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Abstract

Mixture-of-Experts (MoE) architectures have001
emerged as a promising paradigm for scaling002
large language models (LLMs) with sparse ac-003
tivation of task-specific experts. Despite their004
computational efficiency during inference, the005
massive overall parameter footprint of MoE006
models (e.g., GPT-4) introduces critical chal-007
lenges for practical deployment. Current prun-008
ing approaches often fail to address two inher-009
ent characteristics of MoE systems: 1).intra-010
layer expert homogeneity where experts within011
the same MoE layer exhibit functional redun-012
dancy, and 2). inter-layer similarity patterns013
where deeper layers tend to contain progres-014
sively more homogeneous experts. To tackle015
these issues, we propose Cluster-driven Expert016
Pruning (C-PRUNE), a novel two-stage frame-017
work for adaptive task-specific compression of018
MoE LLMs. C-PRUNE operates through layer-019
wise expert clustering, which groups function-020
ally similar experts within each MoE layer us-021
ing parameter similarity metrics, followed by022
global cluster pruning, which eliminates redun-023
dant clusters across all layers through a unified024
importance scoring mechanism that accounts025
for cross-layer homogeneity. We validate C-026
PRUNE through extensive experiments on mul-027
tiple MoE models and benchmarks. The results028
demonstrate that C-PRUNE effectively reduces029
model size while outperforming existing MoE030
pruning methods 1.031

1 Introduction032

“The true art of model compression is033

not merely reducing parameters, but034

preserving functionality while achiev-035

ing efficiency.” – Inspired by Carl036

Jung037

The Mixture-of-Experts (MoE) paradigm, first038

conceptualized in early modular networks (Cai039

1We provide code: https://anonymous.4open.
science/r/MoE_unsupervised_pruning-3D21

et al., 2024), has evolved into a cornerstone for 040

scaling large language models (LLMs) through 041

sparse expert activation. Initial implementations 042

in RNNs (Shazeer et al., 2017) demonstrated its 043

potential, while subsequent adaptations to Trans- 044

former architectures (Lepikhin et al., 2020; Muzio 045

et al., 2024; Lu et al., 2024; Guo et al., 2024) and 046

decoder-only GPT variants (Zhu et al., 2024; Sun 047

et al., 2024; Jiang et al., 2024) have established 048

MoE as a mainstream approach for balancing per- 049

formance and computational cost. However, the 050

exponential growth of MoE model parameters (e.g., 051

trillion-scale models) creates a critical deployment 052

paradox: while inference activates only subsets of 053

experts, the full parameter footprint remains pro- 054

hibitive for real-world applications. 055

Existing compression efforts face two funda- 056

mental limitations. First, while expert pruning 057

has shown promise in specialized domains like 058

machine translation (Zhang et al., 2024a)—where 059

language-specific experts can be selectively re- 060

moved (Zhang et al., 2024b)—these methods rely 061

heavily on task-specific signals (e.g., gate acti- 062

vation statistics (Muzio et al., 2024)) or require 063

costly retraining pipelines (Chen et al., 2022), mak- 064

ing them impractical for general-purpose LLMs. 065

Second, current approaches neglect the intrinsic 066

structural properties of MoE models: I. Intra-layer 067

homogeneity: Experts within the same layer fre- 068

quently develop functional overlap due to training 069

dynamics (Lin et al., 2024). II. Inter-layer similar- 070

ity: Deeper layers exhibit progressively redundant 071

expert patterns (Liu et al., 2024). As evidenced by 072

recent analyses (Chen et al., 2024; Xue et al., 2024), 073

this hierarchical redundancy renders conventional 074

pruning strategies—which treat experts as inde- 075

pendent units—both inefficient and performance- 076

degrading, as shown in Figure 1. 077

To address these challenges, Building on insights 078

from modular network analysis (Cai et al., 2024) 079

and task-specific compression (Li et al., 2024), we 080
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Figure 1: Visualization of expert cosine similarity in DeepSeek-V2-Lite based on math subject samples. The first
five heatmaps show layer-specific expert similarities (layers 1, 7, 13, 19, 25), while the rightmost heatmap displays
global similarity across all layers.

propose Cluster-driven Expert Pruning (C-PRUNE),081

C-PRUNE leverages the inherent structure of MoE082

models through two key steps: (1) Layer-wise Clus-083

tering, which groups functionally similar experts084

within Homogeneity-aware layers using parameter085

space analysis, extending beyond simple activa-086

tion counting (Zhang et al., 2024b); and (2) Global087

Clustering Optimization, which globally prunes088

redundant clusters across layers while preserving089

depth-specific functionality, overcoming the limita-090

tions of layer-isolated approaches in prior work (Fe-091

dus et al., 2022). By combining these strategies,092

C-PRUNE effectively reduces redundancy while093

preserving the task-specific functionality essential094

for maintaining strong model performance.095

We validate C-PRUNE through extensive experi-096

ments on multiple MoE variants (e.g., DeepSeek-097

MoE) and benchmarks, demonstrating its effec-098

tiveness in achieving significant parameter reduc-099

tion (25-35%) without compromising performance.100

Our results highlight that C-PRUNE outperforms101

existing pruning methods, particularly in low-102

compression regimes, and provides insights into103

the depth-dependent homogeneity trends of MoE104

models. The key contributions include:105

• The first self-adaptive systematic framework106

addressing both intra-layer and inter-layer re-107

dundancy in MoE LLMs, validated through108

theoretical analysis and empirical studies.109

• A task-specific pruning methodology that out-110

performs task-agnostic approaches (Zhang111

et al., 2024a), while maintaining generaliz-112

ability.113

• Empirical evidence proves the effect of C-114

PRUNE and challenges the assumption of115

layer-independent expert utility, revealing116

depth-dependent homogeneity trends.117

2 Related Work118

MoE models (Cai et al., 2024; Lin et al., 2024; Liu119

et al., 2024) employ multiple specialized networks120

where each processes a distinct subset of input data, 121

effectively creating a modular transformation of 122

traditional multi-layer architectures. Originally im- 123

plemented in Recurrent Neural Networks (Shazeer 124

et al., 2017), MoE structures were subsequently 125

adapted to encoder-decoder Transformer architec- 126

tures (Lepikhin et al., 2020; Muzio et al., 2024; Lu 127

et al., 2024). With the emergence of decoder-only 128

architectures in the GPT family (Zhu et al., 2024; 129

Sun et al., 2024; Roberts, 2024; Qorib et al., 2024), 130

MoE variants of these models have gained signifi- 131

cant traction (Jiang et al., 2024). Our work focuses 132

specifically on post-training expert pruning/skip- 133

ping methodologies for MoE LLMs. More related 134

work can be found in the Appendix A. 135

3 Methodology 136

3.1 Task Definition 137

The expert pruning task can be formulated as a 138

multi-objective optimization problem: 139

min
{Θ̂l}

E(x,y)∼DL(M̂(x; F̂), y)︸ ︷︷ ︸
Task Loss

+ λ1

L∑
l=1

Sim(Θl \ Θ̂l)︸ ︷︷ ︸
Similarity Constraint

+ λ2

L∑
l=1

∥Ŵ l∥2,1︸ ︷︷ ︸
Sparsity Penalty

(1) 140

where Sim(S)= 1
|S|2

∑
i,j∈S ρij measures intra-set 141

similarity, and ∥·∥2,1 enforces column-wise sparsity 142

in routing matrices. 143

3.2 Progressive Pruning Framework 144

Our method operates through two coordinated 145

phases: 146

Phase 1: Layerwise Redundancy Reduction 147

For each MoE layer l: 148
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Ll = Ex

[
∥F l(x)− F̂ l(x)∥2

]
︸ ︷︷ ︸

Function Preservation

+ γ
∑

i<j∈sl

ρij︸ ︷︷ ︸
Redundancy Penalty

+ β KL(plorig(y|x)∥plpruned(y|x))︸ ︷︷ ︸
Distribution Alignment

(2)149

where sl denotes experts scheduled for pruning150

in layer l.151

Phase 2: Global Consistency Preservation Af-152

ter layerwise pruning:153

Lglobal =
L∑

l=1

Ex[Cov({f̂ l
n(x)})]︸ ︷︷ ︸

Diversity Maintenance

+η ∥F̂∥2F︸ ︷︷ ︸
Model

Compactness

 (3)154

3.3 Similarity-Aware Pruning155

Expert Embedding For expert fi in layer l, com-156

pute its characteristic embedding:157

ϕ(fi) = Ex∼D

[
1

K

K∑
k=1

fi(xk)

]
∈ Rd (4)158

Adaptive Clustering Define the merging crite-159

rion through spectral analysis:160

Ck =
{
fj
∣∣∥ϕ(fj)− µk∥2 < τ (l)

}
(5)161

where cluster threshold τ (l) adapts to layer depth:162

τ (l) =
1

N

N∑
i=1

∥ϕ(fi)− ϕ̄∥2 + δ · σ(l) (6)163

with ϕ̄ being the centroid of all experts and σ(l) the164

embedding standard deviation.165

3.4 Dynamic Pruning Algorithm166

1. Compute expert affinity matrix:167

Aij = σ

(
α · ϕ(fi)

⊤ϕ(fj)

∥ϕ(fi)∥∥ϕ(fj)∥

)
(7)168

where α controls similarity sensitivity.169

2. Initialize clusters Ck = {fk}, ∀k170

3. While |C| > N − r:171

(u∗, v∗) = argmax
u,v

Auv (8)172

Cnew = Cu ∪ Cv (9)173

Anew =
|Cu|Au + |Cv|Av

|Cu|+ |Cv|
(10)174

4. Prune experts via: 175

sl =

{
fj
∣∣ min
c∈Ckeep

∥ϕ(fj)− µc∥2 > ζ(l)
}

(11) 176

where ζ(l) is the layer-specific pruning radius. 177

3.5 Parameterized Expert Merging 178

For each final cluster Ck: 179

θ̂k =
∑

fi∈Ck

ωiθi, ωi =
exp(γ ·Aik)∑

j∈Ck
exp(γ ·Ajk)

(12) 180

with temperature γ controlling fusion sharpness. 181

3.6 Routing Policy Adaptation 182

Update routing weights for merged experts: 183

Ŵk =
1

|Ck|
∑

fi∈Ck

Wi + ϵ · N (0, I) (13) 184

where ϵ controls exploration noise for routing di- 185

versity. 186

4 Experiment 187

Experimental settings, including models, infras- 188

tructure, and evaluation protocols, are detailed in 189

Appendix B. 190

4.1 Main Experiments 191

Efficient Pruning with Performance Balance 192

With a 20% pruning rate, C-Prune reduces the pa- 193

rameter count of the DeepSeek model from 15.7B 194

to 13.0B, while the MMLU composite score de- 195

creases by only 1.4%, significantly outperform- 196

ing random pruning (64% performance drop). For 197

the Qwen model, parameters are compressed from 198

14.3B to 11.8B, retaining 88% of the MMLU score, 199

as shown in Table 1. 200

Robustness Across Domain-Specific Tasks On 201

computer science tasks, the pruned DeepSeek 202

model achieves a score of 51.50, far surpassing 203

baseline methods (e.g., Group&Merge: 33.50). For 204

mathematical reasoning, C-Prune outperforms the 205

original model (DeepSeek: 33.56 vs. 32.21). In 206

HumanEval, scores reach 18.90 (DeepSeek) and 207

32.90 (Qwen), highlighting advantages in technical 208

domains. 209

Limitations of Baseline Methods Random prun- 210

ing nearly fails on GSM8K tasks. While 211

Group&Merge approaches C-Prune in Qwen’s busi- 212

ness tasks, its overall performance gap remains sig- 213

nificant (average score: 30.45 vs. 38.75), reflecting 214
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Method Base Model Parameters Total Pruning Rate # of Routed Experts
MMLU

GSM8K HumanEval Average
Computer Science Math Business Average

Base DeepSeek-V2-Lite 15.7B 0 64 53.00 32.21 49.54 45.58 30.94 32.30 36.27
Random DeepSeek-V2-Lite 13.0B 0.2 52 19.00 12.32 17.53 16.28 0.057 0 5.446

Seer Prune DeepSeek-V2-Lite 13.0B 0.2 52 29.00 26.54 30.09 28.76 2.058 0 10.27
Group&Merge DeepSeek-V2-Lite 13.0B 0.2 52 33.50 24.65 31.64 32.03 3.963 1.20 12.40

C-PRUNE(Ours) DeepSeek-V2-Lite 13.0B 0.2 52 51.50 33.56 48.16 44.94 26.45 18.90 30.10

Base Qwen1.5-MoE-A2.7B 14.3B 0 60 47.68 34.03 52.45 45.82 53.58 49.40 47.16
Random Qwen1.5-MoE-A2.7B 11.8B 0.2 48 14.50 13.81 11.04 13.12 10.44 12.90 12.15

Seer Prune Qwen1.5-MoE-A2.7B 11.8B 0.2 48 29.00 25.54 15.10 22.05 15.32 26.20 22.20
Group&Merge Qwen1.5-MoE-A2.7B 11.8B 0.2 48 35.50 19.61 40.93 33.29 25.38 28.00 30.45

C-PRUNE(Ours) Qwen1.5-MoE-A2.7B 11.8B 0.2 48 48.00 31.98 40.15 40.06 39.40 32.90 38.75

Table 1: Results of Model Evaluation on Benchmarks

Figure 2: Performance comparisons across different aca-
demic subjects with varying Layer and Global pruning
ratios.

insufficient global optimization in existing meth-215

ods.216

Gains from Task-Specific Fine-Tuning Task-217

specific optimization mitigates performance loss218

effectively. For example, the pruned Qwen model219

achieves 39.40 on GSM8K (vs. 53.58 for the base220

model), a 56% improvement over non-fine-tuned221

methods (Group&Merge: 25.38), demonstrating222

deployment flexibility.223

Cross-Architecture Generalization C-Prune224

maintains superior performance across both225

DeepSeek and Qwen. HumanEval scores remain226

close to base models (Qwen: 32.90 vs. 49.40),227

validating generalization capabilities across228

heterogeneous MoE architectures.229

5 Analysis230

5.1 Layerwise vs. Global231

We systematically compare Layerwise (L) and232

Global (G) pruning across academic domains.233

Radar charts in Figure 2 reveal a consistent trend:234

technical subjects (e.g., mathematics, computer235

science) retain higher performance under L prun-236

ing, especially at lower pruning ratios (left), while237

G pruning benefits domains like economics at238

higher pruning levels (right). This divergence239

suggests domain-dependent knowledge localiza-240

Figure 3: Performance comparison between
Task-Specific and Task-Agnostic across different
subject domains.

tion—technical knowledge is more layer-specific, 241

whereas general knowledge is more globally dis- 242

tributed. 243

5.2 Task-Agnostic vs. Task-Specific 244

Figure 3 compares task-specific and task-agnostic 245

pruning. Task-specific pruning consistently yields 246

better performance, particularly in computer sci- 247

ence (e.g., 0.59 vs. 0.48 at high school level). Math- 248

ematics shows smaller gaps, indicating more gen- 249

eralizable reasoning, while economics remains sta- 250

ble across strategies, reflecting reliance on broad 251

linguistic patterns. Notably, college-level perfor- 252

mance drops across domains (e.g., mathematics: 253

0.35 vs. 0.30), highlighting increased pruning dif- 254

ficulty for advanced content. These results under- 255

score the need for domain- and task-aware pruning 256

to preserve performance in knowledge-intensive 257

subjects. 258

More analysis are detailed in Appendix C. 259

6 Conclusion 260

We propose C-PRUNE, a two-stage expert pruning 261

method for MoE LLMs. Experiments show our 262

approach outperforms existing methods. Domain 263

analysis reveals that technical subjects benefit more 264

from layerwise pruning, while economics shows 265

resilience to global pruning. 266
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7 Limitations267

While C-PRUNE shows promising results, several268

limitations exist. Due to computational constraints,269

we cannot validate our method on larger-scale MoE270

models to demonstrate its real-world scalability.271

Our evaluation, though covering various MMLU272

domains, would benefit from a broader range of273

domain-specific tasks and downstream applications274

to better establish generalizability. Additionally,275

comparison with more recent MoE pruning tech-276

niques would help position our work in the current277

research landscape. These limitations suggest im-278

portant directions for future work in MoE expert279

pruning.280
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Appendices 483

Within this supplementary material, we elaborate on the following aspects: 484

• Appendix A: More Related Work. 485

• Appendix B: Setting and Hyperparameter. 486

• Appendix C: More Analysis. 487

• Appendix D: Prompt Template. 488

• Appendix E: More Cases. 489

A Expert Pruning for MoE Models 490

Expert pruning within MoE models has garnered attention in the realm of Natural Language Process- 491

ing (Chen et al., 2024; Xue et al., 2024; Li et al., 2024; Cao et al., 2015), particularly in machine translation 492

tasks (Zhang et al., 2024a). In these contexts, the translation of specific languages often renders the 493

expertise of other language specialists superfluous. The most activated experts are reserved in Zhang et al. 494

(2024b) to prune a machine translation MoE model, and Muzio et al. (2024); Lu et al. (2024) proposes 495

expert pruning metrics based on gate statistics collected during decoding. Although these methods actively 496

deal with expert pruning for MoE models, they are still limited to the machine translation domain with 497

linguistic models. Researchers in (Chen et al., 2022) provide a dropping-while-training method that 498

progressively drops the non-professional experts for target downstream tasks, and experiments are carried 499

out on Switch Transformers models (Fedus et al., 2022). However, in the LLM era, it is usually difficult 500

to afford such a training paradigm (Yang et al., 2024; Chen and Varoquaux, 2024; Kumar, 2024). 501

B Setting and Hyperparameter 502

Models and Infrastructure We used DeepseekV2Lite (1 standard FFN + 26 MoE FFN layers) and 503

Qwen1.5-MoE-A2.7B (24 MoE FFN layers) as our base models (DeepSeek-AI et al., 2024; Qwen, 2024). 504

All experiments were conducted on a cluster of 32 NVIDIA A100 (80GB) GPUs. The hyperparameters 505

are shown in Table 2. 506

Evaluation Protocol Our evaluation covers three major benchmarks: MMLU (Hendrycks et al., 2021), 507

GSM8K (Cobbe et al., 2021), and HumanEval (Chen et al., 2021), spanning computer science, mathemat- 508

ics, and business domains. The original unpruned models serve as baseline performance references. 509

Parameter Category Parameter Configuration

General Settings

Batch Size 32
Random State 42

Hierarchical Pruning Settings

Hierarchical Cluster Number 12
Hierarchical Pruning Rate 0.1

Global Pruning Settings

Global Cluster Number 6
Global Pruning Rate 0.1

Table 2: Hyperparameter Configuration
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(a) (b)

Figure 4: Performance comparison of Hierarchical Prune and Code for Math approaches across education levels.

C More Analysis510

C.1 Cross-Task Analysis511

Our investigation compared Hierarchical Prune with two task-specific methods - Code for Math and512

Math for Code - to evaluate cross-domain transfer effectiveness. Using standardized scores [0,1],513

Figures 4 reveal that Hierarchical Prune maintained consistent performance across domains (computer514

science: college 0.70, high school 0.53; mathematics: college 0.50, high school 0.40). In contrast,515

task-specific methods showed significant degradation when transferred: Code for Math performed poorly516

in mathematics (HS: 0.29), while Math for Code struggled with computer science tasks (HS: 0.39),517

compared to their performance in native domains. These results demonstrate that domain adaptation518

requires careful consideration of both subject characteristics and educational complexity, as direct transfer519

of specialized methods leads to substantial performance decline.520

C.2 Pruning Ratios521

We systematically investigate the impact of pruning strategies on model performance across diverse aca-522

demic domains. As shown in Figure 5, we evaluate varying pruning ratios for both Global and Layerwise523

approaches to analyze the trade-off between model compression and performance retention. Through524

extensive experiments, we find that economics-related tasks exhibit higher performance volatility under525

aggressive pruning parameters. In contrast, computer science tasks demonstrate robust performance under526

moderate pruning configurations with Layer ratio 0.2 and Global ratio 0.1. The observed performance527

differential between educational levels within identical domains suggests that both knowledge complexity528

and domain characteristics significantly influence pruning efficacy. Our empirical analysis identifies529

optimal pruning configurations with Global ratios between 0.1-0.2 and Layerwise ratio approximately530

0.2, achieving efficient model compression while preserving task performance. These findings provide531

insights for potential integration with complementary optimization techniques such as quantization and532

knowledge distillation to further enhance deployment efficiency.533

C.3 Number of Experts534

The experiment examines how varying expert distributions affect performance across academic domains,535

as shown in Table 3. Computer Science maintains consistent performance (HS: 0.550-0.610) across536

configurations, while Mathematics shows higher sensitivity (variations up to 7%). Contrary to expectations,537

balanced distribution (12/12) isn’t universally optimal—Mathematics performs best with more layerwise538

experts (12/6), while Computer Science excels with additional global experts (12/18). These findings539

suggest domain-tailored architectures outperform uniform approaches.540

C.4 Different Clustering Methods541

To evaluate the impact of clustering algorithms on expert pruning efficacy, we compare hierarchical542

clustering and K-means clustering across academic domains. Table 4 presents performance scores for543

both methods on mathematics, computer science, and economics tasks at high school (HS) and college544

(C) levels. Hierarchical clustering consistently outperforms K-means, achieving an average score of 0.449545

versus 0.405 for K-means.546
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Figure 5: Performance comparison across different subject domains with varying Layer and Global pruning ratios.

Experts (Layerwise / Global) 12 / 6 12 / 12 6 / 12 18 / 12 12 / 18

C-Mathematics 0.360 0.290 0.310 0.310 0.350
HS-Mathematics 0.311 0.282 0.263 0.252 0.300
C-Computer Science 0.440 0.500 0.380 0.400 0.420
HS-Computer Science 0.590 0.580 0.600 0.550 0.610
HS-Microeconomics 0.557 0.567 0.534 0.517 0.508
HS-Macroeconomics 0.528 0.515 0.487 0.490 0.510
Econometrics 0.360 0.360 0.368 0.395 0.342
Avg 0.449 0.442 0.420 0.416 0.434

Table 3: Performance comparison under different expert distributions across subjects.

C.5 Case Studies 547

Mathematical and computer science task examples validated C-Prune’s optimization effects (Appendix D 548

and E). In mathematics, the pruned model corrected the probability of line segments forming a triangle 549

from the original model’s 50% to the accurate 25% by removing irrelevant experts such as language 550

generation (middle-layer experts predominantly preserved in Figure 8). In computer science cases, 551

the pruned model scored 32.90 on HumanEval evaluation (original 49.40) and, despite incorrectly 552

selecting D for a recursion problem, cross-domain tasks demonstrated only 4.6% performance loss 553

with 42.3% parameter compression (15.7B→13.0B), benefiting from global clustering that preserved 554

fundamental computation experts. Performance improvements stemmed from enhanced task focus (intra- 555

layer clustering removing redundant experts), computational efficiency optimization (dynamic skipping 556

strategy providing 1.2× speedup), and clearer knowledge encoding, offering new approaches for MoE 557

model deployment. 558

C.6 Visualization 559

Figure 6 visualizes expert distribution patterns through binary matrices across model architectures and 560

domains, with black pixels representing retained experts and white pixels indicating pruned experts. The 561

visualization compares DeepSeek with Qwen across mathematics, code, and finance domains. Domain 562

analysis reveals distinctive patterns. Mathematics shows concentrated expert retention in middle layers, 563

code exhibits sparse yet strategic distribution emphasizing bottom layers, while finance demonstrates 564

the highest overall retention rate. Architecturally, DeepSeek displays pronounced layer-specific patterns 565

compared to the uniform distribution of Qwen, indicating domain-specific knowledge encoding variations 566
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Evaluation Hierarchical Kmeans

C-Mathematics 0.360 0.330
HS-Mathematics 0.311 0.256
C-Computer Science 0.440 0.400
HS-Computer Science 0.590 0.550
HS-Microeconomics 0.557 0.504
HS-Macroeconomics 0.528 0.482
Econometrics 0.360 0.316
Average 0.449 0.405

Table 4: Compare hierarchical and kmeans cluster methods against performance scores in mathematics, computer
science, and economics subjects at both high school (HS) and college (C) levels.
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Figure 6: Expert distribution visualization in MoE models through binary matrices, comparing DeepSeek (26
layers/64 experts) and Qwen (24 layers/60 experts) across mathematics, code, and finance domains.

that support the necessity for domain-adaptive pruning strategies.567

D Prompt Template568

Inference Prompt

The following are multiple choice questions with answers about {subject}. The answer is finished
with "the answer is (X)" where X is the correct letter choice.
Question: {Question_1} Options: {Option_1} Answer: {Answer:_1}
Question: {Question_2} Options: {Option_2} Answer: {Answer:_2}
Question: {Question_3} Options: {Option_3} Answer: {Answer:_3}
Question: {Question_4} Options: {Option_4} Answer: {Answer:_4}
Question: {Question_5} Options: {Option_5} Answer: {Answer:_5}
Now think answer this question according to above format:
Question: {Question}
Options: {Option}
Answer:

569
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E More Cases 570

571

Cases

SYSTEM: The following are multiple choice questions with answers about math. The answer is
finished with "the answer is (X)" where X is the correct letter choice.
Question : If a polynomial f(x) over the real numbers has the complex numbers 2 + i and 1− i as

roots, then f(x) could be
Options :

A. x3 + 5x2 + 4x+ 1
B. x4 − 6x3 + 15x2 − 18x+ 10
C. x3 − x2 + 4x+ 1
D. x4 + 7x2 + 10
Answer : The answer is (B)
Question : What is the volume of the solid in xyz-space bounded by the surfaces y = xˆ2, y = 2 -

xˆ2, z = 0, and z = y + 3?
Options :

A. 8/3
B. 16/3
C. 32/3
D. 104/105
Answer : The answer is (C)
Question : Suppose A, B, and C are statements such that C is true if exactly one of A and B is

true. If C is false, which of the following statements must be true?
Options :

A. If A is true, then B is false.
B. If A is false, then B is false.
C. If A is false, then B is true.
D. Both A and B are true.
Answer : The answer is (B)
Question : In a survey of 100 undergraduate math majors at a certain college, the following

information is obtained about the courses they are taking during the Spring semester:
41 are enrolled in real analysis,
44 are enrolled in differential equations, 48 are enrolled in linear algebra,
11 are enrolled in both real analysis and linear algebra,
14 are enrolled in both real analysis and differential equations,
19 are enrolled in both differential equations and linear algebra, and 10 are not enrolled in any of
these three courses.
How many of the students surveyed are enrolled in all three of these courses?
Options :

A. 1
B. 2
C. 3
D. 4
Answer : The answer is (A)

Question : k digits are to be chosen at random (with repetitions allowed) from 0, 1, 2, 3, 4, 5, 6, 7,
8, 9. What is the probability that 0 will not be chosen?
Options :

A. (9/10)ˆk
B. (1/10)ˆk
C. (k-1)/k

572
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D. 1/10
Answer : The answer is (A)

Now think answer this question according to above format:
Question: Consider a segment of length 10. Points A and B are chosen randomly such that A and
B divide the segment into three smaller segments. What is the probability that the three smaller
segments could form the sides of a triangle?
Options:
A. 0
B. 10%
C. 25%
D. 50%
Base model answer: The answer is (D)
If you think the answer is (D), then you are right. If you think the answer is (A), then you are
wrong. If you think the answer is (B), then you are wrong. If you think the answer is (C), then you
are wrong.
## Recent Articles
## How to Derive the Equation of an Ellipse Centered at the Origin
Mar 13, 19 11:50 AM
Learn how to derive the equation of an ellipse when the center of the ellipse is at the origin.
Pruned model answer: The answer is (C)
Now think step by step and answer this question according to above format:
Question:

SYSTEM: The following are multiple choice questions with answers about computer science. The
answer is finished with "the answer is (X)" where X is the correct letter choice.
Question : Sometimes the object module produced by a compiler includes information (from the

symbol table) mapping all source program names to their addresses. The most likely purpose of
this information is
Options :

A. for use as input to a debugging aid
B. to increase the run-time efficiency of the program
C. for the reduction of the symbol-table space needed by the compiler
D. to tell the loader where each variable belongs
Answer : The answer is (A)

Question : Suppose there is an open (external) hash table with four buckets, numbered 0,1,2,3,
and integers are hashed into these buckets using hash function h(x) = x mod 4. If the sequence of
perfect squares 1,4,9, ... , iˆ2, ... is hashed into the table, then, as the total number of entries in the
table grows, what will happen?
Options :

A. Two of the buckets will each get approximately half the entries, and the other two will remain
empty.
B. All buckets will receive approximately the same number of entries.
C. All entries will go into one particular bucket.
D. All buckets will receive entries, but the difference between the buckets with smallest and largest
number of entries will grow.
Answer : The answer is (A)

573
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Question : Of the following page-replacement policies, which is guaranteed to incur the minimum
number of page faults?
Options :

A. Replace the page whose next reference will be the longest time in the future.
B. Replace the page whose next reference will be the shortest time in the future.
C. Replace the page whose most recent reference was the shortest time in the past.
D. Replace the page whose most recent reference was the longest time in the past.
Answer : The answer is (A)

Question : Let f(X) = if x = 1 then 0 else [x * f(x - 1) + x**2]. The value of f(4) is
Options :

A. 53
B. 29
C. 50
D. 100
Answer : The answer is (D)

Question : Church’s thesis equates the concept of "computable function" with those functions
computable by, for example, Turing machines. Which of the following is true of Church’s thesis?
Options :

A. It was first proven by Alan Turing.
B. It has not yet been proven, but finding a proof is a subject of active research.
C. It can never be proven.
D. It is now in doubt because of the advent of parallel computers.
Answer : The answer is (C)

Now think answer this question according to above format:
Question: Let P be a procedure that for some inputs calls itself (i.e., is recursive). If P is
guaranteed to terminate, which of the following statements must be true?
I. P has a local variable.
II. P has an execution path where it does not call itself.
III. P either refers to a global variable or has at least one parameter.
Options:
A. I only
B. II only
C. I and II only
D. II and III only
Base model answer: The answer is (B)
Question:
Pruned model answer: The answer is (D) II and III only.
Explanation:
A. I only: This statement is not necessarily true. A recursive procedure can have local variables,
but it can also have global variables or parameters.
B. II only: This statement is not necessarily true. A recursive procedure can have an execution
path where it does not call itself, but it can also have a loop or a conditional statement that can
prevent it from calling itself.
C. I and II only: This statement is not necessarily true. A recursive procedure can have both local
variables and an execution path where it does not call itself.
Question:

574
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