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ABSTRACT

With the continuous advancement of video generation, researchers have achieved
speech-driven body language synthesis, such as co-speech gestures. However,
due to the lack of paired data for visual speech (i.e., lip movements) and body
languages, existing methods typically rely solely on audio-only speech, which
struggles to correctly synthesize target results in noisy environments. To overcome
this limitation, we propose an Audio-Visual Speech-Driven Synthesis (AV-SDS)
method tailored for body language synthesis, aiming for robust synthesis even
under noisy conditions. Given that each body language modality data has its
corresponding audio speech, AV-SDS adopts a two-stage synthesis framework
based on speech discrete units, consisting of the AV-S2UM and Unit2X modules.
It uses speech discrete units as carriers to construct a direct mapping from audio-
visual speech to each body language. Considering the distinct characteristics of
different body languages, AV-SDS can be implemented based on semantic and
acoustic discrete units, respectively, to achieve high-semantic and high-rhythm body
language synthesis. Experimental results demonstrate that our AV-SDS achieves
superior performance in synthesizing multiple body language modalities in noisy
environments, delivering noise-robust body language synthesis. For samples and
further information, please visit demo page at https://av-sds.github.
io/.

1 INTRODUCTION

Recent years have witnessed great advancements in video generation (Tian et al., 2024; Richard et al.,
2021), and researchers have successfully achieved various forms of speech-driven body language
synthesis (Liu et al., 2023), including talking head generation (Prajwal et al., 2020; 2022), co-gesture
generation (Liu et al., 2022b;a; Yang et al., 2023b), 3D facial animation (Richard et al., 2021; Fan
et al., 2022; Xing et al., 2023), etc. Despite significant progress in these fields, existing methods
are limited to employing audio-only speech for synthesis, as shown in Figure 1. However, in some
complex environments such as construction sites and plants (Ahmed & Gadelmoula, 2022), it is
difficult to extract clear audio signal, especially where headsets are unavailable due to regulations of
production safety.

To understand speech in noisy scenes, researchers often use visual speech assistance (Afouras et al.,
2018b; Shi et al., 2022b). For example, (Wang & Zhu, 2021) proposed a vision-based human-
machine communication framework through gesture recognition, and (Ray & Teizer, 2012) also
confirmed the feasibility of real-time posture analysis used in workers’ ergonomics training. However,
in most speech-driven body language synthesis tasks, such as Cross-ID talking head synthesis (Wang
et al., 2021; Liang et al., 2022), Cross-ID landmark generation (Hsu et al., 2022), 3D facial animation,
and speech gesture synthesis, there is a paucity of paired data between visual speech and body
languages (Daněček et al., 2022). This scarcity hinders the realization of audio-visual speech-driven
body language synthesis models.

Since the audio speech modality has a large amount of data supporting self-supervised learning (Kahn
et al., 2020; Zen et al., 2019), many researchers have successfully used speech discrete units to
represent speech information. Inspired by direct speech-to-speech translation (Lee et al., 2021),
and considering that each body language (including visual speech, i.e., lip movements) is aligned
with audio and has ample training data, can we use discrete speech units extracted from audio
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Figure 1: Overview of speech-driven multimodal synthesis tasks under noise-free and noisy conditions.
The audio-only speech-driven approach is inadequate for synthesis in noisy environments. Conversely,
the audio-visual speech-driven method can effective enhance the robustness of speech-driven synthesis
in noisy settings. This paper focuses primarily on four tasks: Cross-ID talking head generation,
Cross-ID landmark generation, 3D facial animation, and co-speech gesture generation.

speech self-supervised learning (SSL) models (Hsu et al., 2021; Zeghidour et al., 2021) as a bridge
between visual speech and body language to address this challenge and achieve direct audiovisual
speech-driven multimodal body language synthesis?

In this paper, we introduce a two-stage audio-visual speech-driven body language synthesis model
(AV-SDS) based on speech discrete units, which includes two basic modules: AV-S2UM and Unit2X.
The AV-S2UM module consists of an audio-visual speech encoder (Shi et al., 2022a) and several
transposed convolutional layers, which can map the audiovisual speech to the corresponding discrete
speech units. Subsequently, these discrete speech units are input into the Unit2X module to
synthesize the corresponding multimodal body language data. In particular, to meet the characteristics
of different body language modalities, the AV-SDS can be implemented based on different speech
discrete units: an acoustic-centered model for co-speech gestures which focus more on the emotion
and rhythm of speech (Loehr, 2007), implemented based on acoustic discrete units; and a semantic-
centered model for modalities that focus on the semantic information of speech (talking head, facial
landmark, and 3D face mesh), proposed based on semantic discrete units. Experiments show that the
Unit2X module can successfully resynthesize various body languages from discrete speech units.
Furthermore, experiments on various speech-driven body language synthesis tasks under different
noise conditions demonstrate that our AV-SDS is capable of noise-robust speech-driven synthesis.
The main contributions are as follows:

• We propose a novel two-stage, noise-robust, audio-visual speech-driven body language synthesis
model (AV-SDS) based on discrete speech units.

• We propose AV-S2UM module, which excels in retaining speech information in noisy environments.
• We propose Unit2X module to synthesize body language data from discrete speech units, demon-

strating the sufficiency of speech information in these units for body language synthesis.
• Our experiments confirm the robustness and effectiveness of AV-SDS across varying noise condi-

tions, validating its potential for noise-robust speech-driven body language synthesis.

2 RELATED WORKS

2.1 SPEECH DRIVEN MULTI-MODAL BODY LANGUAGE SYNTHESIS

Body language (Liu et al., 2023) plays a pivotal role in facilitating effective communication and
enhancing social interactions. Over the years, numerous researchers (Ye et al., 2023; Zhou et al.,
2020) have dedicated their efforts to speech-driven body language synthesis, aiming to create digital
avatars that seamlessly synchronize with spoken content. Leveraging advancements in generative
technology, researchers have made notable progress, culminating in the development of both 2D
talking head avatars (Zhou et al., 2020; Prajwal et al., 2020) and 3D facial animation (Richard et al.,
2021; Xing et al., 2023), driven by audio and speech inputs. Moreover, recognizing the importance of
comprehensive avatar technology, researchers (Yang et al., 2023b;c) have expanded their exploration
into co-speech gesture synthesis, harnessing the rhythm and cadence of speech to imbue digital
avatars with lifelike gestures.
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However, existing methods can only achieve multimodal body language synthesis driven solely by
audio speech, lacking robustness in noisy environments. To address this gap, we propose the first
direct audio-visual speech driven multi-modal body language synthesis model, enabling speech-driven
synthesis even in noisy conditions.

2.2 ROBUST AUDIO-VISUAL SPEECH LEARNING

Audio speech understanding (Baevski et al., 2020; Hsu et al., 2021) technology has advanced rapidly,
effectively conveying speech content information. However, in noisy environments like outdoors,
audio-only models often lack robustness and struggle to resist environmental noise interference.
To address this, researchers (Afouras et al., 2018b) have begun exploring the use of visual speech
(lip movements) to enhance speech understanding capabilities under noisy conditions. Some re-
searchers (Afouras et al., 2018a;b) initially collected paired audio-visual speech corpus from TED and
BBC for research. Subsequently, AV-HuBERT (Shi et al., 2022a) achieves noise-robust audio-visual
speech recognition as well as lip reading, successfully recognizing speech content in noisy condition.
Additionally, some (Gao & Grauman, 2021; Hsu et al., 2023) propose using visual speech to tackle
the cocktail party problem, effectively addressing the challenge of distinguishing the active speaker
track among multiple speakers.

However, in speech-driven multimodal generation tasks, many body language modalities (e.g., meshes
and gestures) lack paired data with visual speech (Daněček et al., 2022), hindering robust audio-visual
speech-driven synthesis. In this paper, we introduce a two-stage AV-SDS framework that utilizes
discrete speech units as carriers to overcome this challenge of unpaired data.

2.3 SELF-SUPERVISED LEARNING IN SPEECH

Self-supervised learning methods (Baevski et al., 2020; Hsu et al., 2021; Zeghidour et al., 2021; Yang
et al., 2023a) leverage unlabeled audio speech data to significantly enhance speech representation and
improve the performance of various speech-related tasks. For instance, some researchers (Baevski
et al., 2020; Hsu et al., 2021) employ a continuous alternation between unsupervised clustering
and mask prediction to augment the contextual semantic representation. Later, some (Zeghidour
et al., 2021; Yang et al., 2023a) integrate the RVQ (residual vector quantization) module to achieve
a fine-grained representation of speech acoustic information. Building upon these advancements,
researchers have proposed utilizing Speech SSL model to discretize speech, thereby exploring new
capabilities of speech models. Specifically, Lee et al. (2021) employs semantic discrete units as
a bridge to achieve direct speech-to-speech translation between speeches of different languages,
while Jiang et al. (2023) employs acoustic discrete units to represent acoustic information of speech,
enabling zero-shot TTS.

While speech discrete units hold promise in various speech-related tasks, their application in speech-
driven multi-modal generation tasks remains largely unexplored. In this paper, we introduce a unit-
based multi-modal generation module, Unit2X, which represents a pioneering effort in leveraging
speech discrete unit information for multi-modal generation exploration.

3 AUDIO-VISUAL SPEECH DRIVEN SYNTHESIS

3.1 OVERVIEW

Audio-visual speech-driven multimodal synthesis aims to generate multimodal content M =
{M1,M2, · · · ,MN} (e.g., meshes, talking heads, gestures, etc.) consistent with audio speech
A = {A1, A2, · · · , AN} and visual speech V = {V1, V2, · · · , VN}, where N is the number of
audio-visual speech frames. Due to the lack of extensive paired data between visual speech and body
language modalities (e.g., meshes and co-speech gestures), it is challenging to train an audio-visual
speech-driven body language synthesis model. In this context, as shown in Figure 2, the AV-SDS
proposed in this paper aims to use speech self-supervised learning (Speech SSL) model to map
speech paired with various modalities into the corresponding unified speech discrete unit space
U = {U1, U2, · · · , UT }, where T is the number of discrete speech units. By using discrete speech
units as carriers, we achieve direct audio-visual speech-driven multimodal synthesis. Specifically, as
described in Section 3.2, we adopt the AV-S2UM module to construct the mapping from audio-visual
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Figure 2: Illustration of AV-SDS. While there is no paired data between visual speech (lip movements)
and most modalities (such as mesh and co-speech gestures), paired speech data exists for each
modality in the speech-driven synthesis task. In this context, we leverage Speech SSL model (Hsu
et al., 2021; Yang et al., 2023a) to convert the audio speech data from various modal pairs for the
speech-driven generation task into corresponding speech discrete units, acting as a bridge between
audio-visual speech and different modalities. As detailed in Section 3.2, we employ AV-S2UM to
translate audio-visual speech into the target discrete speech units, followed by the Unit2X module
introduced in Section 3.3 to synthesize the corresponding multi-modal data, thus achieving robust
audio-visual speech-driven multimodal synthesis.

speech to unified speech discrete units. Subsequently, in Section 3.3, we introduce Unit2X, a unit-
based multimodal generation framework, to reconstruct corresponding multimodal body language
data from unified speech discrete units.

3.2 AUDIO-VISUAL SPEECH-TO-UNIT MAPPING SYSTEM

Speech Discrete Units. The information conveyed by speech can be broadly classified into two
categories: semantic information and acoustic information. HuBERT (Hsu et al., 2021) employs
multiple iterations of mask prediction and K-means clustering to continuously enhance its ability
to understand speech context, effectively extracting semantic discrete units that encapsulate speech
semantics, denoted as Us. Encodec (Défossez et al., 2022) and SoundStream (Yang et al., 2023a;
Zeghidour et al., 2021) utilize the RVQ module for precise speech reconstruction, obtaining the
acoustic discrete unit, denoted as Ua. In this paper, we utilize the semantic discrete unit Us for
generating modalities closely associated with semantics, such as the talking head, facial landmarks,
and the mesh of a 3D avatar. Conversely, the acoustic discrete unit Ua is employed for generating
co-speech gestures, which are more closely related to emotion and rhythm.

AV-S2UM In Figure 2, each visual speech V is paired with its corresponding audio speech A. We
implement the AV-S2U-Mapper model based on the AV-HuBERT model, pre-trained on a large dataset
of paired audio-visual speech utterances. While it’s possible to use the AV-HuBERT representation
directly to obtain discrete units, we opt for the Speech SSL model, trained specifically on speech
data, to ensure unified speech discrete units across different modalities. We can obtain the acoustic
discrete units (Ua

lip) and semantic discrete units (Us
lip) corresponding to the audio speech in (A, V ).

By leveraging the pre-trained AV-HuBERT model (Shi et al., 2022a), we embed the audio-visual
speech into robust speech features f , denoted as f = AV-HuBERT(A, V ). Subsequently, we employ
n transposed convolutional layers to align these features with discrete unit sequences (n = 1 for
semantic discrete units and n = 3 for acoustic discrete units). Each layer utilizes a kernel size (K)
of 4, a stride (S) of 2, padding (P ) of 1, and output padding (Op) of 1. The output size (O) of each
transposed convolutional layer is calculated using the formula O = ((I−1)×S+K−2×P )+Op.

The target distribution p(Ut|{Ui}t−1
i=1, (A, V )) can be obtained with the robust speech feature f :

p(Ut|{Ui}t−1
i=1, (A, V )) = AV-S2UM(f), (1)

4
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and the AV-S2UM module is trained using the cross-entropy loss:

LAV-S2UM = −
N∑
t=1

log p(Ut|{Ui}t−1
i=1, (A, V )). (2)

3.3 UNIT-BASED MULTI-MODAL SYNTHESIZER

With the Speech SSL model, the speech discrete unit Um corresponding to the audio speech A paired
with the multi-modal data M can be derived as either the corresponding semantic discrete unit (Us

m)
or the acoustic discrete unit (Ua

m). In this subsection, we will elucidate how the Unit2X module
synthesizes corresponding multi-modal data from semantic discrete units or acoustic discrete units.

Synthesizer based on Semantic Units. Drawing inspiration from Polyak et al. (2021), we employ
a lookup table (LUT) to map these discrete units Us

m = {Us
1 , · · · , Us

T } to the corresponding speech
representation fa = {fa1 , · · · , faT } = LUT(Us

m). Subsequently, these speech representations fa are
inputted into various models to generate corresponding body language data.

For the acoustic discrete unit, we utilize 8 distinct units to represent various granular speech features
at each speech frame, denoted as Ua

m = {Ua
1,1, . . . , U

a
1,8, . . . , U

a
T,1, . . . , U

a
T,8}. We obtain the audio

speech representation fa by employing the pre-trained RVQ (Residual Vector Quantization) module
within the Speech SSL model (Yang et al., 2023a) for acoustic units: fa = {fa1 , · · · , faT } = RVQ(Ua

m).
Note that we keep the parameters of the RVQ module frozen during training.

Unit2X: Unit-Based multi-modal synthesizer. In the traditional speech-driven body language
synthesis task, the audio encoder is utilized to encode the raw audio into the corresponding audio
speech feature fa. However, in this work, we substitute the original audio encoder with the unit-based
encoder to obtain the audio speech feature. Once we obtain the audio speech representation fa, we
can apply the model used in the traditional speech-driven multi-modal synthesis task to generate
corresponding multi-modal data M :

M = Unit2X(fa). (3)

Here, we illustrate this process using the task of talking head generation as an example. The audio
speech feature fa is first input into the face decoder, where it is upsampled and combined with fs,
the latter being extracted from randomly selected speaker reference frames and pose prior frames.
This combination generates the final talking head. The discriminator D consists of a series of
convolutional blocks and is trained alternately with the generator G. The loss function employed
during model training remains consistent with traditional speech-driven multi-modal generation
methods. Specifically, for the task of talking head generation, we use GAN loss LG, lip reconstruction
loss Llip, and synchronization loss Lsync as the training objectives:

Lunit2x(head) = (1− λsync − λgen)Llip + λsyncLsync + λgenLG, (4)

where Lunit2x(head) is the training objective of Unit2X for talking head generation, and λsync =
0.03 and λgen = 0.07 as proposed by Prajwal et al. (2020).

4 EXPERIMENTS

4.1 DATASETS

The AV-S2UM module is trained on the LRS3 dataset (Afouras et al., 2018b). For the Unit2X
model, we utilize the most commonly employed datasets for each modality: 29h training split of
LRS2 (Petridis et al., 2018) for talking head generation, LRS3 (Afouras et al., 2018b) for facial
landmark synthesis, VOCASET (Cudeiro et al., 2019) for 3D facial animation, and TED-GESTURE
(Yoon et al., 2019) for co-speech gesture synthesis. The pre-trained Speech SSL models used in
this paper to obtain speech discrete units are trained on Libri-Light (Kahn et al., 2020) and the TTS
Corpus (Yang et al., 2023a), respectively. Following the methodology described in Shi et al. (2022a),
we introduce noise into the audio speech by incorporating samples from the MUSAN dataset (Snyder
et al., 2015).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of synthesis quality for various body language modalities. S2X denotes direct
synthesis from real speech, Unit2S+S2X indicates synthesizing speech from units followed by
additional synthesis, and Unit2X refers to the direct body language generation from discrete units.

Method Talking Head Mesh Landmark Gesture
LSE-C↑ LSE-D↓ FID↓ SYNC.↑ REAL.↑ LMD↓ FGD↓

Synthesize X-modality data from real speech.
S2X 7.50 7.14 5.08 45.01 39.72 4.287 4.133

Synthesize X-modality data from speech discrete units.
Unit2S+S2X 5.74 7.96 5.52 41.37 35.29 5.180 4.228

Unit2X(Ours) 7.34 7.54 5.14 46.83 43.28 4.718 3.976

4.2 IMPLEMENTATION DETAILS

To ensure consistency across different body language modalities, we resample the audio speech in all
datasets to 16kHz in this paper. This allows us to extract unified speech discrete units to represent
semantic or acoustic information. Specifically, we use the HuBERT BASE model (Hsu et al., 2021)
to extract semantic discrete units and the 16kHz version of the hificodec model (Yang et al., 2023a)
to extract acoustic discrete units.

To facilitate effective research and encourage broad adoption, we intentionally selected fundamental,
widely applicable implementations for each modality. Specifically, we use Wav2Lip (Prajwal et al.,
2020) for talking heads, GeneFace (Ye et al., 2023) for 3D landmarks, CodeTalker (Xing et al.,
2023) for face meshes, and Tri-Modal (Yoon et al., 2020) for co-speech gestures to implement the
corresponding speech-driven body language synthesis tasks. We believe that experiments on basic
implementations of different body language modalities are sufficient to demonstrate the effectiveness
of our approach, which can be integrated with any speech-driven body language synthesis model in
the future. For additional details and evaluation metrics, please refer to Appendix B.

4.3 UNIT2X: UNIT-BASED BODY LANGUAGE SYNTHESIS

Polyak et al. (2021) demonstrated the feasibility of reconstructing corresponding speech from discrete
units. Building on this, we attempt to synthesize different body language data from corresponding
speech discrete units. As shown in Table 1, we compare the performance of various synthesis methods
across different body language modalities. This demonstrates that speech discrete units can effectively
replace the original speech as input for synthesizing corresponding body language data. For additional
qualitative comparisons, please refer to Appendix B.

Audio-Based vs. Unit-Based. The audio-based method (S2X) directly extracts the corresponding
embedding from the mel spectrum for body language modality synthesis, while the unit-based method
(Unit2X) synthesizes from discrete units. As demonstrated in the experiments, across various body
language modalities, the unit-based method achieves performance comparable to that of the audio-
based method, affirming that speech discrete units can efficiently represent the speech information
necessary to generate the corresponding body language data. Additionally, in scenarios with limited
training data (e.g., mesh) or where cross-modal mapping is challenging to build (e.g., co-speech
gesture), unit-based methods prove to be more effective than methods using raw speech as input. For
instance, the FGD of Unit2X is 3.976, while that of S2X is 4.133. This demonstrates that speech
discrete units can distinctly capture various semantic and acoustic information from speech, leading
to superior performance in these challenging contexts.

U2S+S2X vs. Unit2X. To synthesize the body language data corresponding to the speech discrete
unit, the simplest approach is to first re-synthesize the audio speech corresponding to the discrete unit,
and then synthesize the corresponding body language data from the audio speech (i.e., U2S+S2X).
However, this cascade method tends to accumulate errors, resulting in a significant decline in the
correlation between the generated body language modality data and the audio speech compared
to direct synthesis from the unit (the LSE-C of Unit2X is 7.34, while the LSE-C of U2S+S2X is
only 5.74). This further underscores the importance of the unit-based body language synthesizer
(Unit2X).

6
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Table 2: Comparison of speech-driven synthesis performance across four different modalities (talking
head, co-speech gesture, facial landmark, and mesh) under varying noise conditions. We present
performance comparisons across different signal-to-noise ratios (SNRs) of SNR = {15, 5, -5, -15}.
The cascade method with a dagger (†) employs the AV-S2UM+U2S+S2X cascade method. The mesh
modality results are assessed against the generated mesh of clean audio speech-driven synthesis.

(a) Comparison of Talking Head Generation on LRS3. LSE-C and LSE-D in this table are evaluated between the
generated talking head video and the clean audio speech.

Method LSE-C ↑ LSE-D↓ FID↓
15 5 -5 -15 15 5 -5 -15 15 5 -5 -15

Wav2Lip 5.63 4.65 3.15 2.05 8.19 8.49 8.93 9.35 5.88 6.42 7.45 8.73
Cascade† 5.45 5.23 5.09 4.83 8.47 8.67 8.94 9.12 6.12 6.26 6.41 6.67
AV-SDS 5.72 5.59 5.41 5.12 8.32 8.45 8.51 8.68 5.97 6.12 6.23 6.37
(b) Comparison of 3D Mesh of Talking Head Generation on LRS3. The SYNC. and REAL. in this table are
expressed as preference ratios compared to the results generated based on clean audio speech.

Method SYNC. ↑ REAL. ↓
15 5 -5 -15 15 5 -5 -15

CodeTalker 45.13 38.12 29.22 20.31 42.62 36.44 26.83 18.28
Cascade† 38.78 35.94 32.13 28.89 36.38 35.04 33.71 31.66
AV-SDS 40.29 39.75 38.32 34.49 43.13 41.26 39.85 36.72

(c) Comparison of Landmark Generation on LRS3.

Method LMD ↓
15 5 -5 -15

GeneFace 5.115 5.357 5.927 6.356
Cascade† 5.384 5.579 5.637 5.845
AV-SDS 5.272 5.304 5.328 5.523

(d) Comparison of Gesture Generation on AV-GES.

Method FGD ↓
15 5 -5 -15

Tri-modal 4.322 4.726 5.217 5.910
Cascade† 4.607 4.689 4.772 5.367
AV-SDS 4.434 4.524 4.580 4.843

4.4 ROBUST AUDIO-VISUAL SPEECH DRIVEN MULTI-MODAL SYNTHESIS

To assess the performance of different speech-driven body language synthesis methods in noisy
environments, we conducted validation across various body language modalities: (1) For talking
head and facial landmarks, since there are no ground truth results in the cross-identity audio-visual
speech-driven talking head or facial landmark generation task, we follow the experimental setting of
Prajwal et al. (2020) and use talking heads and facial landmarks paired with audio speech as targets
for audio-visual speech-driven synthesis. Talking heads are evaluated on the LRS2 dataset, while
facial landmarks are evaluated on the LRS3 dataset. To further enhance the convincingness, we
also present cross-identity audio-visual speech-driven talking head generation results in Section 4.6,
validated solely through audio-visual synchronization (Prajwal et al., 2020). (2) For 3D face mesh,
due to the absence of paired mesh and visual speech data for testing, we utilized the speech-driven
method to generate 3D face mesh corresponding to clean audio speech on the LRS3 dataset, using
these as reference videos for qualitative comparison. (3) For co-speech gesture, we curated a test set
comprising audio-visual speech and co-speech gesture paired data by re-collecting and processing the
original video clips from the TED-GESTURE dataset as described by Afouras et al. (2018b). This
Audio-Visual TED-GESTURE (AV-GES) test dataset included 565 utterances in total. In Table 2, we
present the experimental results across various tasks, demonstrating the effectiveness of our proposed
AV-SDS method under noisy conditions.

Noise-Robust Speech-Driven Synthesis Traditional audio-only methods exhibit significant perfor-
mance degradation in noisy environments. For instance, in Table 2d, the audio-only speech-driven
method (Tri-modal) experiences a notable decrease in performance, dropping by 1.588 from 4.322 to
5.910 as SNR decreases from 15 to -15. In contrast, our proposed AV-SDS, driven by audio-visual
speech, only experiences a slight decrease of 0.409 from 4.434 to 4.843. This demonstrates that
AV-SDS achieves noise-robust speech-driven body language synthesis and is more robust to noise.
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Table 3: Comparison of speech enhancement performance under different noise conditions on LRS3.
We re-evaluated the LSE metrics following Prajwal et al. (2020), and reproduced the results of
ReVISE based on the AV-S2UM(Us) module and unit-based vocoder (Polyak et al., 2021).

Method WER(%) ↓ LSE-C ↑ LSE-D ↓ MOS ↑
15 5 -5 -15 15 5 -5 -15 15 5 -5 -15 Avg.

Inp.Audio 7.8 17.8 63.9 87.9 6.72 6.68 3.38 2.05 7.58 8.12 10.82 11.93 2.88±0.17
Resynthesis 10.2 19.9 83.5 97.7 6.64 6.53 3.19 1.82 7.65 8.29 11.04 12.14 2.81±0.16
Demucs 6.9 15.1 48.0 81.3 6.98 6.89 3.87 2.21 7.38 7.83 10.12 11.79 3.22±0.15

VisualVoice 6.6 8.8 23.4 58.0 7.03 6.75 5.70 4.81 7.34 7.61 8.57 9.79 3.52±0.12
ReVISE 9.4 9.7 11.7 20.5 6.63 6.59 6.41 5.79 7.49 7.56 7.78 8.46 3.40±0.13
AV-S2UM(Ua) 5.8 6.5 13.6 46.0 7.25 7.14 7.06 5.85 7.15 7.32 7.51 8.30 3.79±0.12

Particularly under harsh noise conditions (SNR= {5,−5,−15}), AV-SDS achieves superior perfor-
mance in speech-driven body language synthesis, preserving more information from the speech and
yielding more reliable body language synthesis. It’s worth noting that since the AV-S2UM model is
trained solely on LRS3, the experiments on co-speech gesture in Table 2d represent zero-shot scenar-
ios for the AV-S2UM module. Even in such conditions, AV-SDS demonstrates better performance
under noisy conditions, underscoring the significance of audio-visual speech-driven synthesis.

Direct System vs. Cascade System. While the cascade approach using the three modules
AV-S2UM+U2S+S2X can achieve a certain degree of noise-resistant audio-visual speech-driven
synthesis, the accumulation of errors from multiple module cascades hampers its synthesis perfor-
mance under varying noise conditions compared to AV-SDS. Particularly, robust audio-visual speech
understanding in noisy environments is significantly challenging. The errors generated by each
module under noisy conditions are non-negligible and significantly impact the final outcome. For
instance, in the results for SNR= −15 in Table 2d, the FGD of the cascade method is 0.524 lower
than that of AV-SDS. Therefore, minimizing the number of cascade layers is crucial for speech-driven
synthesis tasks in noisy environments.

4.5 AV-S2UM: PRESERVATION OF SPEECH INFORMATION IN NOISY AUDIO.

Based on visual speech, AV-S2UM effectively preserves speech information in noisy environments
and can reconstruct corresponding audio speech using speech discrete units. As shown in Table
3, we compared the speech enhancement performance to evaluate the ability of various models to
retain speech information under different noise conditions. Among these models, Demucs (Defossez
et al., 2020) represents an audio-only approach, VisualVoice (Gao & Grauman, 2021) represents
a naive audio-visual method, ReVISE (Hsu et al., 2023) relies on semantic discrete units (i.e.,
AV-S2UM(Us)), and AV-S2UM(Ua) refers to the model that relies on acoustic discrete units.

Audio-Only vs. Audio-Visual. In a noisy environment, models that rely solely on audio-speech
are unable to resist noise interference and suffer significant loss of speech information. The Word
Error Rate (WER) for the audio-only method (Demucs) at SNR=-15 is 81.3%, showing only a
6.6% improvement from 87.9% for Inp.Audio. However, audio-visual speech-based methods use
visual speech as auxiliary information to help models resist noise interference. VisualVoice, for
example, maintains a WER of 58.0% at SNR=-15, which is 23.3% better than the audio-only method,
demonstrating the importance of visual speech for audio understanding in noisy environments.

Naive Audio-Visual Method vs. Unit-Based Audio-Visual Method. Traditional visually guided
speech enhancement methods only rely on a limited amount of audio-visual speech pairing data
for training, making it difficult to achieve high-fidelity audio reconstruction. However, methods
based on discrete units, such as ReVISE and our AV-S2UM (Ua), train the AV-S2UM module and
the corresponding vocoder separately on large-scale audio-visual speech and massive audio speech,
achieving more effective audio information retention. Under the conditions of SNR = -5 and SNR =
-15, the WER of unit-based ReVISE is 12% and 37.5% better than that of end-to-end VisualVoice,
respectively. This experiment demonstrates that the two-stage method, which has more training data,
can retain more original audio information compared to the end-to-end model, which can only use
extremely limited paired data.
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Semantic Discrete Unit vs Acoustic Discrete Unit. ReVISE employs semantic discrete units to
retain semantic speech information while disregarding acoustic elements such as timbre, emotion,
and rhythm (the speaker’s timbre in the ReVISE speech output differs from the original timbre). In
contrast, AV-S2UM (Ua) advances by utilizing acoustic discrete units as intermediaries to connect
visual speech with high-fidelity audio speech. AV-S2UM (Ua) not only preserves speech semantic
information but also retains fine-grained acoustic details, including emotion, timbre, and rhythm. It
excels in audio-visual synchronization (LSE-C and LSE-D are the best among all noise conditions),
showcasing its applicability to body language modalities closely related to emotion and rhythm, such
as co-speech gestures. Notably, although ReVISE cannot retain the acoustic speech information,
it maintains an excellent WER even under high noise conditions (WER of 20.5% at SNR=-15).
It demonstrates that the AV-S2UM (Us) module based on semantic discrete units can effectively
preserve semantic speech information in noisy environments, making it well-suited for synthesizing
body language modalities related to speech semantics.

4.6 AUDIO-VISUAL SPEECH-DRIVEN VS. VIDEO-DRIVEN.

Table 4: Comparison of cross-id talk-
ing head generation results using differ-
ent modality driving methods on LRS3 at
SNR=-5. The LSE metrics (LSE-C and
LSE-D) are evaluated between the gener-
ated talking head video and the clean audio
speech. AO-Speech: Audio-Only Speech.

Method Driven LSE-C↑ LSE-D↓
Wav2Lip AO-Speech 2.467 9.466

DPE Video 3.620 9.824
AV-SDS AV-Speech 4.447 9.242

Although we use visual speech (i.e., lip movements)
to facilitate audio-visual speech-driven body language
synthesis, our AV-SDS differs significantly from the
video-driven body language synthesis methods (Pang
et al., 2023). Typically, video-driven methods gen-
erate the target individual’s expressions and gestures
based on a reference video. In contrast, our approach
relies solely on speech information extracted from au-
diovisual speech to ensure that the generated results
are consistent with the driving speech, without con-
sidering other visual information from the reference
video. Given the difficulty in distinguishing speaker
identity details from facial movements, results gener-
ated by video-driven methods (Yin et al., 2022) often
retain speaker identity attributes (such as face shape
and makeup) from the driving video. Additionally, we
present lip sync metrics for cross-identity driven talking
head synthesis in Table 4. Due to the lack of speech-related supervision, video-driven methods strug-
gle to maintain a high level of lip sync during the synthesis process, only simulating the expressions
of the driving video to a limited extent. Consequently, the generated video cannot effectively convey
the corresponding speech content. Notably, even under extremely strong noise interference conditions
(SNR= −5), AV-SDS outperforms video-driven method (DPE), demonstrating the relevance of our
method for the task of audio-visual speech-driven body language synthesis.

5 CONCLUSION

Speech-driven body language synthesis aims to create intelligent digital humans that align with audio
speech. However, due to the lack of paired data for visual speech and body language modalities,
existing methods can rely on audio-only speech, which struggles to produce accurate results under
noisy conditions. To address this issue, we propose the first direct audio-visual speech-driven
multi-modal synthesis framework, AV-SDS. This framework employs speech discrete units as an
intermediate carrier in a two-stage approach to bridge audio-visual speech and various body language
modalities. Firstly, AV-S2UM maps audio-visual speech to unified discrete units. Then, Unit2X
synthesizes various multi-modal body language data from these units. We introduce Unit2X, the
first multi-modal body language synthesis model based on speech discrete units, and demonstrate the
feasibility of using speech discrete units instead of raw audio speech for body language synthesis.
Additionally, we propose two different implementations based on semantic discrete units and acoustic
discrete units for semantically related and rhythm-related body language modalities, respectively. In
various speech-driven multi-modal body language synthesis tasks, our AV-SDS achieves state-of-the-
art performance under different noise conditions, confirming its effectiveness in noisy environments.
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A DATASETS

TTS Corpus (Yang et al., 2023a). The TTS Corpus integrates various public datasets, including
LibriTTS (Zen et al., 2019) and VCTK (Veaux et al., 2016), encompassing 1,000 hours of high-
fidelity English speeches. Importantly, all speech segments within the corpus have been meticulously
confirmed to be free of discernible background noise. The 16kHz audio speech codec (Yang et al.,
2023a) employed in this work is pre-trained on this corpus. This codec, rooted in the high-fidelity
characteristics of the corpus, plays a crucial role in achieving the desired performance and fidelity in
various speech-related tasks undertaken in this work.

LRS2 (Afouras et al., 2018a) and LRS3 (Afouras et al., 2018b). LRS2 and LRS3 stand out as the
most expansive publicly accessible lip-reading dataset at the sentence level, boasting over 229/443
hours of video content sourced from BBC and TEDx talks. In our experiments, we harnessed the
train set to extract facial landmarks, following the methodology outlined by Ye et al. (2023).

In this paper, LRS3 serves as a crucial resource for evaluating the performance across various audio-
visual speech-driven synthesis tasks for many body language modalities, such as talking head, facial
landmarks and 3d mesh.

VOCASET (Cudeiro et al., 2019). VOCASET consists of 480 paired audio-visual sequences
recorded from 12 subjects. The facial motion is captured at 60fps, lasting approximately 4 seconds
each. Each 3D face mesh is registered to the FLAME (Li et al., 2017) topology, featuring 5023 vertices.
To ensure fair comparisons, we utilize the same training (VOCA-Train), validation (VOCA-Val), and
testing (VOCA-Test) splits as VOCA (Cudeiro et al., 2019).

TED GESTURE (Yoon et al., 2019). The TED Gesture Dataset encompasses a substantial volume
of paired audio-visual sequences derived from TED talks, offering both a sizable dataset for inves-
tigating the intricate relationship between speech and gestures. Covering a diverse range of topics,
TED talks feature thousands of unique speakers sharing their individual ideas and stories, capturing a
broad spectrum of speech content.

MUSAN (Snyder et al., 2015). In this paper, we randomly selected audio samples from MUSAN
datasets to introduce background noise to the speech content. MUSAN (Snyder et al., 2015) consists
of music, speech, and babble noise. Following the approach of Shi et al. (2022a), we used the audio
samples from MUSAN to add noise to the speech.

B MORE IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

For the training of AV-S2UM module, we loaded the publicly available pretrained weights of AV-
HuBERT (Shi et al., 2022a) and fine-tuned the model over a total of 45,000 steps. During the first
5,000 steps, we exclusively trained the decoder by freezing the encoder. Afterward, we unfroze the
encoder and trained the entire model together. The learning rate was adjusted using a tri-stage LR
scheduling strategy with specific phases set at (10%, 20%, 70%) and a peak learning rate of 6e-5.
The training was conducted on one V100 GPUs. We utilized the Adam optimizer with parameters set
to (0.9, 0.98).

For the training of Unit2X module, we strictly follow the training details of each body language
modality for training, and all models are trained on a single V100 GPU.
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Table 5: Qualitative comparison of body language synthesis performance across different methods.

Method Talking Head Landmark Gesture
Qual. Sync. Sync. Sync.

S2X 4.12±0.09 4.09±0.13 3.76±0.18 3.88±0.15
Ground Truth 4.33±0.12 4.15±0.09 3.95±0.15 4.03±0.12

U2S+S2X 4.06±0.15 3.87±0.15 3.65±0.18 3.76±0.18
Unit2X(ours) 4.09±0.12 3.98±0.16 3.68±0.16 3.92±0.16

Table 6: Qualitative comparison for speech enhancement under various noise conditions.

Method SNR=15 SNR=5 SNR=-5 SNR=-15 Mean
Inp.Audio 3.82±0.11 3.53±0.14 2.33±0.20 1.83±0.21 2.88±0.17
Resynthesis 3.74±0.09 3.46±0.17 2.26±0.19 1.78±0.20 2.81±0.16
Demucs 3.97±0.10 3.62±0.13 2.92±0.17 2.35±0.18 3.22±0.15

VisualVoice 4.01±0.08 3.77±0.10 3.42±0.13 2.87±0.16 3.52±0.12
ReVISE 3.52±0.09 3.42±0.12 3.37±0.15 3.29±0.15 3.40±0.13
AV-S2UM(Ua) 4.25±0.07 4.05±0.09 3.68±0.12 3.18±0.18 3.79±0.12

B.2 METRICS

Unit-Based Body-language Synthesis. (1) For lip movements, we employ LSE-C and LSE-
D (Prajwal et al., 2020) as evaluation metrics to assess the synchronization between audio speech
and lip movements. In the context of talking heads, we used FID (Heusel et al., 2017) to assess
the dissimilarity between the generated images and the real images. (2) For facial landmarks, the
facial landmark distance (LMD) (Chen et al., 2018) is used to measure the distance between the
generated landmarks and ground truth landmarks. (3) For mesh, we conduct A/B testing to evaluate
the authenticity (Real.) and synchronicity (Sync.) of various mesh synthesis methods. Similar to
Xing et al. (2023), the evaluation is based on the percentage of samples with a higher user preference
than ground truth (GT) videos. (4) For co-speech gesture, we employ FGD (Fused Gaussian Distance)
as metrics. FGD (Yoon et al., 2020) measures the distribution disparity between generated output and
ground truth with a pre-trained autoencoder.

Speech Enhancement. For the speech enhancement task, we employ the ASR model (Ott et al.,
2019) to transcribe the denoised speech, using Word Error Rate (WER) as a metric to assess content
accuracy. Additionally, to evaluate the synchronization between the denoised speech and the talking
head video, LSE-C and LSE-D are adopted to assess lip synchronization.

C QUALITATIVE EXPERIMENTS

We performed a manual evaluation of all generated results, appraising qualitative outcomes through
the Mean Opinion Score (MOS) methodology. Each sample was randomly presented to 15 participants
for scoring. The composite MOS was subsequently calculated by averaging scores across the relevant
dimensions. Each dimension was independently rated on a scale of 1 (lowest) to 5 (highest). Kindly
visit the demo page (https://av-sds.github.io/) to view the corresponding generation
results. The comprehensive MOS evaluation details for each task are outlined below:

Unit-Based Body Language Synthesis. In Table 5, we present a qualitative comparison among
multiple methods on different body language modalities. For talking heads, we evaluated image
quality (Qual.) and lip synchronization (Sync.). In the case of facial landmarks and co-speech
gestures, the focus was on evaluating the synchronization (Sync.) of audio speech and bodyity data.
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As the evaluation metric for the 3D mesh modality depends on manual assessment, we refrained from
conducting further experiments on this particular modality.

Speech Enhancement. For the visually guided high-fidelity speech denoising task, we evaluated
denoising outcomes across various noise conditions (SNR= {15, 5,−5,−15}), as depicted in Table
6. It is important to highlight that ReVISE consistently receives low subjective scores due to its
inability to reconstruct the timbre of the corresponding speech. Notably, when SNR= −15, owing
to its robust semantic reconstruction capability, ReVISE obtained the highest MOS. However, in
other instances, AV-S2UM(Ua) demonstrated superior high-fidelity speech noise reduction results,
earning top ratings.

D LIMITATION

This paper verifies only a limited range of body language modalities (talking head, mesh, co-speech
gesture, and 3D landmark). However, we believe these modalities are sufficient to demonstrate the
effectiveness of our method. In the future, we will also validate it on additional modalities, such as
listener responses and others.

E ETHICAL DISCUSSION

The task studied in this paper involves the field of virtual human synthesis, which carries a certain
risk of video forgery. However, since the focus of this paper is not on the authenticity of the synthesis
but on the robustness of the voice-driven body movement synthesis task in a noisy environment, this
concern is not particularly serious.
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