89.95 91.67 78.82 82.66

Table 5: MCQ accuracy using chat generation. "BE": Biomedical Engineering; "CP": Clinical Psychology; "CLP":
Speech Language Pathology; "OT": Occupational Therapy; "CLS": Clinical Laboratory Science; "MAvg": Macro
Average; "MiAvg": Micro Average.
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Model Size (B) ROUGE-L METEOR BLEU BERTScore AVG
Medinote 13 1.88 2.79 0.46 12.96 4.52
Llama2 7 4.92 4.03 0.16 17.52 6.66

Asclepius 13 6.12 6.12 0.32 17.70 7.56
Asclepius 7 6.07 5.61 0.22 18.48 7.60

Phi-2 2.7 5.77 7.51 1.76 16.41 7.86
Medinote 7 4.78 7.82 2.14 16.81 7.89
Meditron 7 5.15 7.96 2.56 17.43 8.27
Llama2 13 6.65 6.89 1.37 20.80 8.93
Llama2 70 6.41 6.71 1.40 21.84 9.09

Meditron 70 7.42 8.32 1.63 21.59 9.74
InternLM2 7 10.30 12.20 3.89 26.28 13.17
AlpaCare 13 11.56 11.97 2.77 33.29 14.90

Yi 6 10.97 13.25 4.79 31.62 15.16
Med42 70 11.03 12.88 3.46 35.89 15.82

AlpaCare 7 12.43 14.19 3.64 33.47 15.94
Mistral 7 12.59 17.49 5.28 36.66 18.00

ClinicalCamel 70 13.45 17.38 5.52 38.80 18.79
MedPhi-2 2.7 15.26 17.75 6.13 37.45 19.15
SOLAR 10.7 16.45 20.17 6.72 42.46 21.45

GPT3.5_1106 - 21.71 25.99 14.07 46.59 27.09
GPT4_1106 - 23.08 35.74 14.40 54.50 31.93
GPT4_0125 - 24.83 35.21 16.71 54.40 32.79

Table 6: Explanation Generation performance (average across the 5 subjects for each evaluation metric).
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Model Size (B) BE CP SLP OT CLS AVG
Llama2 13 0 0 0 0 0 0

Meditron 70 0 0 0.5 0.5 0.5 0.3
Asclepius 13 0 1.5 0 0 1 0.5
Medinote 13 0.5 0.5 0.5 0 1 0.5
Meditron 7 0.5 0 1 1 0 0.5
Llama2 7 0 1 0 1.5 1 0.7
Llama2 70 0.5 0 1 0.5 2 0.8

Asclepius 7 1 1.5 0 0 2 0.9
Medinote 7 1.5 0.5 1 0 1.5 0.9

InternLM2 7 2 2 1 0 1.5 1.3
Phi-2 2.7 2 2 0 1 2 1.4

Mistral 7 1 1 2 1 3 1.6
AlpaCare 13 1 1.5 1 3 2.5 1.8
AlpaCare 7 1 2 1.5 2 4 2.1

Yi 6 1 2 4 3 3 2.6
SOLAR 10.7 2.5 4 3 2.5 1.5 2.7
Med42 70 4 2.5 1 3 3.5 2.8

ClinicalCamel 70 2.5 3.5 3 2.5 4 3.1
MedPhi-2 2.7 3 3.5 3 3 3 3.1

GPT3.5_1106 - 3 5 4 4 3 3.8
GPT4_1106 - 4 5 5 3 5 4.4
GPT4_0125 - 4 5 5 4 5 4.6

Table 7: Explanation Generation performance (human evaluation). "BE": Biomedical Engineering; "CP": Clinical
Psychology; "CLP": Speech Language Pathology; "OT": Occupational Therapy; "CLS": Clinical Laboratory
Science; "AVG": Average score.
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