
Under review as a conference paper at ICLR 2024

HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION VIA
SEMI-SUPERVISED LEARNING WITH OPTIMIZED
UNLABELED DATA SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) is a powerful sequential optimization approach for
seeking the global optimum of black-box functions for sample efficiency pur-
poses. Evaluations of black-box functions can be expensive, rendering reduced
use of labeled data desirable. For the first time, we introduce a teacher-student
model, called TSBO, to enable semi-supervised learning that can make use of
large amounts of cheaply generated unlabeled data under the context of BO to
enhance the generalization of data query models. Our teacher-student model is
uncertainty-aware and offers a practical mechanism for leveraging the pseudo
labels generated for unlabeled data while dealing with the involved risk. We show
that the selection of unlabeled data is key to TSBO. We optimize unlabeled data
sampling by generating unlabeled data from a dynamically fitted extreme value
distribution or a parameterized sampling distribution learned by minimizing the
student feedback. TSBO is capable of operating in a learned latent space with
reduced dimensionality, providing scalability to high-dimensional problems. TSBO
demonstrates the significant sample efficiency in several global optimization tasks
under tight labeled data budgets.

1 INTRODUCTION

Many science and engineering tasks such as drug discovery (Dai et al., 2018; Griffiths & Hernández-
Lobato, 2020), structural design and optimization (Zoph et al., 2018; Ying et al., 2019; Lukasik et al.,
2022), and failure analysis (Hu et al., 2018; Liang, 2019) can be formulated as a black-box function
optimization problem in a given input space, which can be high-dimensional. Despite the remarkable
progress achieved in recent years through the application of advanced machine learning techniques to
various optimization problems, addressing the issue of developing global optimization methods for
problems characterized by agnostic objective functions, all while minimizing the number of function
evaluations, remains a significant and ongoing challenge.

Bayesian Optimization (BO) stands as a sequential and sample-efficient methodology employed in
the quest for global optima within black-box functions (Brochu et al., 2010; Snoek et al., 2012).
BO comprises two main components: a surrogate probabilistic model for regressing the objective
function with a posterior predictive distribution, and an acquisition function for new data query while
trading off between exploration and exploitation. A typical iteration of BO unfolds in three stages:
1) a surrogate, typically a Gaussian Process (GP) (Seeger, 2004), is fitted on labeled data; 2) an
acquisition function based on the posterior predictive distribution is optimized to pick the next query
point; 3) The new queried data pair is added to the training dataset for the next BO iteration. Given
the evaluation of the black-box function is potentially exorbitant, it is desirable to reduce the use of
expensive labeled data.

Semi-supervised learning offers a promising avenue for mitigating the challenge of limited labeled
data by harnessing abundant, inexpensive unlabeled data. In the context of high-dimensional BO, it
is a widely adopted practice to utilize unlabeled data1 to learn 1) a dimension reduction model to
induce a low-dimensional latent space where BO is performed, and 2) a generative model to project

1Although the term label often appears in classification problems, it is also widely used to represent observed
values in BO (Grosnit et al., 2021; Chen et al., 2020; Jean et al., 2018).
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the latent code with the optimum acquisition value to the original space for evaluation. Recent work
has explored various encoding and decoding models, including linear projection (Chen et al., 2020),
nonlinear embedding (Moriconi et al., 2020), and Variational Autoencoder (VAE) (Kusner et al.,
2017; Jin et al., 2018; Tripp et al., 2020; Grosnit et al., 2021). However, the utilization of unlabeled
data for GP data query model training remains uncharted territory, to the best of our knowledge. The
primary challenge stems from the fact that GPs inherently rely on labeled data and cannot directly
accommodate data lacking label information.

To address this challenge, we propose a novel approach that involves the direct incorporation of
unlabeled data into Gaussian Process (GP) data query models by leveraging pseudo-label predictions,
thereby enhancing model generalization. Our technique is compatible with the aforementioned
semi-supervised latent space BO methods. Our main contributions are:

• We present Teacher-Student Bayesian Optimization (TSBO), a semi-supervised learning BO method
with a novel pseudo-label dependent uncertainty-aware teacher-student model.

• We systematically optimize the locations of unlabeled data by sampling from 1) a dynamically
fitted extreme value distribution, or 2) a parameterized sampling distribution learned by minimizing
the student’s feedback loss.

• We empirically demonstrate the significant sample efficiency of TSBO in high-dimensional global
optimization tasks. In a chemical design task, TSBO improves a recent latent space BO approach to
achieve a similar molecular profile score within 3‰ total evaluations.

2 PRELIMINARIES

BO Objective Given a set of N sequentially queried labeled examples {xi, yi}Ni=1 = {Xl,yl},
where the N ×D matrix Xl and the N × 1 vector yl are the inputs and the corresponding observed
target values (labels), respectively, we aim to solve an optimization problem:

x∗ = argmax
x∈X

f(x), (1)

where X ⊆ RD is a D-dimensional input space, and f : X → R is an agnostic function. Under BO,
we desire to find the global maximum x∗ with a minimal amount of expensive data query.

Latent Space BO When the dimension D of X scales to a large value, applying BO will suffer
from the curse of dimensionality (Brochu et al., 2010). An effective solution to this challenge lies
in the realm of latent space BO Kusner et al. (2017), where BO is deployed in a low-dimensional
latent space Z ⊆ Rd such that d ≪ D. With the facilitation of an encoder ψ : X → Z and a
decoder φ : Z → X , latent space BO is able to 1) fit a data query GP model on a labeled dataset
Dl := {{zli , yli}}Ni=1 = {Zl,yl} where zli := ψ(xli), 2) optimize an acquisition function to pick
the optimum latent code z̃, and 3) make a new evaluation ỹ = f(x̃) where x̃ = φ(z̃). This latent
space BO framework is visually depicted in the left part of Fig. 1.

3 OVERVIEW OF THE TSBO FRAMEWORK

To address the challenge of lack of expensive labeled data, we propose TSBO, a unified BO approach
incorporating a teacher-student model based on semi-supervised learning. As illustrated in the right
segment of Figure 1, our method involves the generation of pseudo labels for sampled unlabeled data,
which are then combined with the labeled data to inform a GP model for data query. TSBO contains
three key components:

Pseudo-Label Dependent Uncertainty-Aware Teacher-student Model TSBO employs a teacher-
student model for pseudo-label prediction. The teacher-student model is optimized by solving a
bi-level minimization problem, as discussed in Algorithm 1. The teacher generates pseudo labels for
a set of unlabeled data, which are used to train the student and a new data query model.

To enhance the quality of pseudo labels, we further propose a pseudo-label dependent uncertainty-
aware teacher-student model, integrating prediction uncertainties into the training scheme of the
teacher-student. It comprises a probabilistic teacher and an uncertainty-aware student, as detailed in
Section 4.
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Figure 1: A comparison between vanilla BO and TSBO. On the left side of the red arrow, we present
the typical latent space BO workflow. on the right side, we provide the overview of TSBO, involving a
teacher-student model for pseudo-label prediction, and an optimized unlabeled data sampling strategy.

Unlabeled Data Samplers In each BO iteration, in addition to the current labeled dataset, we
dynamically generate an optimized unlabeled dataset. We find that the selection of unlabeled data has
a significant impact on the final performance. The proposed approach is discussed in Section 5.

Data Query GP Model Our data query GP fits on the combination of the labeled and unlabeled
data, along with their associated pseudo labels. The generalization of our GP is enhanced by our
pseudo-label prediction technique.

4 DESIGN OF UNCERTAINTY-AWARE TEACHER-STUDENT MODEL

We propose a pseudo-label dependent uncertainty-aware teacher-student model, where the teacher
is probabilistic and outputs both the mean and variance of a pseudo label for an unlabeled sample.
Furthermore, our GP-based student model is uncertainty-aware, i.e., it fits the unlabeled dataset while
taking the uncertainties of the pseudo labels into account.

We argue that this uncertainty-aware approach is essential for enabling teacher-student-based semi-
supervised learning. On one hand, better student and data query models may be trained with abundant
unlabeled data with pseudo labels, allowing wider exploration of the input space towards finding
the global optimum without needing additional expensive labeled data. On the other hand, poorly
predicted pseudo labels can jeopardize the above modeling process and result in misleading feedback
to the teacher. As such, the variance of each pseudo label predicted by a probabilistic teacher can
serve as a measure of the teacher’s uncertainty (confidence). It is important to note that the teacher’s
uncertainty varies from pseudo label to pseudo label. The student shall be informed of the teacher’s
uncertainty and judiciously make use of a pseudo label in a way appropriate to its uncertainty level.
Our uncertainty-aware teacher-student model offers a practical mechanism for leveraging pseudo
labels while mitigating the involved risk.

4.1 PROBABILISTIC TEACHER MODEL

TSBO employs a probabilistic teacher T , which is a multilayer perceptron (MLP) parameterized by
θT . For a given latent input z ∈ Z , the teacher’s output T (z;θT ) is considered to follow a Gaussian
distribution T (z;θT ) ∼ N (µθT

(z), σ2
θT

(z)), where µθT
(z) ∈ R and σ2

θT
(z) ∈ (0,+∞) are the

predicted mean and its variance from the teacher model. The training of the teacher is described in
Section 4.4.

3



Under review as a conference paper at ICLR 2024

Algorithm 1 Bi-Level Optimization of the Teacher-Student Model

Input: Epochs L, feedback weight λ, teacher T (·;θ0
T ), student S(·;θ0

S), labeled data Dl, valida-
tion data Du, unlabeled data Zu

Output: Pseudo labels ŷu
for i = 1 to L do

Generate pseudo labels: ŷu ← E (T (Zu;θ
i−1
T ))

Update the student model: θi
S ← θi−1

S − ηS · ∇θi−1
S
Lu(Zu,θ

i−1
T ;θi−1

S ) via Eq. (2)

Fix θi
S , and update the teacher model: θi

T ← θi−1
T − ηT · ∇θi−1

T
{λLf (Zv,yv;θ

i
S ,θ

i−1
T ,Zu) +

Ll(Zl,yl;θ
i−1
T )} via Eq. (5) and Eq. (7)

end for
Predict pseudo labels: ŷu ← E (µθT

(Zu;θ
L
T ))

4.2 UNCERTAINTY-AWARE STUDENT MODEL

The student model S of TSBO is a GP, whose learnable hyperparameters θS consist of a prior mean
value µ0 ∈ R, an observation noise variance value σ2

0 > 0, a scalar parameter τ , and a lengthscale l
of a Radial Basis Function (RBF) kernel: κ0(z, z′) = τ2 exp(−∥z− z′∥2/2l2), which governs the
correlations between points in the latent space Z (Rasmussen & Williams, 2006).

Our student S is optimized over the unlabeled dataset Du := {{zui
, ŷui
}}Mi=1 = {Zu, ŷu}, where

each pseudo label ŷu is set to the corresponding mean prediction µθT
(zu) from the teacher T :

ŷu = µθT
(zu), representing T ’s best prediction of the unknown ground truth label yu.

The development of our pseudo-label dependent uncertainty-aware student model S involves two
important treatments: 1) First, the uncertainty in the teacher’s pseudo label generation process is
modeled by: ŷu = yu + ϵu(zu), where ϵu(zu) ∼ N (0, σ2

θT
(zu)). The pseudo-label dependent

noise ϵu(zu) is intrinsic to the teacher. 2) Next, we propagate the teacher’s intrinsic uncertainty in
terms of ϵu(zu) to the downstream training of the student GP model by forming a student’s prior:
ŷu = yu + ϵu(zu) + ϵκ0, where ϵκ0 ∼ N (0, κ0(zu, zu) + σ2

0). ϵκ0 is a pseudo-label independent
learnable additive noise modeled after the RBF kernel κ0(·, ·) and the observation noise σ2

0 . This
additional noise ϵκ0 accounts for the error in the teacher’s uncertainty estimate σ2

θT
(zu).

Correspondingly, we define an M ×M prior covariance matrix K over the unlabeled dataset Du as:
Kij = E(ŷui

−E ŷui
)(ŷuj

−E ŷuj
) = κ0(zui

, zuj
)+ δijσ

2
0 + δijσ

2
θT

(zui
), where δ represents the

Kronecker delta. The Negative Marginal Log-Likelihood (NMLL) of Du is found to be:

Lu(Zu,θT ;θS) : =
(
µθT

(Zu)− µ01M

)T
K−1

(
µθT

(Zu)− µ01M

)
+ ln |K|+ const, (2)

K = κ0(Zu,Zu) + σ2
0IM + diag

(
σ2
θT

(zu1
), ..., σ2

θT
(zuM

)
)
, (3)

where 1M is an M × 1 vector of all ones, IM is the M × M identity matrix, µθT
(Zu) is the

vector of the mean predictions of the teacher [µθT
(zu1

), · · · , µθT
(zuM

)]T , the M × M kernel
matrix κ0(Zu,Zu) is defined as κ0(Zu,Zu)ij = κ0(zui

, zuj
) for all i, j ∈ {1, ...,M}. We optimize

the student GP model’s parameters θS by minimizing the NMLL (Lu) jointly with the teacher as
described in Section 4.4.

4.3 STUDENT’S FEEDBACK TO TEACHER

To transmit the student feedback to the teacher, we evaluate the student model over a validation
dataset Dv := {{zvi , yvi}}Hi=1 = {Zv,yv} (discussed in Appendix B.1), giving rise to the posterior
prediction S(Zv;Zu,θT ,θS) for the labels of Dv:

S
(
Zv;Zu,θT ,θS

)
∼ N

(
µθS

(Zv;Zu,θT ), σ
2
θS

(Zv;Zu,θT )
)
,

µθS
(Zv;Zu,θT ) = µ01H + κ0(Zv,Zu)

TK−1
(
µθT

(Zu)− µ01M

)
,

σ2
θS

(Zv;Zu,θT ) = κ0(Zv,Zv)− κ0(Zv,Zu)
TK−1κ0(Zv,Zu) + σ2

0IH .

(4)
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We compute the Mean Square Error (MSE) between the posterior means µθS
(Zv;Zu,θT ) and the

true labels yv as our feedback loss Lf
2:

Lf

(
Zv,yv;θS

)
:= MSE

(
µθS

(Zv;Zu,θT ),yv

)
. (5)

Note that the teacher’s predictive variance σ2
θT

(zui
) for the i-th pseudo label is added to the i-th

diagonal entry of the covariance matrix K in Eq. (3). When σ2
θT

(zui
) is significantly greater than

that of other pseudo labels, the corresponding diagonal element Kii can be much larger than the
other diagonal elements. As a result, per Eq. (4) the contributions of the i-th pseudo label µθT

(zui
)

to the posterior mean predictions of the validation labels are considerably reduced, indicating that our
student model’s predictions are less dependent on pseudo labels with large teacher uncertainty.

4.4 BI-LEVEL OPTIMIZATION OF THE TEACHER-STUDENT MODEL

Due to the dependence of the student on the teacher via the teacher’s pseudo labels, we jointly
optimize both by solving a bi-level optimization problem:

min
θT

{
Ll(Zl,yl;θT ) + λLf

(
Zv,yv;θ

∗
S(θT ),θT ,Zu

)}
,

s.t. θ∗
S(θT ) = argmin

θS

Lu(Zu,θT ;θS).
(6)

On the lower level, the student is optimized by minimizing the NMLL (Lu) of Eq. (2), given the
teacher’s parameters θT . On the upper level, the teacher is optimized based on two losses: the
Negative Log-Likelihood (NLL) loss Ll on the labeled dataset Dl and the feedback loss Lf from the
student, which is weighted by a hyperparameter λ > 0. Ll is defined as 3:

Ll(Zl,yl;θT ) :=
1

N

∑
{zl,yl}⊂{Zl,yl}

1

2

(
ln

(
σ2
θT

(zl)
)
+

(
yl − µθT

(zl)
)2

σ2
θT

(zl)

)
+ const. (7)

We adopt a computationally efficient alternating one-step gradient-based approximation method to
solve Eq. (6). In every training epoch, we first perform a one-step update of the student using the
gradient ∇θS

Lu, and then fix the student and update the teacher for one step using the gradient
∇θT

(Ll + λLf ). This approach is summarized in Algorithm 1.

5 OPTIMIZED UNLABELED DATA SAMPLING STRATEGIES

Random sampling is often utilized in non-BO settings to determine the locations of unlabeled data.
However, this may create several issues, particularly under BO. First, the teacher may generate pseudo
labels with poor quality at random locations far away from the training data, which may mislead
the student and eventually lead to inferior performance. Moreover, evaluating the performance of
the student that is trained with random unlabeled data far away from the global optimum, may not
provide relevant feedback for tuning the teacher toward finding the global optimum. To this end,
we propose two techniques that offer an optimized sampling distribution for unlabeled data. Our
experiment in Section 6.4 demonstrates the inferior performance of uniform sampling, underscoring
the necessity of systematically sample strategies for unlabeled data.

5.1 EXTREME VALUE THEORY (EVT) BASED UNLABELED DATA SAMPLING

To address the issues resulting from random sampling, we develop a guided generation of unlabeled
data based on Extreme value theory (EVT) (Fisher & Tippett, 1928). The key idea is to place
unlabeled data in regions of high-quality pseudo labels and at the same time encourage exploration

2The feedback loss can be an MSE, a negative predictive marginal log-likelihood (Gneiting & Raftery, 2007)
or a negative Mahalanobis distance (Bastos & O’hagan, 2009). For numerical stability, we choose the MSE in
our work.

3To ensure numerical stability, we follow (Lakshminarayanan et al., 2017) and warp the variance with the
softplus function plus a small value: σ2

θT
← ln (1 + exp(σ2

θT
)) + 10−6.
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Figure 2: Mean performance and standard deviations of 4 LSO baselines and TSBO.

towards the global optimum. To do so, we model the distribution of the part of the labeled data,
which are extreme, i.e. with the best target values. EVT states that if {y1, · · · , yN} are i.i.d. and as
N approaches infinity, their maximum y∗ follows a generalized extreme value (GEV) distribution
(Fisher & Tippett, 1928)

py∗(y∗) = I{ξ ̸=0} (1 + ξȳ)
− 1

ξ e−(1+ξȳ)
− 1

ξ
+ I{ξ=0}e

−ȳe−e−ȳ

, (8)

where ȳ := (y∗ − a) /b defined by 3 learnable parameters of the GEV distribution: a location
coefficient a ∈ R, a scale value b > 0, and a distribution shape parameter ξ ∈ R.

We fit a GEV distribution py∗ with parameters estimated by minimizing the NLL loss of several
extreme labels. This GEV distribution captures the distribution of the best-observed target values
as seen from the current evaluated data. As such, generating unlabeled data whose predicted labels
follow the GEV distribution allows us to start out from the region of the existing extreme labeled data
while exploring points with potentially even greater target values due to the random nature of the
sampling process. Once the GEV distribution py∗ is fitted, we adopt a Markov-Chain Monte-Carlo
(MCMC) method (Hu et al., 2019) to sample from it.

5.2 UNLABELED DATA SAMPLING DISTRIBUTION LEARNED FROM STUDENT’S FEEDBACK

While the proposed GEV distribution approach offers a theoretically sound method for generating
unlabeled data, its practical effectiveness is constrained by the computationally intensive nature of
the MCMC sampling technique (Andrieu et al., 2003).

To circumvent the computational burden associated with MCMC, we endeavor to identify an alterna-
tive approach for sampling unlabeled data, denoted as zu, from a distribution pzu

(·;θu) parameterized
θu. In this pursuit, we turn to the reparametrization trick (Kingma & Welling, 2013) as our pre-
ferred sampling strategy. By introducing a random vector r ∈ R ⊆ Rd and a mapping function
g(·;θu) : R → Z , where g(r;θu) ∼ pzu when r ∼ pr, we can efficiently sample unlabeled data
zu := g(r;θu) using pr, a known distribution that can be conveniently sampled from, such as a
Gaussian distribution.

Furthermore, we propose an approach to optimize the sampling distribution pzu
and seamlessly

integrate it into the teacher-student paradigm. Learning a parameterized sampling distribution by
minimizing the feedback loss is a sensible choice. A large feedback loss is indicative of the use of
unlabeled data with poor pseudo-label quality, which can potentially mislead the teacher-student
model. We optimize θu to minimize the feedback loss Lf :

θ∗
u = argmin

θu

EZu∼pzu
Lf

(
Zv,yv;θS ,θT ,Zu

)
. (9)

The gradient for updating θu can be expressed using the reparametrization trick as follows:

∇θuEZu∼pzu
Lf

(
Zv,yv;θS ,θT ,Zu

)
= ∇θuER∼prLf (Zv,yv;θT ,θS , g(R;θu)), (10)

where R ∈ RM×d is a batch of M samples {ri}Mi=1. We incorporate the update of θu to the
alternating one-step scheme for θS and θT described in Section 4.4, as detailed in Appendix A.
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Table 1: Mean and standard deviation of the best value after 250 new queries

Method Expression ( ↓ ) Penalized LogP ( ↑ ) Ranolazine MPO ( ↑ )
Sobol 1.261±0.689 3.019±0.296 0.260±0.046
LS-BO 0.579±0.356 4.019±0.366 0.523±0.084
W-LBO 0.475±0.137 7.306±3.551 0.633±0.059
T-LBO 0.572±0.268 5.695±1.254 0.620±0.043
TSBO-GEV 0.396±0.07 18.40±7.890 0.708±0.032
TSBO-Gaussian 0.24±0.168 25.02±4.794 0.744±0.030

Table 2: A broader comparison on the Chemical Design Task to maximize the Penalized LogP

Method nInit nQuery Penalized LogP ( ↑ ) Best value ( ↑ )

T-LBO

200 250 5.695±1.254 7.53
500 10.824±4.688 16.45

2500 5,250 N/A 38.57
250,000 500 26.11 29.06

TSBO-Gaussian 200 250 25.02±4.794 31.67
500 28.04±3.731 32.92

6 EXPERIMENTAL RESULTS

We aim to empirically demonstrate 1) the overall sample efficiency of TSBO, 2) the enhanced
generalization capabilities of the data query GP model when incorporating pseudo labels, and 3) the
effectiveness of each proposed technique.

6.1 EXPERIMENTAL SETTINGS

We employ TSBO in 3 challenging high-dimensional global optimization benchmarks, based on
two datasets: 40K single-variable arithmetic expressions (Kusner et al., 2017) for an arithmetic
expression reconstruction task, and 250K molecules (ZINC250K) (Sterling & Irwin, 2015) for two
chemical design tasks. For the chemical design tasks, two objective molecule profiles are considered,
respectively: the penalized water-octanol partition coefficient (Penalized LogP) (Gómez-Bombarelli
et al., 2018), and the Ranolazine MultiProperty Objective (Ranolazine MPO) (Brown et al., 2019).
Detailed descriptions of these three tasks are shown in Appendix B.2.

Baseline Methods To assess the efficacy of TSBO, we conduct a comprehensive comparative analysis
against three VAE-based latent space optimization baselines: LS-BO (Gómez-Bombarelli et al.,
2018), W-LBO (Tripp et al., 2020), and T-LBO (Grosnit et al., 2021). Additionally, we include the
random search algorithm Sobol (Owen, 2003) for reference. LS-BO performs BO in the latent space
with a fixed pre-trained VAE; W-LBO periodically fine-tunes the VAE with current labeled data;
T-LBO introduces deep metric learning to W-LBO by additionally minimizing the triplet loss of the
labeled data, and is one of the present best-performing methods. We follow the setups described in
their original papers (Tripp et al., 2020; Grosnit et al., 2021; Gómez-Bombarelli et al., 2018).

TSBO’s Details TSBO is constructed over the baseline T-LBO, whose methodology is hose method-
ology is concisely outlined in Appendix B.4. The only difference between TSBO and T-LBO is the
data query GP: in our case, it is fitted on labeled data and unlabeled data with predicted pseudo
labels. We denote TSBO with the optimized Gaussian distribution of unlabeled data sampling by
TSBO-Gaussian, and TSBO with the GEV distribution for sampling unlabeled data by TSBO-GEV.
More details about TSBO configurations are listed in Appendix B.3.

Experimental Setup Our initial labeled data is limited to 100 for the arithmetic expression reconstruc-
tion task, and 200 for the two chemical design tasks, respectively. Different from the initialization
in (Tripp et al., 2020; Grosnit et al., 2021) which utilizes the full datasets for initialization, we only
allow access to no more than 1‰ of the labeled data in the chemical design tasks and 1% of the
arithmetic expression task, creating test cases under a tight total labeled data budget. To reduce the
performance fluctuations induced by random initialization, we repeat each experiment over 5 random
seeds and report the mean performance and its standard deviation.
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Table 3: The NMLL loss on testing data

Data query model Expression Penalized LogP Ranolazine MPO
GP w/o pseudo labels 1.055 0.881 -1.504
GP with pseudo labels 0.650 0.863 -2.019

Table 4: The ablation test of TSBO on the Chemical Design Task with 250 new queries

Method PL predictor Student Zu Sampling Penalized LogP (↑ )
T-LBO - - - 5.695±1.25

MLP - Gaussian 9.917±6.251
T-LBO with PL Prob-MLP - Gaussian 17.557±6.998

Oracle - Gaussian 26 @ 100 queries

MLP GP Optimized
Gaussian 12.568±7.965

Prob-MLP GP Optimized
Gaussian 21.115±6.382

TSBO Prob-MLP UA-GP Uniform 4.881±1.416
Prob-MLP UA-GP Gaussian 23.464±9.535

Prob-MLP UA-GP Optimized
Gaussian 25.02±4.79

6.2 EFFICACY OF THE PROPOSED TSBO

As shown in Fig. 2, both TSBO-GEV and TSBO-Gaussian consistently outperform T-LBO and
other baselines across all evaluated problems within 250 data evaluations. Notably, TSBO-Gaussian
demonstrates the ability to discover high target values using a small amount of queried data at the
beginning of the BO process. Table 1 provides a summary of the mean performances and standard
variations, demonstrating TSBO’s superior performance.

Furthermore, our experiments underscore the sample efficiency of TSBO. Table 2 shows the best
penalized LogP score acquired by T-LBO and TSBO-Gaussian with different numbers of initial data
and new queries. Remarkably, even when initiating the process with less than 1‰ of the available
samples from the ZINC 250K dataset, TSBO-Gaussian surpasses T-LBO with the utilization of the
full dataset after 500 new queries, indicating TSBO’s significant sample efficiency.

6.3 MECHANISM OF TSBO: IMPROVED GENERALIZATION OF DATA QUERY GP MODEL

We analyze how pseudo labels benefit the data query model. After 250 new queries in all 3 opti-
mization tasks, we sample 100 test examples from the standard Gaussian distribution in the latent
space. Then, we compare the NMLL loss of posterior predictions for the testing data between a GP
fitted exclusively on labeled data, and another GP fitted on both labeled data and unlabeled data with
pseudo labels predicted by TSBO-Gaussian. As shown in Table 3, pseudo labels reduce the GP error
on testing data, indicating TSBO improves the generalization ability of the data query model.

6.4 BENEFITS OF PSEUDO-LABEL PREDICTION AND UNLABELED DATA SAMPLING

We conducted an ablation study to assess the efficacy of the proposed techniques within TSBO,
namely: (1) the benefit of pseudo-label prediction, 2) the improvement of introducing a teacher-
student model, 3) the usefulness of the proposed uncertainty-aware teacher-student model, and 4) the
necessity of unlabeled data sampling. In addition, Appendix C demonstrates the robustness of our
approach to the selection of the feedback weight λ.

The results of the ablation study on the proposed techniques within TSBO are presented in Table 4.
We denote PL as pseudo labels, Prob-MLP as an MLP with both mean and variance output (same
architecture to the teacher in Section 6.1), Oracle as the true evaluation function, and UA-GP as the
proposed pseudo-label dependent uncertainty-aware GP in Section 4.2. For all variants of TSBO, we
set λ to 0.1.
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The Benefit of Pseudo-Label Prediction For the baseline T-LBO, pseudo-label prediction improves
the best function evaluations after 250 queries, demonstrating the effectiveness of pseudo-label
prediction. Furthermore, the oracle predictor achieves superior performance, demonstrating the
significance of introducing better training strategies for pseudo-label predictors.

The Improvement of Introducing a Teacher-Student Model Comparing the method T-LBO with
PL to TSBO, we observe that incorporating a student model, irrespective of whether the predictor is
an MLP or a Prob-MLP, consistently leads to improved performance. This observation indicates that
the feedback loss mechanism aids the teacher in generating more accurate pseudo labels.

The Importance of Uncertainty-Awareness in the Teacher-Student Model In TSBO-Gaussian
whose teacher is Prob-MLP, the introduction of a UA-GP student rather than a GP results in a
noteworthy 18.5% increase in the mean of the Penalized LogP score while simultaneously reducing
the standard deviation by 25.0%, highlighting the efficacy of the proposed teacher-student model.

The Necessity of Unlabeled Data Sampling In TSBO, uniform sampling of unlabeled data yields
inferior performance compared to the baseline T-LBO, underscoring the significance of the sampling
strategy. Moreover, for the Gaussian distribution, the proposed hierarchical optimization method of
the teacher-student and the distribution achieves superior results in terms of both mean and variance.

7 RELATED WORKS

Latent Space BO BO suffers from its high computational complexity, particularly for high-
dimensional problems. To sidestep the challenge, the common practice is to perform BO in a
reduced latent space. Unsupervised latent space approaches learn a latent representation from abun-
dant unlabeled data with a linear random matrix (Wang et al., 2016), a nonlinear embedding(Moriconi
et al., 2020), or a VAE (Kusner et al., 2017), however, without leveraging the rich information of
labeled data. Among supervised latent space BO approaches that operate on labeled data, (Tyagi
& Cevher, 2014) samples an embedding matrix using low-rank matrix recovery while MGPC-BO
(Moriconi et al., 2020) optimizes a nonlinear dimension reduction model, consisting of a perceptron
(Rosenblatt, 1958) as an encoder and a multi-output GP (Alvarez & Lawrence, 2008) as a decoder.
Without employing unlabeled data, the performance of supervised latent space BO techniques is
severely limited by the lack of labeled data in high-dimensional spaces.

Semi-supervised Learning for Latent Space BO Semi-supervised approaches address the limitations
of the aforementioned techniques by exploring both labeled and unlabeled data. SILBO (Chen et al.,
2020) makes use of the spatial information of unlabeled data to learn a linear embedding matrix using
semi-supervised discriminant analysis (Cai et al., 2007) and slice inverse regression (Li, 1991). Linear
embeddings, however, offer limited dimension reduction performance. More powerful nonlinear
projection methods such as W-LBO (Tripp et al., 2020) train a variational autoencoder (VAE) with
unlabeled data while updating the VAE when additional labeled data become available. T-LBO
(Grosnit et al., 2021), one of the recent competitive approaches, improves W-LBO by introducing
deep metric learning (Xing et al., 2002) to pull the labeled data with similar target values together in
the latent space. The use of unlabeled data is limited to dimension reduction in W-LBO (Tripp et al.,
2020) and T-LBO (Grosnit et al., 2021), in which no predicted pseudo labels are explored.

Differently, the proposed semi-supervised TSBO aims to integrate unlabeled data with their predicted
pseudo labels into the core optimization steps of BO, apart from performing dimension reduction.
Exploring predicted pseudo labels allows training better data query GP models with unlabeled data,
mitigating the challenges brought by the sparsity of labeled data.

8 CONCLUSION

For the first time, we propose TSBO introducing a pseudo-label dependent uncertainty-aware teacher-
student model for semi-supervised learning in the context of Bayesian optimization (BO) to improve
the generalization of the data query model. Critically, we dynamically optimize the unlabeled
data sampling from two kinds of probabilistic distributions: a Gaussian distribution obtained by
minimizing the feedback loss, and a GEV distribution based on the extreme value theory. Experiments
on 3 high-dimensional BO benchmarks show that TSBO achieves superior performance in comparison
with other competitive latent space BO algorithms under tight labeled data budgets.
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A ALTERNATING ONE-STEP UPDATE RULE

When unlabeled data Zu are sampled from the distribution pzu(·|θu), we adopt the reparameterization
trick to optimize θu. In the ith training iteration of the teacher-student, we update θi−1

u with a learning
rate ηu:

• Sample Zu with reparameterization trick: Zu = g(R,θi−1
u ) where R ∼ pr;

• Update θi
S and θi

T as introduced in Algorithm 1;

• Fix θi
S , and update θi

u: θi
u ← θi−1

u − ηu∇θi−1
u
Lf (Zv,yv;θ

i
T ,θ

i
S ,Zu).

B EXPERIMENTAL DETAILS

We have made our code openly available4.

B.1 DYNAMIC SELECTION OF VALIDATION DATA

It is attempting to use the full set of available labeled data Dl as Dv to assess the student, as proposed
in (Pham et al., 2021) for image classification proposes. However, it is not always optimal under the
setting of BO, whose objective is to find the global optimum using an overall small amount of labeled
data. Hence, the assessment of the student, which provides feedback to the teacher, shall be performed
in a way to improve the accuracy of the teacher-student model in predicting the global optimum.
Since the majority of labeled data Dl are used in training the teacher, the quality of pseudo labels
around Dl is high. Thus, validating the student using Dl may lead to a low averaged loss, however,
which is not necessarily indicative of the model’s capability in predicting the global optimum. Our
empirical study shows that the performance of TSBO improves as the validation data are chosen to
be the ones with higher target values. This is meaningful in the sense that assessing the student in
regions with target values closer to the global optimum provides the best feedback to the teacher for
improving its accuracy at places where it is most needed. We adopt a practical way to dynamically
choose Dv at each BO iteration: the subset of Dl with the K highest label values. For this, we apply
a fast sorting algorithm to rank all labeled data.

B.2 HIGH-DIMENSIONAL OPTIMIZATION TASKS

Arithmetic Expression Reconstruction Task: The objective is to discover a single-variable arith-
metic expression x∗ = 1 / 3 + v + sin( v * v ). For an input expression x, the objective
function is a distance metric f(x) = max{−7,− log(1 + MSE(x(v)− x∗(v))}, where v are 1,000
evenly spaced numbers in [−10, 10]. A grammar VAE (Kusner et al., 2017) with a latent space of
dimension 25 is adopted. It is pre-trained on a dataset of 40,000 expressions (Kusner et al., 2017).

Chemical Design Task: The purpose of this task is to design a molecule with a required molecular
property profile. The objective profiles considered are 1) the penalized water-octanol partition
coefficient (Penalized LogP) (Gómez-Bombarelli et al., 2018), and 2) the Ranolazine Multiproperty
Objective (Ranolazine MPO) (Brown et al., 2019). A Junction-Tree VAE (Jin et al., 2018) with a
latent space of dimension 56 and pre-trained on the ZINC250k dataset (Sterling & Irwin, 2015).

For each task, prior to optimization, a VAE is pre-trained using unlabeled data through the maximiza-
tion of the ELBO (Kingma & Welling, 2013), and all methods employ this pre-trained VAE at the
outset of optimization.

B.3 TSBO’S MODEL ARCHITECTURE AND HYPERPARAMETERS

In TSBO, the teacher model is a multilayer perceptron (MLP) with 5 hidden layers and ReLU
activation (Nair & Hinton, 2010). The output dimension is 2. The student model is a standard GP
with an RBF kernel.

For the purpose of reproducibility, we provide a comprehensive account of the hyperparameters
employed in all our experiments using TSBO. Our approach is based on T-LBO, and thus we adopt

4https://anonymous.4open.science/r/TSBO-Official-B67E
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the default hyperparameters as suggested by (Grosnit et al., 2021). The remaining hyperparameters,
specific to TSBO, are presented in Table 5.

Hyper-parameter Topology Expr Chem

Common

Number of training steps
in each BO iteration 20 20 20

Number of warm-up steps 2,000 2,000 2,000
Feedback weight 10−4 10−1 10−1

Number of validation data 10 10 30
Number of sampled

unlabeled data 100 100 300

Acquisition EI EI EI
Acquisition
optimizer LBFGS LBFGS LBFGS

Teacher

Learning rate 10−4 10−3 10−4

Batch size of
labeled data 256 256 32

Optimizer Adam Adam Adam

Student

Kernel RBF RBF RBF
Prior mean Const. Const. Const.

Learning rate 10−2 10−2 10−2

Optimizer Adam Adam Adam

Data Query GP Kernel RBF RBF RBF
Prior mean Const. Const. Const.

Table 5: Hyper-parameters

B.4 TRAINING OF VAE IN TSBO

Although TSBO stands as a general BO framework, it has been seamlessly integrated into T-LBO
(Grosnit et al., 2021), a state-of-the-art VAE-based BO method, to facilitate a fair comparison. The
training approach for the VAE remains unaltered, aligning with T-LBO’s methodology:

• Pretrain: Before the first BO iteration, the VAE is trained on the dataset in an unsupervised way to
maximize the ELBO (Kingma & Welling, 2013);

• Fine-tune: After each 50 BO iteration, the VAE is trained on all labeled data for 1 epoch to both
maximize the ELBO and minimize the triplet loss which penalizes data having similar labels located
far away. The weight of triplet loss is set to 10 in the Expression task and 1 in the Chemical Design
task.

The training schemes of all models proposed in TSBO and the VAE are decoupled, rendering T-LBO
an apt baseline for validating TSBO’s sample efficacy.

Table 6: The ablation test of the weight of the feedback loss

Method λ Expression ( ↓ ) Penalized LogP ( ↑ ) Ranolazine MPO ( ↑ )
T-LBO - 0.572±0.268 5.695±1.254 0.620±0.043

TSBO-Gaussian

0.001 0.240±0.168 21.106±8.960 0.713±0.021
0.01 0.433±0.260 21.384±1.533 0.720±0.040
0.1 0.450±0.130 25.021±4.794 0.744±0.030
1 0.474±0.113 21.122±7.494 0.712±0.023
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C THE INFLUENCE THE FEEDBACK WEIGHT TO TSBO

We analyze the influence of the selection of the feedback weight λ. Our experiments demonstrate
that in a large range of λ, TSBO consistently outperforms the baseline T-LBO, underscoring the
robustness of our approach to this hyper-parameter.

As shown in Table 6, while the selection of λ in {0.001.0.01, 0.1, 1} has an impact on TSBO’s
performance, for each considered λ, TSBO-Gaussian consistently outperforms T-LBO, indicating
that our success is not contributed to a deliberate λ selection.

D ADDITIONAL ABLATION TEST OF VALIDATION DATA SELECTION

In order to verify the effectiveness of the proposed dynamic selection of validation data Dv in TSBO,
where Dv is the subset of Dl with the K highest label values, we conduct an ablation study to
compare it (TSBO-Gaussian) with two non-optimized Dv selection strategies: random K examples
uniformly sampled from Dl (TSBO-Gaussian-ValRand), and the current labeled dataset Dl (TSBO-
Gaussian-ValAll). These three variants of TSBO are measured on the Chemical Design task, and we
report their average best values of 5 runs starting with 200 initial labeled data and a new data query
budget of 250. K is set to 30.

As shown in Table 7, despite each variant of TSBO outperforms the baseline T-LBO, both TSBO-
Gaussian-ValRand and TSBO-Gaussian-ValAll are less competitive than TSBO-Gaussian in finding
the global maximum. This result meets our expectations: the student’s feedback on those examples
with the K highest label values is more beneficial for the training of the teacher-student model, and
eventually better facilitating the search for the maximum.

Table 7: Comparison of validation data selection of TSBO on the Chemical Design task

Method Validation Data Selection Best Value (↑ )
T-LBO - 5.70
TSBO-Gaussian-ValRand Random 30 21.60
TSBO-Gaussian-ValAll All labeled data 22.65
TSBO-Gaussian Top 30 25.02

E ROBUSTNESS OF TSBO TO NOISY LABELS

In this section, we demonstrate the robustness of TSBO in noisy environments. We compare TSBO
with the other baselines on the Chemical Design task, where all labels are subject to additional i.i.d.
zero-mean Gaussian noises, with a standard deviation (std) of 0.1. All methods start with 200 initial
labeled data and query 250 new examples. We report the mean and the standard deviation of the best
values found by each method among 5 runs in Table 8.

Table 8: Labels with white Gaussian noises on the Chemical Design Task

method Best Penalized LogP (↑ )
Noise variance=0 Noise variance=0.1

Sobol 3.019±0.296 3.06±0.38
LS-BO 4.019±0.366 4.41±0.68
W-LBO 7.306±3.551 4.44±0.27
T-LBO 5.695±1.254 4.22±0.68
TSBO-GEV 18.40±7.89 20.73±6.24
TSBO-Gaussian 25.02±4.794 25.97±4.82

While nearly all of the baselines, especially T-LBO, exhibit decreases in the noisy scenario compared
to the results obtained without observation noise, TSBO shows no performance deterioration. This
phenomenon demonstrates the noise-resistant capability of the proposed uncertainty-aware teacher-
student model.
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F BROADER IMPACT

The proposed TSBO has the potential for significant positive impacts in various domains. By effec-
tively finding the optimum compared with baselines on multiple datasets, TSBO offers a promising
solution to enhance the efficiency and efficacy of optimization processes given limited labeled data
and evaluation budgets. For instance, in engineering and manufacturing, TSBO can facilitate outlier
detection, failure analysis, and the design of more efficient processes, leading to increased productiv-
ity and reduced resource consumption. By enabling faster and more accurate optimization, TSBO can
ultimately benefit society as a whole.

Even though TSBO holds great promise, it is important to acknowledge and mitigate potential negative
impacts. One concern is the overreliance on automated optimization algorithms, which could lead to
a decreased emphasis on human intuition and creativity. TSBO should be used as a supportive tool
that enhances human decision-making rather than replacing it entirely. Additionally, there is a risk of
bias in the optimization process if the training data used for the teacher model contain inherent biases.
Careful attention must be given to the training data to ensure fair and unbiased optimization results.

In conclusion, TSBO offers significant potential for broad impact in optimization tasks. By improving
the efficiency and efficacy of optimization processes, TSBO can accelerate the discovery of optimal
solutions, benefiting various industries and ultimately improving the well-being of individuals and
society at large. However, it is important to consider and mitigate potential negative impacts, such
as overreliance on automation and the risk of bias, to ensure that TSBO is used responsibly and
ethically. With proper safeguards and considerations, TSBO can be a valuable tool that enhances
human expertise and drives advancements in optimization across diverse domains.
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