
Published as a conference paper at ICLR 2021

SIMPLE SPECTRAL GRAPH CONVOLUTION

Hao Zhu, Piotr Koniusz∗
Australian National University
Canberra, Australia
{hao.zhu,piotr.koniusz}@anu.edu.au

Data61/CSIRO
Canberra, Australia

ABSTRACT

Graph Convolutional Networks (GCNs) are leading methods for learning graph
representations. However, without specially designed architectures, the perfor-
mance of GCNs degrades quickly with increased depth. As the aggregated neigh-
borhood size and neural network depth are two completely orthogonal aspects of
graph representation, several methods focus on summarizing the neighborhood by
aggregating K-hop neighborhoods of nodes while using shallow neural networks.
However, these methods still encounter oversmoothing, and suffer from high com-
putation and storage costs. In this paper, we use a modified Markov Diffusion Ker-
nel to derive a variant of GCN called Simple Spectral Graph Convolution (S2GC).
Our spectral analysis shows that our simple spectral graph convolution used in
S2GC is a trade-off of low- and high-pass filter bands which capture the global
and local contexts of each node. We provide two theoretical claims which demon-
strate that we can aggregate over a sequence of increasingly larger neighborhoods
compared to competitors while limiting severe oversmoothing. Our experimen-
tal evaluations show that S2GC with a linear learner is competitive in text and
node classification tasks. Moreover, S2GC is comparable to other state-of-the-art
methods for node clustering and community prediction tasks.

1 INTRODUCTION

In the past decade, deep learning has become mainstream in computer vision and machine learn-
ing. Although deep learning has been applied for extraction of features on the Euclidean lattice
(Euclidean grid-structured data) with great success, the data in many practical scenarios lies on
non-Euclidean structures, whose processing poses a challenge for deep learning. By defining a con-
volution operator between the graph and signal, Graph Convolutional Networks (GCNs) generalize
Convolutional Neural Networks (CNNs) to graph-structured inputs which contain attributes. Mes-
sage Passing Neural Networks (MPNNs) (Gilmer et al., 2017) unify the graph convolution as two
functions: the transformation function and the aggregation function. MPNN iteratively propagates
node features based on the adjacency of the graph in a number of rounds.

Despite their enormous success in many applications like social media, traffic analysis, biology,
recommendation systems and even computer vision, many of the current GCN models use fairly
shallow setting as many of the recent models such as GCN (Kipf & Welling, 2016) achieve their
best performance given 2 layers. In other words, 2-layer GCN models aggregate nodes in two-hops
neighborhood and thus have no ability to extract information in K-hops neighborhoods for K> 2.
Moreover, stacking more layers and adding a non-linearity tend to degrade the performance of these
models. Such a phenomenon is called oversmoothing (Li et al., 2018a), characterized by the effect
that as the number of layers increases, the representations of the nodes in GCNs tend to converge
to a similar, non-distinctive from one another value. Even adding residual connections, an effective
trick for training very deep CNNs, merely slows down the oversmoothing issue (Kipf & Welling,
2016) in GCNs. It appears that deep GCN models gain nothing but the performance degradation
from the deep architecture.

One solution for that is to widen the receptive field of aggregation function while limiting the depth
of network because the required neighborhood size and neural network depth can be regarded as

∗The corresponding author. The code is available at https://github.com/allenhaozhu/SSGC.

1

https://github.com/allenhaozhu/SSGC

Published as a conference paper at ICLR 2021

two separate aspects of design. To this end, SGC (Wu et al., 2019) captures the context from K-
hops neighbours in the graph by applying the K-th power of the normalized adjacency matrix in a
single layer of neural network. This scheme is also used for attributed graph clustering (Zhang et al.,
2019). However, SGC also suffers from oversmoothing as K→∞, as shown in Theorem 1. PPNP
and APPNP (Klicpera et al., 2019a) replace the power of the normalized adjacency matrix with
the Personalized PageRank matrix to solve the oversmoothing problem. Although APPNP relieves
the oversmoothing problem, it employs a non-linear operation which requires costly computation
of the derivative of the filter due to the non-linearity over the multiplication of feature matrix with
learnable weights. In contrast, we show that our approach enjoys a free derivative computed in the
feed-forward step due to the use of a linear model. Furthermore, APPNP aggregates over multiple
k-hop neighborhoods (k=0, · · · ,K) but the weighting scheme favors either global or local context
making it difficult if not impossible to find a good value of balancing parameter. In contrast, our
approach aggregates over k-hop neighborhoods in a well-balanced manner.

GDC (Klicpera et al., 2019b) further extends APPNP by generalizing Personalized PageRank (Page
et al., 1999) to an arbitrary graph diffusion process. GDC has more expressive power than SGC (Wu
et al., 2019), PPNP and APPNP (Klicpera et al., 2019a) but it leads to a dense transition matrix which
makes the computation and space storage intractable for large graphs, although authors suggest that
the shrinkage method can be used to sparsify the generated transition matrix. Noteworthy are also
orthogonal research directions of Sun et al. (2019); Koniusz & Zhang (2020); Elinas et al. (2020)
which improve the performance of GCNs by the perturbation of graph, high-order aggregation of
features, and the variational inference, respectively.

To tackle the above issues, we propose a Simple Spectral Graph Convolution (S2GC) network for
node clustering and node classification in semi-supervised and unsupervised settings. By analyzing
the Markov Diffusion Kernel (Fouss et al., 2012), we obtain a very simple and effective spectral
filter: we aggregate k-step diffusion matrices over k = 0, · · · ,K steps, which is equivalent to
aggregating over neighborhoods of gradually increasing sizes. Moreover, we show that our design
incorporates larger neighborhoods compared to SGC and copes better with oversmoothing. We
explain that limiting overdominance of the largest neighborhoods in the aggregation step limits
oversmoothing while preserving the large context of each node. We also show via the spectral
analysis that S2GC is a trade-off between the low- and high-pass filter bands which leads to capturing
the global and local contexts of each node. Moreover, we show how S2GC and APPNP (Klicpera
et al., 2019a) are related and explain why S2GC captures a range of neighborhoods better than
APPNP. Our experimental results include node clustering, unsupervised and semi-supervised node
classification, node property prediction and supervised text classification. We show that S2GC is
highly competitive, often significantly outperforming state-of-the-art methods.

2 PRELIMINARIES

Notations. Let G = (V,E) be a simple and connected undirected graph with n nodes and m
edges. We use {1, · · · , n} to denote the node index of G, whereas dj denotes the degree of node
j in G. Let A be the adjacency matrix and D be the diagonal degree matrix. Let Ã = A + In
denote the adjacency matrix with added self-loops and the corresponding diagonal degree matrix D̃,
where In ∈ Sn++ is an identity matrix. Finally, let X ∈ Rn×d denote the node feature matrix, where
each node v is associated with a d-dimensional feature vector Xv . The normalized graph Laplacian
matrix is defined as L = In − D−1/2AD−1/2 ∈ Sn+, that is, a symmetric positive semidefinite
matrix with eigendecomposition UΛU>, where Λ is a diagonal matrix with eigenvalues of L, and
U ∈ Rn×n is a unitary matrix that consists of the eigenvectors of L.

Spectral Graph Convolution (Defferrard et al., 2016). We consider spectral convolutions on
graphs defined as the multiplication of signal x ∈ Rn with a filter gθ parameterized by θ ∈ Rn in
the Fourier domain:

gθ(L) ∗ x = Ug∗θ(Λ)U>x, (1)

where the parameter θ ∈ Rn is a vector of spectral filter coefficients. One can understand gθ as a
function operating on eigenvalues of L, that is, g∗θ(Λ). To avoid eigendecomposition, gθ(Λ) can be
approximated by a truncated expansion in terms of Chebyshev polynomials Tk(Λ) up to the K-th

2

Published as a conference paper at ICLR 2021

order (Defferrard et al., 2016):

g∗θ(Λ) ≈
K−1∑
k=0

θkTk(Λ̃), (2)

with a rescaled Λ̃ = 1
2λmax

Λ− In, where λmax denotes the largest eigenvalue of L and θ ∈ RK is
now a vector of Chebyshev coefficients.

Vanila Graph Convolutional Network (GCN) (Kipf & Welling, 2016). The vanilla GCN is a
first-order approximation of spectral graph convolutions. If one sets K = 1, θ0 = 2, and θ1 = −1
for Eq. 2, they obtain the convolution operation gθ(L) ∗ x = (I + D−1/2AD−1/2)x. Finally,
by the renormalization trick, replacing matrix I + D−1/2AD−1/2 by a normalized version T̃ =

D̃−1/2ÃD̃−1/2 = (D + In)−1/2(A + In)(D + In)−1/2 leads to the GCN layer with a non-linear
function σ:

H(l+1) = σ(T̃H(l)W(l)). (3)

Graph Diffusion Convolution (GDC) (Klicpera et al., 2019b). A generalized graph diffusion is
given by the diffusion matrix:

S =

∞∑
k=0

θkT
k, (4)

with the weighting coefficients θk and the generalized transition matrix T. Eq. 4 can be regarded as
related to the Taylor expansion of matrix-valued functions. Thus, the choice of θk and Tk must at
least ensure that Eq. 4 converges. Klicpera et al. (2019b) provide two special cases as low-pass filters
ie., the heat kernel and the kernel based on random walk with restarts. If S denotes the adjacency
matrix and D is the diagonal degree matrix of S, the corresponding graph diffusion convolution is
then defined as D−1/2SD−1/2x. Note that θk can be a learnable parameter, or it can be chosen in
some other way. Many works use the expansion in Eq. 4 but different choices of θk realise very
different filters, making each method unique.

Simple Graph Convolution (SGC) (Wu et al., 2019). A classical MPNN (Gilmer et al., 2017)
averages (in each layer) the hidden representations among 1-hop neighbors. This implies that each
node in the K-th layer obtains feature information from all nodes that are K-hops away in the
graph. By hypothesizing that the non-linearity between GCN layers is not critical, SGC captures
information from K-hops neighborhood in the graph by applying the K-th power of the transition
matrix in a single neural network layer. The SGC can be regarded as a special case of GDC without
non-linearity and without the normalization by D−1/2 if we set θK = 1 and θi<K = 0 in Eq. 4, and
T = T̃, which yields:

Ŷ = softmax(T̃KXW). (5)

Although SGC is an efficient and effective method, increasing K leads to oversmoothing. Thus,
SGC uses a small K number of layers. Theorem 1 shows that oversmoothing is a result of conver-
gence to the stationary distribution in the graph diffusion process when time t→∞.
Theorem 1. (Chung & Graham, 1997) Let λ2 denote the second largest eigenvalue of transition
matrix T̃ = D−1A of a non-bipartite graph, p(t) be the probability distribution vector and π the
stationary distribution. If walk starts from the vertex i, pi(0) = 1, then after t steps for every vertex,
we have:

|pj(t)− πj | ≤
√
dj
di
λt2. (6)

APPNP. Klicpera et al. (2019a) proposed to use the Personalized PageRank to derive a fixed filter
of order K. Let fθ(X) denote the output of a two-layer fully connected neural network on the
feature matrix X, then the PPNP model is defined as H = αIn − (1 − α)T̃−1fθ(X). To avoid
calculating the inverse of matrix T̃, Klicpera et al. (2019a) also propose the Approximate PPNP
(APPNP), which replaces the costly inverse with an approximation by the truncated power iteration:

H(l+1) = (1− α)T̃H(l) + αH(0), (7)

where H(0) = fθ(X) = ReLU(XW) or H(0) = fθ(X) = MLP(X). By decoupling feature transfor-
mation and propagation steps, PPNP and APPNP aggregate information from multi-hop neighbors.

3

Published as a conference paper at ICLR 2021

(a) (b)

Figure 1: (a) Function f(λ) = 1
K

∑K
k=0 λ

k with λ ∈ [−1, 1], K ∈ {1, 4, 8, 16}; (b) Sorted by
index, eigenvalues of D−1/2AD−1/2 and push-forward eigenvalues f(Λ) = 1

K

∑K
k=0 Λk on Cora

network (K = 16).

3 METHODOLOGY

Below, we firstly outline two claims which underlie the design of our network, with the goal of
mitigating oversmoothing. Moreover, we analyze the Markov Diffusion Kernel (Fouss et al., 2012)
and note that it acts as a low-pass spectral filter of various degree. Based on the feature mapping
function underlying this kernel, we present our Simple Spectral Graph Convolution network and
discuss its relation with other models. Finally, we provide the comparison of computational and
storage complexity requirements.

3.1 MOTIVATION

Our design follows Claims I and II described in Section A.3, which includes their detailed proofs.

Claim I. By design, our filter gives the highest weight to the closest neighborhood of a node, as
neighborhoods N of diffusion steps k = 0, · · · ,K obey N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆
N (T̃∞). That is, smaller neighborhoods belong to larger neighborhoods too.

Claim II. As K→∞, the ratio of energies contributed by S2GC to SGC is 0. Thus, the energy of
infinite-dimensional receptive field (largest k) will not dominate the sum energy of our filter. Thus,
S2GC can incorporate larger receptive fields without undermining contributions of smaller receptive
fields. This is substantiated by Table 8, where S2GC achieves the best results for K = 16, whereas
SGC achieves poorer results by comparison, whose peak is at K=4 (note that larger K is better).

3.2 MARKOV DIFFUSION KERNEL

Two nodes are considered similar when they are diffused in a similar way through the graph, as
then they influence the other nodes in a similar manner (Fouss et al., 2012). Moreover, two nodes
are close neighbors if they are in the same distinct cluster. The Markov Diffusion distance between
nodes i and j at time K is defined as:

dij(K) = ‖xi(K)− xj(K)‖22, (8)

where the average visiting rate xi(K) after K steps for a process that started at time k = 0 is
computed as follows:

xi(K) =
1

K

K∑
k=1

Tkxi(0). (9)

By defining Z(K) = 1
K

∑K
k=1 Tk, we reformulate Eq. 8 as the following metric:

dij(K) = ‖Z(K)(xi(0)− xj(0))‖22. (10)

4

Published as a conference paper at ICLR 2021

The underlying feature map of Markov Diffusion Kernel (MDK) is given as Z(K)xi(0) for node i.

The effect of the linear projection Z(K) (filter) acting on spectrum as f(λ) = 1
K

∑K
k=0 λ

k (we sum
from 0 to include self-loops) is plotted in Figure 1, from which we observe the following properties:
(i) Z(K) preserves leading (large) eigenvalues of T and (ii) the higher K is the stricter the low-pass
filter becomes but the filter also preserves the high frequency. In other words, as K grows, this filter
includes larger and larger neighborhood but also maintains the closest locality of nodes. Note that
L = I−T, where L is the normalized Laplacian matrix and T is the normalized adjacency matrix.
Thus, keeping large positive eigenvalues for T equals keeping small eigenvalues for L.

3.3 SIMPLE SPECTRAL GRAPH CONVOLUTION

Based on the aforementioned Markov Diffusion Kernel, we include self-loops and propose the Sim-
ple Spectral Graph Convolution (S2GC) network with the softmax classifier after the linear layer:

Ŷ = softmax(
1

K

K∑
k=0

T̃kXW). (11)

Let ‖xi‖2 = 1,∀i (each xi is a row in X). If K →∞ then H=
∑∞
k=0 T̃kX is the optimal diffused

representation of the normalized Laplacian Regularization problem given below:

arg min
H

s.t. ‖hi‖2=1,∀i

q(H), where q(H)=
1

2

(n∑
i,j=1

Ãij‖
hi√
di
− hj√

dj
‖22
)

+
1

2

(n∑
i=1

‖hi−xi‖22
)
, (12)

and each vector hi denotes the i-th row of H. Compared with the more common form in (Zhou
et al., 2004), we impose ‖hi‖22 = ‖xi‖22 = 1, to minimize the difference between hi and xi via the
cosine distance rather than the Euclidean distance. Differentiating q(H) with respect to H, we have
L̃H −X = 0. Thus, the optimal representation H = (I − T̃)−1X, where (I − T̃)−1 =

∑∞
k=0 T̃k.

However, the infinite expansion resulting from Eq. 12 is in fact suboptimal due to oversmoothing.
Thus, we include in Eq. 11 a self-loop T̃0 =I, the α ∈ [0, 1] parameter (Table 9 evaluates its impact)
to balance the self-information of node vs. consecutive neighborhoods, and we consider finite K.
We generalize the Eq. 11 as:

Ŷ = softmax
(

1

K

K∑
k=1

(
(1− α) T̃kX + αX

)
W

)
. (13)

Relation of S2GC to GDC. GDC uses the entire filter matrix S of size n×n as S is re-normalized
numerous times by its degree. Klicpera et al. (2019b) explain that ‘most graph diffusions result in a
dense matrix S’.

In contrast, our approach is simply computed as (
∑K
k=1 T̃kX)W (plus the self-loop), where X is of

size n× d, and d� n, where n and d are the number of nodes and features, respectively. The T̃kX

step is computed as T̃ · (T̃ · (· · · (T̃X) · · ·)), which requires K sparse matrix-matrix multiplications
between a sparse matrices of size n × n and a dense matrix of size n × d. Thus, S2GC can handle
extremely large graphs as S2GC does not need to sparsify dense filter matrices (in contrast to GDC).

Relation of S2GC to APPNP. Let H0 = XW as we use the linear step in our S2GC. Then and
only then, for l = 0 and H0 = XW, APPNP expansion yields H1 = (1 − α)T̃XW + αXW =

((1 − α)T̃ + αI)XW, which is equal to our Z(1)XW = (
∑K
k=0 T̃k)XW = T̃X + X = (T̃ +

I)XW if α = 0.5, K=1, except for scaling (constant) of H1.

In contrast, for l = 1 and general case H0 = f(X; W), APPNP yields H2 = (1−α)2T̃2f(X; W)+

(1−α)αT̃f(X; W)+αf(X; W) from which it is easy to note specific weight coefficients (1−α)2,
(1 − α)α and α associated with 2-, 1-, and 0-hops. This shows that the APPNP expansion is very
different to the S2GC expansion in Eq. 13. In fact, S2GC and APPNP are only equivalent if α = 0.5,
K = 1 and f is the linear transformation.

5

Published as a conference paper at ICLR 2021

Table 1: Computational and storage complexities O(·).
Stage Complexity APPNP GDC SGC S2GC
Forward Computation Cost K|E|d+Knd ≈ K|E|n K|E|d K|E|d+Knd
Propagation Storage Cost nd+ |E| ≈ n2 nd+ |E| nd+ |E|
Backward Computation Cost K|E|d 0 0 0
Propagation Storage Cost nd+ |E| 0 0 0

Moreover, as APPNP assumes H0 = f(X; W) = ReLU(XW) (or MLP in place of ReLU), their
optimizer has to backpropagate through f(X; W) to obtain ∂f

∂W and multiply this result with the
above expansion e.g., ∂H

2

∂W = (1− α)2T̃2f ′(X; W) + (1− α)αT̃f ′(X; W) + αf ′(X; W).

In contrast, we use the linear function XW. Thus, ∂XW
∂W yields X. Thus, the multiplication of our

expansion with X for the backpropagation step is in fact obtained in the forward pass which makes
our approach very fast for large graphs.

Relation of S2GC to AR. The AR filter (Li et al., 2019) uses the regularized Laplacian kernel
(Smola & Kondor, 2003) which differs from the (modified) Markov Diffusion Kernel used by us.
Specifically, the regularized Laplacian kernel uses the negated Laplacian matrix −L yielding KL =∑∞
k=0 α

k(−L)k = (I + αL)−1, where L = I−T̃, which is related to the von Neumann diffusion
kernel KvN =

∑∞
k=0 α

kAk. In contrast, the Markov Diffusion Kernel is defined as KMD(K) =

Z(K)ZT(K), where Z(K)= 1
K

∑K
k=1 T̃k and T̃=D−1/2AD−1/2.

Relation of S2GC to Jumping Knowledge Network (JKN). Xu et al. (2018b) combine interme-
diate node representations from each layer by concatenating them in the final layer. However, (Xu
et al., 2018b) use non-linear layers, which results in a completely different network architecture and
the usual slower processing time due to the complex backpropagation chain.

3.4 COMPLEXITY ANALYSIS

For S2GC, the storage costs is O(|E| + nd), where |E| is the total edge count, nd relates to saving
the T̃kX during intermediate multiplications T̃ · (T̃ · (· · · (T̃X) · · ·)). The computational cost is
O(K|E|d + Knd). Each sparse matrix-matrix multiplication T̃X costs |E|d. We need K such
multiplications, where Knd and nd are costs of summation over filters and adding features X.

In contrast, the storage cost of GDC is approximately O(n2), and the computational cost is approx-
imately O(K|E|n), where n is the node numbers, K is the order of terms and |E| is the number of
graph edges. APPNP, SGC and S2GC have much lower cost than GDC. Note that K|E|d � Knd
and n � d. We found that APPNP, SGC and S2GC have similar computational and storage costs
in the forward stage. We note that symbol d in APPNP is not the dimension of features X but
dimension of f(X), which is the number of categories.

For the backward stage including computations of the gradient of the classification step, the compu-
tational costs of GDC, SGC and S2GC are independent of K and |E| because the graph convolution
for these methods does not require backpropagation (the gradients is computed in the forward step).
In contrast, APPNP requires backprop as explained earlier.

Table 1 summarizes the computational and storage costs of several methods. Table 2 demonstrates
that APPNP is over 66× slower than S2GC on the large scale Products dataset (OGB benchmark)
despite, for fairness, we use the same basic building blocks of PyTorch among compared methods.

4 EXPERIMENTS

In this section, we evaluate the proposed method on four different tasks: node clustering, community
prediction, semi-supervised node classification and text classification.

6

Published as a conference paper at ICLR 2021

Table 2: Timing (seconds) on Cora, Citeseer, Pubmed and the large scale Open Graph Benchmark
(OGB) which includes Products.

methods Cora Citeseer Pubmed Products
SGC 0.45 0.55 0.78 9.8
APPNP 1.08 1.44 1.32 748
S2GC 0.67 0.81 0.79 11.4

Table 3: Clustering performance with three different metrics on four datasets.
Methods Input Cora Citeseer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%
k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51
Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20
Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.74
GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27
ARVGE Both 62.66 45.28 62.15 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36
S2GC Both 69.60 54.71 65.83 69.11 42.87 64.65 70.98 33.21 70.28 52.67 49.62 44.31

4.1 NODE CLUSTERING

We compare S2GC with three variants of clustering: (i) Methods that only use node features ie.,
k-means and spectral clustering (spectral-f) that construct a similarity matrix with the node features
by a linear kernel. (ii) Structural clustering methods that only use graph structures ie., spectral
clustering (spectral-g) that takes the node adjacency matrix as the similarity matrix, DeepWalk (Per-
ozzi et al., 2014), and (iii) Attributed graph clustering methods that utilize both node features and
graph structures: Graph Autoencoder (GAE) and Graph Variational Autoencoder (VGAE) (Kipf
& Welling, 2016), and Adversarially Regularized Graph Autoencoder (ARGE), Variational Graph
Autoencoder (ARVGE) (Pan et al., 2018) and AGC (Zhang et al., 2019). To evaluate the clustering
performance, three performance measures are adopted: clustering Accuracy (Acc), Normalized Mu-
tual Information (NMI) and macro F1-score (F1). We run each method 10 times on four datasets:
Cora, CiteSeer, PubMed, and Wiki, and we report the average clustering results in Table 3, where
top-1 results are highlighted in bold. To adaptively select the order K, we use the clustering per-
formance metric: internal criteria based on the information intrinsic to the data alone Zhang et al.
(2019).

4.2 COMMUNITY PREDICTION

We supplement our social network analysis by using S2GC to inductively predict the community
structure on Reddit, a large scale dataset, as shown in Table 10, which cannot be processed by the
vanilla GCN Kipf & Welling (2016) and GDC (Klicpera et al., 2019b) due to the memory issues.
On the Reddit dataset, we train S2GC with L-BFGS using no regularization, and we set K = 5 and
α = 0.05. We evaluate S2GC inductively according to protocol (Chen et al., 2018). We train S2GC
on a subgraph comprising only training nodes and test on the original graph. On all datasets, we tune
the number of epochs based on both the convergence behavior and the obtained validation accuracy.

For Reddit, we compare S2GC to the reported performance of supervised and unsupervised variants
of GraphSAGE (Hamilton et al., 2017), FastGCN (Chen et al., 2018), SGC (Wu et al., 2019) and
DGI (Velickovic et al., 2019). Table 4 also highlights the setting of the feature extraction step
for each method. Note that S2GC and SGC involve no learning because they do not learn any
parameters to extract features. The logistic regression is used as the classifier for both unsupervised
and no-learning approaches to train with labels afterward.

4.3 NODE CLASSIFICATION

For the semi-supervised node classification task, we apply the standard fixed training, validation
and testing splits (Yang et al., 2016) on the Cora, Citeseer, and Pubmed datasets, with 20 nodes per
class for training, 500 nodes for validation and 1,000 nodes for testing. For baselines, We include

7

Published as a conference paper at ICLR 2021

Table 4: Test Micro F1 Score (%) aver-
aged over 10 runs on Reddit. Results of
other models are taken from their papers.

Setting Model Test F1
SAGE-mean 95.0

Supervised SAGE-LSTM 95.4
SAGE-GCN 93.0
FastGCN 93.7
SAGE-mean 89.7

Unsupervised SAGE-LSTM 90.7
SAGE-GCN 90.8
DGI 94.0
SGC 94.9

No Learning S2GC 95.3

Table 5: Test accuracy (%) averaged over 10 runs
on citation networks.

methods Cora Citeseer Pubmed
GCN 81.4± 0.4 70.9± 0.5 79.0± 0.4
GAT 83.3± 0.7 72.6± 0.6 78.5± 0.3
FastGCN 79.8± 0.3 68.8± 0.6 77.4± 0.3
GIN 77.6± 1.1 66.1± 0.9 77.0± 1.2
DGI 82.5± 0.7 71.6± 0.7 78.4± 0.7
SGC 81.0± 0.03 71.9± 0.11 78.9± 0.01
MixHop 81.8±0.6 71.4±0.8 80.0±1.1
APPNP 83.3±0.5 71.7±0.6 80.1±0.2
Chebynet 78.0± 0.4 70.1± 0.5 78.0± 0.4
AR filter 80.8± 0.02 69.3± 0.15 78.1± 0.01
Ours 83.5± 0.02 73.6± 0.09 80.2± 0.02

Table 6: Test accuracy (%) averaged over 10 runs on the large-scale OGB node property prediction
benchmark.

methods Products Mag Arxiv
MLP 61.06±0.08 26.92±0.26 55.50±0.23
GCN 75.64±0.21 30.43±0.25 71.74±0.29
GraphSage 78.29±0.16 31.53±0.15 71.49±0.27
Softmax 47.70±0.03 24.13±0.03 52.77±0.56
SGC 68.87± 0.01 29.47±0.03 68.78±0.02
S2GC 70.22± 0.01 32.47±0.11 70.15±0.13
S2GC+MLP 76.84±0.20 32.72±0.23 72.01±0.25

three state-of-the-art shallow models: GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017),
FastGCN (Chen et al., 2018), APPNP (Klicpera et al., 2019a), Mixhop (Abu-El-Haija et al., 2019),
SGC (Wu et al., 2019), DGI (Velickovic et al., 2019) and GIN (Xu et al., 2018a). We use the Adam
SGD optimizer (Kingma & Ba, 2014) with a learning rate of 0.02 to train S2GC. We set α = 0.05
and K = 16 on all datasets. To determine K and α, we used the MetaOpt package Bergstra et al.
(2015) with 20 steps to meta-optimize hyperparameters on the validation set of Cora. Following
that, we fixed K = 16 and α = 0.05 across all datasets so K and α are not tuned to individual
datasets at all. We will discuss the influence of α and K later.

To evaluate the proposed method on large scale benchmarks (see Table 6), we use Arxiv, Mag and
Products datasets to compare the proposed method with SGC, GraphSage, GCN, MLP and Softmax
(multinomial Regression). On these three datasets, our method consistently outperforms SGC. On
Arxiv and Products, our method cannot outperform GCN and GraphSage while MLP outperforms
softmax classifier significantly. Thus, we argue that MLP plays a more important role here than the
graph convolution. To prove this point, we also conduct an experiment (S2GC+MLP) for which we
use MLP in place of the linear classifier, and we obtain a more powerful variant of S2GC. On Mag,
S2GC+MLP outperforms S2GC by a tiny margin because the performance of MLP is close to the
one of softmax. On other two datasets, S2GC+MLP is a very strong performer. Our S2GC+MLP is
the best performer on Mag and Arxiv.

4.4 TEXT CLASSIFICATION

Text classification predicts the labels of documents. Yao et al. (2019) use a 2-layer GCN to achieve
state-of-the-art results by creating a corpus-level graph, which treats both documents and words as
nodes in a graph. Word-to-word edge weights are given by Point-wise Mutual Information (PMI)
and word-document edge weights are given by the normalized TF-IDF scores.

We ran our experiments on five widely used benchmark corpora including the Movie Review (MR),
20-Newsgroups (20NG), Ohsumed, R52 and R8 of Reuters 21578. We first preprocessed all datasets
by cleaning and tokenizing text as Kim (2014). We then removed stop words defined in NLTK6 and
low-frequency words appearing less than 5 times for 20NG, R8, R52 and Ohsumed. We compare
our method with GCN (Kipf & Welling, 2016) and SGC (Wu et al., 2019). The statistics of the

8

Published as a conference paper at ICLR 2021

Table 7: Test accuracy on the document classification task.
Model 20NG R8 R52 Ohsumed MR

Text GCN 87.9 ± 0.2 97.0 ± 0.2 93.8 ± 0.2 68.2 ± 0.4 76.3 ± 0.3
SGC 88.5 ± 0.1 97.2 ± 0.2 94.0 ± 0.2 68.5 ± 0.3 75.9 ± 0.3
S2GC 88.6± 0.1 97.4 ± 0.1 94.5 ± 0.2 68.5 ± 0.1 76.7 ± 0.0

Table 8: Summary of classification accuracy (%) w.r.t.
various depths. In the linear model, the filter parame-
ter K is equivalent to the number of layers.

Dataset Method Layers (K)
2 4 8 16 32 64

Cora GCN 81.1 80.4 69.5 64.9 60.3 28.7
SGC 80.8 81.5 80.7 79.0 75.9 66.8
S2GC 76.2 79.8 82.2 83.5 82.6 82.0

Citeseer GCN 70.8 67.6 30.2 18.3 25.0 20.0
SGC 71.9 72.6 73.1 72.2 70.6 69.2
S2GC 70.7 72.6 72.7 73.6 74.0 73.4

Pubmed GCN 79.0 76.5 61.2 40.9 22.4 35.3
SGC 79.2 79.7 78.4 76.4 71.6 68.6
S2GC 78.5 79.2 79.7 80.2 79.1 78.1

Table 9: Classification accuracy (%) w.r.t.
α.

Dataset 0.0 0.05 0.1 0.15
Cora 82.9 83.5 81.1 78.8
Citeseer 72.8 73.6 73.0 73.6
Pubmed 79.8 80.2 80.1 79.8

preprocessed datasets are summarized in Table 11. Table 7 shows that S2GC rivals their models on
5 benchmark datasets. We provide the parameters setting in the supplementary material.

4.5 A DETAILED COMPARISON WITH VARIOUS NUMBERS OF LAYERS AND α

Table 8 summaries the results for models with various numbers of layers (K is the number of layers
and it coincides with the number of aggregated filters in S2GC). We observe that on Cora, Citeseer
and Pubmed, our method consistently obtains the best performance with K = 16, equivalent of 16
layers. Overall, the results suggest that S2GC can aggregate over larger neighborhoods better than
SGC while suffering less from oversmoothing. In contrast to S2GC, the performance of GCN and
SGC drops rapidly as the number of layers exceeds 32 due to oversmoothing.

Table 9 summaries the results for the proposed method for various α ranging from 0 to 0.15. The
table shows that α slightly improves the performance of S2GC. Thus, balancing the impact of self-
loop by α w.r.t. other filters of consecutively larger receptive fields is useful but the self-loop is not
mandatory.

5 CONCLUSIONS

We have proposed Simple Spectral Graph Convolution (S2GC), a method extending the Markov
Diffusion Kernel (Section 3.2), whose feature maps emerge from the normalized Laplacian Reg-
ularization problem (Section 3.3) if K → ∞. Our theoretical analysis shows that S2GC obtains
the right level of balance during the aggregation of consecutively larger receptive fields. We have
shown there exists a connection between S2GC and SGC, APPNP and JKN by analyzing spectral
properties and implementation of each model. However, as our Claims I and II show that we have
designed a filter with unique properties to capture a cascade of gradually increasing contexts while
limiting oversmoothing by giving proportionally larger weights to the closest neighborhoods of each
node. We have conducted extensive and rigorous experiments which show that S2GC is competi-
tive frequently outperforming many state-of-the-art methods on unsupervised, semi-supervised and
supervised tasks given several popular dataset benchmarks.

ACKNOWLEDGMENTS

This research is supported by an Australian Government Research Training Program (RTP) Schol-
arship.

9

Published as a conference paper at ICLR 2021

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In International Conference on Machine Learn-
ing, pp. 21–29, 2019.

Afonso S Bandeira, Amit Singer, and Daniel A Spielman. A cheeger inequality for the graph con-
nection laplacian. SIAM Journal on Matrix Analysis and Applications, 34(4):1611–1630, 2013.

James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox. Hyperopt: a
python library for model selection and hyperparameter optimization. Computational Science &
Discovery, 8(1):014008, 2015. URL http://stacks.iop.org/1749-4699/8/i=1/a=
014008.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexi-
cography. Computational linguistics, 16(1):22–29, 1990.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. In Advances in Neural Information
Processing Systems, volume 33, pp. 18648–18660. Curran Associates, Inc., 2020.

François Fouss, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens. An experimental
investigation of kernels on graphs for collaborative recommendation and semisupervised classifi-
cation. Neural networks, 31:53–72, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019a.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. In Advances in Neural Information Processing Systems, pp. 13354–13366, 2019b.

Piotr Koniusz and Hongguang Zhang. Power normalizations in fine-grained image, few-shot image
and graph classification. TPAMI, 2020.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and higher-
order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

10

http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008

Published as a conference paper at ICLR 2021

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence (AAAI-18), pp. 3538–3545. Association for the Advancement of Artificial Intelligence,
2018a.

Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label efficient semi-
supervised learning via graph filtering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. arXiv preprint arXiv:1801.03226, 2018b.

Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on networks.
Physics reports, 716:1–58, 2017.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regularized graph autoencoder
for graph embedding. In IJCAI International Joint Conference on Artificial Intelligence, 2018.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. arXiv preprint cs/0506075, 2005.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cambridge University
Press, 2011.

Alexander J. Smola and Risi Kondor. Kernels and regularization on graphs, 2003.

Ke Sun, Piotr Koniusz, and Zhen Wang. Fisher-bures adversary graph convolutional networks. UAI,
115:465–475, 2019.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR (Poster), 2019.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462, 2018b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via adaptive
graph convolution. arXiv preprint arXiv:1906.01210, 2019.

11

Published as a conference paper at ICLR 2021

Table 10: The statistics of datasets used for node classification and clustering.
Dataset # Nodes # Edges class feature Train/Dev/Test Nodes
Cora 2, 708 5, 429 7 1433 140/500/1, 000
Citeseer 3, 327 4, 732 6 3703 120/500/1, 000
Pubmed 19, 717 44, 338 3 500 60/500/1, 000
Reddit 232, 965 11, 606, 919 41 602 152K/24K/55K
wiki 2405 17981 17 4973

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. Advances in neural information processing systems,
16(16):321–328, 2004.

A SUPPLEMENTARY MATERIAL

A.1 NODE CLUSTERING

For S2GC and AGC, we set max iterations to 60. For other baselines, we follow the parameter
settings in the original papers. In particular, for DeepWalk, the number of random walks is 10,
the number of latent dimensions for each node is 128, and the path length of each random walk is
80. For DNGR, the autoencoder is of three layers with 512 neurons and 256 neurons in the hidden
layers respectively. For GAE and VGAE, we construct encoders with a 32-neuron hidden layer and
a 16-neuron embedding layer, and train the encoders for 200 iterations using the Adam optimizer
with learning rate equal 0.01. For ARGE and ARVGE, we construct encoders with a 32-neuron
hidden layer and a 16-neuron embedding layer. The discriminators are built by two hidden layers
with 16 and 64 neurons respectively. On Cora, Citeseer and Wiki, we train the autoencoder-related
models of ARGE and ARVGE for 200 iterations with the Adam optimizer, with the encoder and
discriminator learning rates both set as 0.001; on Pubmed, we train them for 2000 iterations with the
encoder learning rate 0.001 and the discriminator learning rate 0.008.

A.2 TEXT CLASSIFICATION

The 20NG dataset1 (bydate version) contains 18,846 documents evenly categorized into 20 dif-
ferent categories. In total, 11,314 documents are in the training set and 7,532 documents are in the
test set.

The Ohsumed corpus2 is from the MEDLINE database, which is a bibliographic database of
important medical literature maintained by the National Library of Medicine. In this work, we used
the 13,929 unique cardiovascular diseases abstracts in the first 20,000 abstracts of the year 1991.
Each document in the set has one or more associated categories from the 23 disease categories.
As we focus on single-label text classification, the documents belonging to multiple categories are
excluded so that 7,400 documents belonging to only one category remain. 3,357 documents are in
the training set and 4,043 documents are in the test set.

R52 and R8 (all-terms version) are two subsets of the Reuters 21578 dataset. R8 has 8 categories,
and was split to 5,485 training and 2,189 test documents. R52 has 52 categories, and was split to
6,532 training and 2,568 test documents.

MR is a movie review dataset for binary sentiment classification, in which each review only con-
tains one sentence (Pang & Lee, 2005) The corpus has 5,331 positive and 5,331 negative reviews.
We used the training/test split in (Tang et al., 2015).

A.2.1 TEXT CLASSIFICATION

Parameters. We follow the setting of Text GCN (Yao et al., 2019) that includes experiments on
four widely used benchmark corpora such as 20-Newsgroups (20NG), Ohsumed, R52 and R8 of
Reuters 21578. For Text GCN, SGC, and our approach, the embedding size of the first convolution

12

Published as a conference paper at ICLR 2021

Table 11: The statistics of datasets for text classification.
Dataset # Docs # Training # Test # Words # Nodes # Classes Average Length
20NG 18,846 11,314 7,532 42,757 61,603 20 221.26

R8 7,674 5,485 2,189 7,688 15,362 8 65.72
R52 9,100 6,532 2,568 8,892 17,992 52 69.82

Ohsumed 7,400 3,357 4,043 14,157 21,557 23 135.82
MR 10,662 7,108 3,554 18,764 29,426 2 20.39

layer is 200 and the window size is 20. We set the learning rate to 0.02, dropout rate to 0.5 and
the decay rate to 0. The 10% of training set is randomly selected for validation. Following (Kipf
& Welling, 2016), we trained our method and Text GCN for a maximum of 200 epochs using the
Adam (Kingma & Ba, 2014) optimizer, and we stop training if the validation loss does not decrease
for 10 consecutive epochs. The text graph was built according to steps detailed in the supplementary
material.

To convert text classification into the node classification on graph, there are two relationships con-
sidered when forming graphs: (i) the relation between documents and words and (ii) the connection
between words. For the first type of relations, we build edges among word nodes and document
nodes based on the word occurrence in documents. The weight of the edge between a document
node and a word node is the Term Frequency-Inverse Document Frequency (Rajaraman & Ullman,
2011) (TF-IDF) of the word in the document applied to build the Docs-words graph. For the second
type of relations, we build edges in graph among word co-occurrences across the whole corpus. To
utilize the global word co-occurrence information, we use a fixed-size sliding window on all doc-
uments in the corpus to gather co-occurrence statistics. Point-wise Mutual Information (Church &
Hanks, 1990) (PMI), a popular measure for word associations, is used to calculate weights between
two word nodes according to the following definition:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(14)

where p(i, j) = W (i,j)
W , p(i) = W (i)

W . #W (i) is the number of sliding windows in a corpus that
contain word i, #W (i, j) is the number of sliding windows that contain both word i and word j,
and #W is the total number of sliding windows in the corpus. A positive PMI value implies a
high semantic correlation of words in a corpus, while a negative PMI value indicates little or no
semantic correlation in the corpus. Therefore, we only add edges between word pairs with positive
PMI values:

A =

[
W1 W2

W>
2 I

]
or

Aij =


PMI(i, j) if i, j are words, PMI(i, j) > 0,

TF-IDFij if i is document, j is word,
1 if i = j,

0 otherwise.

(15)

A.3 GRAPH CLASSIFICATION

We report the average accuracy of 10-fold cross validation on a number of common benchmark
datasets, shown in Table 12, where we randomly sample a training fold to serve as a validation set.
We only make use of discrete node features. In case they are not given, we use one-hot encodings
of node degrees as the feature input. We note that graph classification is a task highly dependent on
the global pooling strategy. There exist methods that apply sophisticated mechanisms for this step.
However, with a readout function and a highly scalable S2GC model, we comfortably outperform all
methods on MUTAG, Proteins and IMDB-Binary, even DiffPool which has a differentiable graph
pooling module to gather information across different scales. A stronger performer (Koniusz &
Zhang, 2020) uses the GIN-0 backbone and second-order pooling with the so-called spectral power
normalization, referred to as MaxExp(F). In contrast, we use a simple readout feature aggregation.

13

Published as a conference paper at ICLR 2021

Table 12: Graph classification.
Method MUTAG PROTEINS COLLAB IMDB- BINARY
GCN 74.6 ± 7.7 73.1 ± 3.8 80.6 ± 2.1 72.6 ± 4.5
SAGE 74.9 ± 8.7 73.8 ± 3.6 79.7 ± 1.7 72.4 ± 3.6
GIN-0 85.7 ± 7.7 72.1 ± 5.1 79.3 ± 2.7 72.8 ± 4.5
GIN-ε 83.4 ± 7.5 72.6 ± 4.9 79.8 ± 2.4 72.1 ± 5.1
DiffPool 85.0 ± 10.3 75.1 ± 3.5 78.9 ± 2.3 72.6 ± 3.9
GIN-0+MaxExp(F) 88.9 ± 5.8 76.8 ± 2.9 81.7 ± 1.7 77.8 ± 3.6
S2GC 85.1 ± 7.4 75.5 ± 4.1 80.2 ± 1.3 72.9 ± 4.9

A.4 THEORETICAL ANALYSIS

Below we show that we can reduce oversmoothing compared to SGC while incorporating larger
receptive fields.

Our design contains a sum of consecutive diffusion matrices T̃k, k = 0, · · · ,K. As k increases, so
does the neighborhood of each node visited during diffusion T̃k (analogy to random walks). This
means that:

Claim I. Our filter, by design, will give the highest weight to the closest neighborhood of a node as
neighborhoods N of diffusion steps k = 0, · · · ,K obey N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆
N (T̃∞). That is, smaller neighborhoods belong to larger neighborhoods too.

To see this clearer, for the q-dimensional Euclidean lattice graph with infinite number of nodes, after
t steps of random walk, the estimate of absolute distance the walk moves from the source to its
current position is given as:

r(t, q) =

√
2t

q
·

Γ
(
q+1
2

)
Γ (q + 1)

, (16)

where r(t, q) is the absolute distance walked from the source to the current point and Γ(·) is the
Gamma function. Moreover, if the number of dimensions q →∞, we have r(t, q) ≤

√
t. It is clear

then that the receptive field associated with the random walk (and thus diffusion at time t) obeys the
monotonically increasing radius r, that is r(0) ≤ r(1) ≤ · · · ≤ r(K) ≤ · · · ≤ r(∞). To see that,
simply plot

√
t (and/or the more complicated expression that includes the Gamma function).

This proves Claim I for the Euclidean lattice graph. That is, for consecutive diffusion steps T̃k, k =
0, · · · ,K, our receptive field grows.

Moreover, note that our filter is realized as the sum of consecutive diffusion steps, that is
1
t

∑t
τ=0 diff(s, τ) where s is the source of walk. It is easy to see then that even if each walked

distance was to contribute the energy proportional with r(t) to the summation term, we have:

lim
t→∞

1
t

t∑
t′=0

√
t′

√
t

= 0, (17)

where the enumerator is the model of the total energy when aggregating over receptive fields from
size 0 to∞ in S2GC while the denominator is the total energy of SGC (filter is given by T̃K , that is
by diff(s, t)).

The above proof shows that the above ratio of energies is 0, which means that:

Claim II. When the ratio of energies of two models is 0, the energy of the infinite-dimensional
receptive field (when t → ∞) in S2GC is not going to dominate the sum energy of our filter. Thus,
S2GC can incorporate larger receptive fields than SGC without eclipsing the contributions from
smaller receptive fields as t→∞ on the Euclidean lattice graph.

However, in practice, we work with finite-dimensional non-Euclidean graphs. Obtaining the abso-
lute distance r(t) walked from the source is a difficult topic. As an example, see Eq. 184 in Masuda
et al. (2017).

14

Published as a conference paper at ICLR 2021

For this reason, below we use a simple approximation. We use Theorem 1 as the proxy for the
walked radius. That is to say the error of convergence to the stationary distribution is indicative of
the absolute distance walked from the source/node. Specifically, we have:

Recall Theorem 1, that is let λ2 denote second largest eigenvalue of transition matrix T̃ = D−1A,
p(t) be the probability distribution vector and π the stationary distribution. If walk starts from the
vertex i , pi(0) = 1, then after t steps for every vertex:

|pj(t)− πj | ≤
√
dj
di
λt2. (18)

Then, the average walked distance r from node i over t steps in a graph with n nodes and connec-
tivity given by the second largest eigenvalue λ2, denoted by r(i, t, n) is lower-bounded by r̄(i, t, n)
as follows:

r(i, t, n) ≈ 1
1

n−1
∑
j 6=i
|pj(t)−Πj |

≥ r̄(i, t, n) =
n−1

λt2

∑
j 6=i
√
dj√

di

=
(n−1)

√
di

λt2(Ẽ−
√
di)

=
ρ

λt2
, (19)

where n is the number of nodes, t is the number of diffusion steps (think T̃k), di and dj are degrees
of nodes i and j, λ2 being the second largest eigenvalue intuitively denotes the graph connectivity
(large λ2 ≤ 1 indicates low connectivity while low λ2 indicates high connectivity in graph), Ẽ is
the sum of square roots of node degrees and ρ= (n−1)

√
di

Ẽ−
√
di

is in fact a constant for a given graph.

While the above approximations may be loose for very small/large t, the important property to note
is that r(i, 0, n) ≤ r(i, 1, n) ≤ · · · ≤ r(i, t, n) which indicates that our filter indeed realises the sum
over increasingly larger receptive fields. As smaller receptive fields are a subset of larger receptive
fields given node i, that is N (T̃0) ⊆ N (T̃1) ⊆ · · · ⊆ N (T̃K) ⊆ N (T̃∞), this proves our Claim I.

To prove Claim II for a general connected non-bipartite graph, we have:

lim
t→∞

1
t

t∑
t′=0

r̄(i, t′, n)

r̄(i, t, n)
= 0, (20)

Similar findings can be noted by carefully considering the meaning of so-called Cheeger constant
introduced in Section A.5. More details on spectral analysis of filters in GCNs can be found in
studies of Li et al. (2018a) and Li et al. (2018b).

A.5 GRAPH PARTITIONING

Below we introduce the definitions of expansion and k-way Cheeger constant.

Definition A.1. For a node subset S ⊆ V , so-called expansion φ(S) = |E(S)|
min{vol(S),vol(V \S)} , where

E(S) is the set of edges with one node in S and vol(S) is the sum of degree of nodes in set S.
Definition A.2. The k-way Cheeger constant is given as: ρG(k) = minS1,S2,··· ,Sk

max{φ(Si) :
i = {1, · · · , k}} where the minimum is over all collections of k non-empty disjoint subsets
S1, S2, · · · , Sk ⊆ V .

According to the definitions, the expansion in Def. A.1 describes the effect of graph partitioning
according to subset S while the k-way Cheeger constant reflects the effect of the graph partitioning
into k parts–the smaller the value the better the partitioning is. Higher-order Cheeger’s inequal-
ity (Bandeira et al., 2013; Lee et al., 2014) bridges the gap between the network spectral analysis
and graph partitioning by controlling the bounds of k-way Cheeger constant:

λk
2
≤ ρG(k) ≤ O

(
k2
)√

λk, (21)

where λk is the k-th eigenvalue of the normalized Laplacian matrix and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
From inequality 21, we can conclude that small (large) eigenvalues control global clustering (local
smoothing) effect of the graph partitioned into a few large parts (many small parts). Thus, specific
combination of low- and high-pass filtering of our design (see Figure 1) a indicates the weight trade-
off between large and small partitions contained by the node.

15

