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Abstract— Ensuring safe interactions in human-centric en-
vironments requires robots to understand and adhere to
constraints recognized by humans as “common sense” (e.g.,
“moving a cup of water above a laptop is unsafe as the
water may spill” or “rotating a cup of water is unsafe as it
can lead to pouring its content”). Recent advances in com-
puter vision and machine learning have enabled robots to
acquire a semantic understanding of and reason about their
operating environments. While extensive literature on safe
robot decision-making exists, semantic understanding is rarely
integrated into these formulations. In this work, we propose
a semantic safety filter framework to certify robot inputs
with respect to semantically defined constraints (e.g., unsafe
spatial relationships, behaviors, and poses) and geometrically
defined constraints (e.g., environment-collision and self-collision
constraints). In our proposed approach, given perception inputs,
we build a semantic map of the 3D environment and leverage
the contextual reasoning capabilities of large language models
to infer semantically unsafe conditions. These semantically
unsafe conditions are then mapped to safe actions through a
control barrier certification formulation. We demonstrate the
proposed semantic safety filter in teleoperated manipulation
tasks and with learned diffusion policies applied in a real-world
kitchen environment that further showcases its effectiveness in
addressing practical semantic safety constraints. Together, these
experiments highlight our approach’s capability to integrate
semantics into safety certification, enabling safe robot operation
beyond traditional collision avoidance.

I. INTRODUCTION

Safety is a key issue in robotics and has been gaining
increasing attention across different communities [1], [2]. In
safety-critical control, the goal is usually to guarantee set
invariance (i.e., to prevent a system from leaving a certain
safe set) [1]. Based on this definition of safety, various
safety filters have been developed in recent years, which
can be applied to detect unsafe control inputs and modify
them into safe ones in a minimally invasive manner [2], [3].
Existing safety filters such as control barrier function (CBF)
safety filters [4] or predictive safety filters [3] can provide
theoretical safety guarantees in terms of set invariance.
Still, they assume that the safety constraints are given and
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Fig. 1: We propose a semantic safety filter framework that leverages
semantic scene understanding and contextual reasoning capabilities of large
language models to certify robot motions with “common sense” constraints.
For example, if a manipulator is carrying a cup of water, our proposed
semantic safety filter prevents moving the cup above a laptop in the
environment to prevent potential spillage (top). On the contrary, if the
robot is tasked to transport a dry sponge, it is allowed to move over a
laptop (bottom). An overview of the work with experiment demonstration
results can be found on our website https://utiasdsl.github.io/semantic-
manipulation/ and in our short video https://tiny.cc/semantic-manipulation.

explicitly defined in the robot’s state space. As a result, safety
filters in robotics are often restricted to geometrically defined
constraints (e.g., environment-collision constraints).

For robots to operate safely in human-centric environ-
ments, they must not only adhere to such geometrically
defined constraints but also to constraints that reflect “com-
mon sense” (see Figure 1). In this work, we refer to such
constraints as semantic constraints. For an example of such
semantic constraints, consider a manipulator carrying a filled
cup of water over a table. To ensure the robot operates safely,
it must avoid going over electronic devices due to the risk of
spillage. Hence, the semantic constraint should keep the end
effector away from the overhead of entities whose semantic
labels identify them as electronic devices. Additionally, the
robot should avoid rotating the cup too much to prevent
pouring its content and move slowly close to objects sensitive
to water. Such semantic constraints are not necessarily “visi-
ble,” but are critical for real-world applications. Constructing
such semantic constraints requires an accurate representation
of the 3D environment and a comprehensive understanding
of unsafe environment interactions.

The development of large language models (LLMs) [5]
and vision-language models (VLMs) [6] has led to significant
advances in reasoning about 3D environments [7], [8]. Many
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recent works leverage these capabilities for language-based
decision-making (e.g., to modify robot behavior [9] or to in-
fer affordability [10]). However, systematically mapping se-
mantic understanding to constraints remains underexplored.

In this work, we focus on robot manipulation and present a
semantic safety filter that enables robots to reason about and
adhere to semantically defined constraints by tightly coupling
safe control, 3D perception, and LLMs (see Figure 1). Our
contributions are as follows:

1) We formulate a semantic CBF safety filter framework
that exploits the metric-semantic information from a
3D environment map and reasoning capabilities of
LLMs for safe robot manipulation.

2) Based on environment perception and reasoning, we
define three types of semantic constraints: (i) spatial
relationship constraints (e.g., “do not move the candle
below the balloon”), (ii) behavioral constraints (e.g.,
“be slower or more cautious when holding a knife”),
and (iii) pose-based constraints (e.g., “a cup of water
may not be tilted to avoid spillage”).

3) We demonstrate our framework through hardware ex-
periments using teleoperated and learned manipulation
tasks. Our results verify the efficacy of our framework
in satisfying semantic constraints and highlight the
potential of integrating a high-level semantic under-
standing into safe decision-making.

II. RELATED WORK

A. Safe Robot Manipulation

In robot control, safety is often defined as ensuring the sys-
tem does not violate state constraints, which can be achieved
by guaranteeing set invariance [1]. Traditional approaches
achieve safety or collision avoidance through collision-free
trajectory generation and high-accuracy tracking control [11].
More recently, model predictive control (MPC), learning-
based MPC, and geometric control methods have also been
applied to enable collision-free manipulation [12], [1], [13].
Over the past two decades, safety filters, including CBFs [4],
[14], Hamilton-Jacobi-reachability analysis [15] and pre-
dictive control techniques [3], have evolved, providing a
modular approach to address safe control problems [1].
Safety filters can be combined with any controllers and
certify potentially unsafe control inputs in a minimally inva-
sive manner [2]. Existing approaches in safe robot control
are often used for geometrically defined constraints [14],
[13] and often assume the constraints are given ahead of
time. How to translate semantically defined constraints to
compatible analytical forms has rarely been addressed in the
safe control literature.

B. Semantic 3D Representation and Spatial Reasoning

Facilitated by advances in machine learning techniques,
semantic representations of robots’ operating environments
can be efficiently distilled from perception inputs (e.g.,
through object detection and segmentation) [16]. This se-
mantic information has been integrated into 3D mapping

and simultaneous localization and mapping (SLAM) algo-
rithms [17] to create consistent instance-level or object-
level maps [18], [19]. To further facilitate their usage in
downstream tasks, sparse representations such as 3D scene
graphs have been proposed as an abstraction of dense metric-
semantic maps to capture essential relationships among
entities in the environment [20]. Recent developments in
LLMs and VLMs have further enabled open-vocabulary
object detection, which has been applied to instance seg-
mentation [8] and scene graph generation [7], extending 3D
environment representations beyond closed sets of predefined
objects. The spatial reasoning capabilities of VLMs [21],
[22] have been integrated into 3D mapping frameworks,
for example, to identify affordances [10] or relational key-
pose constraints [23] for manipulation or to identify safety-
critical spatial relationships for navigation [24]. However,
the semantic information in state-of-the-art 3D environment
representations has not been fully exploited in downstream
safe control tasks.

C. Language-Conditioned Robot Decision-Making

Recently, due to the emergence of foundation models
such as CLIP [25] and the GPT series [5], there has
been a significant advancement in the field of language-
conditioned decision-making, including language-aided ob-
ject grounding [7], [26], manipulation [27], [28], [29] and
navigation [30], [31]. The abilities of LLMs and VLMs
to understand and output textual information in natural
language are used to perform various functions, including
code writing [30], [32],[29], task planning [33], [34],[35],
verifying robot behavior [36], and preference learning[35].
Hereby, the open-vocabulary capabilities of foundation mod-
els are utilized to enable flexible and adaptive reasoning in
unstructured, real-world scenarios. Building on these foun-
dations, we leverage LLMs to identify semantically unsafe
conditions without being restricted to specific object classes.

III. PROBLEM STATEMENT

In this work, we consider a manipulation setup where
objects are arbitrarily placed in the environment, and a
robot manipulator is tasked to transport an object in the
task space using teleoperation commands or a learned
motion policy (see Figure 2). Generally, the teleoperation
input or motion policy can be unsafe. Our goal is to
design a language-aided safety filter that guarantees safe
operation with respect to both semantically defined con-
straints Csem (i.e., spatial relationship-based, behavior-based,
and pose-based constraints) and geometrically defined con-
straints (i.e., environment-collision constraints Cenv and self-
collision constraints Cself). We assume that the system can
perceive and reason about its environment through a set of
RGB-D images {Icam,f} of the scene and the associated
camera poses {Tcam,f}, where f denotes the frame index.

We note that the term semantic constraint has scenario-
dependent definitions in the literature (e.g., grasp types
and trajectory constraints for robotic hands [37]). We refer
to semantic constraints as the task-space constraints on a



Fig. 2: An overview of our proposed semantic safety filter framework. The perception module segments the visual input and builds a semantic world
representation. The LLM is queried based on the list of semantic labels and the manipulated object. It outputs the semantic context S, which contains a
list of unsafe spatial relationship-based semantic constraints for each object in the scene, a list of behavioral-based semantic constraints, and a pose-based
semantic constraint. The semantic context, together with the point clouds of the objects in the scene, are then used to define safe sets for our proposed
semantic safety filter. Additionally, based on the semantic context, the safety filter’s parameters are adapted, for example, to prevent end effector rotations
or to approach certain objects more carefully. At each time step, a high-level uncertified command from a human operator or a motion policy is mapped
to the joint velocity ucmd through differential inverse kinematics, certified by the proposed semantic safety filter, and then sent to the robot system.

robotic manipulator’s end effector that are related to high-
level semantic concepts (e.g., “not moving a filled cup of
water over electronic devices” and “not rotating a cup of
water to avoid spilling its content”). In contrast to typical
collision avoidance constraints, semantically unsafe states
are not necessarily “visible” (i.e., occupied by objects),
and synthesizing the semantic constraints requires a high-
level understanding of the environment and the manipulated
object. In this work, we leverage the perception inputs, a
model of the robot system, and an LLM to design a safety
filter that guarantees semantic safety while also avoiding self-
collisions and collisions with the environment.

IV. METHODOLOGY

In this section, we present the components of our pro-
posed semantic safety filter framework, which is visualized
in Figure 2. Given a set of RGB-D images and the associated
camera poses, we first generate a semantic map of the 3D
environment (Section IV-A). Then, a set of semantic con-
straints is synthesized using the semantic map and the LLM
(Section IV-B). Finally, a semantic safety filter is formulated
to account for the semantic constraints (Section IV-D).

A. 3D Environment Map Generation

The semantic constraints synthesis depends on a 3D en-
vironment representation that supports semantic reasoning
for downstream planning and control tasks. This motivates
a language-embedded representation approach. In this work,
we construct an open-vocabulary object-level representation
of the 3D environment [7], [8] to aid our safety filter design.

The input to the 3D environment map generation module
is a set of RGB-D frames {Icam,f} along with the camera
poses {Tcam,f}. The RGB-D images are segmented [16],
and every resulting segmentation mask is embedded through
the CLIP visual encoder [25] to generate segmented point

clouds pf,i and their associated visual embeddings ff,i
for each object i in each frame f . The segmented object-
level point clouds pf,i together with the associated camera
poses Tcam,f and feature vectors ff,i are then used to
associate objects across multiple views based on geometric
and semantic similarities [7]. The per-frame information is
incrementally fused to create a consistent object-level point-
cloud representation of the 3D environment. The output of
the map is a set of point clouds pi and embeddings fi
for each object in the scene. Similar to [8], [7], we assign
labels li to objects by comparing the cosine similarity
between the object embeddings fi and the text embeddings
derived from the list of object categories in the ScanNet200
dataset [38]. The object’s class is assigned based on the pair
of embeddings with the highest cosine similarity score.

B. Semantic Constraint Synthesis

We distinguish among three types of semantic safety: (i)
unsafe spatial relationships between the object manipulated
by the robot and the objects in the scene (e.g., “do not move
the candle below the balloon”), (ii) behavioral constraints,
such as constraints on the end effector velocity based on the
manipulated object and the scene objects (e.g., “be slower
or more cautious when holding a knife”), and (iii) pose
constraints on the end effector dependent on the manipu-
lated object (e.g., “keep the cup of water upright to avoid
spillage”). Such semantic constraints are object- and scene-
dependent and tedious to specify manually. Therefore, we
employ an LLM to synthesize them in an automated manner.

We design a language prompt for the LLM, which consists
of multiple in-context examples and a final request as the
true query. For each object in the scene, the requests contain
the following components: (i) a high-level description of
the scene specified by the user directly (or, inferred from
a small set of images via VLM), (ii) the object the robot is



manipulating, and (iii) the object itself. Using these requests,
we determine three sets of semantic constraints. First, the
set of unsafe spatial relationships is Sr(o) = {(li, ri)}Nr

i=1,
where o is the manipulated object (e.g., cup of water),
li is an object in the scene (e.g., laptop, book, etc.),
ri is an unsafe spatial relationship (e.g., above, under,
or around), and Nr is the number of unsafe spatial re-
lationships. Second, the set of unsafe behaviors is Sb(o) =
{(li, bi)}Nb

i=1, where bi indicates caution or no caution
and Nb is the number of unsafe behaviors. Finally, the
pose-based constraint set is ST(o) = {T}, where T spec-
ifies the end effector orientation constraint (constrained
rotation or free rotation). The set of seman-
tic constraints is the union of all the semantic con-
straints listed above: S(o) = Sr(o) ∪ Sb(o) ∪ ST(o).
For the o = cup of water transportation example in
the scene with only l0 = laptop, we have Sr(o) =
{(laptop,above)}, Sb(o) = {(laptop,caution)},
and ST(o) = {constrained rotation}.

Our proposed semantic safety filter is designed based
on control barrier certification [4]. In the following, we
describe how we design the CBF safety filter using S(o).
We denote the joint positions by q ∈ Rn (with n = 7 in
our case) and, similar to [14], assume direct control over
the joint velocity q̇, (i.e., q̇ = u), which can be achieved
via standard lower-level motion control techniques [39]. The
robot’s end effector position and velocity can be related
to its joint position and velocity as xee = fFK(q) and
ẋee = J(q) q̇, where fFK : Rn 7→ R3 and J(q) ∈ R3×n

are the translational component of the forward kinematics
and the associated Jacobian matrix, respectively.

1) Spatial Relationship Constraints: The semantic con-
straint sets are parameterized as the zero superlevel sets
of continuously differentiable functions hsem. Intuitively, the
CBF certification framework ensures the positive invariance
of the semantically safe set. This means that if the robot
does not violate the semantic constraint initially, it will
not violate it for all future times. For each pair (li, ri) in
Sr(o), based on the point cloud pi of the object li and the
undesirable spatial relationship ri, we define a differentiable
function gi : R3 7→ R to capture the set of points which the
robot end effector should not move into to preserve semantic
safety. The semantically safe set can be expressed as

Csem =
{
xee ∈ R3 | gi(xee;θi) ≥ 1, i = 1, . . . , Nr

}
,

where xee = [x, y, z]T ∈ R3 denotes the end effector position
and θi are parameters dependent on the object point cloud
pi and the relationship ri.

For the {laptop,above} example (as also illustrated
in Figure 3), we define the semantically unsafe sets as a
differentiable approximation using a superquadric [40]:

gi(xee;θi) =((
τ1(xee)

ax,i

) 2
ϵ2,i

+

(
τ2(xee)

ay,i

) 2
ϵ2,i

) ϵ2,i
ϵ1,i

+

(
τ3(xee)

az,i

) 2
ϵ1,i

,

Fig. 3: Examples of the environment collision and semantic constraints
enforced by our proposed semantic safety filter. For each scene, environment
collision constraints are generated based on the point clouds of individual
objects while the semantic constraints are synthesized based on the point
clouds and labels of individual objects as well as the semantic safety
conditions from the LLM. The semantic safety conditions are further
categorized into spatial relationship constraints (blue text), behavioral con-
straints (orange text), and end effector pose constraints (green text).

where ϵ1,i and ϵ2,i define the shape of the superquadric,
ax,i, ay,i, and az,i are scaling parameters, and τ1, τ2, and τ3
transform the end effector coordinates into the superquadric’s
coordinate frame. To improve nonconvex objects’ representa-
tions, we create unions of superquadrics to accurately fit spa-
tial constraints. For example, we fit separate superquadrics
for the part of the laptop’s point cloud that resembles the
keyboard and the screen. This segmentation by parts can
be achieved using plane detection algorithms or learned seg-
mentation models [41]. To account for the spatial relationship
above, we extend the point cloud in its positive z-direction.
For this, we duplicate the point cloud, set the duplicate’s
z-coordinates to be outside the robot’s workspace, and fit
the superquadric based on the union of the original and the
expanded point cloud. We consider 12 spatial relationships
in total, such as under and around, for which we define
similar superquadrics.

To achieve spatial semantic safety with respect to the
semantic constraint set Csem, we define a vector of CBFs
hsem(xee), where the i-th element is

hsem,i(xee) = gi(xee;θi)− 1. (1)

Using forward kinematics, we can express the semantic con-
straint set based on the CBFs (1) in the robot’s configuration
space, which yields our desired safe set

Csem = {q ∈ Rn | hsem(fFK(q)) ≥ 0} . (2)

2) Behavioral Constraints: The behavioral constraints are
implemented using constraints on the time derivative of the
CBF, i.e., the control invariance condition [4], of the form

ḣsem(q,u) = Hsem(q)J(q) u ≥ −αsem(hsem(q);Sb(o)),

where Hsem(q) = ∂hsem
∂xee

∣∣∣
xee=fFK(q)

and αsem is a vector

of class K∞ functions (i.e., real-valued functions that pass



through the origin and are strictly increasing). Intuitively, the
condition bounds how fast the robot system is allowed to
approach the semantic safety boundary through the design
of αsem and ensures that the constraints defined by hsem
are always satisfied (i.e., the set Csem is forward invari-
ant) [4]. In particular, we design the class K∞ to adhere
to behavioral semantic constraints bj from Sb(o) such that
the system approaches the safe set boundary of the object
with label lj more slowly and exhibits the desired level
of caution. For example, for the case bj = caution, we
reduce the steepness of αsem,j . In that case, we also write
αsem,j(·;caution) = αsem,c,j(·). This reduction can be
achieved by using a class K∞ that is strictly smaller than
αsem,j for positive hsem,j . Such a function can be produced by
multiplying the function αsem,j with a scalar wα,j ∈ (0, 1).

3) Pose Constraints: The pose constraint is active if
ST(o) = {constrained rotation}. In that case, we
add the following constraint:

∆ψmin ≤ log(RdesR
T
cur)

∨ −ψ ≤ ∆ψmax ,

where Rdes is the desired rotation of the end effector (the end
effector’s initial orientation during the object’s pick-up),Rcur
is the current rotation of the end effector, ψ = Jo(q)u∆t
is the predicted rotation of the end effector at the next
timestep (t+∆t) with Jo(q) being the Jacobian relating the
joint velocity to the angular velocity of the end effector, (·)∨
denotes the inverse of the skew-symmetric operator (·)∧ [42],
and ∆ψmin and ∆ψmax are the tolerated orientation errors.
In our implementation, we leverage a softened formulation
for this constraint to make the approach less prone to
infeasibility. We express the softened pose constraint using
the objective wrot(ST(o))

TLrot(q,u). The weight wrot ∈ R2

is determined based on the semantic context T in ST. The
end effector is free to rotate if T = free rotation (e.g.,
no object is being held) with wrot = 0, but wrot > 0 if
T = constrained rotation (e.g., a cup of water is
being manipulated to prevent spilling). The vector Lrot is

Lrot(q,u) =
[
∥ log(RdesR

T
cur)

∨ −ψ∥22 ∥ψ∥22
]T

,

where the first element represents the cost for the difference
between the predicted orientation at the next timestep and the
desired orientation of the manipulator’s end effector and the
purpose of the second element is to prevent the end effector
from rotating too fast and to keep perturbations small.

C. Geometric Constraints

In addition to semantic constraints, we require the robot to
adhere to geometric constraints, which include environment-
collision and self-collision constraints. We incorporate these
additional constraints into two more vectors of CBFs henv(q)
and hself(q). The environment-collision constraints are de-
fined based on CBFs using superquadrics fitted to the point
clouds pi (see previous section); the self-collision constraints
are formulated by placing multiple spherical CBFs along the
body of the robot, similarly as in [14].

D. Semantic Safety Filter Formulation

Given the semantic constraints Csem and the set S, our
goal is to modify potentially unsafe commands sent by
a human operator or coming from a motion policy. As
depicted in Figure 2, in our setup, we send the desired
end effector velocity commands ẋee,cmd, which are converted
to desired joint velocity commands ucmd using differential
inverse kinematics. The semantic safety filter then computes
a certified input ucert that best matches the desired joint ve-
locity ucmd while ensuring semantic and geometric constraint
satisfaction. The semantic safety filter is formulated as

ucert = argmin
u∈U

∥u− ucmd∥22 +wrot(ST(o))
TLrot(q,u)

s. t. ḣsem(q,u;Sr(o)) ≥ −αsem(hsem(q);Sb(o))

ḣenv(q,u) ≥ −αenv(henv(q);Sb(o))

ḣself(q,u) ≥ −αself(hself(q))

ḣlim(q,u) ≥ −αlim(hlim(q)) ,

(3)

where we made the dependency on the semantic context S(o)
explicit, added joint angle and velocity constraints through
additional CBFs hlim(q), and αenv, αself, αlim ∈ K∞. The
first term in the cost function minimizes the difference
between the certified input and the desired input command,
while the second term penalizes rotations away from the
desired rotation. The four sets of inequality constraints
in (3) correspond to the semantic spatial relationship-based,
environment-collision, self-collision, and joint angle and ve-
locity constraints. The class K∞ functions define behavioral
semantics for each constraint, and the objective provides
softened posed-based safety constraints. The semantic safety
filter optimization problem (3) is a QP that can be efficiently
solved online. Overall, the semantic safety filter in (3) finds
the control input that best matches the desired input while
ensuring all constraints are satisfied.

V. EXPERIMENTS

In this section, we present the experimental evalua-
tion of our proposed semantic safety filter. In the real-
world experiment, a Franka Emika FR3 robotic manipu-
lator is deployed with our proposed semantic safety fil-
ter in a closed loop to prevent potentially unsafe com-
mands from a non-expert user or a learned motion pol-
icy. A video of the experimental results can be found
at https://tiny.cc/semantic-manipulation and on our website
https://utiasdsl.github.io/semantic-manipulation/.

A. Semantic Perception

In our evaluation, we consider static (unless manipu-
lated by the robot) scenes, some of which are visualized
in Figure 3 and various manipulated objects, including a
dry sponge, a cup of water, a lit candle, and a
knife. The geometries of the manipulated objects and the
robot are assumed to be known. However, the environment
in which the robot operates is assumed to be unknown; a
map for each environment is generated using RGB-D images

https://tiny.cc/semantic-manipulation
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TABLE I: The multi-prompt strategy yields higher precision and recall than
single-prompting on our benchmarking dataset of ground-truth constraints.

Prompting Strategy Precision (%) Recall (%)
Single-Prompt 29 78
Multi-Prompt 60 99

and associated camera frames as described in Section IV-
A. The RGB-D images were recorded using a Femto Bolt
and the camera poses were obtained by running visual-
inertial SLAM [43]. Each scene was reconstructed using
approximately 50 to 200 RGB-D images and their associated
camera poses, and the semantics are determined as described
in Section IV-A. Examples of the reconstructed scenes are
shown in Figure 3.

B. LLM Prompting

We created a benchmarking dataset of objects, scenes, and
ground-truth constraints to evaluate the semantic constraint
generation. The dataset includes over 50 semantic constraints
containing all semantic constraint types, as well as objects
and scenes not encountered in our experiments, and we
use it to evaluate two different prompting strategies on
an LLM (GPT-4o [44]). The first strategy (single-prompt)
requests the full set S(o) at once, while the second strategy
(multi-prompt) requests only one pair or a singleton (for
the semantic pose constraint) for each prompt. The multi-
prompt method proved more accurate, as indicated by the
higher precision and recall in Table I. We adjusted the final
prompt until the desired level of accuracy was achieved on
the validation dataset.

For our robot experiments, we follow the methodologies
in Section IV-B to identify semantically unsafe object-
relationship pairs, behaviors, and poses. Examples are shown
in the last column of Figure 3. We query the LLM for
each object-relationship pair for each scene multiple times
using majority voting to determine if the spatial relationship
between the manipulated object and the particular object in
the scene is semantically safe. We run additional queries
to determine if the object held by the manipulator may be
rotated and if increased caution should be exhibited close
to each of the objects in the scene. These responses are
then used in combination with each object’s point cloud to
determine the constraint envelopes (see Figure 3), the class
K∞ function, and the weight wrot.

C. Demonstration in Tabletop Manipulation Tasks

Using our semantic safety filter, we execute various tele-
operation and pick-and-place tasks on the robot. We run our
semantic safety filter at 45Hz. Our teleoperation experiments
are summarized in Table II. The teleoperation commands are
provided through a teleoperation interface as end effector
velocities in the Cartesian space and smoothed using a low-
pass filter. We calculate the associated joint velocities with
differential inverse kinematics. Each scene is tested with
multiple held objects, which require different sets of semantic
constraints (see Figure 3). The results in the table confirm
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−
ḣ
(x
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) −ḣsem
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Approaching safe set
boundary more slowly(
ḣ is less negative

)

Fig. 4: The level of caution determines how quickly the end effector
approaches a safety constraint boundary. In the books scene, we increase
caution by adjusting the class K∞ function when holding a cup of
water under the same semantic constraint during teleoperation. In the
cautious case, the negative time derivatives remain below the red dashed
line, satisfying the CBF condition. Since αsem,c < αsem, the end effector
approaches the boundary more slowly. Note that the y-axis is inverted.
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Fig. 5: Demonstration of the active (inactive) rotation constraint when the
robot is holding a cup of water (dry sponge) in the scene books.
The distribution for the cup of water is skewed towards smaller angular
velocities; an active rotation constraint (red) generally yields reduced end
effector rotations as compared to the inactive case (blue).

that our safety filters can effectively account for collision
avoidance constraints and any semantic constraints generated
by our synthesis module, as no constraint violations occur
in any of our experiments when the safety filter is active.

We highlight how the different levels of caution determine
how quickly the end effector holding a specific object may
approach the boundary of a safety constraint boundary. For
the scene books, we show increased caution by modifying
the class K∞ function when holding a cup of water for
the same semantic constraint during teleoperation. For the
cautious case, the negative time derivatives (−ḣ) (red) stay
below the red dashed line, confirming the CBF condition’s
satisfaction. As αsem,c(h) = 1

4h
2 is strictly smaller than

αsem(h) = h2 on h > 0, the end effector approaches the
boundary of this semantic constraint slower. Note that we
manually overwrote the level of caution for this particular
demonstration to compare the closed-loop behavior on the
same semantic CBF constraint. Generally, the level of caution
is determined through the method outlined in Section IV-B.

Finally, we demonstrate the effectiveness of constraining
rotations for different objects based on their semantics in Fig-
ure 5. Our semantic safety filter successfully reduces the
median of the norm of the end effector’s angular velocity
by 75.39% if the rotation constraint is active (see cup of
water). The box plot also highlights that the interquartile
range of the end effector’s angular velocity norm is reduced
by 45.67% compared to the robot holding the dry sponge.



TABLE II: A summary table of the mean percentages and their associated standard deviations of time steps that violate any of the constraints Csem,
Cenv, Cself, Clim. Our evaluation includes a baseline without a safety filter, a safety filter accounting for geometric constraints, and our proposed semantic
safety filter. We use three scenes and five different manipulation cases (four objects and empty-handed) with five teleoperated trajectories each, resulting
in a total of 40 trajectories for each method. Each combination of objects and scenes yielded different geometric and semantic constraints.

Scene Held Object† No Safety Filter Nominal Safety Filter (w/o Csem) Our Semantic Safety Filter

{books} dry sponge 11.06% ± 13.60% 0.00% ± 0.00% 0.00% ± 0.00%
cup of water 70.37% ± 23.51% 64.98% ± 33.42% 0.00% ± 0.00%

{laptop, books}
none 36.29% ± 18.29% 0.00% ± 0.00% 0.00% ± 0.00%

lit candle 65.21% ± 14.20% 51.33% ± 27.85% 0.00% ± 0.00%
cup of water 59.40% ± 12.02% 41.90% ± 25.46% 0.00% ± 0.00%

{balloons, paper towel}
cup of water 28.07% ± 14.77% 0.00% ± 0.00% 0.00% ± 0.00%
lit candle 50.33% ± 9.44% 49.89% ± 9.04% 0.00% ± 0.00%

knife 49.07% ± 16.16% 30.85% ± 10.53% 0.00% ± 0.00%

†The objects in red result in semantic constraints.

TABLE III: User study for data collection in the bottle transport task.

Data Collection Method CPH† Constraint Violations
Teleoperation with Safety Filter 132 0% of time
Teleoperation without Safety Filter 120 5% of time

†The abbreviation “CPH” denotes the number of task completions per
hour, with higher values corresponding to higher efficiency.

We note that, in our implementation, the semantic context
ST (o) is binary (i.e., either constrained or unconstrained
rotation). However, it is generally possible to prompt the
LLM with finer granularity and enforce varying levels of
cautiousness by appropriately configuring the vector ωrot.

To further evaluate the scalability of our proposed ap-
proach to more complex environments, we applied our
semantic safety filter to pick-and-place tasks in a cluttered
environment with 17 objects (see our supplementary video).
When the robot is holding the dry sponge, its end effector
is allowed to rotate and move the object above electronic
devices with no additional caution considered; in contrast,
the robot’s motion is much more constrained when holding
the cup of water to prevent potential spillage.

D. Demonstration in a Real-World Kitchen Environment

To demonstrate the applicability of our proposed filter
beyond teleoperation, we conducted experiments in a real-
world kitchen environment and trained diffusion policies [45]
for five different transportation tasks involving various se-
mantically unsafe constraints. These constraints include han-
dling fragile items and preventing fire and electrical haz-
ards. Clips of this set of experiments are included in the
supplementary video. Figure 6 compares the normalized
CBFs for our proposed semantic safety filter and a nominal
geometric safety filter that does not account for semantic
constraints. The proposed semantic safety filter successfully
prevents unsafe actions such as placing a metal cup inside
a microwave or putting a pressurized spray can on a stove.
This set of experiments highlights the generalizability of our
proposed approach to learned policies and its applicability
in real-world settings.

Lastly, we note that our proposed safety filter can also
enhance the data collection process for training policies.
Table III summarizes the results from a user study, where

“metal cup inside microwave”

(fire hazard) “plastic box on stove”

(toxicity hazard)

“bottle of water around egg”

(fragility) “spray can on stove”

(explosion hazard)

“fork around power strip
”

(electrical hazard)
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Fig. 6: A comparison of normalized semantic CBF values for applying the
proposed semantic safety filter (top, blue plots) versus the typical geometric
safety filter (top, grey plots) to diffusion policies across five different
scenarios (bottom). The distribution data includes augmented data from
five trials for each scenario. The proposed semantic safety filter effectively
addresses common sense constraints of different types, ranging from the
considerations for fragile items to the prevention of fire and electrical
hazards.

teleoperated data collection with the safety filter achieved
zero constraint violations without compromising the speed of
the process. This suggests the potential for generating higher-
quality training data, particularly for applications where
semantic or “common sense” safety is a critical requirement.

VI. CONCLUSION AND FUTURE WORK

This work proposes a semantic safety filter framework
combining semantic scene understanding and contextual rea-
soning capabilities of LLMs with CBF-based safe control.
Our framework allows satisfying constraints that are “invis-
ible” in a 3D map but considered “common sense” while
also guaranteeing collision-free motion and adherence to
robot-specific constraints. We demonstrate the effectiveness
of our framework in several real-world manipulation tasks.
Our work highlights that integrating semantic understanding
into safe decision-making is crucial to going beyond pure
collision avoidance and achieving a more general notion of



safety closer to that expected by humans. To the best of our
knowledge, our work is the first to integrate semantics and
robot control with formal safety guarantees. In the future,
we plan to extend our approach by incorporating semantic
constraints defined based on spatial verbs (e.g., “blocking,”)
and further accounting for dynamic environments.
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