
Under review as a conference paper at ICLR 2021

CONTEXTUAL HYPERNETWORKS FOR
NOVEL FEATURE ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep learning has obtained state-of-the-art results in many applications,
the adaptation of neural network architectures to incorporate new output features
remains a challenge, as a neural networks are commonly trained to produce a fixed
output dimension. This issue is particularly severe in online learning settings, where
new output features, such as items in a recommender system, are added continually
with few or no associated observations. As such, methods for adapting neural
networks to novel features which are both time and data-efficient are desired. To
address this, we propose the Contextual HyperNetwork (CHN), an auxiliary model
which generates parameters for extending the base model to a new feature, by
utilizing both existing data as well as any observations and/or metadata associated
with the new feature. At prediction time, the CHN requires only a single forward
pass through a neural network, yielding a significant speed-up when compared to
re-training and fine-tuning approaches. To assess the performance of CHNs, we
use a CHN to augment a partial variational autoencoder (P-VAE), a deep generative
model which can impute the values of missing features in sparsely-observed data.
We show that this system obtains improved few-shot learning performance for novel
features over existing imputation and meta-learning baselines across recommender
systems, e-learning, and healthcare tasks.

1 INTRODUCTION

In many deep learning application domains, it is common to see the set of predictions made by a
model grow over time: a new item may be introduced into a recommender system, a new question
may be added to a survey, or a new disease may require diagnosis. In such settings, it is valuable
to be able to accurately predict the values that this feature takes within data points for which it is
unobserved: for example, predicting whether a user will enjoy a new movie in a recommender system,
or predicting how a user will answer a new question in a questionnaire.

On the introduction of a new feature, there may be few or no labelled data points containing observed
values for it; a newly added movie may have received very few or even no ratings. The typically poor
performance of machine learning models in this low-data regime is often referred to as the cold-start
problem (Schein et al., 2002; Lika et al., 2014; Lam et al., 2008), which is prevalent not only in
recommender systems but also in applications where high quality data is sparse. This presents a key
challenge: the adaptation of a deep learning model to accurately predict the new feature values in the
low data regime. On one hand, it is often required to deploy the model in applications immediately
upon the arrival of new features, so it is impractical for the adaptation to wait until much more
data has been acquired. On the other hand, simply retraining the model every time a new feature is
introduced is computationally costly, and may fall victim to severe over-fitting if there are only a
small number of observations available for the new feature.

Few-shot learning (Snell et al., 2017; Requeima et al., 2019; Vinyals et al., 2016; Gordon et al., 2018)
has seen great successes in recent years, particularly in image classification tasks; however, these
approaches typically treat all tasks as independent of one another. We wish to extend these ideas
to the challenge of extending deep learning models to new output features, using a method which
captures how a new feature relates to the existing features in the model. Furthermore, we seek a
method that is computationally efficient, ideally requiring no fine-tuning of the model, and that is
resistant to over-fitting in the few-shot regime.

1

Under review as a conference paper at ICLR 2021

To address these needs simultaneously, our contributions are as follows:

• We propose an auxiliary neural network, called Contextual HyperNet (CHN), that can be
used to initialize the model parameters associated with a new feature (see Section 2).
CHNs are conditioned on both a context set made up of observations for the new feature, and
any associated content information or metadata. CHNs amortize the process of performing
gradient descent on the new parameters by mapping the newly observed data directly into
high-performing new parameter values, with no additional fine-tuning of the model being
required. This makes CHNs highly computationally efficient and scalable to large datasets.
• We use a CHN to augment a partial variational autoencoder (P-VAE) and evaluate the

system’s performance across a range of applications (see Section 4).
While CHNs are applicable to a wide range of deep learning models, in this work we choose
a P-VAE as the evaluation framework. The result is a flexible deep learning model able to
rapidly adapt to new features, even when the data is sparsely-observed, e.g. in recommender
systems. We show that this model outperforms a range of baselines in both predictive
accuracy and speed across recommender system, e-learning and healthcare tasks.

2 MODEL

2.1 PROBLEM SETTING

Our goal is to enable fast adaptation of a machine learning model when new output features are added
to augment the originally observed data. Specifically, we consider the original observations as a set
of vector-valued data points D = {x(i)}mi=1, where each of the feature values in a given data point
may be missing. We denote xj as the jth feature of a data point x ∈ D and group the observed and
unobserved features within a data point as x = [xO,xU]. In many scenarios, such as recommender
systems, a machine learning model p(xU |xO) aims then at predicting the unobserved features xU
given observed ones xO.

Observed Features xn

Features

D
at

ap
oi

nt
s

Observed value for datapoint in context set Cn
Observed value for datapoint in target set Tn

Value unobserved in dataset

Figure 1: Data used when adapting to a
new feature xn. The rows which contain
yellow blocks are Cn and other rows are
in Tn.

Now suppose a new output feature xn becomes available,
so that each data vector x ∈ D is augmented to become
x̃ = [x;xn]. This happens when e.g. a new item is added
to a recommender system, or a new type of diagnostic
test is added in a medical application. We note that not
every data point x ∈ D receives an observed value for the
new feature: a newly added movie may have received very
few ratings, or a new diagnostic test may have yet to be
performed on all of the patients. We refer to the set of data
points where the new feature is observed as the context set
for the new feature n, i.e.

Cn = {x̃ = [x;xn] | x ∈ D, xn is observed}.
context set is shown in yellow in Figure 1 Its complement,
the target set Tn, is the set of those data points for which
there is no associated observation for the feature:
Tn = {x̃ = [x;xn] | x ∈ D, xn is unobserved}.

One can also split the augmented data into observed and unobserved parts, i.e. x̃ = [x̃O, x̃U]. Using
this notation, it is clear that x̃O = [xO;xn], x̃U = xU for x̃ ∈ Cn, and x̃O = xO, x̃U = [xU ;xn] for
x̃ ∈ Tn. In addition, we may also have access to some metadataMn describing the new feature.
This could be categorical data such as the category of a product in a recommender system or the topic
of a question in an e-learning system, or some richer data format such as images or text.

We wish to adapt the machine learning model pθ0(xU |xO) to pθ(x̃U |xO) so that it is able to accurately
predict the value of the unobserved new features for data points x̃ ∈ Tn. A naive strategy would
ignore the previous model pθ0(xU |xO) and instead seek the maximum likelihood estimates (MLE)
of the parameters for the new model pθ(x̃U |xO). This is typically done by training the new model on
the context set, by temporarily moving the observed new features xn to the prediction targets:

θ̂ = argmax
θ

[∑
x̃∈Cn

log pθ (xn,xU |xO)

]
.

2

Under review as a conference paper at ICLR 2021

Cn

x(i1)

x(i2)

...

x(ik)

x
(i1)
n

x
(i2)
n

...

x
(ik)
n

MAIN MODEL

z(i1)

z(i2)

...

z(ik)

x
(i1)
n

x
(i2)
n

...

x
(ik)
n

Mn

f(·)

f(·)

shared

f(·)

h(·)

+ g(·) cn

mn

PA
R

A
M

E
T

E
R

PR
E

D
IC

T
IO

N
N

E
T

θ̃n

(a) Contextual HyperNet Architecture

xO

xU
?

xn
?

Model
θ0

θ̃n

xO

xU
?

xO

x̂U

x̂n
CHN
ψ

Cn Mn

(b) CHN applied to a predictive
model

Figure 2: (a) Contextual HyperNetwork architecture. z(i) is a fixed-length internal representation
of the previously observed values in the data point x(i) taken from the base model. (b) Complete
architecture when a Contextual HyperNetwork is used to augment a predictive model pθO (xU |xO)
to be able to make predictions for a new feature n, by initialising new parameters θ̃n.

However, in deep neural networks, the number of model parameters θ may be extremely large, so that
maximising this log-likelihood is very expensive, particularly if new features are being introduced on
a regular basis. Furthermore, optimising θ for one particular feature may lead to poor performance
for another, as is the case in catastrophic forgetting (Kirkpatrick et al., 2017) in continual learning
tasks. In order to address both of these concerns, we divide the model parameters into parameters
θ0 inherent from the old model, and feature-specific parameters θn associated solely with the new
feature. In other words, we use pθ0(xU |xO) as a base model and pose a factorisation assumption
on the augmented model as pθ(x̃U |xO) = pθ0(xU |xO)pθ0(xn|xO;θn), which together yield a
predictive model for the new feature. We then hold θ0 fixed and only seek MLEs for θn. While this
greatly reduces the dimensionality of the parameter space over which we optimize for a new feature,
and decouples the optimization of parameters for one new feature from another, several issues still
exist. This factorization still requires a gradient descent procedure, which can be computationally
costly and risks severe overfitting when there is little data for the new feature. Furthermore, it is not
immediately clear how to make the estimation of θn depend on the feature metadataMn. To address
these problems, we introduce a Contextual HyperNetwork (CHN) Hψ(Cn,Mn), an auxilliary neural
network that amortizes the process of estimating θn. The goal is that when a new feature xn∗ is added
at test time, the CHN will directly generate “good” parameters θ̃n∗ = Hψ(Cn∗ ,Mn∗) such that the
new predictive model pθ0(xn∗ |xO;θn∗ = θ̃n∗) can predict the values of the new feature accurately.

2.2 CONTEXTUAL HYPERNETWORKS

CHNs aim to map the context set Cn and metadataMn into an estimate of the new model parameters
θ̃n. Since the size of Cn is variable for each feature, CHNs require an architecture that is able to
adapt to a varying input dimension. This challenge is addressed through the use of a PointNet-style
set encoder (Qi et al., 2017; Zaheer et al., 2017). For each context point x̃(i) ∈ Cn, we concatenate
the new feature x(i)n with a fixed-length encoding z(i) (see below) of the other observed features
x
(i)
O within the data point. Each of these concatenated vectors [z(i), x(i)n] is then input to a shared

neural network f(·), and the outputs f([z(i), x(i)n]) are aggregated by a permutation-invariant function
such as summation in order to produce a single, fixed-length vector. This output is passed through
a second neural network g(·) to produce a fixed-length encoding of cn we term a “context vector".
This architecture is displayed in Figure 2a.

The fixed length encoding z(i) of the observed features x(i)
O for each context data point x̃(i) ∈ Cn

is obtained by inputting the observed features to the base model pθ0(xU |xO) and taking some
intermediate representation from within the model: in an autoencoder model, this could be the
encoded vector representing the data point at the information bottleneck, while in a feed-forward
model it could be the output of an intermediate layer. By encoding the existing features in this way,
we hope to enable the CHN to interpret the observed values for the new features in the context of the
base model’s representation of remainder of the data point.

Additionally, any feature metadataMn is passed through a neural network h(·) to produce a fixed
length metadata embedding vector mn. In the case of image or text metadata, specialized architectures

3

Under review as a conference paper at ICLR 2021

such as convolutional or sequence models can be used here. The concatenated vector [cn;mn] is
then input into a final feed-forward neural network which outputs the new feature-specific parameters
θ̃n. CHNs can be applied to any predictive model with dynamically added output features: Figure 2b
shows the application of CHN to an predictive model. As an example, we illustrate how CHN is used
with an autoencoder-style model in Figure 3.

x1

...

xn−1

cSet
Encoder

zEncoder d
Shared

Decoder

Decoder Heads

x̂1

x̂2

...

x̂n−2

x̂n−1

x̂n

θ̃n

Contextual HyperNet
ψ

Cn

Mn

Figure 3: Contextual HyperNetwork applied to a
P-VAE. The CHN generates parameters θ̃n for a
new decoder head.

Since it is possible to parallelize the encoding
of the context set Cn both across each data point
x(k) and across the observed features within
each data point xi, the computational costs for
parameter prediction with CHNs are able to
scale efficiently with both the context set size
and the number of observed values within each
data point in the context set. When combined
with the lack of any costly iterative gradient-
descent procedure, this makes CHNs an ex-
tremely efficient choice for parameter initial-
ization.

2.3 TRAINING CHNS WITH
META-LEARNING

We adopt a meta-learning approach to training the CHN, treating the prediction of the values of
each new feature as an individual task, with the aim of producing a model that can “learn how to
learn” from Cn andMn. First, a base model pθ0(xU |xO) is trained on the data observed before
the adaptation stages; this model is then frozen during CHN training. To implement the training
strategy, in the experiments we divide the dataset into three disjoint sets of features (see Figure 4): a
‘training’ set for base model training in the first stage, a ‘meta-training’ set for CHN meta-learning in
the second stage, and a meta-test set for CHN evaluation in the third stage.

Meta-Training of the CHN During meta-training, the parameters θ0 of the base model are frozen,
and we learn the parameters ψ of the CHN. We iterate the following training steps in mini-batches of
features B sampled from the meta-training set for every step:

1. For each feature n in B, sample kn data points in which this feature is observed to form the
context set Cn, and reveal the associated feature values to the model. In our experiments
we sample kn ∼ Uniform[0, ..., 32] to ensure that a single CHN can perform well across a
range of context set sizes.

2. For each feature n ∈ B, compute feature-specific parameter predictions using the CHN,

θ̃n = Hψ(Cn,Mn).

3. For each feature n ∈ B, estimate the log-likelihood of the CHN parameters ψ given the
ground truths for the hidden values of the feature n in the data points in its target set Tn,
using the augmented model pθ0(xn|xO, θ̃n):

l(ψ) =
1∑

n∈B |Tn|
∑
n∈B

∑
{i|x(i)∈Tn}

log pθ0(x
(i)
n |x

(i)
O ; θ̃n).

4. Update the CHN parameters by taking a gradient ascent step in ψ for l(ψ).

Note that the log-likelihood is only computed for the hidden values of the new feature in the target
set Tn, and not for the observed values in Cn – this is to ensure that the CHN produces parameters
which generalize well, rather than overfitting to the context set. This approach is consistent with
many meta-learning methods such as MAML (Finn et al., 2017), where the meta-learning model is
updated based on its performance on a “test set" of previously unseen examples for each new task.

Evaluating the CHN At evaluation time, the parameters of both the base model and the CHN are
now frozen. A fixed context set and metadata are provided for each feature in the meta-test set, and

4

Under review as a conference paper at ICLR 2021

these are used to initialize feature-specific parameters for the meta-test features using the trained
CHN. These parameters are then used to make predictions for all of the target set values for the new
features, from which evaluation metrics are computed.

3 RELATED WORK

?

?
?

?

Training Set Meta-Train Set

Features

D
at

ap
oi

nt
s

Observed value; datapoint in context set Cn
Observed value; datapoint in target set Tn
Value hidden from model; prediction target

Value unobserved in dataset; ignore

Figure 4: Data splits when meta-training
a CHN. Meta-testing proceeds analo-
gously, using features from an additional
meta-test set of features, but using a con-
stant set of observed values for each fea-
ture on every meta-test set evaluation.

CHNs aim to solve the problem of adapting to a new fea-
ture with very few available observations, and thus relate to
few-shot learning and related fields such as meta-learning
and continual learning. From a technical point of view,
we use an auxiliary neural network to amortize the learn-
ing of parameters associated with the new feature, which
falls under the domain of hypernetworks. Furthermore,
in the context of recommender systems, a number of re-
lated methods have been proposed to address the cold-start
problem. We thus discuss related work in these three areas.

Few-Shot Learning Few-shot learning is the problem
of designing machine learning models that can adapt to
new prediction tasks given a small number of training
examples. A popular approach to this problem is gradient-
based meta-learning, such as MAML (Finn et al., 2017)
and Reptile (Nichol & Schulman, 2018), which seek a
parameter initialisation θ that can rapidly adapt to tasks
drawn from a task distribution p(T).These methods do
not directly condition the parameter initialisation for a
new task on any associated data or metadata, instead relying on fine-tuning,which can be both
computationally expensive and lead to severe overfitting when little data is available. Another line of
methods seek to adapt a classifier to a task based on a context set of class examples. For instance, by
embedding class examples to provide a nearest neighbours classifier (Snell et al., 2017), learning an
attention mechanism between class examples and a new example (Vinyals et al., 2016), or modulating
activation functions (Munkhdalai et al., 2017) within a feature extractor conditioned on the context
set. Conditional Neural Adaptive Processes (Requeima et al., 2019), which are based on Conditional
Neural Processes (Garnelo et al., 2018), adapt both classifier and feature extractor parameters based
on the context set for a task. Similarly, Gidaris & Komodakis (2018) generate classifier weights for
a new image class based on features extracted using the base model. However, in all cases, each
task or image class is treated as independent from all others, whereas CHNs explicitly utilize all
previously-observed features in the base model when adapting to a new feature.

A closely related field is continual learning (Kirkpatrick et al., 2017; Nguyen et al., 2017), where a
model seeks to adapt to new tasks or a shifting data distribution while avoiding catastrophic forgetting
of old tasks. Continual learning does not necessarily address the few-shot scenario and is commonly
applied in classification settings where the classifier/heads can be either shared or independent. CHNs
can be seen as a means of addressing continual learning in the few-shot learning regime, by generating
parameters for a new feature conditioned on all of the features already learned by the model.

Hypernetworks Hypernetworks (Ha et al., 2016) are auxiliary neural networks which generate
the parameters of a neural network. They were introduced in Ha et al. (2016) as a form of model
compression, with the hypernetwork taking as in input only structural information about the weight
matrix they are currently predicting, such as its index in a sequence of layers. By contrast, CHNs
are explicitly conditioned on data relevant to the weights currently being predicted. Bertinetto et al.
(2016) train a hypernetwork to predict all of the parameters of a binary classifier for a class of images,
conditioned on a single exemplar image for the class. It is found that the output dimension of the
hypernetwork grows extremely large for even small classifiers—in order to mitigate this, the authors
propose a factorisation of the parameters, whereas we instead choose to learn only a small number of
feature-specific parameters θn. Task-conditioned hypernetworks (von Oswald et al., 2019) provide an
application of hypernetworks to multi-task continual learning, where weights for the entire neural
network for different tasks are predicted using a hypernetwork, based on a learned task embedding.

5

Under review as a conference paper at ICLR 2021

This setting differs from our work as the continual learning tasks are assumed to be independent, and
the hypernetwork is not conditioned directly on data for the new task, instead requiring a gradient
descent process to learn the associated task embedding.

Cold Starts in Recommender Systems Cold starts (Schein et al., 2002; Lika et al., 2014) occur
when there is little or no data associated with a novel item or user in a recommender system.
Collaborative filtering approaches to recommender systems have enjoyed great success for many
years (Schafer et al., 2007; Sarwar et al., 2001; He et al., 2017), but can fail completely when there
is very limited rating data associated with a new user or item (Lam et al., 2008). One potential
solution to cold starts is given by content-based methods (Pazzani & Billsus, 2007; Lops et al., 2011),
which use any available descriptive information about the new user or item. Hybrid approaches
(Balabanović & Shoham, 1997; Stern et al., 2009; Gomez-Uribe & Hunt, 2015) seek to marry
these two approaches, making use of both collaborative and content-based methods. Meta-learning
approaches also show promise for solving cold starts, including MAML-like approaches (Bharadhwaj,
2019) for initialising new items. Vartak et al. (2017) takes a similar approach to CHNs by adapting
the weights of a classifier, but the adaption is based on user rather than item history, and it relies
on class-specific item embeddings and thus is not extensible to regression settings. In this work,
when applied to recommender systems, CHNs combine the strengths of all of these approaches,
using content information, ratings data and latent representations of the associated users to generate
accurate parameters for novel items. Recently, graph neural network (GNN)-based approaches (You
et al., 2020; Schlichtkrull et al., 2018; Wang et al., 2019; Hamilton et al., 2017) have shown promise
when applied to recommender systems. These methods formulate each item and each user as a node,
and incorporate new items by adding nodes to the graph, where the graph structure may be exploited
for inductive reasoning about new features. In this work, we target more standard, vector-based
neural networks which are currently deployed across a wide range of application domains where
GNNs may not be suitable, but future work may explore the application of CHNs to GNNs and the
relationships between the two.

4 EXPERIMENTS

We demonstrate the performance of the proposed CHN in three different real-world application
scenarios, including recommender systems (Section 4.2), healthcare (Section 4.3) and e-learning
(Section 4.4). Our method exhibits superior performance in terms of prediction accuracy across all
these applications. We also demonstrate an advantage in terms of computational efficiency in a large
scale real-life setting.

4.1 EXPERIMENT SETTINGS

In all our experiments, we apply a CHN to a partial variational autoencoder (P-VAE) (Ma et al.,
2018b;a) as an exemplar model. This is a flexible autoencoder model that is able to accurately work
with and impute missing values in data points, allowing us to model sparsely-observed data such as
that found in recommender systems. For each new feature n, we augment the P-VAE’s decoder with
a new decoder head consisting of an additional column of decoder weights wn and an additional
decoder bias term bn which extend the model’s output to the new feature, so that θn = {wn, bn}.
Figure 3 illustrates how a CHN is used to extend a P-VAE to make predictions for a new feature xn.

For all experiments, we train the CHN to output accurate feature parameters based on a range of
context set sizes k ∈ [0, ..., 32] by randomly sampling k on each occurrence of a meta-training set
feature. We then evaluate the performance of the CHN and baselines on the meta-test set features for
a fixed range of context set sizes, ensuring that the same context sets are revealed to the CHN and
each baseline. Further experimental results can be found in Appendix C, and full details on the model
architectures and hyperparameters can be found in Appendix D. All results are averaged across 5
random train/meta-train/meta-test feature splits, and ±1σ error bars are plotted across these splits.
Hyperparameters and model architectures were tuned on different data splits to those used in the final
experiments.

We consider the following baselines for generating the new feature parameters θn = {wn, bn}. All
methods are applied to the same base trained P-VAE model to ensure a fair comparison.

6

Under review as a conference paper at ICLR 2021

0 1 2 4 8 16 32
Context Set Size

1.0

1.1

1.2

1.3

1.4

1.5
M

et
a-

Te
st

 R
M

SE
MovieLens-1M

0 1 2 4 8 16 32
Context Set Size

0.45

0.50

0.55

0.60

0.65

0.70

M
et

a-
Te

st
 A

UC

Neuropathic Pain

Random
Mean Head Params

Mean Head Params (Matching Metadata)
10-Nearest Neighbours

Mean Imputing
Train from Random (10 Epochs)

MAML
CHN

0 1 2 4 8 16 32
Context Set Size

0.50

0.55

0.60

0.65

0.70

0.75

M
et

a-
Te

st
 A

UC

E-Learning

Figure 5: Performances (±1σ) of CHN and benchmarks on MovieLens-1M (left), Neuropathic Pain
(middle) and E-learning (right) datasets for test features, with varying context size k. We report
meta-test RMSE for MovieLens-1M (lower is better) and AUROC for the others (higher is better).
For the MAML baselines, the best-performing case is shown: 1 fine-tuning epoch for MovieLens-1M
and 10 for others.

• Random: Generate a random value for θn for each new decoder head using Xavier initialisation
for weights and 0 for biases.

• Mean Imputing: Set weights and biases to always predict the mean of the observed values for the
new feature in the context set, i.e. wn = 0 and b = σ−1

(
1
k

∑
i∈Cn x

(i)
n

)
.

• Mean Head Parameters: Generate the new head parameters θn as the mean of all of the head
parameters learned on the training set features.

• Mean Head Parameters (Matching Metadata): As above, but averaging only over parameters
of heads whose associated feature has metadata categories matching those of the new feature.

• k-Nearest Neighbour Head Parameters: Generate the new head parameters θn as the mean of
the head parameters of the k-nearest neighbour features in terms of Euclidean distance, where
column-wise mean imputing is used to fill in unobserved values.

• Train from Random: Initialize the new feature head parameters randomly, and then fine-tune
these parameters on the data in the context set Cn for a fixed number of epochs.

• MAML: We meta-learn an initialisation of θn using Model-Agnostic Meta Learning (Finn et al.,
2017), where we treat the prediction of each feature as a separate task and fine-tune these parameters
on the context set. In all experiments, we compare with the MAML baseline which has the best-
performing number of fine-tuning epochs. For full details, see Appendix B.

4.2 RECOMMENDER SYSTEMS

In real-life recommender systems, new users and new items are continuously added as new customers
join and new products are launched. In deep learning based frameworks such as Sedhain et al. (2015);
Liang et al. (2018); Gong et al. (2019); Ma et al. (2018a), the deep neural networks are commonly
used in a user-based manner. In this approach, each new user is treated as a new data point, while each
new item is treated as a new feature. To add a new item, one must extend the network architecture
to incorporate the new feature, and we propose CHNs as an efficient way to predict the parameters
associated with the new feature.

We evaluate the scenario above with MovieLens-1M dataset (Harper & Konstan, 2015). The dataset
consists of 1 million ratings in the range 1 to 5 given by 8094 users to 5660 movies, and is thus
2.2% observed. For each movie, we have associated metadataMn giving a list of genres associated
with the movie, such as Action or Comedy, which we encode in a binary format, alongside the year
of release which we normalize to lie within [0, 1]. For each random data split, we sampled 60% of
movies as training data to train the base P-VAE model, used 30% as a meta-training set for CHN
training and used the remaining 10% as a meta-test set.

The plot in Figure 5 (left) shows the performance of our proposed CHN, comparing with all other
baselines in terms of RMSE (lower is better). Our method shows an advantage over all considered

7

Under review as a conference paper at ICLR 2021

baselines other than MAML in the few-shot regime (k < 8), while achieving competitive performance
with MAML without requiring costly fine-tuning.

4.3 HEALTHCARE

In healthcare applications, a new question is often added to an existing health-assessment question-
naire, and in hospitals, new medical devices may be introduced to make physiological measurements.
In this case it is desired for a model to quickly adapt to the newly added feature for health assessment,
even when relatively few tests have been administered and so data is scarce.

We assess the utility of CHNs in a healthcare setting using synthetic data generated by the Neuropathic
Pain Diagnosis Simulator (Tu et al., 2019). This simulator produces synthetic data using a generative
model to simulate pathophysiologies, patterns and symptoms associated with different types of
neuropathic pain. The data is binary, where a 0 represents the a diagnostic label that is not present in
a patient’s record, and a 1 indicates a diagnostic label that is present. We simulated 1000 synthetic
patients, and removed features with fewer than 50 positive diagnoses, resulting in 82 remaining
features, with 17.3% of the values in the dataset being positive diagnoses. We used 50% of the
features as training set; 30% of the features as the meta-test set and 20% of the features as the
meta-test set.

The plot in Figure 5 (middle) shows the results in terms of AUROC (higher is better), as the dataset
is highly imbalanced. Our method consistently outperforms all baselines across all values of k,
while many methods including MAML suffer from severe overfitting when k is small. In contrast to
the MovieLens-1M result, here the 10-nearest neighbour approach does not seem to leverage more
datapoints in the context set. This shows that our method is desirable in the cost-sensitive healthcare
environment, even for highly imbalanced medical tests where results are largely negative.

4.4 E-LEARNING

We foresee CHNs being valuable in online education settings, potentially allowing teachers to quickly
assess the diagnostic power of a new question given a small number of answers, or to gauge whether
a new question’s difficulty is appropriate for a particular student.

We assess the performance of the CHN in an e-learning setting using a real-life dataset provided
by the e-learning provider Eedi for the NeurIPS 2020 Education Challenge (Wang et al., 2020). In
particular, we use the dataset for the first 2 tasks, filtered so that all students and questions have at
least 250 associated responses. This results in a dataset of for 6797 students across 4792 questions,
detailing whether or not a student answered a particular question correctly. The dataset contains
approximately 2.7 million responses, making it 8.2% observed. We treat each student as a data point
and each question as a feature, and use a binary encoding of each question’s associated subjects as
metadata. We used 60% of the questions as training set; 30% of the questions as the meta-test set and
10% of the questions as the meta-test set.

The right panel in Figure 5 illustrates the performance on prediction on the unseen meta-test set in
terms of AUROC. Our method shows a significant improvement over all of the considered baselines
over the entire range of k, suggesting promise for applying CHNs in educational settings.

4.5 TIMING EXPERIMENTS

Table 1: Average time taken to initialize parameters for
a feature in the e-learning dataset given k observations.
All times are given in milliseconds, averaged across the
whole meta-test set using a batch size of 128. T Random
here indicates Train from Random.

Method/K 1 4 16

10-NN 400.8± 0.5 402.3± 2.1 405.1± 1.5
T Random (1 Epoch) 47.4± 4.5 61.3± 4.7 89.2± 4.4
T Random (5 Epochs) 210.9± 20.4 270.7± 18.4 331.1± 20.0
T Random (10 Epochs) 414.9± 38.6 530.3± 35.9 651.7± 38.8

Contextual HyperNet 113.7± 1.1 116.5± 1.0 119.9± 1.3

We used the E-learning dataset to compare
the time taken to generate new feature
parameters at meta-test time for a num-
ber of methods considered in our exper-
iments. The results are shown in Table
1. We see that the CHN offers nearly a
4-fold speedup compared to the nearest-
neighbours based approach. We see a sim-
ilar difference in performance when com-
pared to training the new heads on a single
observation for just 10 epochs. Moreover,

8

Under review as a conference paper at ICLR 2021

while this training time grows rapidly with
the number of observations in the context
set, the time taken for a CHN remains nearly constant since it can efficiently parallelize along these
observations, making CHNs an extremely efficient initialisation choice for larger context set sizes.
The experimental settings are specified in Appendix D where the total computation time for training
and evaluating a CHN was approximately 3 minutes on the Neuropathic Pain dataset, 1.5 hours on
the E-learning dataset, and 8 hours on MovieLens-1M.

5 CONCLUSION

We introduce Contextual HyperNetworks (CHNs), providing an efficient way to initialize parameters
for a new feature in a model given a context set of points containing the new feature and feature
metadata. Our experiments demonstrate that CHNs outperform a range of baselines in terms of
predictive performance across a range of datasets, in both regression and classification settings,
and are able to perform well across a range of context set sizes, while remaining computationally
efficient. In the future work, we will evaluate CHNs in streaming setting with large-scale real-world
applications.

REFERENCES

Marko Balabanović and Yoav Shoham. Fab: content-based, collaborative recommendation. Commu-
nications of the ACM, 40(3):66–72, 1997.

Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi. Learning feed-
forward one-shot learners. In Advances in neural information processing systems, pp. 523–531,
2016.

Homanga Bharadhwaj. Meta-learning for user cold-start recommendation. In 2019 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo J Rezende, and SM Eslami. Conditional neural processes. arXiv preprint
arXiv:1807.01613, 2018.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375,
2018.

Carlos A Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business value,
and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4):1–19, 2015.

Wenbo Gong, Sebastian Tschiatschek, Sebastian Nowozin, Richard E Turner, José Miguel Hernández-
Lobato, and Cheng Zhang. Icebreaker: Element-wise efficient information acquisition with a
bayesian deep latent gaussian model. In Advances in Neural Information Processing Systems, pp.
14791–14802, 2019.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard E Turner. Versa:
Versatile and efficient few-shot learning. In Third workshop on Bayesian Deep Learning, 2018.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-learning.
arXiv preprint arXiv:1910.01727, 2019.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

9

Under review as a conference paper at ICLR 2021

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. Addressing cold-start problem
in recommendation systems. In Proceedings of the 2nd international conference on Ubiquitous
information management and communication, pp. 208–211, 2008.

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational autoencoders
for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference, pp. 689–698,
2018.

Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start problem in
recommender systems. Expert Systems with Applications, 41(4):2065–2073, 2014.

Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recommender systems:
State of the art and trends. In Recommender systems handbook, pp. 73–105. Springer, 2011.

Chao Ma, Wenbo Gong, José Miguel Hernández-Lobato, Noam Koenigstein, Sebastian Nowozin,
and Cheng Zhang. Partial vae for hybrid recommender system. In NIPS Workshop on Bayesian
Deep Learning, 2018a.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, José Miguel Hernández-Lobato, Sebastian
Nowozin, and Cheng Zhang. Eddi: Efficient dynamic discovery of high-value information with
partial vae. arXiv preprint arXiv:1809.11142, 2018b.

Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation with
conditionally shifted neurons. arXiv preprint arXiv:1712.09926, 2017.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2:2, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In The adaptive web,
pp. 325–341. Springer, 2007.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. In Advances in
Neural Information Processing Systems, pp. 7957–7968, 2019.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference on World Wide
Web, pp. 285–295, 2001.

10

Under review as a conference paper at ICLR 2021

J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collaborative filtering recommender
systems. In The adaptive web, pp. 291–324. Springer, 2007.

Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pennock. Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 253–260, 2002.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference, pp. 593–607. Springer, 2018.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet
collaborative filtering. In Proceedings of the 24th international conference on World Wide Web, pp.
111–112, 2015.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems, pp. 4077–4087, 2017.

David H Stern, Ralf Herbrich, and Thore Graepel. Matchbox: large scale online bayesian recommen-
dations. In Proceedings of the 18th international conference on World wide web, pp. 111–120,
2009.

Ruibo Tu, Kun Zhang, Bo Bertilson, Hedvig Kjellstrom, and Cheng Zhang. Neuropathic pain
diagnosis simulator for causal discovery algorithm evaluation. In Advances in Neural Information
Processing Systems, pp. 12773–12784, 2019.

Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo Larochelle.
A meta-learning perspective on cold-start recommendations for items. In Advances in neural
information processing systems, pp. 6904–6914, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Zichao Wang, Angus Lamb, Evgeny Saveliev, Pashmina Cameron, Yordan Zaykov, José Miguel
Hernández-Lobato, Richard E Turner, Richard G Baraniuk, Craig Barton, Simon Peyton Jones, et al.
Diagnostic questions: The neurips 2020 education challenge. arXiv preprint arXiv:2007.12061,
2020.

Jiaxuan You, Xiaobai Ma, Yi Ding, Mykel J Kochenderfer, and Jure Leskovec. Handling missing data
with graph representation learning. Advances in Neural Information Processing Systems, 33, 2020.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp.
3391–3401, 2017.

11

Under review as a conference paper at ICLR 2021

A APPENDIX: PARTIAL VARIATIONAL AUTOENCODERS

A.1 PARTIAL VARIATIONAL AUTOENCODERS

For our experiments, we base our model on the Partial Variational Autoencoder (P-VAE) (Ma et al.,
2018a) - this model combines a traditional variational autoencoder (VAE) model with a PointNet-style
set encoder (Qi et al., 2017), allowing it to efficiently encode and reconstruct partially observed data
points. The P-VAE is based on the observation that typically the features in a VAE are assumed to be
conditionally independent when conditioned on the latent variable z. That is,

p(x|z) =
∏
j

p(xj |z)

Then, given a data point x with observed features xO and unobserved features xU , we have that

p(xU |xO, z) = p(xU |z)

Hence, if we can infer a posterior distribution over z from the observed features, we can use this to
estimate p(xU |xO). The P-VAE infers a variational posterior distribution over z using an amortized
inference network (or encoder network) qθ(z|xO) and approximates the conditional data distribution
given a value of z using a decoder network pφ(xO,xU |z).
In our model, we extend the decoder to decode the value of a new feature xn by initialising an
additional subnetwork in the decoder which we term a decoder head, with parameters φn, to extend
its output dimension by one. In principal this head could be of any architecture which takes as input
the output of the shared layers of the decoder, but in practice we found that simply extending the
final layer of weights and biases to accommodate a new output dimension yielded good results while
remaining parameter-efficient as the number of output features grows.

A.2 TRAINING P-VAES

The P-VAE is trained to reconstruct observed features in the partially-observed data point, and in
the process learn to infer a variational posterior qθ(z|xO) over the latent variable z. The P-VAE is
given batches of data points where features from both the meta-train and meta-test sets are hidden
from the model. Additionally, each time a particular data point is input, some additional features are
also randomly hidden from the model using a Bernoulli mask, in order to ensure the model is robust
to different sparsity patterns in the data. The P-VAE is then trained by maximising the Evidence
Lower-Bound (ELBO) (Ma et al., 2018b):

log p(xO) ≥ log p(xO)−DKL(q(z|xO)||p(z|xO))
= Ez∼q(z|xO) [log p(xO,xU |z)]−DKL [q(z|xO)||p(z)]
= Lpartial(xO)

12

Under review as a conference paper at ICLR 2021

B APPENDIX: BASELINES

Here we provide additional details and results for the baselines used in our experiments.

B.1 MAML

We adapt the Model-Agnostic Meta Learning (Finn et al., 2017) technique as a baseline. The decoder
head parameters θn are adapted using the MAML algorithm in the ‘meta-training’ stage. Each new
feature X is viewed as a separate MAML task, with some observed and unobserved values. We
sample the tasks in batches of size M and train the inner (a.k.a. fast) model over N steps. The inner
model training loss is the ELBO of the PVAE on the observations LXO

. The meta-model (a.k.a.
the slow or outer model) is trained by being given the context set observations, and computing a
reconstruction loss on the target set, L̂T ,C(fθ′ ,X). The gradient for the meta-model update is taken
over the batch reconstruction losses mean. The full algorithm is detailed in Algorithm 1.

Algorithm 1 Feature-wise Model-Agnostic Meta-Learning with PVAE

Input:
p(X): distribution over features.
α, β: learning rate hyperparameters.
M : meta-batch size, N : number inner iterations.

Initialize θ
while not done do

Sample M features Xi ∼ p(X).
for all Xi do
θi,0 ← θ
for j ← 0, N do

Evaluate ELBO gradient ∇θi,jLXO
(fθi,j ,Xi) w.r.t. observations in K examples

Optimize inner model parameters: θi,j+1 ← θi,j −∇θi,jLXO
(fθi,j ,Xi)

end for
θ′i ← θi,N

end for
Evaluate gradient of mean reconstruction error∇θ 1

M

∑
Xi∼p(X) L̂Ti,Ci(fθ′i ,Xi)

Optimize meta-model parameters: θ ← θ −∇θ 1
M

∑
Xi∼p(X) L̂Ti,Ci(fθ′i ,Xi)

end while
Output: θ

Notably, since MAML aims to fit parameters that adapt quickly to new tasks, it allows for fine-tuning
at evaluation time, that is, training the model for several iterations from the MAML parameter
initialization. Here, we evaluate the model with and without fine-tuning.

In the MAML baseline experiments we use M = 4, N = 10, ADAM (Kingma & Ba, 2014)
with learning rate α = β = 10−2 for inner and outer model optimization. The model fine-tuned
performance is evaluated over {1, 3, 5, 10} epochs and beset results are used. We make use of
the higher order optimization facilitated by the higher library (Grefenstette et al., 2019) in the
implementation of this baseline.

13

Under review as a conference paper at ICLR 2021

0 1 2 4 8 16 32
Context Set Size

1.0
1.2
1.4
1.6
1.8
2.0
2.2

M
et

a-
Te

st
 R

M
SE

MovieLens-1M

0 1 2 4 8 16 32
Context Set Size

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
et

a-
Te

st
 A

UC

Neuropathic Pain

MAML: No Finetuning
MAML: 1 Epoch Finetuning

MAML: 2 Epochs Finetuning MAML: 5 Epochs Finetuning MAML: 10 Epochs Finetuning

0 1 2 4 8 16 32
Context Set Size

0.40
0.45
0.50
0.55
0.60
0.65
0.70

M
et

a-
Te

st
 A

UC

E-Learning

Figure 6: MAML baseline performance comparison for {1, 2, 5, 10} fine-tuning epochs and with no
fine-tuning. Left plot shows RMSE (lower is better), center and right plots show AUROC (higher is
better).

1 2 4 8 16 32
Context Set Size

1.0

1.1

1.2

1.3

1.4

M
et

a-
Te

st
 R

M
SE

MovieLens-1M

1 2 4 8 16 32
Context Set Size

0.475
0.500
0.525
0.550
0.575
0.600
0.625

M
et

a-
Te

st
 A

UC

Neuropathic Pain

1-Nearest Neighbour 5-Nearest Neighbours 10-Nearest Neighbours

1 2 4 8 16 32
Context Set Size

0.600
0.625
0.650
0.675
0.700
0.725
0.750

M
et

a-
Te

st
 A

UC

E-Learning

Figure 7: k-Nearest Neighbour Head Parameters baseline performance for k ∈ {1, 5, 10}. Context set
size here corresponds to the number of observed values used when determining the nearest neighbour
heads.

C APPENDIX: ADDITIONAL RESULTS

Here we provide additional results not included in the main text.

C.1 MAML

Figure 6 shows the performance of the MAML baseline for different numbers of fine-tuning epochs
and with no fine-tuning. As expected, the baseline with no fine-tuning is outperformed by those
where fine-tuning is employed. For the Neuropathic Pain and E-learning datasets, the increase in
the number of fine-tuning epochs corresponds to improvement in performance (greater AUROC),
whereas in case of MovieLens-1M, performance drops (RMSE increases) with longer fine-tuning,
particularly for the smaller context set sizes.

C.2 K-NEAREST NEIGHBOUR HEAD PARAMETERS

We consider k-Nearest Neighbour Head Parameters baselines for the values k ∈ {1, 5, 10}. Figure 7
shows the performance of this baseline for the different values of k across a range of context set sizes.
We expect that as k is increased further, and the number of head parameters averaged over grows,
the behaviour will approach that of the mean head parameter baselines. In the main text, 10-Nearest
Neighbours is used throughout, as it yields good performance in both the low and high-data regimes.

14

Under review as a conference paper at ICLR 2021

0 2 4 6 8 10 12 14 16 18 20 22 24
Head Training Epochs

0.50

0.55

0.60

0.65

0.70

0.75

M
et

a-
Te

st
 A

UC

E-learning - Fine-tune from Random

k=32
k=16
k=8
k=4
k=2
k=1
k=0

(a) Train decoder heads from random initialisation

0 2 4 6 8 10 12 14 16 18 20 22 24
Head Training Epochs

0.50

0.55

0.60

0.65

0.70

0.75

M
et

a-
Te

st
 A

UC

E-learning - Fine-tune from CHN

k=32
k=16
k=8
k=4
k=2
k=1
k=0

(b) Train decoder heads from CHN initialisation

Figure 8: Comparing the predictive performance when training decoder new head parameters in a
P-VAE on a range of context set sizes k, on the E-learning dataset (higher is better).

0 1 2 4 8 16 32
Context Set Size

0.35

0.40

0.45

0.50

0.55

M
et

a-
Te

st
 R

M
SE

Neuropathic Pain

Random
Mean Head Params

Mean Head Params (Matching Metadata)
10-Nearest Neighbours

Mean Imputing
Train from Random (10 Epochs)

MAML
CHN

0 1 2 4 8 16 32
Context Set Size

0.45

0.50

0.55

0.60

0.65
M

et
a-

Te
st

 R
M

SE

E-Learning

Figure 9: Performances (±1σ) of CHN and benchmarks on Neuropathic Pain (left) and E-learning
(right) datasets for test features, with varying context size k . We report RMSE for both datasets, in
constrast to the main text where AUROC was reported.

C.3 FINE-TUNING

In the main text, we show the performance of training the new decoder heads on their context
sets from randomly initialized parameters for 10 epochs (see results for “Train from Random (10
epochs)”), in order to provide a trade-off between predictive accuracy and computational cost. This
section aims to elaborate further on this trade-off. In Figure 8a, we show the predictive performance
of the P-VAE on the meta-test set after training randomly initialized head parameters for an increasing
number of epochs, for a range of context set sizes k. We see that the performance improves with
training in all cases, with better performance achieved as the context set size k increases, and thus the
effect of over-fitting is lessened.

Furthermore, in Figure 8b, we perform the same experiment but instead initialising the heads with the
CHN parameters. We see that in all cases except k = 0 and k = 32, training by gradient descent leads
to a decrease in performance due to over-fitting, suggesting that the CHN has an implicit regularising
effect on the parameter initialisation. We note also that in all cases, the untrained CHN parameters
substantially outperform those trained from the random initialisation for all values of k, even after 25
training epochs, with many of the training curves appearing to approach convergence.

C.4 RMSE VALUES FOR BINARY DATASETS

In Figure 9 we provide the RMSE values (lower is better) for the main paper experiments run on the
Neuropathic Pain and E-learning datasets. We see that the relative performance ordering of methods
in terms of RMSE is largely identical to the performance ordering obtained from the AUC results,
suggesting that the proposed CHN approach is indeed better than other baselines.

15

Under review as a conference paper at ICLR 2021

0 1 2 4
Context Set Size

1.04

1.06

1.08

1.10

1.12

M
et

a-
Te

st
 R

M
SE

MovieLens-1M

CHN (No Metadata)
CHN (Metadata)
Mean Head Params (No Metadata)
Mean Head Params (Matching Metadata)

Figure 10: Comparison of RMSE (lower is better) with and without feature metadata for both the
CHN and mean head parameter baselines, across 5 random data splits.

C.5 METADATA ABLATION STUDY

It is possible to obtain an ablation for removing the usage of the context set Cn as an input to the CHN
by looking at the performance for k = 0 in any of the preceding performance plots. In order to further
investigate the effect of metadata on the CHN’s performance, we additionally perform an ablation
on MovieLens-1M by removing the use of metadata (movie genre and year) as an input to the CHN.
We also compare the performance of averaging all trained head parameters, vs. averaging all trained
head parameters whose features are a subset of those of the new feature under consideration. The
results of these ablations can be found in Figure 10. We see that in both cases, in absolute terms the
difference in performance due to the metadata is slight, with a small improvement made to the mean
head parameter performance, and a very slight improvement to the CHN performance when k = 0.
This is likely due to the metadata carrying very little information for this dataset relative to the data
points themselves, so that when k ≥ 1 the CHN is able to effectively disregard the metadata in favour
of the observed data points. Future work could investigate the performance of CHNs on datasets with
richer and more information feature metadata.

16

Under review as a conference paper at ICLR 2021

Table 2: Hyperparameters and architecture details for the P-VAE and CHN used on each dataset.
Feed-forward neural networks are represented by a list of the dimensions of their hidden layers.

MovieLens-1M Neuropathic Pain E-learning

Training
Epochs 200 1000 50

Batch Size 1000 1000 1000
Learning Rate 1e-3 1e-2 1e-3
Weight Decay 0 0 0

Meta-Training
Epochs 100 300 20

Batch Size 256 128 128
Learning Rate 1e-4 1e-3 1e-3
Weight Decay 1e-3 1e-3 1e-3

Set Encoder
Feature Embedding Dim. 50 30 50

Set Embedding Dim. 30 30 30
Encoder

Latent Dim. 150 20 150
Layers [200] [30] [200]

Decoder
Shared Layers [200] [30] [200]

Output Variance 0.1 - -
CHN

Data point Embedding Dim. 50 25 50
Context Encoding Dim. 50 25 50
Context Encoder Layers [128] [50] [50]

Metadata Encoding Dim. 5 - 20
Metadata Encoder Layers [10] - [20]
Param. Pred. Net Layers [256,256,256] [64,64] [50,100,150]

D APPENDIX: EXPERIMENT DETAILS

All models were implemented in PyTorch (Paszke et al., 2017). All experiments were performed on a
single Nvidia Tesla K80 GPU. For training both the P-VAE and the CHN’s parameters, the ADAM
(Kingma & Ba, 2014) optimizer was used with β1 = 0.9, β2 = 0.999 and ε = 10−8

Details of hyperparameters and model architectures used for each dataset can be found in Table 2.

17

	Introduction
	Model
	Problem Setting
	Contextual HyperNetworks
	Training CHNs with Meta-Learning

	Related Work
	Experiments
	Experiment Settings
	Recommender Systems
	Healthcare
	E-learning
	Timing Experiments

	Conclusion
	Appendix: Partial Variational Autoencoders
	Partial Variational Autoencoders
	Training P-VAEs

	Appendix: Baselines
	MAML

	Appendix: Additional Results
	MAML
	k-Nearest Neighbour Head Parameters
	Fine-Tuning
	RMSE Values for Binary Datasets
	Metadata Ablation Study

	Appendix: Experiment Details

