
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RACCOON: REGRET-BASED ADAPTIVE CURRICULA
FOR COOPERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Overfitting to training partners is a common problem in cooperative multi-agent
reinforcement learning, leading to poor zero-shot transfer to novel partners. A
popular solution is to train an agent with a diverse population of partners. However,
previous work lacks a principled approach for selecting partners from this popula-
tion during training, usually sampling at random. We argue that partner sampling is
an important and overlooked problem, and motivated by the success of regret-based
Unsupervised Environment Design, we propose Regret-based Adaptive Curricula
for Cooperation (RACCOON), a novel method which prioritises high-regret partners
and tasks. We test RACCOON in the Overcooked environment, and demonstrate that
it leads to sample efficiency gains and increased robustness across diverse partners
and tasks, compared with strong baselines. We further analyse the nature of the
induced curricula, and conclude with discussions on the limitations of cooperative
regret and directions for future work.

1 INTRODUCTION

Many real-world problems require collaboration between two or more agents to achieve a common
goal, where agents may be autonomous machine learning agents or humans (Dafoe et al., 2021). A
popular approach to training such agents is cooperative multi-agent reinforcement learning (MARL),
in which multiple agents interact and learn to maximise a common reward (Albrecht et al., 2024;
Oroojlooy & Hajinezhad, 2023; Papoudakis et al., 2020). However, such agents also need to be able
to adapt to partners with diverse preferences and abilities (Siu et al., 2021). This is the problem of
ad-hoc teamwork: developing agents which can efficiently and robustly succeed with unseen partners
(Stone et al., 2010; Mirsky et al., 2022).

While self-play (SP, Tesauro et al. (1995)) has demonstrated its effectiveness for training agents
with strong transfer to unseen opponents in two-player zero-sum settings such as Go (Silver et al.,
2017), Diplomacy (Bakhtin et al., 2022) and poker (Brown & Sandholm, 2019), SP alone fails to
produce robust team players in fully cooperative settings Carroll et al. (2019); Charakorn et al. (2020).
Common-reward games, unlike two-player zero-sum games, can admit a number of incompatible
equilibria, and SP policies trained on collaborative tasks tend to rely on efficicient but arbitrary
conventions which render them poor teammates when paired with novel partners (Lowe et al., 2019;
Hu et al., 2020).

A popular alternative is to train an agent—which we refer to as the student—with diverse pre-trained
partners for a given task, under the assumption that exposure to diverse partner behaviours during
training leads to better generalisation. As a result, much work on ad-hoc teamwork is concerned
with obtaining a diverse, high-quality set of training partners. A central open challenge is generating
meaningful diversity—ensuring that behaviours don’t differ in merely superficial ways—while
maintaining reasonable behaviour. Previous approaches include relying on diversity introduced
by varying initial seeds and architectures Strouse et al. (2021), maximising statistical divergence
between actions or trajectories (Lupu et al., 2021; Zhao et al., 2023) or minimising cross-play (XP)
performance between partners in the population (Charakorn et al., 2022; Cui et al., 2022; Sarkar et al.,
2024; Rahman et al., 2022). However, while generating partner diversity is an important problem, this
is not the problem we address in this paper. Instead we ask: given a population of partners, how
can we best use this population to promote the student’s learning? Even in a diverse, reasonable
partner pool, it is extremely unlikely that all partners are equally useful for learning throughout

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

training—in other words, that their learning potential is uniform across the population and static
across time—as the student improves. However, previous work implicitly makes this assumption by
sampling partners uniformly at random during the student’s training (Strouse et al., 2021; Sarkar et al.,
2024; Charakorn et al., 2022). In addition, current methods for generating diverse partner populations
are likely to be imperfect, for example including duplicates of certain behaviours or uncooperative
partners, since it is still unclear what constitutes relevant diversity for a given problem. This further
implies that all partners should blindly not be assigned equal weight. We argue that deciding how to
prioritise partners requires further careful consideration.

Inspired by recent successes of regret-based Unsupervised Environment Design (UED) in single-agent
RL and two-player zero-sum MARL (Dennis et al., 2020; Jiang et al., 2021; Samvelyan et al., 2023),
we propose an autocurriculum that prioritises high-regret partners, where a partner’s regret at a given
time is defined as the difference between the optimal and current XP return with that partner. Our
novel replay-based method, RACCOON (Regret-based Adaptive Curricula for Cooperation), uses a
relative regret metric to estimate the learning potential of partners and tasks in a way which reflects
their relative difficulty. We empirically demonstrate the robustness and sample efficiency gains
of RACCOON—compared with baselines which randomise over partners or maximise worst-case
performance—in the two-player fully cooperative Overcooked environment, a popular cooperative
benchmark in which players must collaborate to cook and deliver soup (Carroll et al., 2019).1 We
additionally analyse the induced curricula and perform an ablation which verifies the importance of
using relative rather than absolute regret for improved ad-hoc teamwork.

As RACCOON can be paired with any partner population and set of tasks, our method complements
work on diverse partner generation. We hope that our work motivates the problem of finding
effective curricula over partners for cooperation, and provides a starting point for further research on
cooperative autocurricula.

2 BACKGROUND

Cooperative MARL We consider the fully cooperative setting in which a number of agents
interact in an environment and receive common rewards. Since we also allow for varying tasks or
“levels” in the environment, following the UED literature we model this as an n-agent decentralised
underspecified partially observable Markov decision process (Dec-UPOMDP), described as a tuple
⟨S,A, T , R, γ, T,Θ⟩, where S is the state space, A = {Ai}1≤i≤n is the joint action space, T :
S ×A× S → [0, 1] is the transition function with reward function R : S ×A → R, γ is the reward
discount factor, T the horizon and Θ the set of free parameters of the environment. In this case, the
transition function T additionally takes an environment configuration θ ∈ Θ as an argument.

Ad-hoc teamwork The aim of ad-hoc teamwork, introduced by Stone et al. (2010), is to achieve
collaboration without prior coordination. Two common approaches are modelling other agents and
training with diverse partners (Mirsky et al., 2022). We consider the latter approach in this work, in
which an agent, which we refer to as the student, is trained with a population of pre-trained agents,
which we refer to as the partners (Charakorn et al., 2020; Lupu et al., 2021; Cui et al., 2022; Rahman
et al., 2022; Sarkar et al., 2024). These partners are typically trained via SP with some form of
diversity regularisation. A related problem is zero-shot coordination, which additionally assumes that
agents are trained independently using the same algorithm, and thus measures a particular algorithm’s
ability to break symmetries in non-arbitrary ways (Hu et al., 2020).

Unsupervised Environment Design Given an environment with configurable parameters—each
defining a separate level (i.e., task)—UED frames curriculum generation as a game between a teacher
and a student where the teacher iteratively chooses levels for the student to train on (Dennis et al.,
2020). In regret-based UED, the teacher’s objective is to maximise regret of the student—how much
worse the student performs as compared with an optimal policy—while the student aims to maximise
return as usual. This has been shown to induce a curriculum which presents the student with the
simplest tasks it cannot yet solve (Dennis et al., 2020). Prioritised Level Replay (PLR), the prevailing
UED method, curates a curriculum for the student by storing and replaying the highest-regret levels
drawn from a random level generator (Jiang et al., 2021).

1Code can be found at https://anonymous.4open.science/r/raccoon.

2

https://anonymous.4open.science/r/raccoon/README.md


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHOD

3.1 COOPERATIVE REGRET AS LEARNING POTENTIAL

Given a fixed population of partners and a task space, we desire two properties for an effective
curriculum: it should adapt to the student’s changing ability throughout training, and it should reflect
each (partner, task) pair’s relative learning potential for the student—a term we use informally to
denote how much progress the student can make towards improved ad-hoc teamwork by training with
that partner on that task.

Randomising uniformly over partners lacks both these properties; while successful (Strouse et al.,
2021; Sarkar et al., 2024), it likely leaves sample efficiency gains on the table as certain partners
become easy to cooperate with and are unnecessarily resampled. Following UED literature, we refer
to this approach as domain randomisation (DR), where here the domain is the partner pool.

An alternative is to prioritise partners with whom the student currently has lowest XP return. This
is employed in Zhao et al. (2023) and partly addresses the intuition that partners who pose a more
difficult coordination problem should be sampled more frequently. In the UED framing, this teacher
is a minimax adversary. However, in task-based UED, the minimax adversary prioritises levels which
are impossible to solve, and therefore confer no learning benefit. Similarly, in the current setting, a
minimax adversary will prioritise partners with whom it’s impossible to cooperate. In addition, the
minimax adversary does not reflect differences in maximum achievable returns with each partner. If
there are partners with whom it’s impossible to succeed, then the minimax adversary will continue to
prioritise those partners at the expense of the student training with other, more useful partners.

We propose a third sampling method: maximising regret. For a given decision problem, the regret
of a policy is defined as the difference between the best possible outcome which could have been
obtained in that problem, and the actual outcome obtained by the policy (Savage, 1951). For a fixed
task in the two-player multi-agent setting, we define the regret of a policy π with partner π′ as

Regret(π, π′) = U(BR(π′), π′)− U(π, π′)

where U(π, π′) is the expected return obtained by (π, π′), and BR(π′) denotes a best response to π′.

A curriculum which prioritises high-regret partners has both our desired properties: it adapts to the
student’s ability, and it and provides a reasonable measure of learning potential by measuring the gap
between current performance and optimal performance with each partner. Furthermore, at equilibrium
in the teacher-student game, regret-based UED provably results in the student implementing a minimax
regret policy, which performs near-optimally with everyone if it is possible to do so (Dennis et al.,
2020). Arguably, for ad-hoc teamwork, we want to find a policy which succeeds with as many
partners as possible, even if it doesn’t get the highest return with each individual one.

It’s worth nothing that the effectiveness of regret requires that there is a single policy which can
succeed with all partners with whom success is possible (Dennis et al., 2020), which may not exist in
settings where partners display incompatible conventions such that it is impossible to cooperate with
everyone under uncertainty about the partner’s policy. We discuss limitations of regret in Section 6.

3.2 RACCOON

Motivated by the above discussion, we propose RACCOON (Regret-based Adaptive Curricula for
Cooperation), a replay-based method which considers distinct tasks as well as partners for maximal
generality. Following Samvelyan et al. (2023), RACCOON maintains a joint buffer over partners Π
and tasks Θ, with the key difference being that we use pre-trained policies as partners, rather than past
checkpoints of the student policy. The buffer stores tasks and associated scores S for each partner,
where as scores we use regret estimates (see more in Section 3.3). At the beginning of each episode,
the scores are used to obtain a distribution over partners, ∆S(Π), from which a partner is sampled.
We use a rank-based prioritisation, in which the partners’ mean scores are ranked, and the probability
of sampling a partner πi is proportional to the inverse of its rank ni, adjusted by temperature β:

P (πi|S) ∝
(1/ni)

1/β∑
(1/ni)1/β

.

A task is either replayed from the sampled partner πi’s buffer Λi or randomly generated, controlled by
a replay probability hyperparameter. If replaying from Λi, the scores Si in the buffer are ranked, and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the inverse ranks similarly provide a distribution over the tasks in the buffer, ∆Si
(Λi), from which the

replayed task is sampled. New tasks are added to the buffer if their scores are sufficiently high, and
scores for replayed tasks are updated until those environments are replaced by new higher-scoring
tasks. RACCOON is agnostic to the pool of partner agents, instead seeking to leverage that pool to
train a maximally robust student agent.

Pseudocode is provided in Algorithm 1. ∆U refers to the uniform distribution.

Algorithm 1 RACCOON
Input: Pre-trained partners Π, environment parameters Θ
Initialise student policy π and empty buffer Λ with scores S = 0
while not converged do

πi ∼ ∆S(Π) // Sample partner according to scores
Sample replay decision

if replaying then
θ ∼ ∆Si(Λi) // Sample task from partner buffer

else
θ ∼ ∆U (Θ) // Sample a uniform random task

Collect trajectory τ on θ using (π, πi)
Compute regret score S = Regretθ(π, πi)
Update π with rewards R(τ)
(Optionally) Update Λi with θ using score S

3.3 ESTIMATING PARTNER REGRET

In practice, we typically do not have access to a best response to each partner policy and instead need
to estimate the highest achievable return with each partner in order to estimate regret. We discuss
using a learned best response and other methods in Appendix A, but we find the most effective
method estimates regret of partner π′ (on a task) as the difference between the maximum return ever
achieved with π′ (on that task) and the current return. In order to reflect different achievable returns
for different partners and tasks, we normalise to obtain relative regret, defined as

Scoreθ(π, πi) =
Rθ

max(π, πi)−
∑T

t=0 rt
Rθ

max(π, πi)

for student π and partner πi, where rt are the rewards from the most recent trajectory of (π, πi) on θ,
and Rθ

max(π, πi) is the maximum return previously achieved by (π, πi) on θ. This scoring function
requires no prior knowledge about the partners’ abilities and effectively “bootstraps” the estimate of
optimal return with each partner as the student learns, getting more accurate as the student policy
improves. Using the maximum return ever achieved with each partner also prevents the student from
later forgetting how to cooperate with a partner.

4 EXPERIMENTAL SET-UP

Figure 1: Overcooked layouts. Left to right: Cramped Room, Asymmetric Advantages, Coordination
Ring, Forced Coordination, Counter Circuit.

Environment. We test RACCOON in Overcooked (Carroll et al., 2019), a collaborative, fully-
observable two-player game in which players work together to cook and deliver onion soup. Over-
cooked admits many different playing conventions (Sarkar et al., 2024), such as how tasks are divided

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

between players, making it non-trivial to learn a policy which can adapt to arbitrary unseen partners.
In addition, although Overcooked is a two-player game, the two-player setting is interesting for
studying coordination because each player has more potential to shape the behaviour of the other
player and influence equilibrium selection. Episodes last a fixed number of steps and players receive
a common reward for each soup delivery. Overcooked has five standard layouts, shown in Figure 1,
each presenting distinct challenges such as avoiding collisions or uneven division of labour. Initial
positions of players and objects are fixed, but we vary whether the student controls Player 1 or Player
2 (blue or green hat) since different roles can require different behaviours. We base our environment
on the implementation of Overcooked-AI from the JaxMARL library (Rutherford et al., 2024) and
implement RACCOON by building on Prioritised Level Replay from the Minimax library for UED
(Jiang et al., 2023).

Baselines and ablations. We compare RACCOON—using the score described in Section 3.3—with
two strong baselines: domain randomisation (DR, Jakobi (1997)), which uniformly randomises over
partners and tasks, and minimax adversary (Minimax, Pinto et al. (2017); Morimoto & Doya (2005)),
where we replace the regret estimate with the negative return as the score in RACCOON. All students
are trained and evaluated with the same sets of training and test partners. We also investigate the
importance of using relative regret by performing an ablation, which we denote as RACCOON−, in
which we use absolute (unnormalised) regret as the score.

Generating partners. Following Strouse et al. (2021), we obtain diverse partners by training
policies in SP with different initial seeds, and using checkpoints from the beginning, middle and end
of training to cover a range of skill levels, reflecting the fact that novel partners such as humans are
unlikely to behave optimally. For each layout L, we train a population of partners ΠL on L. We
choose to train partners in this “specialist" way, rather than training on all layouts simultaneously, as
we find it results in higher quality policies for each layout, and further allows for faithful selection of
partners of the three skill levels.

We form the training partner population Πtrain
L by taking five seeds from ΠL and checkpoints from the

beginning of training, at convergence and when returns are half the final return, resulting in “low-”,
“medium-” and “high-skilled” partners, following the convention in Strouse et al. (2021). Note that
this means that the low-skilled training partners follow random policies. Similarly, we form the
held-out partner population Πtest

L using five different seeds and three checkpoints, but we use slightly
later checkpoints than for Πtrain

L to model the assumption that unseen partners in ad-hoc teamwork
should be at least better than random at the task. We use PPO and an actor-critic network with a
shared convolutional layer for both student and partner policies; for more details see Appendix C.

Despite the existence of more complicated methods for generating diversity, varying initial seeds has
been shown to be effective despite its simplicity (Charakorn et al., 2020), and we expect the range
of skill levels afforded by different checkpoints to pose a particularly interesting setting in which to
investigate curricula, due to the strong asymmetries in learning potential between partners.

Tasks. We test RACCOON on both multi-task and single-task settings. For multi-task settings, we
use all five Overcooked layouts and both player positions, resulting in a task pool of size 10. These
are padded to the same size so that the student can train on all tasks simultaneously. We primarily
focus on the multi-task setting, because we are interested in RACCOON’s ability to find effective
learning opportunities from many possible combinations of partenrs and tasks. We use the single-task
setting to analyse the induced curriculum over partners only, and single-task results can be found in
Appendix B.2.

5 RESULTS

Robustness across multiple tasks. In the multi-task setting, the student trains on all five layouts in
both player positions, and we use a training partner population of size 75 by aggregating Πtrain

L for all
L. Note that since partners are trained in SP, they can play either position for their layout. At the start
of each episode, a partner, layout and student player position is sampled, and we train each student
for 400M environment steps.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Returns with held-out partners for students trained on all five layouts simultaneously.
For each episode, one of 75 training partners, a layout and player roles are sampled. Students are
then evaluated separately on each layout with 15 diverse held-out partners, who have been trained
on that layout to varying skill levels. We calculate the mean return across partners over 20 trials per
layout (10 per player position), and report the mean and standard error for five independent training
runs for each method. RACCOON− is an ablation of RACCOON using absolute rather than relative
regret. Bold values are within one standard error of the best mean.

Method Cramped Rm. Asymm. Adv. Coord. Ring Forced Coord. Counter Circ.

DR 184.4 ± 0.8 208.2 ± 6.6 27.3 ± 3.3 0.6 ±0.21 0.6 ±0.1
Minimax 180.4 ±1.0 199.7 ±14.0 42.9 ± 11.85 4.6 ±2.93 4.4 ±2.1
RACCOON 166.3 ±2.5 209.7 ± 3.8 43.5 ± 9.4 35.0 ± 9.1 22.2 ± 3.2
RACCOON− 177.2 ± 1.1 204.5 ± 4.1 43.1 ± 6.5 0.3 ± 0.1 0.7 ± 0.1

Figure 2 shows the average return of the student with Πtest
L for each layout L in each position.

RACCOON performs competitively with DR and Minimax on the easier first three layouts, and notably
is able to make at least one delivery on average in Forced Coordination and Counter Circuit, where
DR and Minimax consistently fail to make any at all. Because the training partner pool consists of
“specialist” partners trained on individual layouts to a degree of skill levels, the learning potential of
partner-layout pairs varies widely, since the algorithm may sample a partner not trained for that layout;
learning opportunities for Forced Coordination are particularly sparse, since Forced Coordination
requires the partner’s contribution to make any deliveries. Impressively, RACCOON can succeed
when learning opportunities are sparse, where other methods fail—showing promise for RACCOON
as a method to deal with more complex partner and task spaces, where identifying good learning
opportunities by hand is infeasible.

Figure 2: Returns with held-out partners for students trained on all five layouts simultaneously.
Bars for each task show average returns with held-out partners trained to low, medium and high skill
on that task. Students are trained for 400M environment interactions and the curriculum samples a
partner, one of the five layouts and player assignments for each episode. Mean and standard error
shown for five seeds.

Furthermore, the training curves shown in Figure 3 demonstrate that RACCOON is able both to
converge quickly on the easier layouts (leftmost two), and prioritise learning on the remaining harder
layouts.

Analysis of curricula. We provide an insight into the curriculum over partners induced by RAC-
COON by considering the skill levels of partners sampled throughout training. For the multi-task
setting, Figure 4 shows the probability of sampling training partners of low, medium and high skill
levels for the relative regret and minimax scores. RACCOON initially prioritises high-skilled part-
ners (who intuitively should be easier to cooperate with), and gradually increases the proportion
of low-skilled partners throughout training. This is in line with preliminary findings by Bhati et al.
(2023) that a curriculum decreasing in partner skill—i.e., in which a student initially trains with
more skilled partners, followed by less skilled partners—is effective for the student’s learning. In

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Training returns on each task for students trained on all five layouts and both player
positions. Returns on each task are averaged over all training partners (which is why the returns for
Forced Coordination and Counter Circuit appear low). RACCOON demonstrates faster convergence
on easier tasks, and continues to learn throughout the curriculum. Mean and standard error shown for
five seeds.

comparison, the Minimax curriculum maintains a much closer to even split (marked by the dotted
grey line), suggesting it struggles to find efficient learning opportunities.

(a) RACCOON (b) Minimax

Figure 4: RACCOON induces a curriculum which prioritises high-skilled, then low-skilled,
partners. Curves show the probability of sampling a partner of each skill level (for any task)
throughout training, for a student training on all tasks.

For an insight into how RACCOON prioritises tasks, Figure 5 shows the proportions of each task
sampled throughout training. We see that RACCOON is quick to identify Forced Coordination—the
hardest task—as a layout to prioritise, while downweighting the easier layouts Cramped Room and
Asymmetric Advantages. In addition, while the proportion of Counter Circuit is low, the training
curves in Figure 3 show that the RACCOON student is still improving on Counter Circuit, suggesting
that RACCOON is finding efficient task-partner pairs for learning on Counter Circuit, even when not
sampling the layout as much as others. Appendix B.1 shows more analysis of individual partners
sampled.

Relative vs. absolute regret. We hypothesised that using a normalised regret score in RACCOON is
important for achieving robust performance across tasks and partners which may vary widely in their
maximum achievable returns. To test this, we run an ablation which uses absolute rather than relative
regret, which we denote by RACCOON−. The final performances of all four methods in the multi-task
setting, including RACCOON−, are shown in Table 1 for comparison. We find that RACCOON−, like
DR and Minimax, is unable to learn to cooperate on the hardest tasks. It is interesting to note that
RACCOON achieves the highest return on all layouts except the easiest, Cramped Room—suggesting
that there is some trade-off in performance across tasks. DR tends to overfit to the easiest tasks, while

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: RACCOON prioritises the hardest task. Curves show the proportion of tasks of each type
sampled throughout training, for one run of RACCOON training on all tasks (smoothed). RACCOON
increases the probability of sampling Forced Coordination, the hardest task, throughout the run.

RACCOON with relative regret ensures the student learns to cooperate reasonably well with everyone,
even if it doesn’t achieve the highest performance in every case—arguably a preferable outcome.

Scalable sample efficiency. In addition to performance gains, we test the sample efficiency of
RACCOON compared with DR by varying the number of training partners for a single task. We train
students for 200M environment steps on Counter Circuit (Player 1) with 15, 30, 45 and 60 training
partners (respectively 5, 10, 15 and 20 seeds and their checkpoints).

The training curves in Figure 6 show that RACCOON almost perfectly maintains sample efficiency
as we scale the number of training partners, while the sample efficiency of DR rapidly degrades as
number of partners increases. This implies that RACCOON is efficiently able to filter a large partner
population to find the best learning opportunities, which not only makes it more effective in terms
of compute, but makes it a promising method for dealing with large and potentially noisy partner
populations in more complex settings where we may have less control over the quality of partners.

(a) DR (b) RACCOON

Figure 6: RACCOON maintains performance when scaling number of training partners. Curves
show training returns, averaged across training partners, for DR and RACCOON training on Counter
Circuit only. As number of partners increases, DR requires many more environment interactions to
achieve the same performance. Median and interquartile range shown for five seeds.

6 DISCUSSION

To our knowledge, our work is the first detailed investigation of autocurricula over partners for ad-hoc
teamwork in cooperative MARL. Our experiments which train students on all layouts simultane-
ously show that RACCOON is able to navigate settings with diverse challenges and sparse learning
opportunities—thereby learning a more versatile policy—where baselines fail to learn to solve harder
tasks. In particular, we show that using relative regret is key for adapting to high variance in the
difficulty of tasks. We additionally show that RACCOON maintains sample efficiency as we scale
the number of partners, while that of DR steadily declines. While Overcooked is a relatively simple
environment, these results in combination suggest that the benefits conferred by RACCOON may
truly shine in large and complex task and partner spaces, where randomisation can have no hope of
efficiently filtering useful learning opportunities.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Limitations of the environment We test our method in the Overcooked environment because
it presents distinct collaborative challenges while being relatively interpretable and fast to train
in, and because it is commonly used in work on generating partner diversity for ad-hoc teamwork
(Strouse et al., 2021; Sarkar et al., 2024; Zhao et al., 2023; Charakorn et al., 2022). However, the
tasks in Overcooked are still much simpler than real-world collaborative tasks. Another limitation
of Overcooked is that collaboration is not strictly necessary for reasonable performance on most
of the five classic layouts, as evidenced by the high return achievable with random policies. This
brings into question whether agents are truly learning meaningful collaborative skills, and whether
the demonstrated efficacy of including low-skilled partners in the training population (Strouse et al.,
2021) is due to improved cooperation or simply improved individual skill at the task.

Limitations of cooperative regret In regret-based UED, a minimax regret policy will have regret at
most equal to the minimax regret bound on all tasks in the training domain, but there are no guarantees
on the behaviour of the policy on tasks where the regret is not at this bound. Regret stagnation occurs
when it is possible to improve performance on levels which are not at the minimax regret bound, but
the student no longer trains on those levels because the UED teacher only plays the highest regret
levels (Beukman et al., 2024). This may be particularly problematic in cooperative settings, where
diverse partners may employ incompatible policies such that, under uncertainty about its partner,
the student is unable to simultaneously achieve low regret with all partners. While Overcooked is a
relatively simple environment and good ad-hoc teamwork seems feasible, the problem of incompatible
policies is especially notable in Hanabi (Cui et al., 2022), and we encourage further work to investigate
and mitigate the limitations of regret in such settings.

Limitations of relative regret score One limitation of the score described in Section 3.3 is that
using the maximum return ever achieved with a partner on a task as an estimate for optimal return
doesn’t account for noise in the rewards. For example, it is occasionally possible to make a single
delivery with a randomly behaving partner in Forced Coordination if the partner happens to take the
right sequence of actions, even though most of the time it’s impossible to collaborate with such a
partner. As a result, relative regret would score such a partner highly, even though they don’t provide
meaningful learning. A more nuanced regret estimate should identify such situations and correctly
prioritise only partners with whom cooperation is meaningfully possible.

Future work A natural follow-up is to pair RACCOON with different partner population generation
methods and larger environment spaces, particularly open-ended or procedurally generated environ-
ments (Fontaine et al., 2021). It would also be interesting to test the robustness of RACCOON with
adversarial partner populations, for example those which are particularly sparse on useful learning
opportunities or may contain “rogue” partners. Finally, a vision for future work is to combine the
processes of training the partners and the student into a single adaptive process, for example by using
learning potential to inform partner generation and selection in an evolutionary search method such
as MAP-Elites (Mouret & Clune, 2015; Xue et al., 2022; Parker-Holder et al., 2020).

Impact statement Our work aims to make autonomous agents better at collaborating with and
adapting to partners on problems where all agents have a common goal, which can make them more
helpful to humans, both in collaborating with humans directly or more efficiently achieving goals
specified by humans for an autonomous multi-agent system. It’s worth noting that, in general, agents
trained purely to be cooperative may be vulnerable to exploitation when transferred to real-world
settings, but we believe that at this stage—given the simplicity of the simulations in which we are
working—our work does not pose any apparent negative consequences.

7 RELATED WORK

Diverse partners for ad-hoc teamwork A number of methods have been used to generate diverse
training partners for cooperation. A simple but effective method is Fictitious Co-Play (Strouse et al.,
2021), which forms a population from different seeds and checkpoints of agents trained in SP. This is
the method we use to train the partners for our experiments. Other methods use an auxiliary loss to
regularise diversity. TrajeDi (Lupu et al., 2021) trains agents in SP while maximising a statistical
divergence term between trajectories, while LIPO (Charakorn et al., 2022), CoMeDi (Sarkar et al.,
2024), ADVERSITY (Cui et al., 2022) and BRDiv (Rahman et al., 2022) model policy compatibility

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

as XP return and aim to minimise this. However, unlike RACCOON, these methods train a best
response student by sampling partners from the population uniformly at random. Notably, RACCOON
is not intended as a competitor to these methods: indeed, it can be paired with any of these partner
populations, and therefore complements work on diverse partner generation.

Maximum Entropy Population-Based Training (Zhao et al., 2023) uses a population entropy bonus
to promote diversity, and uses a prioritised sampling method for sampling partners during the
training of the student. However, unlike our method, partners with lowest XP return are prioritised,
corresponding to a minimax adversary, which we show is less robust than regret as it does not reflect
whether cooperation is achievable with each partner, in particular performing poorly on Forced
Coordination.

Curricula in cooperative MARL Automatic curriculum learning (Leibo et al., 2019) has enjoyed
successes across RL. Self-play—in which an agent plays against itself, typically in a competitive
setting (Tesauro et al., 1995)—forms a natural curriculum of increasing difficulty as the agent
improves, and has been effective in achieving human-level performance in a number of games
(Silver et al., 2017; Bakhtin et al., 2022). Fictitious self-play (FSP, Heinrich et al. (2015)) uses a
uniform mixture of past checkpoints as training partners to avoid cycles and forgetting. Vinyals
et al. (2019) introduced prioritised fictitious self-play (PFSP), which weights FSP partners as a
function of the probability of beating them to identify partners which provide the best learning signal.
While the motivation behind PFSP is similar to RACCOON, PFSP is applied in a competitive setting,
whereas RACCOON is designed for cooperative settings and uses pre-trained rather than FSP partners.
Similarly, MAESTRO (Samvelyan et al., 2023) combines UED and self-play to induce a curriculum
over joint partner-task pairs, and is the most similar to RACCOON, again with the major difference
that we use pre-trained partners for collaborative tasks. Additionally, MAESTRO scores partners and
tasks using an estimate of absolute regret, rather than relative regret, as we do.

Bhati et al. (2023) also investigate teammate selection in Overcooked, but use hand-crafted curricula
over skill levels in a single easy layout, whereas our curriculum automatically adapts to the student
throughout training and is compatible with multiple tasks.

8 CONCLUSION

In this work, we introduce RACCOON, a novel cooperative autocurriculum method which provides a
complement to diverse partner generation for ad-hoc teamwork. In particular, we define a relative
regret metric to score the learning potential of partners and tasks. We demonstrate the increased
robustness of RACCOON in the Overcooked environment by presenting diverse partners and tasks,
finding that RACCOON learns to collaborate on the most difficult tasks where baselines fail. Our results
on sample efficiency further suggest that RACCOON remains effective as we scale partner populations
and task spaces. We conclude by discussing limitations of regret as well as potential avenues for future
work. We hope that our work demonstrates the unexplored potential of autocurricula in cooperative
MARL, and provides initial methods and results on which future work can build.

REFERENCES

Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, 2024. URL https://www.marl-book.
com.

A Bakhtin, N Brown, E Dinan, G Farina, C Flaherty, D Fried, A Goff, J Gray, H Hu, AP Jacob,
et al. Human-level play in the game of diplomacy by combining language models with strategic
reasoning. Science (New York, NY), pp. eade9097–eade9097, 2022.

Michael Beukman, Samuel Coward, Michael Matthews, Mattie Fellows, Minqi Jiang, Michael
Dennis, and Jakob Foerster. Refining minimax regret for unsupervised environment design. arXiv
preprint arXiv:2402.12284, 2024.

Rupali Bhati, SaiKrishna Gottipati, Clodéric Mars, and Matthew E Taylor. Curriculum learning for
cooperation in multi-agent reinforcement learning. In Second Agent Learning in Open-Endedness
Workshop, 2023.

10

https://www.marl-book.com
https://www.marl-book.com


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-AI coordination. Advances in Neural
Information Processing Systems, 32, 2019.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Investigating partner diversifi-
cation methods in cooperative multi-agent deep reinforcement learning. In Neural Information
Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22,
2020, Proceedings, Part V 27, pp. 395–402. Springer, 2020.

Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse cooperative
agents by learning incompatible policies. In The Eleventh International Conference on Learning
Representations, 2022.

Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus Fo-
erster. Adversarial diversity in hanabi. In The Eleventh International Conference on Learning
Representations, 2022.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and Thore Graepel.
Cooperative ai: machines must learn to find common ground, 2021.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in Neural Information Processing Systems, 33:13049–13061, 2020.

Matthew C Fontaine, Ya-Chuan Hsu, Yulun Zhang, Bryon Tjanaka, and Stefanos Nikolaidis. On the
importance of environments in human-robot coordination. 2021.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
International conference on machine learning, pp. 805–813. PMLR, 2015.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
coordination. In International Conference on Machine Learning, pp. 4399–4410. PMLR, 2020.

Nick Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive behavior,
6(2):325–368, 1997.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021.

Minqi Jiang, Michael D Dennis, Edward Grefenstette, and Tim Rocktäschel. minimax: Efficient
baselines for autocurricula in jax. In Second Agent Learning in Open-Endedness Workshop, 2023.

Joel Z Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence research. arXiv
preprint arXiv:1903.00742, 2019.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin. On the pitfalls of
measuring emergent communication. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 693–701, 2019.

Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International conference on machine learning, pp. 7204–7213. PMLR, 2021.

Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In European
conference on multi-agent systems, pp. 275–293. Springer, 2022.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 53(11):13677–13722, 2023.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective
diversity in population based reinforcement learning. Advances in Neural Information Processing
Systems, 33:18050–18062, 2020.

Lerrel Pinto, James Davidson, and Abhinav Gupta. Supervision via competition: Robot adversaries
for learning tasks. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1601–1608. IEEE, 2017.

Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Generating team-
mates for training robust ad hoc teamwork agents via best-response diversity. arXiv preprint
arXiv:2207.14138, 2022.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar Ing-
varsson, Timon Willi, Akbir Khan, Christian Schroeder de Witt, Alexandra Souly, et al. Jaxmarl:
Multi-agent rl environments and algorithms in jax. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, pp. 2444–2446, 2024.

Mikayel Samvelyan, Akbir Khan, Michael Dennis, Minqi Jiang, Jack Parker-Holder, Jakob Nicolaus
Foerster, Roberta Raileanu, and Tim Rocktäschel. MAESTRO: open-ended environment design
for multi-agent reinforcement learning. In International Conference on Learning Representations,
2023.

Bidipta Sarkar, Andy Shih, and Dorsa Sadigh. Diverse conventions for human-ai collaboration.
Advances in Neural Information Processing Systems, 36, 2024.

Leonard J Savage. The theory of statistical decision. Journal of the American Statistical association,
46(253):55–67, 1951.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Ho Chit Siu, Jaime Peña, Edenna Chen, Yutai Zhou, Victor Lopez, Kyle Palko, Kimberlee Chang, and
Ross Allen. Evaluation of human-ai teams for learned and rule-based agents in hanabi. Advances
in Neural Information Processing Systems, 34:16183–16195, 2021.

Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, pp. 1504–1509, 2010.

DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58–68, 1995.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ke Xue, Yutong Wang, Lei Yuan, Cong Guan, Chao Qian, and Yang Yu. Heterogeneous multi-agent
zero-shot coordination by coevolution. arXiv preprint arXiv:2208.04957, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei Yang.
Maximum entropy population-based training for zero-shot human-ai coordination. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6145–6153, 2023.

A ALTERNATIVE METHODS FOR ESTIMATING COOPERATIVE REGRET

In addition to the relative regret metric outlined in 3.3, we considered and tested a number of methods
for estimating cooperative regret with a partner.

Training a best response policy Since we want to estimate optimal return possible with each
partner, we could try to train a best response policy BR(πi) to πi for each πi ∈ Πtrain, and use the
maximum return achieved as the estimate of optimal return with πi. While this was fairly effective
for easier layouts, we found that this approach frequently underestimates optimal return with each
partner, leading to negative scores—the student trained with Πtrain generally outperforms the best
response policy with each training partner πi despite (or rather, because of) being trained with all
partners.

Treating the partner’s SP as a best response Another approximation is to treat a partner’s SP
return as the optimal return with that partner. While this is more likely to be accurate when training
with highly skilled (i.e., converged partners), it falls short in cases where partners are low-skilled (i.e.,
partially trained), on tasks where it is possible for one of the team members to “pick up the slack” of
a less skilled partner. As a result, we found this method to be effective only on Forced Coordination,
which does require both partners’ contributions.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 FURTHER CURRICULUM ANALYSIS

To give an example of which particular partners are most sampled by RACCOON, we provide Figure 7,
which shows the cumulative samples of partners of each type for one run of RACCOON on all layouts
with the ten most sampled partners labelled. We see that a large proportion of the partners sampled are
medium and high-skilled Forced Coordination partners, which indicates that RACCOON is correctly
identifying these as useful partners to learn from—since Forced Coordination requires both partners
to work together to deliver a meal, achieving non-zero returns requires sampling a partner who has
been trained on Forced Coordination.

Figure 7: Cumulative samples of individual partners by RACCOON training on all tasks. Results
from one run. Legend shows ten most sampled partners, identified by the layout they were trained on
and their skill level (untrained refers to a low-skilled partner, i.e., random policy). RACCOON priori-
tises a high proportion of Forced Coordination partners, which correspond to the most challenging
task.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(a) Cramped Room (b) Asymm Adv (c) Coord Ring (d) Forced Coord (e) Counter Circuit

Figure 8: Returns with held-out partners for single-task settings. Students are trained on individual
layouts with 15 training partners for 32M environment steps, and RACCOON achieves the highest
return in all cases. Mean and standard error for five seeds shown.

B.2 SINGLE TASKS

We provide additional results from training the student on single tasks (single layout with student
as Player 1). For each experiment on layout L, we use 15 training partners consisting of three
checkpoints of five seeds from the pre-trained specialist policies Πtrain

L , and train the student for 32M
environment steps. Figure 8 shows test performance held-out partners Πtest

L for each student trained
on L. RACCOON modestly outperforms DR and Minimax on easier tasks (a)-(c) and substantially
outperforms both on the hardest layout (d)—the only layout in which a player working alone cannot
deliver soup. As predicted, Minimax performs particularly poorly on (d), as it is impossible to
succeed with low-skilled partners except through chance.

However, we note that the advantage conferred by RACCOON in this setting is marginal, likely
because the problem is sufficiently simple that DR and Minimax are already effective.

Figure 9 shows the overall percentage of each skill level sampled by RACCOON for each layout in
the single-task setting, and we see that in most cases RACCOON prioritises low- and medium-skilled
partners, intuitively because they are more difficult to collaborate with.

Figure 9: Overall proportion of partners of each skill level sampled by RACCOON in single-task
setting. Mean shown over five seeds.

C IMPLEMENTATION DETAILS

C.1 ENVIRONMENT DETAILS

We use the JaxMARL implementation of Overcooked (Rutherford et al., 2024) as the base of our
environment. We pad all layouts to shape 6×9, and agents receive an observation of shape 6×9×26,
where the 26 mostly binary channels represent positions and states of objects in the map, such as
onion and pot locations, number of onions in a pot and remaining pot cooking time. Both players
receive a reward of +20 when a soup delivery is made. In addition, for training SP partners for
Coordination Ring, Counter Circuit and Forced Coordination, we shape the reward with an additional
reward of +1 for placing an onion in a pot, which we anneal over 2.5M environment steps.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.2 AGENT ARCHITECTURE

Both partners and students use the same neural architecture, consisting of actor and critic networks
with a shared convolutional backbone. The input observation is passed through a convolutional layer
with 16 filters and kernel size 3. The processed observation is then passed to fully-connected policy
and value heads, each with one hidden layer of dimension 32, to output action logits and values.

C.3 HYPERPARAMETERS

C.3.1 SELF-PLAY PARTNERS

Partners were trained via SP on individual layouts for 4.8M environment steps with checkpoints taken
every 96,000 steps, and checkpoints for the training population were selected from the beginning of
training, when performance converged, and the point at which return was half the final return. All
partners were trained using 32 parallel environments, 300 rollout steps per update, discount factor
0.99, GAE-λ 0.95, value loss 0.5, max grad norm 0.5, 4 minibatches per epoch, 5 PPO epochs and
PPO clip epsilon 0.2. The hyperparameters which differed between layouts are shown in Table 2. We
trained 50 seeds per layout but didn’t use all of them in experiments.

Table 2: Hyperparameters for SP policies trained on each layout.

Hyperparameter Cramped Room Asymm Adv Coord Ring Forced Coord Counter Circuit

Learning rate 0.0005 0.001 0.0005 0.002 0.002
Entropy coefficient 0.01 0.001 0.01 0.02 0.02

C.3.2 STUDENTS

Hyperparameters for students trained on all layouts are shown in Table 3.

Table 3: Student hyperparameters for training on all layouts (Section 5)

Hyperparameter Value

Max episode steps 400
γ 0.99
λGAE 0.95
Learning rate 0.001
Parallel environments 50
Entropy coefficient 0.01
Value loss coeffcient 0.5
Max grad norm 0.5
Total updates 20,000
PPO clip eps 0.2
PPO rollout length 400
PPO epochs 4
Minibatches per epoch 4
Buffer size 50
Replay probability 0.9

For training on individual layouts, we used the hyperparameters in Table 4, and a partner sampling
temperature of 1 for all layouts except Forced Coordination, for which we use temperature 3.

C.4 COMPUTE

All experiments were conducted on a single NVIDIA RTX A6000 GPU with 48GB of VRAM,
500GB storage and 55GB RAM allocated with 6 vCPUs. A total of 1,000 hours of compute time were

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Student hyperparameters for training on individual layouts (Appendix B.2)

Hyperparameter Value

Max episode steps 400
γ 0.99
λGAE 0.95
Learning rate 0.001
Parallel environments 16
Entropy coefficient 0.01
Value loss coeffcient 0.5
Max grad norm 0.5
Total updates 5,000
PPO clip eps 0.2
PPO rollout length 400
PPO epochs 4
Minibatches per epoch 4
Buffer size 8
Replay probability 0.8

used for the project, including failed attempts and hyperparameter tuning, with the results presented
in the paper taking fewer than 100 hours of that time.

For runs of RACCOON, DR and Minimax, 100M environment steps take 20-35 minutes to run,
depending on the number of parallel workers.

16


	Introduction
	Background
	Method
	Cooperative regret as learning potential
	RACCOON
	Estimating partner regret

	Experimental set-up
	Results
	Discussion
	Related work
	Conclusion
	Alternative methods for estimating cooperative regret
	Additional experimental results
	Further curriculum analysis
	Single tasks

	Implementation details
	Environment details
	Agent architecture
	Hyperparameters
	Self-play partners
	Students

	Compute


