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ABSTRACT

Personalized Federated Learning (FL) aims to produce many local personalized
models rather than one global model to encounter an insurmountable problem –
data heterogeneity in real federated systems. However, almost all existing works
have to face central communication burdens and the risk of disruption if the central
server fails. Only limited efforts have been made without a central server but
they still suffer from high local computation, catastrophic forgetting, and worse
convergence due to the full model aggregation process. Therefore, in this paper,
we propose a PFL framework through model decoupling called DFedMDC, which
pursues robust communication and better model performance with a convergence
guarantee. It personalizes the “right” components in the modern deep models by
alternately updating the shared and personal parameters to train partially personal-
ized models in a peer-to-peer manner. To further promote the shared parameters
aggregation process, we propose DFedSMDC via integrating the local Sharpness
Aware Minimization (SAM) optimizer to update the shared parameters. Specifi-
cally, it adds proper perturbation in the gradient direction to alleviate the shared
model inconsistency across clients. Theoretically, we provide convergence analysis
of both algorithms in the general non-convex setting with partial personalization
and SAM optimizer for the shared model. We analyze the ill impact of the sta-
tistical heterogeneity δ2, the smoothness Lu, Lv, Luv, Lvu of loss functions, and
communication topology (1− λ) on the convergence. Our experiments on several
real-world data with various data partition settings demonstrate that (i) partial per-
sonalized training is more suitable for personalized decentralized FL, which results
in state-of-the-art (SOTA) accuracy compared with the SOTA PFL baselines; (ii)
the shared parameters with proper perturbation make partial personalized FL more
suitable for decentralized training, where DFedSMDC achieves most competitive
performance.

1 INTRODUCTION

Federated Learning (FL) is an emerging technique for preserving privacy and reducing the communi-
cation cost in training machine learning models without requiring raw data sharing. Generally, one
central server is needed to aggregate the model from each client and gather an average model for the
whole system. However, data heterogeneity among participating clients makes it hard to achieve a
satisfactory performance for all clients using one average model. Personalized Federated Learning
(PFL) is thus proposed to achieve several local personalized models for each client via focusing the
shift from the global average model on the server to the local personalized models on the clients.

In the context of PFL, existing works with a central server can be roughly divided into five categories:
parameter decoupling (Arivazhagan et al., 2019; Collins et al., 2021; Oh et al., 2021), knowledge
distillation (Li and Wang, 2019; Lin et al., 2020; He et al., 2020), multi-task learning (Huang et al.,
2021; Shoham et al., 2019), model interpolation (Deng et al., 2020; Diao et al., 2020) and clustering
(Ghosh et al., 2020; Sattler et al., 2020). All of these methods learn a global model explicitly or
implicitly through the central server, then achieve personalization by analyzing the relationship
between global and local models. However, all communication processes in these methods need
the central server to aggregate local models, which may cause a quite large communication burden
on the server side. Moreover, the system may suffer the risk of disruption if the central server
fails. There only exists limited efforts focusing on personalized model aggregation in a peer-to-peer
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manner without a central server (Jeong and Kountouris, 2023; Sadiev et al., 2022; Dai et al., 2022).
Though it avoids central failure, the choice of the correct clients or parameters involves a large
amount of computation and communication costs. Besides, the full model aggregation may lose
unique information for each client due to mixing the linear classifier, which will lead to catastrophic
forgetting and worse convergence. All in all, we are trying to explore:

Can we design a personalized algorithm, where there is simultaneously robust communication and better
model performance with convergence guarantee?

To answer this question, we propose DFedMDC, which decouples models as a mixture of a shared
feature representation part and a personalized linear classifier part and optimizes them alternatively in
a peer-to-peer manner. Instead of calculating to find the right neighbors or parameters for aggregation,
DFedMDC only directly shares and aggregates the “right” part with their neighbors and allows the
private linear classifier to better adapt to their local data. Specifically, clients aggregate the received
shared parameters and optimize the personalized part and the shared part alternatively. Then it
exchanges the updated shared parameters with their neighbours directly without a central server. To
the best of our knowledge, we are the first to explore partial personalization in a peer-to-peer manner
and overcome the lose unique information of each client. Where we decompose each local model and
only average a shared part with its neighbors of each client. Furthermore, we propose an enhanced
version of DFedMDC, called DFedSMDC, which integrates a local SAM optimizer to update the
shared parameters. Specifically, it searches for the shared parameters with uniformly low loss values
by adding proper perturbation in the direction of the gradient, thereby promoting the process of local
model aggregations in each client (see Section 3).

Theoretically, we present the non-trivially convergency analysis for both DFedMDC and DFedSMDC
algorithms in the general non-convex setting (see Section 4), which can analyze the ill impact of
the statistical heterogeneity δ2, the smoothness Lu, Lv, Luv, Lvu of loss functions, and communi-
cation topology (1 − λ) on the convergence with partial personalization and SAM optimizer for
the shared model. Empirically, we conduct extensive experiments on CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets in non-IID settings with different data partitions, such as Dirichlet settings
with various α and pathological settings with various limited classes in each client. Experimental
results confirm that our algorithms can achieve competitive performance relative to many SOTA PFL
baselines (see Section 5). In summary, we provide a comprehensive study focusing specifically on
partial model personalization in a peer-to-peer manner. Our main contributions lie in four-fold:

• Considering the over-fitting in local training but catastrophic forgetting in global aggregation
due to a fully personalized model, we seek out a suitable personalization federated learning
method with robust communication and fast convergence and propose DFedMDC via
alternately updating the shared part and personal part in a peer-to-peer manner.

• To further improve the model aggregation, we propose DFedSMDC, which integrates the
local SAM optimizer into the shared parameters to enhance the flattenness and robustness of
the shared parts.

• We provide convergence guarantees for the DFedMDC and DFedSMDC methods in the
general non-convex setting with peer-to-peer partial participation in PFL.

• We conduct extensive experiments on realistic data tasks with various data partition ways,
evaluating the efficacy of our algorithms compared with some SOTA PFL baselines.

2 RELATED WORK

Personalized Federated Learning (PFL). Compared to the FL pursuing a more robust global model
for clients’ non-iid distributions, the PFL aims to produce the greatest personalized models for each
client. From the perspective of learning personalized models, there mainly exist five categories
of methods: model decoupling (Arivazhagan et al., 2019; Collins et al., 2021; Oh et al., 2021),
knowledge distillation (Li and Wang, 2019; Lin et al., 2020; He et al., 2020), multi-task learning
(Huang et al., 2021; Shoham et al., 2019), model interpolation (Deng et al., 2020; Diao et al., 2020)
and clustering (Ghosh et al., 2020; Sattler et al., 2020). More details can be referred to in (Tan et al.,
2022). In this paper, we mainly focus on the model decoupling methods, which divide the model into
a global shared part and a personalized part, also called partial personalization.
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Partial Personalization in FL. Existing works demonstrate that partial model personalization
can outperform of full model personalization with fewer shared parameters. Specifically, FedPer
(Arivazhagan et al., 2019) uses the one global body with many local heads approach and only shares
the body layers with the server. FedRep (Collins et al., 2021) learns the entire model sequentially
with the head updating first and the body later, and only shares the body layers with the server.
FedBABU (Oh et al., 2021) trains the global body with a fixed head for all clients and finally
fine-tunes the personalized heads on the basis of the consensus body. Fed-RoD (Chen and Chao,
2021) leverages a global body and two heads, e.g., the generic head trained with class-balanced loss
and the personalized head trained with empirical loss. FedSim and FedAlt in (Pillutla et al., 2022)
provide the first convergence analyses of both algorithms in the general nonconvex setting with partial
participation. Inspired by this, we provide the non-trivial convergence analysis on decentralized
partial model personalization and deliver theoretical analysis at first combining partial personalization
with various peer-to-peer communication networks and the SAM optimizer.

Decentralized Federated Learning (DFL). In DFL, the clients only connect with their neighbors and
its goal is to make all local models tend to a unified model through peer-to-peer communication. Due
to the participants having different hardware and network capabilities in the real federated system,
DFL is an encouraging field in recent years (Beltrán et al., 2022; Kang et al., 2022; Li et al., 2022a;
Nguyen et al., 2022; Wang et al., 2022; 2020; Yu et al., 2020). For some applications, BrainTorrent
(Roy et al., 2019) is the first serverless, peer-to-peer FL approach applied to medical applications
in a highly dynamic peer-to-peer FL environment, while DFedSAM (Shi et al., 2023b) integrates
Sharpness Awareness Minimization (SAM) into DFL to improve the model consistency across clients.
Similar to general FL methods such as (McMahan et al., 2017), we discuss the PFL methods in DFL
considering both multi-step local iterations and various communication topologies.1 Specifically,
DFedAvgM (Sun et al., 2022) applies the multiple local iterations with SGD and quantization method
to reduce the communication cost. Dis-PFL (Dai et al., 2022) customizes the personalized model and
pruned mask for each client to further lower the communication and computation cost. KD-PDFL
(Jeong and Kountouris, 2023) leverages knowledge distillation technique to empower each device so
as to discern statistical distances between local models. The work in (Sadiev et al., 2022) presents
lower bounds on the communication and local computation costs for this personalized FL formulation
in a peer-to-peer manner. To reduce the central server’s communication burden and the risk of
disruption if the central server fails, in this work, we leverage a decentralized communication way to
aggregate the shared model based on model decoupling.

3 METHODOLOGY

In this section, we define the problem setup for DFL and decentralized partial personalized models
in PFL at first. After that, we present two algorithms: DFedMDC and DFedSMDC in PFL, which
leverages the decentralized partial model personalization technique to generate better representation
ability while achieving SOTA performance relative to many related PFL methods.

3.1 PROBLEM SETUP

Decentralized Federated Learning (DFL). We consider a typical setting of DFL with m clients,
where each client i has the data distribution Di. Let w ∈ Rd represent the parameters of a machine
learning model and Fi(w; ξ) is the local objective function associated with the training data samples
ξ. Then the loss function associated with client i is Fi(w) = Eξ∼Di

Fi(w; ξ). After that, a common
objective of DFL is the following finite-sum stochastic non-convex minimization problem:

min
w∈Rd

F (w) :=
1

m

m∑
i=1

Fi(w). (1)

In the decentralized network topology, the communication between clients can be modeled as an
undirected connected graph G = (N ,V,W ), where N = {1, 2, . . . ,m} represents the set of clients,
V ⊆ N ×N represents the set of communication channels, each connecting two distinct clients, and

1In decentralized/distributed training, they also focus on peer-to-peer communication, but one-step local
iteration is adopted, due to the gradient computation being more focused than the communication burden. More
detailed related works in decentralized/distributed training are placed in Appendix A.
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Figure 1: An overview of the proposed DFedMDC and DFedSMDC frameworks.

the gossip/mixing matrix W records whether the communication connects or not between any two
clients. As below, we present the definition of W :

Definition 1 (The gossip/mixing matrix (Sun et al., 2022)). The gossip matrix W = [wi,j ] ∈
[0, 1]m×m is assumed to have these properties: (i) (Graph) If i ̸= j and (i, j) /∈ V , then wi,j = 0,
otherwise, wi,j > 0; (ii) (Symmetry) W = W⊤; (iii) (Null space property) null{I−W} = span{1};
(iv) (Spectral property) I ⪰ W ≻ −I. Under these properties, the eigenvalues of W satisfies
1 = λ1(W)) > λ2(W)) ≥ · · · ≥ λm(W)) > −1. And λ := max{|λ2(W)|, |λm(W))|} and
1− λ ∈ (0, 1] is the spectral gap of W, which usually measures the degree of the network topology.

Decentralized Partial Personalized Models. Below, we present a general setting of DFL with
partial model personalization for considering the communication overhead. Specifically, the model
parameters are partitioned into two parts: the shared parameters u ∈ Rd0 and the personal parameters
vi ∈ Rdi for i = 1, . . . ,m. The full model on client i is denoted as wi = (ui, vi). To simplify
presentation, we denote V = (v1, . . . , vm) ∈ Rd1+...+dm , and then our goal is to solve this problem:

min
u,V

F (u, V ) :=
1

m

m∑
i=1

Fi (u, vi) , (2)

where u denotes the consensus model averaged with all shared models ui, that is u = 1
m

∑m
i=1 ui.

Moreover, we consider the more general non-convex setting Fi (ui, vi) = Eξi∼Di
[Fi (ui, vi; ξi)] and

use ∇u and ∇v to represent stochastic gradients with respect to ui and vi, respectively.

In the DFL setting, the shared parameters ui of each client i are sent out to the neighbors of client i
from the neighborhood set with adjacency matrix W, which records the communication connections
between any two clients (communication topology). In contrast, the personal parameters vi only
perform multiple local iterations in each client i and do not be sent out.

3.2 DFEDMDC AND DFEDSMDC ALGORITHMS

In this subsection, we first demonstrate the choice of the shared model parts and then present the
DFedMDC and DFedSMDC algorithms for solving problem (2). The detailed procedure and pipeline
are presented in Algorithm 1 and Figure 1, respectively.

Partial Model Personalization. Drawing from previous research on CNNs, layers that serve specific
engineering purposes: lower convolution layers (close to the input) are responsible for feature
extraction, and the upper linear layers (close to the output) focus on complex pattern recognition
(Pillutla et al., 2022). The feature extraction layers, mapping data from high-dimensional feature
space to an easily distinguished low space, are similar between clients but prone to over-fitting. The
linear classification layers, which determine the data category from the output of the previous feature
extraction layers, are very different from data heterogeneity clients (Li et al., 2023). Therefore, when
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averaging the clients’ full model will prevent over-fitting for feature extraction layers, but it may
disturb local data classification in personalized tasks. Based on the substantial views, we set the
feature extraction layers as the shared parts and the linear classification layers as the personalized
parts. Similar choices can be seen in (Collins et al., 2021; Oh et al., 2021; Pillutla et al., 2022)

Algorithm 1: DFedMDC and DFedSMDC
Input :Total number of devices m, total number of

communication rounds T , local learning rate ηu
and ηv , total number of local iterates Ku and Kv .

Output :Personalized model uT
i and vTi .

1 Initialization: Randomly initialize each device’s shared
parameters u0

i and personal parameters v0i .
2 for t = 0 to T − 1 do
3 for client i in parallel do
4 Set ut,0

i ← ut
i and sample a batch of local data ξi

and calculate local gradient iteration.
5 for k = 0 to Kv − 1 do
6 Perform personal parameters vi update:

vt,k+1
i = vt,ki − ηv∇vFi(u

t,0
i , vt,ki ; ξi).

7 end
8 vt+1

i ← vt,Kv
i .

9 for k = 0 to Ku − 1 do
10 Update shared parameters ui via Option I or II.
11 end
12 zti ← ut,Ku

i . Receive neighbors’ shared models ztj
with adjacency matrix W :
ut+1
i =

∑
l∈N (i) wi,lz

t
i .

13 end
14 end
15 Option I: (DFedMDC) Find a minimum for ui with SGD
16 ut,k+1

i = ut,k
i − ηu∇uFi(u

t,k
i , vt+1

i ; ξi).
17 Option II: (DFedSMDC) Find a minimum for ui with SAM

18 ϵ(ut,k
i ) = ρ

∇uFi(u
t,k
i ,vt+1

i ;ξi)

∥∇uFi(u
t,k
i ,vt+1

i ;ξi)∥2
.

19 ut,k+1
i = ut,k

i − ηu∇uFi(u
t,k
i + ϵ(ut,k

i ), vt+1
i ; ξi).

DFedMDC. We present DFedMDC to ex-
plore the possible partial personalization
benefit of decentralized FL. It leverages
the alternating update approach for model
training to better fit the aggregated shared
parts. Specifically, the personal parame-
ters vi for each client perform multiple
local iterations at first in line 6. While
the mixing shared part represents the con-
sensus information among clients, the per-
sonal part, only containing the local in-
formation is not compatible enough with
the mixing shared one. This first step is
to increase compatibility between the per-
sonalized and the shared parts. After that,
the shared parameters ui perform multiple
local iterations in line 10. After multi-
ple local iterations of shared parameters
ui in each client i, the resulting parame-
ters zti ← ut,Ku

i is sent to its neighbors
in line 12. Then each client updates its
shared parameters by averaging its neigh-
bors’ shared parameters (including itself).

An Enhanced Algorithm: DFedSMDC.
In FL, the model inconsistency issue is a
major challenge across clients due to data
heterogeneity (Shi et al., 2023b; Sun et al.,
2022), resulting in severe over-fitting of
local models. In particular, sparse commu-
nication topology is also a key factor in
this issue in DFL (Shi et al., 2023b). Therefore, to further make partial personalization more suitable
for DFL by decreasing the generalization error of shared parameters, we propose DFedSMDC, which
integrates the SAM optimizer into the local iteration update of shared parameters ui. Specifically,
we adopt proper perturbation in the direction of the local gradient of the shared parameters ui. At
first, the gradient∇uFi(u

t,k
i , vt+1

i ; ξi) of ui is calculated on mini-batch data ξi for each client i. And
then, we calculate the perturbation value in line 18, where ρ is a hyper-parameter for controlling the
value of the perturbation radius. Finally, adding the perturbation term into the direction of gradient
∇uFi(u

t,k
i , vt+1

i ; ξi) in line 18. The local averaging of ui is the same as the DFedMDC algorithm.

4 THEORETICAL ANALYSIS

In this section, we present the convergence analysis in DFedMDC and DFedSMDC methods for the
characterization of convergence speed and the exploration of how partial personalization and SAM
optimizer work. Below, we state some general assumptions at first (Pillutla et al., 2022).
Assumption 1 (Smoothness). For each client i = {1, . . . ,m}, the function Fi is continuously
differentiable. There exist constants Lu, Lv, Luv, Lvu such that for each client i = {1, . . . ,m}:
• ∇uFi(ui, vi) is Lu–Lipschitz with respect to ui and Luv–Lipschitz with respect to vi;

• ∇vFi(ui, vi) is Lv–Lipschitz with respect to vi and Lvu–Lipschitz with respect to ui.

We summarize the relative cross-sensitivity of ∇uFi with respect to vi and ∇vFi with respect to u
with the scalar

χ := max{Luv, Lvu}
/√

LuLv.
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Assumption 2 (Bounded Variance). The stochastic gradients in Algorithm 1 have bounded variance.
That is, for all ui and vi, there exist constants σu and σv such that

E
[∥∥∇uFi(ui, vi; ξi)−∇uFi(ui, vi)

∥∥2] ≤ σ2
u, E

[∥∥∇vFi(ui, vi; ξi)−∇vFi(ui, vi)
∥∥2] ≤ σ2

v .

Assumption 3 (Partial Gradient Diversity). There exist a constant δ ≥ 0 such that

1
m

∑m
i=1

∥∥∇uFi(ui, vi)−∇uF (ui, V )
∥∥2 ≤ δ2, ∀ui, V.

The above assumptions are mild and commonly used in the convergence analysis of FL (Sun et al.,
2022; Shi et al., 2023b; Yang et al., 2021; Bottou et al., 2018; Reddi et al., 2021; Qu et al., 2022).

About the Challenges of Convergence Analysis. Due to the central server being discarded, various
communication connections will become an important factor for decentralized optimization. Fur-
thermore, communication is more careful in general classical FL scenarios rather than computation
(McMahan et al., 2017; Li et al., 2020b; Kairouz et al., 2021; Qu et al., 2022). So the client adopts
multi-step local iterations such as FedAvg (McMahan et al., 2017), which may lead to the local
gradient failing to be unbiased. Because of these factors, technical difficulty exists in our theoret-
ical analysis. How to analyze the convergence of decomposed model parameters while delivering
the impact of communication topology. In this paper, we adopt the averaged shared parameter
ūt= 1

m

∑m
i=1 u

t
i of all clients to be the approximated solution of problem (2) due to only the shared

parameters being communicated with the neighbors (Sun et al., 2022; Shi et al., 2023b). Now, we
present the rigorous convergence rate of DFedMDC and DFedSMDC algorithms as follows.

Theorem 1 (Convergence Analysis for DFedMDC). Under assumptions 1-3 and definition 1, the
local learning rates satisfy ηu = O(1/LuKu

√
T ), ηv = O(1/LvKv

√
T ), F ∗ is denoted as the

minimal value of F , i.e., F (ū, V ) ≥ F ∗ for all ū ∈ Rd, and V = (v1, . . . , vm) ∈ Rd1+...+dm . Let
ūt = 1

m

∑m
i=1 u

t
i and denote ∆t

ū and ∆t
v as:

∆t
ū =

∥∥∇uF (ūt, V t)
∥∥2 , and ∆t

v = 1
m

∑m
i=1

∥∥∇vFi(u
t
i, v

t
i)
∥∥2 .

Therefore, we have the convergence rate as below:

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤ O

(F (ū1, V 1)− F ∗
√
T

+
σ2
1

(1− λ)2
√
T

+
σ2
2√
T

+
σ2
3

(1− λ)2T

)
. (3)

where

σ2
1 =

χ2Lv(σ
2
u + δ2)

Lu
+

σ2
u + δ2

L2
u

, σ2
2 =

σ2
v(Lv + 1)

L2
v

+
σ2
u + δ2

KuLu
, σ2

3 =
σ2
u + δ2

KuLu
.

Remark 1. These variables have a significant influence on the convergence bound. Specifically, mea-
suring the statistical heterogeneity, such as local variance σ2

u, σ
2
v and global diversity, the smoothness

of local loss functions such as Lu, Lv , and Lvu, and the communication topology measured by 1− λ.
There does not exist Luv due to the alternate update (vi first, then u). More details are in Appendix C.

Theorem 2 (Convergence Analysis for DFedSMDC). Under assumptions 1-3 and definition 1, the
local learning rates satisfy ηu = O(1/LuKu

√
T ), ηv = O(1/LvKv

√
T ). Let ūt = 1

m

∑m
i=1 u

t
i and

denote ∆t
ū and ∆t

v as Theorem 1. When the perturbation amplitude ρ is proportional to the learning
rate, e.g., ρ = O(1/

√
T ), the sequence of outputs ∆t

ū and ∆t
v generated by DFedSMDC, we have:

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤O

(F (ū1, V 1)−F ∗
√
T

+
σ2L2

vu

(1−λ)2
√
T

+
σ2
4√
T

+
σ2Lu

(1−λ)2T

)
. (4)

where σ2
4 =

σ2
v(Lv+1)

L2
v

+
L2

uρ
2+σ2

u+δ2

KuLu
and O

(
σ2

)
= O

(
ρ2

Ku
+

σ2
u+δ2

L2
u

)
= O

(
1

KuT
+

σ2
u+δ2

L2
u

)
.

Remark 2. It is clear that the bound is facilitated via SAM optimizer from the smoothness-enabled
perspective, such as L2

u and L2
vu. Thus, the shared model ui may be flatter, thereby decreasing the

generalization error of the whole model wi = (ui, vi). Finally, the shared parameters ui aggregation
process is promoted, thereby achieving better performance.
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Table 2: Test accuracy (%) on CIFAR-10 & 100 in both Dirichlet and Pathological distribution settings.

Algorithm
CIFAR-10 CIFAR-100

Dirichlet Pathological Dirichlet Pathological

α = 0.1 α = 0.3 c = 2 c = 5 α = 0.1 α = 0.3 c = 5 c = 10

Local 78.96±.42 63.20±.28 85.16±.18 68.56±.35 39.38±.33 22.59±.49 71.34±.46 53.15±.31

FedAvg 84.17±.28 79.66±.20 85.04±.11 82.80±.27 57.43±.03 57.01±.06 69.05±.43 66.37±.48

FedSAM 84.17±.75 80.02±.27 84.99±.04 81.18±.21 57.35±.38 55.12±.67 69.29±.85 66.10±.35

FedPer 88.57±.09 84.06±.29 90.94±.24 86.97±.35 54.23±.14 34.07±.76 78.48±.93 70.38±.02

FedRep 88.78±.40 84.50±.05 91.09±.12 86.22±.51 44.02±.98 26.88±.49 78.77±.19 68.15±.43

FedBABU 87.79±.53 83.26±.09 91.32±.15 84.90±.24 60.23±.07 52.37±.82 77.50±.33 69.81±.12

Fed-RoD 89.15±.12 85.68±.08 90.10±.04 87.81±.45 65.79±.05 58.54±.69 80.50±.45 73.59±.15

Ditto 80.22±.10 73.51±.04 84.96±.40 75.59±.32 48.85±.54 48.65±.50 69.48±.45 60.77±.30

DFedAvgM 87.39±.13 82.60±.18 90.72±.08 84.69±.25 59.76±.69 54.98±.48 76.70±.59 71.08±.52

Dis-PFL 87.77±.46 82.71±.28 88.19±.47 82.29±.61 56.06±.20 46.65±.18 71.79±.42 65.35±.10

DFedSAM 84.96±.30 77.36±.11 90.14±.22 83.05±.40 58.21±.53 47.80±.49 74.25±.17 67.34±.43

DFedMDC 88.85±.21 86.50±.05 91.26±.23 86.85±.37 66.26±.25 57.66±.42 78.78±.41 72.19±.21

DFedSMDC 91.08±.34 87.67±.22 92.20±.14 88.34±.31 67.03±.36 58.73±.19 80.82±.33 74.50±.35

Remark 3. In both Theorems 1&2, the convergence bounds are related to the spectral gap (1− λ) of
the communication topology, which is associated with the participation clients. From the relationship
between the spectral gap and the participation of clients in Table 1 we can see that the convergence
bounds of different topologies are ranked as Fully-connected > Exponential > Grid > Ring.

Remark 4. Compared with the SOTA bounds O
(

1√
T
+

σ2
l +Kσ2

g

K
√
T

+
σ2
l +Kσ2

g+KB2

K(1−λ)2T 3/2

)
of DFedAvg

(Sun et al., 2022) and O
(

1√
KT

+
K(σ2

g+σ2
l )

T +
σ2
g+σ2

l

K1/2(1−λ)2T 3/2

)
of DFedSAM (Shi et al., 2023b) in

decentralized works, our algorithms reflect the impact of the L-smoothness and the gradient variance
of the shared model u and personalized model v on convergence rate. On the other hand, compared
with the SOTA bound of FedAlt (Pillutla et al., 2022) in PFL, our algorithms reflect the impact of the
communication topology (1− λ) (the value of that increases when connectivity is more sparse).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Table 1: Spectral Gap 1 − λ of com-
munication topologies.

Graph Topology Spectral Gap 1 − λ

Fully-connected 1
Disconnected 0

Ring ≈ 16π2/3m2

Grid O(1/(mlog2(m)))
EXponential 2/(1 + log2(m))

Dataset and Data Partition. We evaluate our approaches on
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Tiny-
ImageNet (Le and Yang, 2015) datasets with Dirichlet and
Pathological data partition. All detailed experiments on the
Tiny-ImageNet dataset are placed in Appendix B.5 due to
the limited space. We partition the training and testing data
according to the same Dirichlet distribution Dir(α) such as
α = 0.1 and α = 0.3 for each client. The smaller the α is, the
more heterogeneous the setting is. Meanwhile, for each client, we sample 2 and 5 classes from a
total of 10 classes on CIFAR-10, and 5 and 10 classes from a total of 100 classes on CIFAR-100
respectively. The number of sampling classes is represented as “c” in Table 2 and the fewer classes
each client owns, the more heterogeneous the setting is.

Baselines and Backbone. We compare the proposed methods with the SOTA baselines PFL. For
instance, Local is the simplest method of conducting training on their own data without communi-
cating with other clients. CFL methods include FedAvg (McMahan et al., 2017), FedSAM (Foret
et al., 2020), FedPer (Arivazhagan et al., 2019), FedRep (Collins et al., 2021), FedBABU (Oh et al.,
2021), Fed-RoD (Chen and Chao, 2021) and Ditto (Li et al., 2021). For DFL methods, we take
DFedAvgM (Sun et al., 2022), Dis-PFL (Dai et al., 2022) as our baselines. All methods are evaluated
on ResNet-18 (He et al., 2016) and replace the batch normalization with the group normalization
followed by (Dai et al., 2022) to avoid unstable performance.

Implementation Details.We perform 500 rounds with 100 clients on CIFAR-10 & CIFAR-100.
The client sampling radio is 0.1 in CFL, while each client communicates with 10 neighbors in PFL
accordingly. The batch size is 128. We set SGD (Robbins and Monro, 1951) as the base optimizer
with a learning rate of 0.1 and local momentum of 0.9. We report the mean performance with 3
different seeds. More hyperparameter details can be found in Appendix B.2& B.3.
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Figure 2: Test accuracy on CIFAR-10 (first line) and CIFAR-100 (second line) with heterogenous data partitions.
With limited pages, we only show the training progress of the typical methods.

5.2 PERFORMANCE EVALUATION

Comparison with the baselines. As shown in Table 2 and Figure 2, the proposed DFedMDC and
DFedSMDC outperform other baseline methods with the best stability and better performance in
both different dataset and different data heterogeneity scenarios. Specifically, on the CIFAR-10
dataset, DFedMDC and DFedSMDC achieve 87.67% and 86.50% on the Directlet-0.3 setups, 0.82%
and 1.99% ahead of the best comparing method Fed-RoD. On the CIFAR-100 dataset, DFedSMDC
achieves at least 0.32% and 0.91% improvement from the other baselines on the Pathological-5 and
Pathological-10 settings. We attribute thate DFedMDC and DFedSMDC learn the “right” part with
their neighbors and allow the private linear classifier to better adapt to their local data. It is also
observed that DFedSMDC outperform DFedMDC stability, demonstrating that the SAM optimizer
significantly improve the shared feature extractor.

Table 3: The required communication rounds
when achieving the target accuracy (%).

Algorithm
CIFAR-10 CIFAR-100

Dir-0.3 Pat-2 Dir-0.3 Pat-10

acc@80 acc@90 acc@45 acc@65

FedAvg - - 234 456
FedSAM - - 221 416
FedPer 262 343 - 246
FedRep 189 322 - 225
FedBABU 270 312 261 314
Fed-RoD 170 462 133 148
Ditto - - 279 -

DFedAvgM 354 439 192 230
Dis-PFL 307 - 368 492
DFedSAM - 465 367 344

DFedMDC 131 224 111 113
DFedSMDC 160 280 131 139

Hyperparameters Sensitivity. We discuss two data
heterogeneity of Dirichlet distribution and Pathologi-
cal distribution in Table 2, and prove the effectiveness
and robustness of the proposed methods. In Dirichlet
distribution, since the local training can’t cater for
all classes inside clients, the accuracy decreases with
the level of heterogeneity decreasing. On CIFAR-
10, when the heterogeneity decreases from 0.1 to
0.3, Fed-RoD drops from 89.15% to 85.68%, while
DFedSMDC drops about 3.41% to 87.67%, mean-
ing its stronger stability for several heterogeneous
settings. Pathological distribution defines limited
classes for each client which is a higher level of het-
erogeneity. DFedSMDC is 0.88% ahead of the best
compared CFL method on CIFAR-10 with only 2
categories per client and 0.91% ahead on CIFAR-100
dataset with only 10 categories per client. The results
confirm that the proposed methods could achieve better performance with the strong heterogeneity.

Convergence speed. We illustrate the convergence speed via the learning curves of the compared
methods in Figure 2 and collect the communication rounds to reach a target accuracy (acc@) in Table
3. DFedMDC achieves the fastest convergence speed among the comparison methods, which benefits
from the direct partial model exchange and alternate update. In comparison with the CFL methods,
directly learning the neighbors’ feature representation in DFL can speed up the convergence rate
for personalized problems. Also, the difference between DFedMDC and DFedAvgM indicates that
the convergence speed of alternate updating is faster than uniform updating. Notably, we target the
setting where the busiest node’s communication bandwidth is restricted for fairness when compared
with the CFL methods.
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Figure 3: Personal test accuracy (%) in various net-
work topologies for the DFL methods on CIFAR-10.

Impact of communication topologies. For decen-
tralized methods, the performance under various
communication topologies will help to evaluate
the robustness of the methods. Combining the
topology visualization in Appendix B.4 and the
spectral Gap analysis in Table 1, both the con-
vergence bounds and communication costs of dif-
ferent topologies are ranked as Fully-connected
> Exponential > Grid > Ring. In figure 3, from
sparse connection to compact connection(Ring-
Grid-Exp-Full), all the methods achieve better performance. Besides, DFedMDC and DFedSMDC
are more robust in various communication topologies.

5.3 ABLATION STUDY

Table 4: Test accuracy (%) of different model parts
with the SAM optimizer.

Algorithm Body Head Dirichlet Pathological

DFedMDC 86.50 91.26
DFedSMDC-U ✓ 87.67 92.20
DFedSMDC-V ✓ 86.46 91.50
DFedSMDC-UV ✓ ✓ 87.43 92.58

Integrating SAM into the shared model or per-
sonal model or whole model. We investigate
the effect of adding the SAM optimizer to differ-
ent parts with different data heterogeneity on the
CIFAR-10 dataset. From Table 4, DFedSMDC-
U (SAM only for the shared model, dubbed as
“body”) achieves the best in the Dirichlet setting
and DFedSMDC-UV (adding SAM to both shared
and personal parts) achieves the best in the Pathological setting. From the difference between DFed-
MDC, DFedSMDC-U and DFedSMDC-UV, we observe that the SAM optimizer, uniformly reducing
the inconsistency of the feature extractor among clients, can improve the feature extraction ability
of the shared parts. Besides, the comparison from DFedMDC, DFedSMDC-V (SAM only for the
personal model, dubbed as “head”) and DFedSMDC-UV illustrates that the benefits of adding SAM
to the personal model are sensitive to the data distribution and hyperparameter setup. Thus, we set
DFedSMDC-U as our default algorithm and denote it as DFedSMDC in the main experiments.
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Figure 4: Effect of the local epochs for the personal
parameters vi in client i.

Effectiveness of local epochs. In Figure 4, we
illustrate the effect of local epochs for the personal
parameters in different heterogeneity scenarios on
the CIFAR-10 after 200 communication rounds.
With fixed local epochs of 5 for the shared pa-
rameters, more local epochs for the personal parts
helps to learn a more effective personal model in
the Dirichlet scenarios. In the Pathological scenar-
ios, the local epochs for the personal parameters
need a trade-off to improve the shared extraction
ability and adapt the personal local data.

0 100 200 300 400 500

Commincation Round T

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y 

5 clients participate
10 clients participate
20 clients participate
50 clients participate
100 clients participate
200 clients participate

Figure 5: Effect of the clients’ size.

Number of participated clients. We compare the personalized
performance between different numbers of client participation
on the CIFAR-10 dataset with Dirichlet-0.3 in Figure 5. Com-
pared with larger participated clients {50, 100, 200}, the smaller
participated clients {5, 10} can achieve better test accuracy and
convergence as the number of local data increases.

6 CONCLUSION

In this paper, we propose novel methods DFedMDC and DFedSMDC for PFL, which simultaneously
guarantee robust communication and better model performance with convergence guarantee via
adopting decentralized partial model personalization based on model decoupling. It efficiently
personalizes the “right” components in the deep modern models and alternatively updates the shared
parameters and personal parameters in a peer-to-peer manner. For theoretical findings, we present the
convergence rate in the stochastic non-convex setting for DFedMDC and DFedSMDC. Empirical
results also verify the superiority of our approaches.
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Supplementary Material for “ Enhancing Personal Decentralized
Federated Learning through Model Decoupling ”

In this part, we provide the supplementary materials including more introduction to the related works,
experimental details and results, and the proof of the main theorem.

• Appendix A: More details in the related works.

• Appendix B: More details in the experiments.

• Appendix C: Proof of the theoretical analysis.

A MORE DETAILS IN THE RELATED WORKS

Decentralized/Distributed Training. By combining SGD and gossip, early work achieved decen-
tralized training and convergence of the model in (Blot et al., 2016). D-PSGD (Lian et al., 2017) is
the classic decentralized parallel SGD method. FastMix (Ye et al., 2020) investigates the advantage
of increasing the frequency of local communications within a network topology, in which the optimal
computational complexity and near-optimal communication complexity are established. DeEPCA
(Ye and Zhang, 2021) integrates FastMix into a decentralized PCA algorithm to accelerate the training
process. DeLi-CoCo (Hashemi et al., 2022) performs multiple compression gossip steps in each
iteration for fast convergence with arbitrary communication compression. Network-DANE (Li et al.,
2020a) uses multiple gossip steps and generalizes DANE to decentralized scenarios. The work in
(Lin et al., 2021) modifies the momentum term of decentralized SGD (DSGD) to be adaptive to
heterogeneous data, while the work in (Hsieh et al., 2020) replaces batch norm with layer norm. (Li
et al., 2022b) dynamically updates the mixing weights based on meta-learning and learns a sparse
topology to reduce communication costs. The work in (Zhu et al., 2022) provides the topology-aware
generalization analysis for DSGD, they explore the impact of various communication topologies on
the generalizability.

Sharpness Aware Minimization (SAM). SAM (Qu et al., 2022) is an effective optimizer for training
deep learning (DL) models, which leverages the flatness geometry of the loss landscape to improve
model generalization ability. Recently, the work in (Andriushchenko and Flammarion, 2022) studies
the properties of SAM and provides convergence results of SAM for non-convex objectives. As a
powerful optimizer, SAM and its variants have been applied to various DL tasks (Zhao et al., 2022;
Kwon et al., 2021; Du et al., 2021; Liu et al., 2022; Abbas et al., 2022; Mi et al., 2022; Zhong et al.,
2022; Huang et al.) and FL tasks (Qu et al., 2022; Caldarola et al., 2022; Sun et al.; 2023; Shi et al.,
2023b;c;a). For instance, the works in (Qu et al., 2022), (Sun et al.), (Zhu et al., 2023) and (Caldarola
et al., 2022) integrate SAM to improve the generalization, and thus mitigate the distribution shift and
achieve a new SOTA performance for FL.

B MORE DETAILS IN THE EXPERIMENT

In this section, we provide more details of our experiments and more extensive experimental results
to compare the performance of the proposed DFedMDC and DFedSMDC against other baselines.

B.1 DATASETS AND DATA PARTITION

Table 5: The details on the CIFAR-10 and CIFAR-100 datasets.

Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

Tiny-ImageNet 100,000 10,000 200 3×64×64
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CIFAR-10/100 and Tiny-ImageNet are three basic datasets in the computer version study. As shown
in Table 5, they are all colorful images with different classes and different resolutions. We use two
non-IID partition methods to split the training data in our implementation. One is based on Dirichlet
distribution on the label ratios to ensure data heterogeneity among clients, where a smaller α means
higher heterogeneity. Another assigns each client a limited number of categories, called Pathological
distribution, where fewer categories mean higher heterogeneity. The distribution of the test datasets
is the same as in training datasets. We run 500 communication rounds for CIFAR-10, CIFAR-100,
and 300 rounds for Tiny-ImageNet.

B.2 MORE DETAILS ABOUT THE DFEDMDC AND DFEDSMDC

For DFedMDC and DFedSMDC, we train the shared part for 5 epochs per round as the same as other
baselines; for the personal part, we find that training 1 epoch and 5 epochs is the most appropriate
parameter on Dirichlet distribution and Pathological distribution respectively. Therefore, we conduct
ablation experiments to select the most appropriate parameters for each data distribution in Figure
4. We set SGD as the base optimizer with a learning rate ηv = 0.001 for the personal and ηu = 0.1
for shared parameters update with a decay rate of 0.005 and local momentum of 0.9. The weight
perturbation ratio in DFedSMDC is set to ρ = 0.7.

B.3 MORE DETAILS ABOUT BASELINES

Local is the simplest method for personalized learning. It only trains the personalized model on the
local data and does not communicate with other clients. For the fair competition, we train 5 epochs
locally in each round.

FedAvg (McMahan et al., 2017) is the most commonly discussed method in FL. It selects some
clients to perform local training on each dataset and then aggregates the trained local models to
update the global model. Actually, the local model in FedAvg is also the comparable personalized
model for each client.

FedSAM (Foret et al., 2020) leverages gradient perturbation to generate local flat models via
Sharpness Aware Minimization (SAM). The communication and client selection are the same as in
FedAvg. We set the perturbation radius ρ = 0.7 in our experiments.

FedPer (Arivazhagan et al., 2019) proposes a base + personalized layer approach for PFL to combat
the ill effects of statistical heterogeneity. We set the linear layer as the personalized layer and the rest
model as the base layer. It follows FedAvg’s training paradigm but only passes the base layer to the
server and keeps the personalized layer locally.

FedRep (Collins et al., 2021) also proposes a body(base layer) + head(personalized layer) framework
like FedPer, but it fixes one part when updating the other. We follow the official implementation2 to
train the head for 10 epochs with the body fixed, and then train the body for 5 epochs with the head
fixed.

FedBABU (Oh et al., 2021) is also a model split method that achieves good personalization via fine-
tuning from a good shared representation base layer. Different from FedPer and FedRep, FedBABU
only updates the base layer with the personalized layer fixed and finally fine-tunes the whole model.
Following the official implementation3, it fine-tunes 5 times in our experiments.

Fed-RoD (Chen and Chao, 2021) explicitly decouples a model’s dual duties with two prediction
tasks—generic optimization and personalized optimization and utilizes a hyper network to connect
the generic model and the personalized model. Each client first updates the generic model with
balanced risk minimization then updates the personalized model with empirical risk minimization.

Ditto (Li et al., 2021) achieves personalization via a trade-off between the global model and local
objectives. It totally trains two models on the local datasets, one for the global model (similarly
aggregated as in FedAvg) with local empirical risk, one for the personal model (kept locally) with
both empirical and proximal terms towards the global model. We set the regularization parameters λ
as 0.75.

2https://github.com/lgcollins/FedRep
3https://github.com/jhoon-oh/FedBABU
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DFedAvgM (Sun et al., 2022) is the decentralized FedAvg with momentum, in which clients only
connect with their neighbors by an undirected graph. For each client, it first initials the local model
with the received models then updates it on the local datasets with a local stochastic gradient. We
choose ρ = 0.7 in our experiments.

Dis-PFL (Dai et al., 2022) employs personalized sparse masks to customize sparse local models in the
PFL setting. Each client first initials the local model with the personalized sparse masks and updates
it with empirical risk. Then filter out the parameter weights that have little influence on the gradient
through cosine annealing pruning to obtain a new mask. Following the official implementation4, the
sparsity of the local model is set to 0.5 for all clients.

DFedSAM Shi et al. (2023b) leverages gradient perturbation to generate local flat models via
Sharpness Aware Minimization (SAM). The communication framework between neighbors is the
same as DFedAvgM, but the local update is performed by the SAM optimizer. We set the perturbation
radius ρ = 0.7 in our experiments.

B.4 COMMUNICATION NETWORK TOPOLOGIES

(a) Fully-connected (b) Exponential (c) Grid (d) Ring

Figure 6: Illustration of the communication network topologies.

B.5 MORE EXPERIMENTS RESULTS ON TINY IMAGENET

Comparison with the baselines. In Table 6 and Figure 7, we compare DFedMDC and DFedSMDC
with other baselines on the Tiny-ImageNet with different data distributions. The comparison shows
that the proposed methods have a competitive performance, especially under higher heterogeneity, e.g.
for Dirichlet-0.1 and Pathological-10. Specifically in the Dirichlet-0.1 setting, DFedSMDC achieves
29.70%, at least 0.67% improvement from the CFL methods, while DFedSMDC and DFedMDC are
1.15% and 2.78% ahead of the other baselines in Pathological-10 setting. The original intention of
our design is to build a great personalized model by focusing on local training and exchanging the
feature extraction capabilities with neighbors via decentralized partial model training. So when the
heterogeneity increases, our algorithms have a significant improvement.

4https://github.com/rong-dai/DisPFL
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Figure 7: Test accuracy on Tiny-ImageNet with heterogenous data partitions. With limited pages, we only show
the training progress of the typical methods.
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Table 6: Test accuracy (%) on Tiny-ImageNet in both Dirichlet and Pathological distribution settings on
Tiny-ImageNet.

Algorithm
Tiny-ImageNet

Dirichlet Pathological

α = 0.1 α = 0.3 c = 10 c = 20

Local 12.13±.13 5.42±.21 28.49±.16 16.72±.34

FedAvg 25.55±.02 17.58±.25 44.56±.39 34.10±.59

FedSAM 26.32±.38 17.38±.19 41.85±.58 34.56±.49

FedPer 21.64±.72 7.71±.08 47.35±.03 33.68±.33

FedRep 17.54±.79 5.78±.05 46.76±.73 31.15±.54

FedBABU 27.40±.08 19.73±.06 46.53±.20 38.68±.31

Fed-RoD 29.03±.55 19.25±.45 48.01±.40 39.28±.58

Ditto 21.71±.66 14.47±.14 40.65±.15 28.74±.38

DFedAvgM 25.29±.26 17.07±.17 42.80±.43 30.58±.51

Dis-PFL 24.71±.18 16.94±.36 41.93±.12 33.57±.62

DFedSAM 24.18±.32 16.92±.19 42.87±.31 32.61±.14

DFedMDC 25.71±.20 14.94±.44 49.16±.19 37.25±.27

DFedSMDC 29.70±.47 17.81±.35 50.79±.28 39.44±.40

Convergence speed. We show the convergence speed of DFedMDC and DFedSMDC in Table 7
by reporting the number of rounds required to achieve the target personalized accuracy (acc@) on
Tiny-ImageNet. We set the algorithm that takes the most rounds to reach the target accuracy as
“1.00×”, and find that the proposed DFedMDC and DFedSMDC achieve the fastest convergence
speed on average (3.51× and 3.04× on average) among the SOTA PFL algorithms. Local training in
PFL consistently pursues empirical risk minimization on the local datasets, which can efficiently train
the personalized model fitting the local distribution. Also, the alternate updating mode will bring a
comparable gain to the convergence speed from the difference between DFedMDC and DFedAvgM.
Thus, our methods can efficiently train the personalized model, especially on the higher heterogeneity.

Table 7: The required communication rounds when achieving the target accuracy (%) on Tiny-ImageNet.

Algorithm
Tiny-ImageNet

Dirichlet-0.1 Dirichlet-0.3 Pathological-10 Pathological-20

acc@20 speedup acc@14 speedup acc@40 speedup acc@30 speedup

FedAvg 160 1.11 × 144 1.47 × 192 1.36 × 172 1.50 ×
FedSAM 136 1.31 × 149 1.42 × 214 1.22 × 180 1.43 ×
FedPer 123 1.45 × - - 103 2.53 × 134 1.93 ×
FedRep - - - - 116 2.25 × 117 2.21 ×
FedBABU 156 1.14 × 174 1.22 × 178 1.47 × 181 1.43 ×
Fed-RoD 72 2.47 × 92 2.30 × 132 1.98 × 95 2.72 ×
Ditto 178 1.00 × 212 1.00 × 261 1.00 × - -

DFedAvgM 115 1.55 × 136 1.56 × 160 1.63 × 258 1.00 ×
Dis-PFL 143 1.24 × 166 1.28 × 227 1.15 × 188 1.37 ×
DFedSAM 158 1.13 × 174 1.22 × 229 1.14 × 214 1.21 ×

DFedMDC 74 2.41 × 108 1.96 × 54 4.83 × 53 4.87 ×
DFedSMDC 82 2.17 × 78 2.72 × 70 3.73 × 73 3.53 ×

C PROOF OF THEORETICAL ANALYSIS

C.1 PRELIMINARY LEMMAS

Lemma 1 (Lemma 4, (Lian et al., 2017)). For any t ∈ Z+, the mixing matrix W ∈ Rm satisfies
∥Wt − P∥op ≤ λt, where λ := max{|λ2|, |λm(W )|} and for a matrix A, we denote its spectral
norm as ∥A∥op. Furthermore, 1 := [1, 1, . . . , 1]⊤ ∈ Rm and

P :=
11⊤

m
∈ Rm×m.

Lemma 2 (Lemma 23, (Pillutla et al., 2022)). Consider F which is L-smooth and fix a v0 ∈ Rd.
Define the sequence (vk) of iterates produced by stochastic gradient descent with a fixed learning
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rate ηv ≤ 1/(2KvLv) starting from v0, we have the bound

E∥vKv−1 − v0∥2 ≤ 16η2vK
2
vE∥∇F (v0)∥2 + 8η2vK

2
vσ

2
v .

Lemma 3 (Local update for shared model ui in DFedMDC). Assume that assumptions 1-3 hold, for
all clients i ∈ {1, 2, ...,m} and local iteration steps k ∈ {0, 1, ...,Ku − 1}, we can get

1

m

m∑
i=1

E
∥∥ut,k

i − ut
i

∥∥2 ≤ 18η2uK
2
u

(
σ2
u + δ2 +

1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)

∥∥2).
Proof.

1

m

m∑
i=1

E
∥∥ut,k+1

i − ut
i

∥∥2 ≤ 1

m

m∑
i=1

E
∥∥∥ut,k

i − ηu∇uFi(u
t,k
i , vt+1

i ; ξi)− ut
i

∥∥∥2
≤ 1

m

m∑
i=1

E
∥∥∥ut,k

i − ut
i − ηu

(
∇uFi(u

t,k
i , vt+1

i ; ξi)−∇uFi(u
t,k
i , vt+1

i ) +∇uFi(u
t,k
i , vt+1

i )

−∇uFi(u
t
i, V

t+1) +∇uFi(u
t
i, V

t+1)
)∥∥∥2

≤ I + II.

Where

I = (1 +
1

2Ku − 1
)
1

m

m∑
i=1

E
∥∥∥ut,k

i − ut
i

∥∥∥2,
and

II =
2K2

uη
2
u

m

m∑
i=1

E
∥∥∥∇uFi(u

t,k
i , vt+1

i ; ξi)−∇uFi(u
t,k
i , vt+1

i )+∇uFi(u
t,k
i , vt+1

i )−∇uF (ut
i, V

t+1)+∇uF (ut
i, V

t+1)
)∥∥∥2.

For II, we use assumptions 2-3 and generate the following:

II = 6η2uKu

(
σ2
u + δ2 +

1

m

m∑
i=1

E
∥∥∥∇uF (ut

i, V
t+1)

∥∥∥2).
Therefore, the recursion from j = 0 to Ku − 1 can generate:

1

m

m∑
i=1

E
∥∥ut,k

i − ut
i

∥∥2 ≤ Ku−1∑
j=0

(1 +
1

2Ku − 1
)jII

≤ (2Ku − 1)
[
(1 +

1

2Ku − 1
)Ku − 1

]
II

a)

≤ 3KuII

≤ 18η2uK
2
u

(
σ2
u + δ2 +

1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)

∥∥2),
where a) uses 1 + 1

2Ku−1 ≤ 2 and (1 + 1
2Ku−1 )

2Ku· 12 ≤
√
5 < 5

2 for any Ku ≥ 1.

Lemma 4 (Local update for shared model ui in DFedSMDC). Assume that assumptions 1-3 hold,
for all clients i ∈ {1, 2, ...,m} and local iteration steps k ∈ {0, 1, ...,Ku − 1}, we can get
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Proof.
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Lemma 5 (Shared model shift in DFedMDC). Assume that assumptions 1-3 hold, for all clients
i ∈ {1, 2, ...,m} and local iteration steps k ∈ {1, 2, ...,Ku}, we can get
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Proof. Inspired by Lemma D.2 in (Shi et al., 2023b) and Lemma 4 in (Sun et al., 2022), according to
Lemma 1, we can generate
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Lemma 6 (Shared model shift in DFedSMDC). Assume that assumptions 1-3 hold, for all clients
i ∈ {1, 2, ...,m} and local iteration steps k ∈ {1, 2, ...,Ku}, we can get
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Proof. Based on Lemma 5 and according to Lemma 4, for any j, we have
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 is the result needed to prove.
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C.2 PROOF OF CONVERGENCE ANALYSIS

Proof Outline and the Challenge of Dependent Random Variables. We start with

F
(
ūt+1, V t+1

)
− F

(
ūt, V t

)
=F

(
ūt, V t+1

)
− F

(
ūt, V t

)
+ F

(
ūt+1, V t+1

)
− F

(
ūt, V t+1

)
.

(5)

The first line corresponds to the effect of the v-step and the second line to the u-step. The former is

F
(
ūt, V t+1

)
− F

(
ūt, V t

)
=

1

m

m∑
i=1

E
[
Fi(ū

t, vt+1
i )− Fi(ū

t, vti)
]

≤ 1

m

m∑
i=1

E
[〈
∇vFi

(
ūt, vti

)
, vt+1

i − vti

〉
+

Lv

2
∥vt+1

i − vti∥2
]
.

(6)

It is easy to handle with standard techniques that rely on the smoothness of F (ut, ·). The latter is
more challenging. In particular, the smoothness bound for the u-step gives us

F
(
ūt+1, V t+1

)
− F

(
ūt, V t+1

)
≤

〈
∇uF

(
ūt, V t+1

)
, ūt+1 − ūt

〉
+

Lu

2
∥ūt+1 − ūt∥2 . (7)
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Analysis of the u-Step.

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤

〈
∇uF

(
ūt, V t+1

)
, ūt+1 − ūt

〉
+

Lu

2
E∥ūt+1 − ūt∥2

≤ −ηu
m

m∑
i=1

E
〈
∇uF

(
ūt, V t+1

)
,

Ku−1∑
k=0

∇uF
(
ut,k
i , vt+1

i ; ξi

)〉
+

Lu

2
E∥ūt+1 − ūt∥2

≤ −ηuKuE[∆t
ū] +

ηu
m

m∑
i=1

Ku−1∑
k=0

E
〈
∇uF

(
ūt, V t+1

)
,∇F

(
ūt, vt+1

i

)
−∇uF

(
ut,k
i , vt+1

i ; ξi

)〉
+

Lu

2
E∥ūt+1 − ūt∥2

a)

≤ −ηuKu

2
E[∆t

ū] +
ηuL

2
u

2m

m∑
i=1

Ku−1∑
k=0

E∥ut,k
i − ūt∥2︸ ︷︷ ︸

T1,u

+
Lu

2
E∥ūt+1 − ūt∥2︸ ︷︷ ︸

T2,u

.

(8)

Where a) uses E
[
∇uF (ut,k

i , vt+1
i ; ξi)

]
= ∇uF

(
ut,k
i , vt+1

i

)
and ⟨x, y⟩ ≤ 1

2∥x∥
2 + 1

2∥y∥
2 for

vectors x, y followed by Lu-smoothness.
For T1,u, we can use Lemma 5.

T1,u ≤
9η3uK

2
uL

2
u

(1− λ)2

[
σ2
u + δ2 +

1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)

∥∥2
︸ ︷︷ ︸

T3,u

]
(9)

For T3,u,

T3,u ≤
1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)−∇uF (ūt, V t+1) +∇uF (ūt, V t+1)

∥∥2
≤ 2L2

u

m

m∑
i=1

E∥ut
i − ūt∥2 + 2

m

m∑
i=1

E∥∇uF (ūt, V t+1)∥2

≤2L2
u

m

m∑
i=1

E∥ut
i − ūt∥2 + 2E[∆t

ū],

(10)
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After that, combining Eq. (9) and (10) and assuming local learning rate ηu ≪ 1−λ
3
√
2KuLu

, we can
generate

T1,u ≤
9η3uK

2
uL

2
u

(1− λ)2

[
σ2
u + δ2 + 2E[∆t

ū]

]
. (11)

Meanwhile, for T2,u,

T2,u ≤
η2uLu

2m

m∑
i=1

Ku−1∑
k=0

∥∥∥∇uF
(
ut,k
i , vt+1

i ; ξi

)
−∇uF

(
ut
i, v

t+1
i

)
+∇uF

(
ut
i, v

t+1
i

)
−∇uF

(
ut
i, V

t+1
)
+∇uF

(
ut
i, V

t+1
)
−∇uF

(
ūt, V t+1

)
+∇uF

(
ūt, V t+1

) ∥∥∥2
≤ 2η2uKuLu

(
σ2
u + δ2 +

L2
u

m

m∑
i=1

E∥ut
i − ūt∥2 + E[∆t

ū]
)

≤ 2η2uKuLu

(
σ2
u + δ2 + E[∆t

ū]
)
+

2η2uKuL
3
u

m

m∑
i=1

E∥ut
i − ūt∥2︸ ︷︷ ︸

T4,u

(12)

For T4,u, we can use Lemma 5.

After that,

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤ −ηuKu

2
E[∆t

ū] + T1,u + T2,u

≤
(−ηuKu

2
+ 2η2uKuLu +

18η2uK
2
u(2 + ηuL

2
u)

(1− λ)2

)
E[∆t

ū]

+ 2η2uKuLu(σ
2
u + δ2) +

9η2uK
2
u(2 + ηuL

2
u)

(1− λ)2

(
σ2
u + δ2

)
.

(13)

Analysis of the v-Step.

E
[
F
(
ūt, V t+1

)
− F

(
ūt, V t

) ]
≤ 1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
, vt+1

i − vti

〉
︸ ︷︷ ︸

T1,v

+
Lv

2m

m∑
i=1

E∥vt+1
i − vti∥2︸ ︷︷ ︸

T2,v

.

(14)
For T1,v ,

T1,v ≤
1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
−∇vFi

(
ut
i, v

t
i

)
+∇vFi

(
ut
i, v

t
i

)
,−ηv

Kv−1∑
k=0

E∇vFi(u
t
i, v

t
i ; ξi)

〉
a)

≤ −ηvKv

m

m∑
i=1

E∥∇vFi(u
t
i, v

t
i)∥2 +

1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
−∇vFi

(
ut
i, v

t
i

)
, vt+1

i − vti

〉
b)

≤ −ηvKvE[∆t
v] +

L2
vu

2m

m∑
i=1

E∥ūt − ut
i∥2︸ ︷︷ ︸

T3,v

+
1

2m

m∑
i=1

E∥vt+1
i − vti∥2︸ ︷︷ ︸

1
Lv

T2,v

,

(15)

where a) and b) is get from the unbiased expectation property of ∇vFi(u
t
i, v

t
i ; ξi) and < x, y >≤

1
2 (∥x∥

2 + ∥y∥2), respectively.

For T2,v , according to Lemma 2, we have

T2,v ≤
Lv

2

(16η2vK2
v

m

m∑
i=1

E∥∇vFi(u
t
i, v

t
i)∥2 + 8η2vK

2
vσ

2
v

)
≤ 8Lvη

2
vK

2
vE[∆t

v] + 4Lvη
2
vK

2
vσ

2
v .

(16)
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For T3,v , according to Eq. (11), we have

L2
vu

2m

m∑
i=1

E∥ūt − ut
i∥2 ≤

L2
vu

(1− λ)2

[
18η2uK

2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)]

. (17)

After that, summing Eq. (15), (16), and (17), we have

E
[
F
(
ūt, V t+1

)
− F

(
ūt, V t

) ]
≤

(
− ηvKv + 8η2vK

2
v (Lv + 1)

)
E[∆t

v] + 4η2vK
2
vσ

2
v(Lv + 1)

+
L2
vu

(1− λ)2

[
18η2uK

2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)]

.

(18)

Obtaining the Final Convergence Bound.

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t

) ]
=E

[
F
(
ūt, V t+1

)
− F

(
ūt, V t

)
+ F

(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤

(−ηuKu

2
+ 2η2uKuLu +

18η2uK
2
u(2 + ηuL

2
u)

(1− λ)2

)
E[∆t

ū]

+ 2η2uKuLu(σ
2
u + δ2) +

9η2uK
2
u(2 + ηuL

2
u)

(1− λ)2

(
σ2
u + δ2

)
+

(
− ηvKv + 8η2vK

2
v (Lv + 1)

)
E[∆t

v] + 4η2vK
2
vσ

2
v(Lv + 1)

+
18η2uL

2
vuK

2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)

(1− λ)2
.

(19)

Summing from t = 1 to T , assume the local learning rates satisfy ηu = O(1/LuKu

√
T ), ηv =

O(1/LvKv

√
T ), F ∗ is denoted as the minimal value of F , i.e., F (ū, V ) ≥ F ∗ for all ū ∈ Rd, and

V = (v1, . . . , vm) ∈ Rd1+...+dm . We can generate

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤ O

(F (ū1, V 1)− F ∗
√
T

+
σ2
v(Lv + 1)

L2
v

√
T

+
(L2

vu + 1)(σ2
u + δ2)

L2
u(1− λ)2

√
T

+
σ2
u + δ2

KuLu

√
T

+
σ2
u + δ2

KuLu(1− λ)2T

)
.

(20)

Assume that

σ2
1 =

χ2Lv(σ
2
u + δ2)

Lu
+

σ2
u + δ2

L2
u

, σ2
2 =

σ2
v(Lv + 1)

L2
v

+
σ2
u + δ2

KuLu
, σ2

3 =
σ2
u + δ2

KuLu
.

Then, we have the final convergence bound:

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤ O

(F (ū1, V 1)− F ∗
√
T

+
σ2
1

(1− λ)2
√
T

+
σ2
2√
T

+
σ2
3

(1− λ)2T

)
.

(21)
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C.2.2 PROOF OF CONVERGENCE ANALYSIS FOR DFEDSMDC

Analysis of the u-Step.

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤

〈
∇uF

(
ūt, V t+1

)
, ūt+1 − ūt

〉
+

Lu

2
E∥ūt+1 − ūt∥2

≤ −ηu
m

m∑
i=1

E
〈
∇uF

(
ūt, V t+1

)
,

Ku−1∑
k=0

∇uF
(
ut,k
i , vt+1

i ; ξi

)〉
+

Lu

2
E∥ūt+1 − ūt∥2

≤ −ηuKuE[∆t
ū] +

ηu
m

m∑
i=1

Ku−1∑
k=0

E
〈
∇uF

(
ūt, V t+1

)
,∇F

(
ūt, vt+1

i

)
−∇uF

(
ut,k
i , vt+1

i ; ξi

)〉
+

Lu

2
E∥ūt+1 − ūt∥2

a)

≤ −ηuKu

2
E[∆t

ū] +
ηuL

2
u

2m

m∑
i=1

Ku−1∑
k=0

E∥ut,k
i − ūt∥2︸ ︷︷ ︸

T1,u

+
Lu

2
E∥ūt+1 − ūt∥2︸ ︷︷ ︸

T2,u

.

(22)

Where a) uses E
[
∇uF (ut,k

i , vt+1
i ; ξi)

]
= ∇uF

(
ut,k
i , vt+1

i

)
and ⟨x, y⟩ ≤ 1

2∥x∥
2 + 1

2∥y∥
2 for

vectors x, y followed by Lu-smoothness.
For T1,u, we can use Lemma 6.

T1,u ≤
3η3uKuL

2
u

(1− λ)2

[
L2
uρ

2 + 3Ku

(
σ2
u + δ2 +

1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)

∥∥2
︸ ︷︷ ︸

T3,u

)]
(23)

For T3,u,

T3,u ≤
1

m

m∑
i=1

E
∥∥∇uF (ut

i, V
t+1)−∇uF (ūt, V t+1) +∇uF (ūt, V t+1)

∥∥2
≤ 2L2

u

m

m∑
i=1

E∥ut
i − ūt∥2 + 2

m

m∑
i=1

E∥∇uF (ūt, V t+1)∥2

≤2L2
u

m

m∑
i=1

E∥ut
i − ūt∥2 + 2E[∆t

ū],

(24)

After that, combining Eq. (23) and (24) and assuming local learning rate ηu ≪ 1−λ
3
√
2KuLu

, we can
generate

T1,u ≤
3η3uKuL

2
u

(1− λ)2

[
L2
uρ

2 + 3Ku

(
σ2
u + δ2 + 2E[∆t

ū]
)]

. (25)

Meanwhile, for T2,u,

T2,u ≤
η2uLu

2m

m∑
i=1

Ku−1∑
k=0

∥∥∥∇uF
(
ut,k
i + ϵ(ut,k

i ), vt+1
i ; ξi

)
−∇uF

(
ut,k
i , vt+1

i ; ξi

)
+∇uF

(
ut,k
i , vt+1

i ; ξi

)
−∇uF

(
ut
i, v

t+1
i

)
+∇uF

(
ut
i, v

t+1
i

)
−∇uF

(
ut
i, V

t+1
)
+∇uF

(
ut
i, V

t+1
)

−∇uF
(
ūt, V t+1

)
+∇uF

(
ūt, V t+1

) ∥∥∥2
≤ 5

2
η2uKuLu

(
L2
uρ

2 + σ2
u + δ2 +

L2
u

m

m∑
i=1

E∥ut
i − ūt∥2 + E[∆t

ū]
)

≤ 5

2
η2uKuLu

(
L2
uρ

2 + σ2
u + δ2 + E[∆t

ū]
)
+

5η2uKuL
3
u

2m

m∑
i=1

E∥ut
i − ūt∥2︸ ︷︷ ︸

T4,u

(26)
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For T4,u, we can use Lemma 6.

After that,

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤ −ηuKu

2
E[∆t

ū] + T1,u + T2,u

≤
(−ηuKu

2
+

5

2
η2uKuLu +

18η3uK
2
uL

2
u(1 + 5ηuKuLu)

(1− λ)2

)
E[∆t

ū]

+
3η3uKuL

2
u

(1− λ)2

[
L2
uρ

2 + 3Ku

(
σ2
u + δ2

)]
+

5

2
η2uKuLu

(
L2
uρ

2 + σ2
u + δ2

)
+

15η4uK
2
uL

3
u

(1− λ)2

[
L2
uρ

2 + 3Ku

(
σ2
u + δ2

)]
.

(27)

Analysis of the v-Step.

E
[
F
(
ūt, V t+1

)
− F

(
ūt, V t

) ]
≤ 1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
, vt+1

i − vti

〉
︸ ︷︷ ︸

T1,v

+
Lv

2m

m∑
i=1

E∥vt+1
i − vti∥2︸ ︷︷ ︸

T2,v

.

(28)

For T1,v ,

T1,v ≤
1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
−∇vFi

(
ut
i, v

t
i

)
+∇vFi

(
ut
i, v

t
i

)
,−ηv

Kv−1∑
k=0

E∇vFi(u
t
i, v

t
i ; ξi)

〉
a)

≤ −ηvKv

m

m∑
i=1

E∥∇vFi(u
t
i, v

t
i)∥2 +

1

m

m∑
i=1

E
〈
∇vFi

(
ūt, vti

)
−∇vFi

(
ut
i, v

t
i

)
, vt+1

i − vti

〉
b)

≤ −ηvKvE[∆t
v] +

L2
vu

2m

m∑
i=1

E∥ūt − ut
i∥2︸ ︷︷ ︸

T3,v

+
1

2m

m∑
i=1

E∥vt+1
i − vti∥2︸ ︷︷ ︸

1
Lv

T2,v

,

(29)

where a) and b) is get from the unbiased expectation property of ∇vFi(u
t
i, v

t
i ; ξi) and < x, y >≤

1
2 (∥x∥

2 + ∥y∥2), respectively.

For T2,v , according to Lemma 2, we have

T2,v ≤
Lv

2

(16η2vK2
v

m

m∑
i=1

E∥∇vFi(u
t
i, v

t
i)∥2 + 8η2vK

2
vσ

2
v

)
≤ 8Lvη

2
vK

2
vE[∆t

v] + 4Lvη
2
vK

2
vσ

2
v .

(30)

For T3,v , according to Eq. (25), we have

L2
vu

2m

m∑
i=1

E∥ūt − ut
i∥2 ≤

L2
vu

(1− λ)2

[
3η2uKuL

2
uρ

2 + 9η2uK
2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)]

. (31)

After that, summing Eq. (29), (30), and (31), we have

E
[
F
(
ūt, V t+1

)
− F

(
ūt, V t

) ]
≤

(
− ηvKv + 8η2vK

2
v (Lv + 1)

)
E[∆t

v] + 4η2vK
2
vσ

2
v(Lv + 1)

+
L2
vu

(1− λ)2

[
3η2uKuL

2
uρ

2 + 9η2uK
2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)]

.

(32)
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Obtaining the Final Convergence Bound.

E
[
F
(
ūt+1, V t+1

)
− F

(
ūt, V t

) ]
=E

[
F
(
ūt, V t+1

)
− F

(
ūt, V t

)
+ F

(
ūt+1, V t+1

)
− F

(
ūt, V t+1

) ]
≤ (

ηu
2
− ηuKu +

54η3uK
3
uL

2
u

(1− λ)2
)E[∆t

ū] +
5

2
η2uKuLu

(
L2
uρ

2 + σ2
u + δ2

)
+

3ηuKuL
2
u

2(1− λ)2

(
6η2uKuL

2
uρ

2 + 18η2uK
2
u(σ

2
u + δ2)

)
+

(
− ηvKv + 8η2vK

2
v (Lv + 1)

)
E[∆t

v] + 4η2vK
2
vσ

2
v(Lv + 1)

+
L2
vu

(1− λ)2

[
3η2uKuL

2
uρ

2 + 9η2uK
2
u

(
σ2
u + δ2 + 2E[∆t

ū]
)]

.

(33)

Summing from t = 1 to T , assume the local learning rates satisfy ηu = O(1/LuKu

√
T ), ηv =

O(1/LvKv

√
T ), F ∗ is denoted as the minimal value of F , i.e., F (ū, V ) ≥ F ∗ for all ū ∈ Rd, and

V = (v1, . . . , vm) ∈ Rd1+...+dm . We can generate

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤ O

(F (ū1, V 1)− F ∗
√
T

+
σ2
v(Lv + 1)

L2
v

√
T

+
L2
uρ

2 + σ2
u + δ2

LuKu

√
T

+
L2
vu

(1−λ)2
√
T

( ρ2

Ku
+

σ2
u + δ2

L2
u

)
+

Lu

(1−λ)2T

( ρ2

Ku
+

σ2
u + δ2

L2
u

))
.

(34)

Assume that

σ2 =
ρ2

Ku
+

σ2
u + δ2

L2
u

, σ2
4 =

σ2
v(Lv + 1)

L2
v

+
L2
uρ

2 + σ2
u + δ2

LuKu
,

Then, we have the final convergence bound:

1

T

T∑
i=1

( 1

Lu
E
[
∆t

ū

]
+

1

Lv
E[∆t

v

])
≤O

(F (ū1, V 1)−F ∗
√
T

+
σ2L2

vu

(1−λ)2
√
T

+
σ2
4√
T

+
σ2Lu

(1−λ)2T

)
. (35)

Furthermore, When the perturbation amplitude ρ is proportional to the learning rate, e.g., ρ =
O(1/

√
T ), the sequence of outputs ∆t

ū and ∆t
v generated by Alg. 1, we have:

O
(
σ2

)
= O

( ρ2

Ku
+

σ2
u + δ2

L2
u

)
= O

( 1

KuT
+

σ2
u + δ2

L2
u

)
. (36)
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