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Abstract
The ideas of aleatoric and epistemic uncertainty
are widely used to reason about the probabilistic
predictions of machine-learning models. We iden-
tify incoherence in existing discussions of these
ideas and suggest this stems from the aleatoric-
epistemic view being insufficiently expressive to
capture all the distinct quantities that researchers
are interested in. To address this we present a
decision-theoretic perspective that relates rigor-
ous notions of uncertainty, predictive performance
and statistical dispersion in data. This serves to
support clearer thinking as the field moves for-
ward. Additionally we provide insights into popu-
lar information-theoretic quantities, showing they
can be poor estimators of what they are often pur-
ported to measure, while also explaining how they
can still be useful in guiding data acquisition.

1. Introduction
When making decisions under uncertainty, it can be useful
to reason about where that uncertainty comes from (Osband
et al, 2023; Wen et al, 2022). Researchers commonly refer to
the ideas of aleatoric (literal meaning: “relating to chance”)
and epistemic (“relating to knowledge”) uncertainty, which
have a long history in the study of probability (Hacking,
1975). Aleatoric uncertainty is typically associated with
statistical dispersion in data (sometimes thought of as noise),
while epistemic is associated with the internal information
state of a model (Hüllermeier & Waegeman, 2021).

Concerningly given their scale of use, these ideas are not be-
ing discussed coherently in the literature. The line between
model-based predictions and data-generating processes is re-
peatedly blurred (Amini et al, 2020; Ayhan & Berens, 2018;
Immer et al, 2021; Kapoor et al, 2022; Smith & Gal, 2018;
van Amersfoort et al, 2020). On top of this, tenuous as-
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sumptions are made about how uncertainty will decompose
on unseen data (Seeböck et al, 2019; Wang & Aitchison,
2021), and misleading connections are drawn between un-
certainty and predictive accuracy (Orlando et al, 2019; Wang
et al, 2019). Meanwhile distinct mathematical quantities
are used to refer to notionally the same concepts: epistemic
uncertainty, for example, has been variously defined us-
ing density-based (Mukhoti et al, 2023; Postels et al, 2020),
information-based (Gal et al, 2017) and variance-based (Gal,
2016; Kendall & Gal, 2017; McAllister, 2016) quantities.

We suggest this incoherence arises from the aleatoric-
epistemic view being too simplistic in the context of ma-
chine learning. Researchers are looking for concrete notions
of a model’s predictive uncertainty and how that uncertainty
might or might not change with more data (associated with a
decomposition into irreducible and reducible components),
but also related notions of predictive performance and data
dispersion. The aleatoric-epistemic view cannot satisfy all
these needs: many concepts stand to be defined, while the
view fundamentally only has capacity for two concepts. Yet
the current state of play is to nevertheless appeal to the
aleatoric-epistemic view, with different researchers using it
in different ways. A result of this conceptual overloading
is to conflate quantities that ought to be recognised as dis-
tinct. Far from just a matter of semantics, this is having a
meaningful effect on the field’s progress: methods are being
designed and evaluated based on shaky foundations.

To establish a clearer perspective, we draw on powerful
yet underappreciated ideas from decision theory (Dawid,
1998; DeGroot, 1962; Neiswanger et al, 2022). Our start-
ing point is a final decision of interest with an associated
loss function. Given this, uncertainty in predictive beliefs
can be formalised as the subjective expected loss of acting
Bayes-optimally under those beliefs; this generalises quan-
tities like variance and entropy. From there we show how
reasoning about new data gives rise to a notion of expected
uncertainty reduction, which we can use to identify a de-
composition of uncertainty into irreducible and reducible
components. Then we clarify the connection between uncer-
tainty, predictive performance and data dispersion, linking
to classic decompositions from statistics and information
theory. Overall this provides a coherent synthesis of key
quantities that researchers are interested in (Figure 1).
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Decision problem
ℓ : A × Z → R

Training data
y1:n ∼ ptrain(y1:n|π)

Predictive model
pn(z) = p(z; y1:n)

Bayes-optimal action
a∗

n = arg mina∈A Epn(z)[ℓ(a, z)]

Predictive uncertainty
h[pn(z)] = Epn(z)[ℓ(a∗

n, z)]
Expected uncertainty reduction

EURtrue
z (π, m) = h[pn(z)] − E

ptrain(y+
1:m|π)[h[pn+m(z)]]

≈ h[pn(z)] − E
pn(y+

1:m|π)[h[qn+m(z)]]

Uncertainty

Proper scoring rule
s(pn, z) = ℓ(a∗

n, z)
Discrepancy function
d(pn, peval) = Epeval(z)[s(pn, z)] − h[peval(z)]

Evaluation

Learning Reasoning

Figure 1 Our decision-theoretic view allows us to disentangle machine-learning concepts that have been conflated under the aleatoric-
epistemic view. We consider taking an action, a ∈ A, in light of imperfect knowledge of z ∈ Z , with an action’s consequences measured
by a loss function, ℓ(a, z). Since z is unknown, we use any available training data, y1:n, to build a predictive model, pn(z), with which
we can reason over possible values of z and thus choose an action. We can also perform purely subjective reasoning to quantify various
notions of model-based uncertainty, or evaluate the model using a ground-truth value of z or a reference distribution, peval(z).

Bridging this generalised perspective back to how aleatoric
and epistemic uncertainty have been discussed in past work,
we provide new insights on BALD, a popular information-
theoretic objective for data acquisition (Gal et al, 2017;
Houlsby et al, 2011; Lindley, 1956). In particular we high-
light that it should be seen not as a direct measure of long-
run reducible predictive uncertainty, as has been suggested
in the past, but instead as an estimator that can be highly
inaccurate. Reconciling this with BALD’s practical utility,
we suggest it is often better understood as approximately
measuring short-run reductions in parameter uncertainty. It
can therefore be useful, albeit still suboptimal in prediction-
oriented settings (Bickford Smith et al, 2023; 2024).

Our work thus serves to inform future work in two key ways.
On the one hand it sheds light on the contradictions of the
aleatoric-epistemic view and presents a coherent alternative
perspective that allows clearer thinking about uncertainty in
machine learning. On the other hand it provides more direct
practical insights. It clarifies that what might have seemed
like arbitrary choices for a decision-maker can instead be
made by following well-defined logic: given some basic
components and principles, it becomes clear how we should
measure predictive uncertainty, how to assess models using
reference systems and how to identify good future training
data. It also highlights approximations that often have to
be made in practice, revealing scope for suboptimal perfor-
mance and therefore informing future methods research.

2. Background
The broad idea of the aleatoric-epistemic decomposition is
to distinguish between different sources of uncertainty. If
a model’s prediction is uncertain, we might want to know

whether that prediction is fundamentally uncertain for the
given model class or instead due to a lack of data. This
breakdown has clear utility in the context of seeking new
data that will reduce predictive uncertainty (Bickford Smith
et al, 2023; 2024; MacKay, 1992a;b). But it is also relevant
elsewhere: in model selection, for example, we might want
to quantify a model’s scope for improvement by forecasting
how its predictions will change given more data (Barbieri
& Berger, 2004; Fong & Holmes, 2020; Geisser & Eddy,
1979; Kadane & Lazar, 2004; Laud & Ibrahim, 1995).

Uncertainty that resolves in light of new data can be thought
of as “epistemic” in the sense that data conveys knowledge.
Intuitively the corresponding irreducible uncertainty seems
to be determined by not only the model class but also, among
other things, an “inherent” level of uncertainty associated
with the data source at hand, which is often thought of in
terms of randomness or chance, hence the word “aleatoric”.

While the concepts of aleatoric and epistemic uncertainty
had previously been used in machine learning, for example
by Lawrence (2012) and Senge et al (2014), their popular-
ity grew following work by Gal (2016), Gal et al (2017)
and Kendall & Gal (2017). The most widely used math-
ematical definitions of these ideas, which we will discuss
in Section 4, are the information-theoretic quantities used
by Gal et al (2017), building on earlier work on Bayesian
experimental design (Lindley, 1956) and Bayesian active
learning (Houlsby et al, 2011; MacKay, 1992a;b).

A range of perspectives on aleatoric and epistemic uncer-
tainty in machine learning have been put forward in recent
years. These include a discussion of where uncertainty
comes from in machine learning (Gruber et al, 2023); a
case against Shannon entropy for notions of predictive un-
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certainty (Wimmer et al, 2023); proposals for using alter-
native information-theoretic quantities (Schweighofer et al,
2023a;b; 2024); and various other suggestions for how to de-
fine uncertainty, such as in terms of frequentist risk (Lahlou
et al, 2023), class-wise variance (Sale et al, 2023b; 2024b),
credal sets (Hofman et al, 2024a; Sale et al, 2023a), dis-
tances between probability distributions (Sale et al, 2024a)
and proper scoring rules (Hofman et al, 2024b). As we
will show, our replacement for the aleatoric-epistemic view
unifies and explains many of the ideas in this recent work.

3. Key concepts
Our aim in this work is to formalise and unify quantities
that have been associated with the ideas of aleatoric and
epistemic uncertainty in past work. In particular we look
to identify a rigorous notion of predictive uncertainty and
the extent to which it reduces as more data is observed, and
also measures of predictive performance and statistical dis-
persion in data. We start by highlighting some foundational
concepts that will be used throughout our discussion.

3.1. Reasoning should start with the decision of interest

We consider taking an action, a ∈ A, under imperfect knowl-
edge of a ground-truth variable, z ∈ Z . Here z could for
example be an output relating to a given input (if so, the in-
put is left implicit in our notation) or a parameter in a model,
and a could be a direct prediction of z, with A = Z for point
prediction, or A = P(Z) for probabilistic prediction. We
emphasise our choice to focus on this decision, in deliberate
contrast with the more common starting point of learning a
model from fixed data. We want a notion of predictive un-
certainty that is grounded in actions and their consequences,
and we need to reason about different possible datasets to
rigorously think about reductions in uncertainty.

3.2. Actions induce losses that reflect preferences

We assume we can measure the consequences of taking
action a in light of a realisation of z using a loss (or neg-
ative utility) function, ℓ : A × Z → R. In principle the
specification of ℓ follows directly from having preferences
that satisfy basic axioms of rationality (von Neumann &
Morgenstern, 1947). In practice it can be hard to know what
ℓ should be; options for dealing with this include using an
intrinsic loss or a random loss (Robert, 1996; 2007).

3.3. Subjective expected loss enables decision-making

Since ℓ is a function of the unknown z, it cannot be used
directly as an objective for selecting an action, a. A prin-
cipled solution that we focus on here is to form subjective
beliefs over possible values of z (conventionally this be-
lief state would be a Bayesian prior or posterior), average
over these to form an expected loss, then choose an action

that minimises this subjective expected loss (Ramsey, 1926;
Savage, 1951). Alternative approaches to decision-making
include minimax (von Neumann, 1928; Wald, 1949), which
involves acting so as to minimise the worst-case loss.

3.4. Machine learning allows data-driven prediction

Minimising subjective expected loss requires beliefs over z,
and those beliefs can often be informed by some training
data, y1:n ∼ ptrain(y1:n|π), where π ∈ Π is a policy that
controls aspects of data generation. We want notions of
uncertainty that reflect how we will actually learn from data,
rather than assuming idealised updates that we cannot per-
form in practice. We therefore define our predictive beliefs,
pn(z) = p(z; y1:n), to be the output of a generic machine-
learning method applied to the training data (and the input
of interest if there is one) for any given n, which lets us
reason about actual changes in uncertainty as n varies. Con-
ventional Bayesian inference—taking a generative model
over possible data and conditioning on the observed data,
giving pn(z) = p(z|y1:n)—is one possible update method.
Others include deep learning (LeCun et al, 2015), in-context
learning (Brown et al, 2020) and non-Bayesian ensemble
methods (Breiman, 2001). In some cases the predictive
distribution is defined as pn(z) = Epn(θ)[pn(z|θ)] where
θ ∼ pn(θ) = p(θ; y1:n) represents a set of stochastic pa-
rameters that we average over at prediction time.

If the model-updating scheme is itself stochastic, we take
the convention that this stochasticity is implicitly absorbed
into y1:n. This is because we can mathematically consider
our machine-learning method to take in both the training
data and a random-number seed, from which the model up-
date is a deterministic mapping. Thus, while randomness in
training is an important source of variability in how uncer-
tainty can reduce, this variability can be dealt with as part
of the variability already present in what data we observe.

3.5. Bayes optimality is a subjective notion

An action taken by minimising subjective expected loss
under pn(z) is referred to as Bayes optimal (Murphy, 2022);
if the action is an estimator of some quantity of interest
then it is known as a Bayes estimator. The notion of Bayes
optimality assumes our beliefs, pn(z), represent our best
knowledge of z, and ℓ reflects our preferences. It says
nothing at all about how well our beliefs match reality, or
about the actions we would take if we had different beliefs.
Bayes-optimal actions can therefore be suboptimal as judged
using realisations of z from somewhere other than pn(z),
such as a system serving as a source of ground truth.

3.6. Predictions often do not match data generation

The correspondence between our predictions, pn(z), and
the data-generating process, ptrain(yi|π(y<i), y<i), can be
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“captures noise inherent in the observations”
H[ptrain(yi|π(y<i), y<i)] or H[peval(z)]

“cannot be reduced even if more data were
to be collected”
H[p∞(z)]

Expected conditional predictive entropy
Epn(θ)[H[pn(z|θ)]]

1

2

3

Aleatoric uncertainty

“uncertainty in the model parameters”
H[pn(θ)]

“can be explained away given enough data”
H[pn(z)] − H[p∞(z)]

Expected information gain in the parameters
H[pn(z)] − Epn(θ)[H[pn(z|θ)]]

1

2

3

Epistemic uncertainty

Figure 2 A popular view on aleatoric and epistemic uncertainty in machine learning attaches multiple mathematical quantities to each
of the two concepts, rendering it incoherent and thus a likely source of conflations in the literature. Some of these quantities can coincide
in particular cases but in the general case they are distinct. The quotations here are from Kendall & Gal (2017) and have been expressed
mathematically as explicit information-theoretic quantities. The interpretation of Equation 1 is due to Gal (2016) and Gal et al (2017).

weak. One basic reason for this is that they might be defined
over different event spaces. We could for example have
yi ̸∈ Z: perhaps we want to predict a coin’s bias based on
outcomes of coin tosses, or we want to predict a variable in
one domain (eg, vision) based on data from another domain
(eg, text). Even if that is not the case, pn(z) is a reflection
of assumptions and design decisions based on incomplete
knowledge (Box, 1976; Kleijn & van der Vaart, 2006), and
there is no general guarantee that it will match reality.

3.7. Reference systems allow grounded evaluation

Because we expect pn(z) to be imperfect, we typically want
to evaluate it against a reference system, peval(z), which
could for example be a computer program, a human expert
or a physical sensor. It is common in machine learning to
evaluate models using an estimator of the frequentist risk
(Berger, 1985), such as the mean squared error on finite data
sampled from peval(z). Notably peval(z) could itself be
imperfect (Fluri et al, 2023), so care is needed in designing
and interpreting evaluations using reference systems.

4. Assessing a popular view
Having outlined intuitive descriptions of aleatoric and epis-
temic uncertainty and their motivation in Section 2, we
turn to how they have been formalised in machine learning.
Aleatoric and epistemic uncertainty are often thought of as
additive components of predictive uncertainty. A popular
way to formalise this for models with stochastic parameters,
θ, is to relate three information-theoretic quantities:

EIGθ︸ ︷︷ ︸
“epistemic”

= H[pn(z)]︸ ︷︷ ︸
“total”

−Epn(θ)[H[pn(z|θ)]]︸ ︷︷ ︸
“aleatoric”

(1)

where H denotes Shannon entropy and EIGθ, also known
as the BALD score (Houlsby et al, 2011), is the expected
information gain in θ from observing z. Gal (2016) stated
the “total = aleatoric + epistemic” relationship and the cor-
respondence between pn(z) and total uncertainty, while Gal

et al (2017) made the explicit link to Equation 1, informed
by Houlsby et al (2011). Kendall & Gal (2017) discussed the
aleatoric-epistemic view in the context of computer vision.

While that work successfully captured some of the intuitions
from Section 2, we highlight that it also overloaded the ideas
of aleatoric and epistemic uncertainty with multiple mean-
ings, introducing a number of spurious associations (Fig-
ure 2). The competing definitions of aleatoric uncertainty
conflate H[p∞(z)], measuring the uncertainty in pn(z) as
n → ∞ (this depends on the data-generating process, as we
will discuss in Section 5.2), with three separate quantities:

(a) H[ptrain(yi|π(y<i), y<i)], the entropy in training-data
generation. Issue: p∞(z) is a subjective belief state that
need not match ptrain(yi|π(y<i), y<i) (Section 3.6).

(b) H[peval(z)], the entropy of the reference system used
in evaluation. Issue: p∞(z) is a subjective belief state
that need not match peval(z) (Sections 3.6 and 3.7).

(c) Epn(θ)[H[pn(z|θ)]], the expected conditional predic-
tive entropy. Issue: for finite n the expected conditional
predictive entropy is only an estimator of H[p∞(z)],
and it can be highly inaccurate (Section 5.5).

Meanwhile the multiple definitions of epistemic uncertainty
mix up H[pn(z)] − H[p∞(z)], the predictive-entropy reduc-
tion from updating on infinite new data, with two quantities:

(a) H[pn(θ)], the entropy of the model’s stochastic parame-
ters. Issue: the mapping from parameters to predictions
is typically not invertible, so H[pn(θ)] will not neces-
sarily relate to the reduction in predictive entropy.

(b) H[pn(z)] − Epn(θ)[H[pn(z|θ)]], the expected informa-
tion gain in the model parameters. Issue: for finite n
this EIG is only an estimator of H[pn(z)] − H[p∞(z)],
and the estimation error can be large (Section 5.5).

Other sources of confusion in this aleatoric-epistemic view
include an incorrect association between a model’s subjec-
tive uncertainty and frequentist measures of performance,
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such as classification accuracy (Figure 2 in Kendall & Gal
(2017)), along with misleading implications about how a
model’s uncertainty will behave with varying n (Figure 6.11-
6.12 in Gal (2016) and Table 3 in Kendall & Gal (2017)) and
varying distance from the training data (“Aleatoric uncer-
tainty does not increase for out-of-data examples. . . whereas
epistemic uncertainty does” in Kendall & Gal (2017)).

5. An alternative perspective
We now present a coherent, general synthesis of key ideas
used in existing discussions of aleatoric and epistemic uncer-
tainty (Figure 1). We begin by reasoning about the subjec-
tive expected loss of acting Bayes-optimally under a given
belief state, which leads to a decision-grounded measure of
predictive uncertainty. By thinking about how that uncer-
tainty would change in light of new data, we then identify a
notion of expected uncertainty reduction, which we use to
explain uncertainty decomposition. Then, shifting our focus
from purely subjective reasoning to externally grounded
evaluation, we highlight the distinction between uncertainty,
predictive performance and data dispersion. Finally we re-
turn to the BALD score discussed in Section 4, providing
insights on its utility as a data-acquisition objective.

5.1. Predictive uncertainty can be derived from the final
decision of interest and the associated loss function

We first deal with the question of how to measure predictive
uncertainty, to which many different answers have been put
forward (Sections 1 and 2). Revisiting past work, we show
that minimising subjective expected loss (Ramsey, 1926;
Savage, 1951) directly leads to a loss-grounded measure
of uncertainty that reflects our preferences about model
behaviour in the final decision of interest. We thus clarify
that a decision-maker does not face an arbitrary choice over
uncertainty measures: if they specify a loss function based
on their preferences, a rigorous uncertainty measure follows.

If pn(z) represents our beliefs over z then we can identify
the Bayes-optimal action, a∗

n, in our final decision of interest
by minimising the expected loss under those beliefs:

a∗
n = arg mina∈A Epn(z)[ℓ(a, z)] . (2)

Now we can reason about the loss we expect (under our be-
lief state) to incur by taking this Bayes-optimal action. An
important, underappreciated result is that this minimal ex-
pected loss provides a way to measure uncertainty in pn(z)
(Dawid, 1998; DeGroot, 1962; Neiswanger et al, 2022):

h[pn(z)] = Epn(z)[ℓ(a∗
n, z)] .

A crucial implication of this is that any two decision-makers
should not necessarily use the same uncertainty measure,
depending on their decisions of interest and loss functions.

One might use variance (Hastie et al, 2009) while the other
uses entropy (Shannon, 1948), as Examples 1 and 2 show.

Example 1 (Dawid, 1998) Point prediction with A = Z
and ℓ(a, z) = (a − z)2 corresponds to measuring uncer-
tainty in our beliefs, pn(z), using variance.

Proof The optimal action is the mean of pn(z):

a∗
n = arg mina∈A Epn(z)

[
(a − z)2]

= Epn(z)[z] .

The subjective expected loss of taking this action is the
variance of pn(z):

h[pn(z)] = Epn(z)
[
(Epn(z)[z] − z)2]

= Vpn(z)[z] .

Example 2 (Dawid, 1998) Probabilistic prediction with
A = P(Z) and ℓ(a, z) = − log a(z) corresponds to mea-
suring uncertainty in our beliefs, pn(z), using entropy.

Proof The optimal action is pn(z):

a∗
n = arg mina∈A −Epn(z)[log a(z)] = pn(z).

The subjective expected loss of taking this action is the
Shannon entropy of pn(z):

h[pn(z)] = −Epn(z)[log pn(z)] = H[pn(z)] .

5.2. Decomposing predictive uncertainty requires
accounting for the data-generating process

Next, to formalise the popular idea of decomposing predic-
tive uncertainty into irreducible and reducible components
(Sections 2 and 4), we reason about how predictive uncer-
tainty changes in light of new data. We show that, as long
as we explicitly account for the data-gathering process, we
can write down a notion of expected uncertainty reduction
that is well defined for any method that maps from data to a
predictive distribution (Section 3.4). From this we identify
a rigorous irreducible-reducible decomposition.

Characterising the reducibility of uncertainty initially seems
as simple as considering new data, y+

1:m = y(n+1):(n+m),
and measuring the corresponding uncertainty reduction,

URz(y+
1:m) = h[pn(z)] − h[pn+m(z)] ,

which we note could be negative. But this uncertainty reduc-
tion depends on exactly what the new data is, and that in turn
depends on the process by which the data is generated. We
therefore need to explicitly account for the data-generating
process to produce a well-defined notion of reducibility.
If our model-updating scheme is stochastic then this also
needs to be taken into account, but this stochasticity can be
absorbed into the definition of y+

1:m (Section 3.4).
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Revisiting ptrain(y+
1:m|π) from Section 3.4, we define the

distribution over y+
i to depend both on decisions made by

the data-acquisition policy, π, and on the previous data:

ptrain(y+
1:m|π) =

m∏
i=1

ptrain(y+
i |π(y<i), y<i).

With this we can define the true expected uncertainty reduc-
tion (EUR) in z under a given policy, π, as

EURtrue
z (π, m) = Eptrain(y+

1:m|π)[URz(y+
1:m)] . (3)

This allows us to shift from thinking about a specific re-
alisation of data to the range of possible data that might
be generated. Working from this EUR to an uncertainty
decomposition, we consider the limit of m → ∞:

EURtrue
z (π, ∞)︸ ︷︷ ︸

reducible

= h[pn(z)]︸ ︷︷ ︸
total

−Eptrain(y+
1:∞|π)[h[p∞(z)]]︸ ︷︷ ︸
irreducible

.

Thus we see that three components—a loss function, a
machine-learning method mapping from data to a predictive
distribution, and a data-acquisition policy—fully specify a
rigorous measure of expected uncertainty reduction and an
associated irreducible-reducible decomposition. This con-
trasts with the decomposition in Equation 1, which requires
stochastic parameters and exact Bayesian updating.

It is worth noting that in some restricted cases the depen-
dency on the data-acquisition policy, π, of the infinite-data
terms in this uncertainty decomposition can disappear. For
example, if we are in a supervised-learning setting where
the policy’s decisions are based on inputs to acquire labels
for, and if we are using a well-specified Bayesian model and
exact Bayesian updates, p∞(z) should be independent of π
as long as π produces dense samples across the input space
(Kleijn & van der Vaart, 2012). However, the requirements
for this are very strict, with any model misspecification or
error in belief updating reintroducing the dependency.

5.3. Practical estimation of expected uncertainty
reduction relies on approximations

Now we turn to estimating expected uncertainty reduction
(EUR) in practice. The decomposition in Section 5.2 is
well defined but the infinite-data quantities within it are
typically not practically obtainable. While this might seem
problematic, we suggest the takeaway should in fact be
to deemphasise the decomposition in the context of real-
world machine learning, where we do not have infinite data.
There is more concrete value (eg, for data acquisition) in
estimating the EUR in Equation 3 for finite m. We now point
out key approximations required for practical estimation.

Since we typically do not know the true data-generating
process, ptrain(y+

1:m|π), a core approximation is to use a

model over new data, pn(y+
1:m|π), as a proxy. On top of

this, we might also need to approximate how our beliefs
over z update when we obtain new data. In principle the
EUR is defined with respect to whichever update scheme
we are using, but in practice the true update can be too
expensive to perform within an expectation over new data.
This can be addressed by using some qn+m(z) in place of
pn+m(z). A common approach is to assume qn+m(z) ∝
pn(y+

1:m|z)pn(z), even if the true update is not Bayesian
(Bickford Smith et al, 2023; 2024; Gal et al, 2017; Kirsch
et al, 2019; 2023). Notably this applies to methods based
on Bayesian models that do not permit exact inference. If
the true update is Bayesian and can be performed exactly
then this is of course not an approximation.

Combining model-based data simulation with an approxi-
mate updating scheme, we can estimate the true EUR using

EUR′
z(π, m) = h[pn(z)] − Epn(y+

1:m|π)[h[qn+m(z)]] .

The accuracy of this estimator depends on the mismatch
between pn(y+

1:m|π) and ptrain(y+
1:m|π) as well as the mis-

match between qn+m(z) and pn+m(z), both of which are
likely to be greater for larger m. Estimation therefore re-
quires careful tradeoffs to mitigate these mismatches.

The practical relevance of this becomes clearer upon appre-
ciating that the EUR estimator generalises a number of exist-
ing data-acquisition objectives. Under the exact-Bayesian-
update assumption it is equivalent to what has variously
been called the “expected value of [additional/sample] in-
formation” (Bernardo & Smith, 1994; Raiffa & Schlaifer,
1961), the “expected Hℓ,A-information gain” (Neiswanger
et al, 2022) and the “expected decision utility gain” (Huang
et al, 2024). From that objective we can then recover the
expected information gain in z, which corresponds to the
BALD score (Gal et al, 2017; Houlsby et al, 2011) if z = θ
represents a set of stochastic model parameters, or the ex-
pected predictive information gain (Bickford Smith et al,
2023) if z = (x∗, y∗) represents a target input and its output.
We note that EUR′

z(π, m) is also closely related to the idea
of the martingale posterior (Fong et al, 2023) as pn(y+

1:m|π)
and our updating scheme together imply a joint distribution
from which a martingale posterior can be derived.

5.4. Model-based uncertainty should be used with care,
and externally grounded evaluation is crucial

Next we clarify the relationship between the predictive un-
certainty we have discussed so far and quantities commonly
associated with it (Sections 2 and 4): measures of predictive
performance and data dispersion. We identify how a model
could be used to estimate those quantities but emphasise the
limitations of that approach, underlining the key role to be
played by externally grounded evaluation (Section 3.7).

We consider assessing a predictive distribution, pn(z), either
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Figure 3 Taking a decision-theoretic perspective allows us to disentangle model-based uncertainty from predictive performance and
data dispersion. Here we have a model’s predictive distribution over an unknown variable, z, along with a reference distribution serving as
a source of evaluation data. Using the model alone, we compute a measure of predictive uncertainty using a loss function, ℓ(a, z), where
a is an action. This differs from the data dispersion, which describes the reference distribution. Connecting the two distributions, the
expected score (lower is better) measures the predictive performance of the model as judged using data from the reference distribution.

using a single ground-truth value of z or using a reference
distribution over z. If we have a single z, we can evaluate
pn(z) using a proper scoring rule (Savage, 1971) of the form

s(pn, z) = ℓ(a∗
n, z)

where a∗
n is defined as in Equation 2 (Dawid, 1998). This

scoring rule measures the loss incurred by the Bayes-optimal
action under pn(z) when the ground truth is z.

If we instead have a reference distribution, peval(z), we can
evaluate pn(z) using a discrepancy function (Dawid, 1998):

d(pn, peval) = Epeval(z)[ℓ(a∗
n, z) − ℓ(a∗

eval, z)] (4)
= Epeval(z)[s(pn, z)] − h[peval(z)] (5)

where a∗
eval is defined analogously to a∗

n but with peval(z) as
the predictive distribution. Equation 4 highlights that the dis-
crepancy function measures the expected excess loss from
acting based on pn(z) rather than peval(z) when peval(z)
represents ground truth, which is connected to the idea of
regret in learning theory (Szepesvári, 2010). Equation 5
shows this is equivalent to the expected loss under peval(z)
of the Bayes-optimal action derived from pn(z), minus the
uncertainty measure from Section 5.1 applied to peval(z).

We can rearrange Equation 5 to highlight a decomposition:

Epeval(z)[s(pn, z)]︸ ︷︷ ︸
expected score

= d(pn, peval)︸ ︷︷ ︸
discrepancy

+ h[peval(z)]︸ ︷︷ ︸
data dispersion

where the expected score (lower is better) measures pre-
dictive performance and the data dispersion measures the
spread in evaluation data drawn from the reference distribu-
tion. This generalises classic decompositions from statistics
(Rice, 2007) and information theory (Cover & Thomas,
2005), as demonstrated in Examples 3 and 4.

Because past work has sometimes drawn connections be-
tween model-based uncertainty, predictive performance and
data dispersion, we now explain how such connections can
come about and emphasise that in the general case they
should not be taken to hold. In particular, if we assume a
specific model setup and estimation loss then we can de-
rive Bayes estimators that generalise the predictive entropy

and the expected conditional predictive entropy in Equa-
tion 1, but we emphasise that these assumptions will often
not apply and that the estimators can be inaccurate.

Proposition 1 (Berger, 1985) Let F be a quantity of interest,
and let f(θ) represent subjective beliefs over F , derived
from a pushforward of a distribution on model parameters
θ ∼ pn(θ). Under a quadratic estimation loss, ℓη(η, θ) =
(η − f(θ))2, the Bayes estimator of F is η∗ = Epn(θ)[f(θ)].

Proposition 2 Assume pn(z) = Epn(θ)[pn(z|θ)] is a model
intended to directly approximate peval(z). Then the model’s
predictive uncertainty, h[pn(z)], is a Bayes estimator of
Epeval(z)[s(pn, z)], the expected loss from acting Bayes-
optimally under pn(z) when z is in fact drawn from peval(z).

Proof Applying Proposition 1 with F = Epeval(z)[s(pn, z)]
and f(θ) = Epn(z|θ)[s(pn, z)] gives η∗ = h[pn(z)].

Proposition 3 Assume the same model as in Proposi-
tion 2. Then the expected conditional predictive uncertainty,
Epn(θ)[h[pn(z|θ)]], is a Bayes estimator of h[peval(z)], the
dispersion in data drawn from a reference distribution.

Proof Applying Proposition 1 with F = h[peval(z)] and
f(θ) = h[pn(z|θ)] gives η∗ = Epn(θ)[h[pn(z|θ)]].

Three things are important to note in regard to Proposi-
tions 2 and 3. First, while they both suppose that pn(z)
is designed to directly approximate peval(z), this need not
always be the case. Because peval(z) might itself be im-
perfect, our evaluation might just be serving to provide a
rough signal of the model’s predictive performance (Sec-
tion 3.7). Second, they both assume a quadratic estimation
loss, which might not reflect our preferences. An alternative
loss would result in different Bayes estimators. For example,
an absolute loss would lead us to use medians rather than
expectations (Berger, 1985). Third, they present estima-
tors that are derived from subjective models and so have no
accuracy guarantee in the general case (Section 3.5).

We therefore stress that model-based uncertainty should by
default be considered separate from measures of predictive
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Figure 4 BALD’s correspondence with infinite-step predictive information gain (a long-run reduction in a model’s predictive entropy)
can be weak, such that it is often better thought of as an estimator of a “true” one-step expected information gain in the model parameters.
Here we show the behaviour of conjugate models trained on discrete data (top) and continuous data (bottom). For n ∈ (1, 10, 100, 1000)
we computed two estimation errors: εz = (EIGθ − IGz(y+

1:∞))2 and εθ = (EIGθ − EIGtrue
θ )2. We show these errors (left; mean over

50 random seeds) along with the evolution of the predictive distributions (right). Both estimation errors are due to inaccurately forecasting
future data, an issue that is resolved as n increases and the model’s predictive distribution converges to the true data-generating process.

performance and data dispersion, with Figure 3 providing a
concrete demonstration of their differences (see Appendix C
for details). Uncertainty alone is not a reliable indicator
of whether we can trust a model. Some kind of external
grounding is crucial for well-informed practical deployment.

5.5. Popular information-theoretic quantities are best
understood as imperfect estimators

Finally we return to the information-theoretic quantities in
Equation 1, which have been central to many existing dis-
cussions of aleatoric and epistemic uncertainty. Principally
we highlight that BALD (that is, EIGθ, the expected in-
formation gain in a set of stochastic model parameters, θ)
can be understood as an estimator of two separate unknown
quantities: the infinite-step information gain in the model
predictions and a “true” one-step expected information gain
in the model parameters. We also suggest the relative mag-
nitudes of the two corresponding estimation errors might
help explain BALD’s utility as a data-acquisition objective.

First we show that, under assumptions on the data and model
that result in convergence to a single setting of θ (Doob,
1949; Freedman, 1963; 1965), BALD can be understood as
an estimator of the infinite-step predictive information gain,

IGz(y+
1:∞) = H[pn(z)] − H[pn(z|y+

1:∞)] ,

measuring the reduction in the model’s predictive entropy
from a Bayesian update on infinite new data, y+

1:∞.

Proposition 4 Let y+
1:m and pn(y|θ)pn(z|θ)pn(θ) be a com-

bination of data sequence and generative model that yield
pn(θ|y+

1:m) → δθ∞(θ) as m → ∞. Then the expected con-

ditional predictive entropy, Epn(θ)[H[pn(z|θ)]], is a Bayes
estimator of H[pn(z|y+

1:∞)], the marginal predictive entropy
after a Bayesian update on infinite new data, y+

1:∞.

Proposition 5 Assume the data and model from Proposi-
tion 4. Then the expected information gain in the model
parameters, EIGθ, from observing z is a Bayes estimator
of the infinite-step predictive information gain, IGz(y+

1:∞).

In Figure 4 we demonstrate that the approximation EIGθ ≈
IGz(y+

1:∞) from Proposition 5 can be coarse. These results
were produced with extremely simple setups within which
we can perform exact inference and we are sure to recover
the true data-generating process in the limit of infinite data
(see Appendix C for details). We therefore know that the
estimation error is due to a failure of the model to accurately
forecast future data, which in turn is due to n being finite.

This behaviour appears to align with existing results (with
the caveat that past studies did not match the assumptions
of Propositions 4 and 5). Figure 2 in Bickford Smith et al
(2024) and Figure 5 in Wimmer et al (2023) show small-n es-
timates of EIGθ that differ substantially from the changes in
predictive entropy that actually occurred in practice. Those
results even suggest it would have been more accurate to
assume IGz(y+

1:∞) = H[pn(z)], with H[pn(z|y+
1:∞)] = 0,

than to estimate it using EIGθ. Meanwhile Mucsányi et al
(2024) and Valdenegro-Toro & Saromo-Mori (2022) em-
phasised the “entanglement” of aleatoric- and epistemic-
uncertainty estimators, which can be understood as the esti-
mators themselves having an “epistemic” component—or,
in our terminology, being inaccurate finite-data estimators.
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Figure 5 BALD outperforms predictive entropy as a data-
acquisition objective in active learning, even though BALD tends
to be a worse estimator of long-run predictive information gain in
the setups studied. These results were produced using experimen-
tal setups described in Bickford Smith et al (2023; 2024).

This raises the question of why BALD has proven practi-
cally useful as a data-acquisition objective in active learning
(Gal et al, 2017; Houlsby et al, 2011; Osband et al, 2023). If
our intuition is that BALD’s utility stems from its correspon-
dence with infinite-step predictive information gain (that is,
a long-run reduction in a model’s predictive entropy) and
we consider setups in which the current predictive entropy
is a better estimator than BALD, then we would expect
that using the predictive entropy as a data-acquisition objec-
tive would lead to better predictive performance in active
learning. Yet this is not what we see in practice (Figure 5).

We suggest another perspective on BALD might address
this question. In particular it can be understood (given as-
sumptions on the data and model) as an estimator of the true
one-step expected information gain in the model parameters,

EIGtrue
θ = H[pn(θ)] − Eptrain(z)[H[pn(θ|z)]] ,

where the expectation is over observations from the true
data-generating process, not model-simulated observations.

Proposition 6 Let z = yn+1. Assume y1:n are independent
and identically distributed, with yi ∼ ptrain(y), and assume
pn(z) = Epn(θ)[pn(z|θ)] is a model intended to directly
approximate ptrain(z). Then the expected information gain
in the model parameters, EIGθ, from observing z is a Bayes
estimator of the true one-step expected information gain,
EIGtrue

θ , where the expectation is with respect to ptrain(z).

Returning to the same experimental setup as before, we find
(Figure 4) that the approximation EIGθ ≈ EIGtrue

θ is more
accurate than EIGθ ≈ IGz(y+

1:∞). In other words, BALD
more closely tracks short-run changes in parameter uncer-
tainty than it does long-run changes in predictive uncertainty.
We do not claim this is a general result that will hold in all
settings, but it is consistent with BALD being useful as a
data-acquisition objective. The data-acquisition horizons in
active learning are typically very short, so it is the short-run
notion of information gain that matters, not the asymptotic
notion. And while targeting predictions rather than parame-
ters can be even more effective (Bickford Smith et al, 2023;
2024), maximising short-run parameter information gain is
still often preferable over random acquisition.

One takeaway here is that information-theoretic quantities
should not be confused with the quantities they estimate.
Another is that expected information gain in a variable of
interest is a well motivated objective for data acquisition,
assuming the action of interest is a probabilistic prediction
of z and we use a negative-log-likelihood loss function
(Example 2), but it also crucially depends on the model’s
ability to simulate future data, and it assumes a Bayesian
update that might not match the true update (Section 5.3).

6. Conclusion
We have argued that the aleatoric-epistemic view on uncer-
tainty does not serve machine-learning researchers’ needs:
its lack of expressive capacity has led to conceptual over-
loading and confusion. To address this we have presented a
decision-theoretic view that unifies many concepts of inter-
est to researchers. This provides clarity on five key points:

(a) Measures of predictive uncertainty need not be an arbi-
trary choice but can instead be derived from a decision
of interest with an associated loss function.

(b) If we explicitly account for how training data is gener-
ated, we can identify a decomposition of uncertainty
into reducible and irreducible components for any
method that maps from data to a predictive distribution.

(c) In practice we can typically only produce an approx-
imate notion of expected uncertainty reduction that
relies on a proxy for the true data-generating process
and possibly also an approximation of model updating.

(d) Predictive uncertainty should be assumed to be sepa-
rate from measures of predictive performance and data
dispersion, and externally grounded evaluation is there-
fore key for building trust in a model’s predictions.

(e) BALD does not directly measure predictive-uncertainty
reduction but is an (often inaccurate) estimator of it.

We suggest this new decision-theoretic view should be used
in place of the predominant aleatoric-epistemic view as the
field moves forward. Our hope is that this will support more
productive discourse and methodological development.

A recurring point in our work is that in practice we almost
always have to approximate quantities we are interested in,
building on assumptions and design decisions. However,
these approximations can be inaccurate, thereby requiring
significant caution around the interpretation and use of prac-
tical quantities, noting that the accuracy of the approxi-
mation might vary between different interpretations of the
original quantity. We thus believe it is important future work
on quantifying sources of uncertainty is grounded in prac-
tical decision-making scenarios, such as active learning and
model selection, so that such approximations can be judged
in terms of the utility they provide in concrete problems.
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Banzhoff, & Hüllermeier (2014). Reliable classification:
learning classifiers that distinguish aleatoric and epis-
temic uncertainty. Information Sciences.

Shannon (1948). A mathematical theory of communication.
The Bell System Technical Journal.

Smith & Gal (2018). Understanding measures of uncer-
tainty for adversarial example detection. Conference on
Uncertainty in Artificial Intelligence.
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Rethinking Aleatoric and Epistemic Uncertainty

A. Examples
Example 3 Evaluating pn(z) against a reference distribution, peval(z), with A = Z and ℓ(a, z) = (a − z)2 corresponds to
measuring the predictive performance of pn(z) using mean squared error, measuring the discrepancy between pn(z) and
peval(z) using squared bias and measuring dispersion in peval(z) using variance.

Proof Starting from Equation 4 with optimal actions a∗
n = Epn(z)[z] = µn and a∗

eval = Epeval(z)[z] = µeval from
Example 1, the discrepancy between pn(z) and peval(z) is

d(pn, peval) = Epeval(z)
[
(µn − z)2 − (µeval − z)2]

= (µn − µeval)2.

Now starting from Equation 5, it can also be written as

d(pn, peval) = Epeval(z)
[
(µn − z)2]

− Vpeval(z)[z] .

Equating these two expressions for the discrepancy leads to a standard bias-variance decomposition:

Epeval(z)
[
(µn − z)2]︸ ︷︷ ︸

mean squared error

= (µn − µeval)2︸ ︷︷ ︸
squared bias

+Vpeval(z)[z]︸ ︷︷ ︸
variance

where the mean squared error measures predictive performance and the variance measures data dispersion.

Example 4 Evaluating pn(z) against a reference distribution, peval(z), with A = P(Z) and ℓ(a, z) = − log a(z)
corresponds to measuring the predictive performance of pn(z) using cross entropy, measuring discrepancy between pn(z)
and peval(z) using Kullback-Leibler divergence and measuring dispersion in peval(z) using Shannon entropy.

Proof Starting from Equation 4 with optimal actions a∗
n = pn(z) and a∗

eval = peval(z) (Example 2), the discrepancy
between pn(z) and peval(z) is

d(pn, peval) = Epeval(z)[− log pn(z) + log peval(z)] = KL[peval(z) ∥ pn(z)] .

Now starting from Equation 5, it can also be written as

d(pn, peval) = −Epeval(z)[log pn(z)] − H[peval(z)] = H[peval(z) ∥ pn(z)] − H[peval(z)] .

Equating these two expressions for the discrepancy leads to a standard information-theoretic decomposition:

H[peval(z) ∥ pn(z)]︸ ︷︷ ︸
cross entropy

= KL[peval(z) ∥ pn(z)]︸ ︷︷ ︸
KL divergence

+ H[peval(z)]︸ ︷︷ ︸
entropy

where the cross entropy measures predictive performance and the entropy measures data dispersion.
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Rethinking Aleatoric and Epistemic Uncertainty

B. Proofs of Propositions 4 to 6
Proposition 4 Let y+

1:m and pn(y|θ)pn(z|θ)pn(θ) be a combination of data sequence and generative model that yield
pn(θ|y+

1:m) → δθ∞(θ) as m → ∞. Then the expected conditional predictive entropy, Epn(θ)[H[pn(z|θ)]], is a Bayes
estimator of H[pn(z|y+

1:∞)], the marginal predictive entropy after a Bayesian update on infinite new data, y+
1:∞.

Proof Since y+
1:∞ recovers a single setting of θ, reasoning about θ is equivalent to reasoning about y+

1:∞, following
the argument presented in Fong et al (2023). This allows us to apply Proposition 1 with F = H[pn(z|y+

1:∞)] and
f(θ) = H[pn(z|θ)], which gives η∗ = Epn(θ)[H[pn(z|θ)]].

Proposition 5 Assume the data and model from Proposition 4. Then the expected information gain in the model parameters,
EIGθ, from observing z is a Bayes estimator of the infinite-step predictive information gain, IGz(y+

1:∞).

Proof The information gain to be estimated, IGz(y+
1:∞), is defined as the reduction in the model’s predictive entropy from

a Bayesian update on infinite new data, y+
1:∞:

IGz(y+
1:∞) = H[pn(z)] − H[pn(z|y+

1:∞)] .

Combining the known H[pn(z)] with the Bayes estimator of H[pn(z|y+
1:∞)] from Proposition 4 gives

EIGθ = H[pn(z)] − Epn(θ)[H[pn(z|θ)]]

as a Bayes estimator of IGz(y+
1:∞).

Proposition 6 Let z = yn+1. Assume y1:n are independent and identically distributed, with yi ∼ ptrain(y), and assume
pn(z) = Epn(θ)[pn(z|θ)] is a model intended to directly approximate ptrain(z). Then the expected information gain in the
model parameters, EIGθ, from observing z is a Bayes estimator of the true one-step expected information gain, EIGtrue

θ ,
where the expectation is with respect to ptrain(z).

Proof The expected information gain to be estimated, EIGtrue
θ , is defined as the reduction in the model’s parameter entropy

from a Bayesian update on new data, z, where z is drawn from ptrain(z):

EIGtrue
θ = H[pn(θ)] − Eptrain(z)[H[pn(θ|z)]] .

The second term here can be estimated by applying Proposition 1 with F = Eptrain(z)[H[pn(θ|z1:m)]] and f(θ) =
Epn(z|θ)[H[pn(θ|z)]]. The Bayes estimator that results from this, η∗ = Epn(z)[H[pn(θ|z)]], can be combined with the
known current entropy, H[pn(θ)], to produce

EIGθ = H[pn(θ)] − Epn(z)[H[pn(θ|z)]]

as a Bayes estimator of EIGtrue
θ .
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C. Implementation details
C.1. Figure 3

We consider predicting an output, z ∈ R, corresponding to an input, x ∈ R. The training data, y1:n, comprises n = 2
input-label pairs: y1 = (−2, tanh(−2)) and y2 = (2, tanh(2)). We use this to compute a Gaussian-process predictive
posterior, pn(z|x) = p(z|x, y1:n), based on a generative model comprising a Gaussian likelihood function, p(z|x, θ) =
Normal(z|θ(x), σ2), where σ = 0.1, and a Gaussian-process prior, θ ∼ GP(0, k), where k(x, x′) = exp(−(x − x′)2/2).
We compare this with a reference distribution, peval(z|x) = Normal(y| tanh(x), σ2). Using pn(z|x) and peval(z|x), we
compute three quantities for x ∈ [−8, 8]: the predictive uncertainty, h[pn(z|x)]; the data dispersion, h[peval(z|x)]; and the
expected score, Epeval(z|x)[s(pn, z)]. We do this for two loss functions: ℓ(a, z) = (a−z)2 and ℓ(a, z) = max(0, z)·(a−z)2.

C.2. Figure 4

We consider two cases of predicting z = yn+1: a discrete case and a continuous case. In the discrete case we have y ∈ {0, 1},
data generated from ptrain(y) = Bernoulli(y|η = 0.5), and the Bayesian generative model is

p(y, η|α, β) = p(y|η)p(η|α, β)
p(y|η) = Bernoulli(y|η)

p(η|α, β) = Beta(η|α, β).

In the continuous case we have y ∈ R, data generated from ptrain(y) = Normal(y|µ = 1, σ2 = 1), and the Bayesian
generative model is

p(y, µ, λ|α, β, κ, m) = p(y|µ, λ)p(µ|m, κ, λ)p(λ|α, β)
p(y|µ, λ) = Normal(y|µ, λ−1)

p(µ|m, κ, λ) = Normal(µ|m, (κλ)−1)
p(λ|α, β) = Gamma(λ|α, β).

In both cases we can compute exact Bayesian posteriors (Murphy, 2022), and there is some n for which pn(z) =
ptrain(z) (Doob, 1949; Freedman, 1963; 1965). For each case we sample four datasets, y1:n, with yi ∼ ptrain(y) and
n ∈ (1, 10, 100, 1000). On each dataset we compute the Bayesian parameter posterior, pn(θ) = p(θ|y1:n), where θ = (α, β)
or θ = (α, β, κ, m), and then compute two quadratic estimation errors. The first is the error from approximating the “true”
expected information gain in θ with the standard, model-based expected information gain in θ:

√
εθ = EIGθ − EIGtrue

θ

= (H[pn(θ)] − Epn(z)[H[pn(θ|z)]]) − (H[pn(θ)] − Eptrain(z)[H[pn(θ|z)]])
= Eptrain(z)[H[pn(θ|z)]] − Epn(z)[H[pn(θ|z)]] .

The second is the error from approximating the infinite-step information gain in z with the expected information gain in θ:
√

εz = EIGθ − IGz(y+
1:∞)

= (H[pn(z)] − Epn(θ)[H[pn(z|θ)]]) − (H[pn(z)] − H[ptrain(z)])
= H[ptrain(z)] − Epn(θ)[H[pn(z|θ)]] .

We average over 50 repeats with different random-number seeds.
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