Under review as a conference paper at ICLR 2025

ENHANCING OPTIMIZER STABILITY:
MOMENTUM ADAPTATION OF THE NGN STEP-SIZE

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern optimization algorithms that incorporate momentum and adaptive step-
size offer improved performance in numerous challenging deep learning tasks.
However, their effectiveness is often highly sensitive to the choice of hyper-
parameters, especially the learning rate. Tuning these parameters is often diffi-
cult, resource-intensive, and time-consuming. Therefore, recent efforts have been
directed toward enhancing the stability of optimizers across a wide range of hyper-
parameter choices (Schaipp et al., 2024). In this paper, we introduce an algorithm
that matches the performance of state-of-the-art optimizers while improving sta-
bility through a novel adaptation of the NGN step-size method (Orvieto & Xiao,
2024). Specifically, we propose a momentum-based version (NGN-M) that attains
the standard convergence rate of O(1/+/K) under common assumptions, without
the need for interpolation condition or assumptions of bounded stochastic gradi-
ents or iterates, in contrast to previous approaches. Additionally, we empirically
demonstrate that the combination of the NGN step-size with momentum results in
high robustness while delivering performance that is comparable to or surpasses
other state-of-the-art optimizers.

1 INTRODUCTION

Adaptive methods such as Adam (Kingma & Ba, 2015) and RMSprop (Hinton et al., 2012) are widely
used in machine learning due to their established advantages over (momentum) SGD, particularly
in tasks such as training Transformers (Brown, 2020; Touvron et al., 2021; 2023). These methods
adaptively scale the step-size across different dimensions (parameters) based on their respective
statistics, effectively acting as a diagonal precondition.

Although these methods perform well in practice, existing theoretical analyses typically require
stringent assumptions on the noise structure of the stochastic gradients, such as sub-Gaussian noise
(Li et al., 2024) or affine noise models (Wang et al., 2024; Zhang et al., 2024a). Relaxing these
assumptions remains an open challenge. Another well-known issue with Adam is its sensitivity to
the step-size hyper-parameter (Wilson et al., 2017; Choi et al., 2019), particularly when training
Transformers, where loss spikes are commonly observed (Molybog et al., 2023; Wortsman et al.,
2023). This often necessitates careful adjustments of the hyper-parameters throughout the training
process (Zhang et al., 2022; Chowdhery et al., 2023), which can be costly in terms of computa-
tional resources (Or et al., 2020). Consequently, there has been growing interest in developing
optimization methods that are more robust to hyper-parameter selection (Schaipp et al., 2024). In
addition to adapting the step-size, Adam and other state-of-the-art optimizers also rely on momen-
tum (Polyak, 1964), a broadly used technique that has been shown to enhance performance both
theoretically (Cutkosky & Mehta, 2020; Fatkhullin et al., 2024; Islamov et al., 2024) and practically
(Choi et al., 2019; Fu et al., 2023; Jelassi & Li, 2022). Besides speeding up convergence, momen-
tum is known as a technique to reduce the variance of stochastic algorithms (Ma & Yarats, 2018;
Cutkosky & Orabona, 2019), improving stability as well as generalization in some settings (Jelassi
& Li, 2022).

In this work, we address the aforementioned drawbacks of Adam by developing a new algorithm
based on the recently proposed NGN step-size (Orvieto & Xiao, 2024), an improved variant of the
Stochastic Polyak Step-size (Loizou et al., 2021), that has demonstrated strong resilience to step-
size hyper-parameter tuning: in particular, the algorithm was shown to never diverge for any choice

Under review as a conference paper at ICLR 2025

of the step-size hyper-parameter in the convex setting, and to exhibit strong curvature adaptation
properties strengthened by theoretical guarantees. However, the step-size of Orvieto & Xiao (2024)
simply adapts the learning rate through a scalar multiplier, leaving to future work the incorporation
of momentum and coordinate-wise variants — needed in complex problems such as optimizing trans-
formers, as motivated above. Here, we develop a momentum and step-size adaptive version of NGN
designed to enhance robustness in terms of hyper-parameter selection. We also present a theoretical
analysis alongside a practical evaluation of this approach, showcasing its improvements over current
state-of-the-art methods.

In summary, our contributions are as follows:

1. First, we introduce a new algorithm named NGN-M that combines the NGN step-size with
momentum. We theoretically show that NGN-M achieves a convergence rate O(1/vEK) in
the convex regime without the typical requirements of interpolation or bounded gradient
assumptions found in earlier works.

2. Next, we focus on the problem of adapting the step-size rule towards a coordinate-wise
diagonal preconditioning. By integrating this diagonal step-size strategy with momentum,
we develop a new variant of NGN, called NGN-MD.

3. The theoretical results are supported by extensive empirical validation in various deep
learning settings where we demonstrate that NGN-M and NGN-MD not only preserve the
robustness property of the NGN step-size, but improve it further in many cases. The step-
size hyper-parameter resilience comes together with better performance comparable to that
of state-of-the-art algorithms.

2 RELATED WORKS

Polyak Step-size. When training a deep network with standard optimizers, tuning the learning
rate is crucial but time-consuming and resource-intensive (Goodfellow et al., 2016). This issue is at
the root of recent research focusing on transferring hyper-parameters across architectures at different
scales, therefore avoiding expensive tuning pipelines (Yang et al., 2022; 2023; Bordelon et al., 2023).
Yet, already in the convex setting choosing the learning rate can be difficult — an issue that was
studied already in Polyak (1987) and gave rise to the first adaptive method: the Polyak Stepsize (PS).
Recently, there has been a renewed interest adapting PS to modern settings (Loizou et al., 2021;
Orvieto et al., 2022; Jiang & Stich, 2024), delivering a theoretically principled way to adaptively
scale the gradient magnitude during training. PS-inspired methods have gained increasing interest
for their simplicity and adaptability, as they utilize local curvature and smoothness information to
accelerate algorithms and facilitate faster convergence. Orvieto & Xiao (2024) recently introduced a
variant of the Stochastic Polyak step-size, called NGN, which further enhances the robustness of the
step-size hyper-parameter and solidifies the link to Gauss-Newton preconditioning. The theoretical
analysis in Orvieto & Xiao (2024) demonstrated that NGN does not diverge regardless of the choice
of the step-size hyper-parameter, and converges fast when the step-size is appropriately tuned. In
contrast, the current theory of the SPS step-size with fixed step-size hyper-parameters (Loizou et al.,
2021) proves convergence to the exact solution only if the interpolation condition holds'.

Polyak Step-size and Heavy-ball Momentum. Heavy-ball momentum methods, stemming from
the work of Polyak (1964), have gained significant attention over the years due to their benefits,
including acceleration on convex quadratics (Jain et al., 2018; Lee et al., 2022; Bollapragada et al.,
2022), convex-like (Wang et al., 2022), and non-convex problems (Cutkosky & Mehta, 2020), as
well as their variance reduction abilities (Ma & Yarats, 2018; Cutkosky & Orabona, 2019). This
has led to growing interest in the combination of Polyak step-size and heavy-ball momentum, which
is now an active area of research (Barré et al., 2020; Saab et al., 2022; Barré et al., 2020; Wang
et al., 2023; Oikonomou & Loizou, 2024). Recently, Schaipp et al. (2024) demonstrated that a
geometrically principled combination of SPS and momentum leads to lower sensitivity to the step-
size hyper-parameter, although they did not provide strong theoretical convergence guarantees.

Diagonal Polyak Step-size. Coordinate-wise adaptive step-sizes are essential in training Trans-
former architectures due to the varying parameter-wise scaling and conditioning of the problem

'In our notation, this means that o2, = 0.

Under review as a conference paper at ICLR 2025

Table 1: Summary of existing methods exploiting Polyak-type adaptive step-sizes and their conver-
gence guarantees. Mom.=Supports momentum; Diag.=Supports diagonal step-sizes. o2, is defined
in Section 4. O notation hides absolute and problem-dependent constant factors and logarithmic
terms in the rate.

Method Rate (@) Mom. Diag. Comments
SPSmax 2 Conv. to non-vanishing
(Loizou et al., 2021) O(Y/K + i) X X neighbourhood
Strong convexity
ALR-SMAG L)
O((1 - p)¥ +02,) X X Conv. to non-vanishing
(Wang et al., 2023) t neighbourhood
Bounded
Momo h
. O(1/VE) X X stoch. gradients
(Schaipp et al., 2024) Interpolation
Momo-Adam X v v Momo framework
(Schaipp et al., 2024) for Adam
MomSPS,,,.« 5 Conv. to non-vanishing
(Oikonomou & Loizou, 2024) O(Y/K + oiy) 4 X neighbourhood
NGN
(Orvieto & Xiao, 2024) O(Y/VEK) X X -
NGN-M (Alg. 1)
[This work] O(/VEK) v X -
NGN-D (Alg. 3)
[This work] O(/VE) X v -
NGN-MDv1 (Alg. 2) X v v Combination of
[This work] NGN-M and RMSprop
NGN-MDv2 (Alg. 2) X v v Combination of
[This work] NGN-M and NGN-D

(a) We report the convergence rates in one of three settings — strongly convex, convex, or non-convex — based on the results provided in
the original paper where the respective method was introduced.

(Oikonomou & Loizou, 2024) provides two other combinations of SPS and momentum named MomDecSPS and Mo-
MAdaSPS. However, their convergence guarantees are derived in a setting with decreasing step-sizes and under a bounded iterates

assumption, which makes them less favorable in practice.

(Noci et al., 2022; Zhang et al., 2024b). Algorithms employing diagonal step-sizes, such as Adam
and Sign SGD (Bernstein et al., 2018), typically outperform non-diagonal methods in language
modeling tasks by also addressing issues such as class imbalance (where certain words appear more
frequently than others) (Kunstner et al., 2023; 2024) and heavy-tailed noise (Zhang et al., 2019;
2020). It is, therefore, paramount in current setups to deliver adaptive step-size improvements tar-
geted to the coordinate-wise (diagonal) regime. However, most Polyak-step-size-based algorithms
only focus on a single step-size for all parameters (Loizou et al., 2021; Wang et al., 2023; Gower
et al., 2021; Oikonomou & Loizou, 2024; Orvieto & Xiao, 2024). Only a few works propose a
diagonal-wise modification of Polyak-step-size by either using Adam preconditioner (Schaipp et al.,
2024) as a weight matrix or incorporating second-order information from the objective function (Li
et al., 2022; Richtarik et al., 2024).

Table 1 provides a theoretical comparison of various Polyak step-size-based algorithms that incor-
porate momentum and/or diagonal step-size, highlighting the differences between the theoretical
results presented in this work and those from prior works.

3 ALGORITHM DESIGN OF NGN-M AND NGN-D

The NGN step-size, introduced by Orvieto & Xiao (2024), is derived by applying the Gauss-Newton
method to the regularized Taylor expansion of the composition of a square and a square root of the
positive-valued objective function defined as follows:

2P+t = zF 4 p* where p* := arg min [fc(xk +p) = (r(z®) + Vr(z*)Tp)? + i|\p||2] , (D

pER?
and r(z) := 4/ f(x). It turns out that the problem in (1) has a closed-form solution
PF =~V (2¥) where i i= e forEm

Under review as a conference paper at ICLR 2025

with ~y; representing the NGN step-size. In Orvieto & Xiao (2024), convergence guarantees were
established for both convex and general non-convex settings. Importantly, the convex analysis shows
that NGN exhibits a non-divergence property, regardless of the step-size hyper-parameter c (see
Theorem 4.5 in Orvieto & Xiao (2024)). Due to this property, the NGN step-size is a strong candidate
to achieve better robustness w.r.t. the choice of the step-size.

3.1 How TO ADD MOMENTUM AND WHAT TO EXPECT FROM IT?

There are several approaches to combining the adaptive Polyak-type step-size with heavy-ball mo-
mentum. Broadly, existing algorithms can be divided into two categories: the first category involves
computing the Polyak step-size in the usual manner and incorporating it into the standard heavy-
ball update (Oikonomou & Loizou, 2024). In contrast, algorithms from the second category first
determine an update direction using exponential weighted averaging of the stochastic gradient and
momentum variable, and then compute the Polyak-type step-size based on the computed direction
(Wang et al., 2023; Schaipp et al., 2024). Following this reasoning, we test two possible versions
for combining the NGN step-size and momentum:

— mk — R k—1 _ k

Vk — 1+ﬁ”%fsk(zk)”2 m- = ﬂ"l, 4 + (1 ﬂ)VfSk(:C)
Verl: 9 mh = BmF =1 + (1 —) Vs, (%) Ver2: M = T
xk+1 — xk‘ _ 77’Lk xk}-{-l — xk _ 'Yk;'rn/k

Before we proceed, we should answer the question: “What do we expect from the combination of
NGN step-size and momentum?” First, we aim to preserve, and ideally enhance, NGN’s robustness to
the step-size hyper-parameter. Additionally, we seek improved performance, achieving accelerated
convergence akin to the advantage of SGD with momentum (SGDM) over standard SGD in convex
settings. With these goals in mind, we now show that version 1 meets all of these criteria, while
version 2 is less suitable. To gain some intuition regarding the performance of these two variants,
we start by conducting a simple experiment on a quadratic function f(z) = || Az — b||*> where
A is a data matrix from the normalized Diabetes dataset (Smith et al., 1988) and b is a vector of
labels. Based on the results from Figure 1 (left), we observe that variant 1 achieves accelerated
convergence as SGDM for middle-range step-size hyper-parameters (¢ € {10!,10%}) and does not
diverge for large step-size parameter (c € {103}). Conversely, version 2 has a worse convergence
rate than version 1 for middle-range step-size parameters and diverges for large ones. Therefore, we

theoretically analyze and practically test version 1, which we call NGN-M.

3.2 EVIDENCE OF ROBUSTNESS OF NGN-M

One indication of the step-size resilience properties of NGN-M lies in the sharpness of the point
where it converges. To illustrate this, we provide a simple example of minimizing a function f(z) =
(sin(1+cos(—m+x))—0.22)2 + (sin(1+cos(m—x))+0.22)* that has many sharp sub-optimal local
and flat global minima. We compare the performance of NGN-M and SGDM varying the step-size
hyper-parameter in {10°, 10, 102, 10%} and the starting point in [—20, 20] with a step 4/30>. Based
on the results in Figure 1, we conclude that () for small step-sizes, both methods likely get stuck
at sub-optimal local minima and reach the global minima only if they are initialized close enough
to it; (4¢) for large step-sizes, we observe less runs of SGDM reaching the global minima; (iii) in
contrast, for NGN-M with large step-sizes, we observe more runs reaching the global minima. This is
possible due to the adaptive nature of the NGN step-size to the flatness of the global minima. Later,
in Section 5 we demonstrate a similar convergence behavior of NGN-M when training a Resnet20
model.

3.3 DIAGONAL STEP-SIZE FOR NGN

To derive a diagonal version of NGN we modify an approach of (1). The next iterate z¥*1 is obtained
by minimizing an approximation of the regularized first-order Taylor expansion of r(x) := 4/ f(z)

around z*, namely, %! = z* + p* where
ph = arg min [f2,(@* 4+ p) = (r(a¥) + Vr(a®) Tp)? + = pl%,] (2)
pER

2This step is chosen small enough so that the initial point can be close to any local minima within [—20, 20].

Under review as a conference paper at ICLR 2025

Train Loss
e
g3

-
1=}
1

L 108 300- 3
| v = SGDM 10! = NGN-M 10
4 SGDM 10" NGN-M 10"
o] W 10
2 v SGDM 10 NGN-M 10! 200

NGN-M 10

™
]
s

102 SGDM 10
200-

10°
1072

Train Loss

)
L

Frequency
Frequency

S
8

s
g
Function Value

=3
8
Function Value

=
1

0 40 80 120 160 200 0 40 80 120 160 200 I
Iterations Iterations]

0 0 0 0 10 20
r 110 Ver. 21 10° Parameter = Parameter «
r 110 Ver.21r 10°
r 1010 Ver.2ir 10"
v 110 Ver.2ir 10"

SGOMIr 107 - NGN Ir 10° NGN-M Ir 10
SGDM Ir 10 -~ NGN Ir 10* NGN-M Ir 10*
SGDMIr10' - NGNIr 1o NGN-M I 10°
SGDM Ir 10" %~ NGN Ir 10" NGN-M Ir 10"

s554a

Figure 1: First: Comparison of SGDM, NGN, NGN-M for linear regression on normalized Diabetes
dataset varying a step-size hyper-parameter. Second: Comparison of two options on how momen-
tum can be used in combination with NGN step-size. Third and fourth: The distribution of the

po
Se

sition of the last iterate after 1000 iterations of SGDM and NGN-M on the function described in

Al

1
2
3:
4

AR

ction 3.2.
gorithm 1 NGN-M
: Input: 27! = 20 € R?, step-size hyper-parameter ¢ > 0, momentum parameter 3 € [0, 1)
:fork=0,1,..., K —1do

Sample batch Sy, C [n] and compute fs, and V fs, (z¥)

— (&
Compute Yk = 1+Wuvfsk(zk)”2
Update ¥+ = 2% — (1 — B) vV fs, (2F) + B(aF — 2k~ 1)
end for

where 3, € R?*? is a diagonal matrix that penalizes each parameter with its weight while in
vanilla NGN the penalization is the same for all parameters, and f is an objective function we aim

to

minimize. Performing simple derivations we obtain the following update rule

Pl = ok — 3 B IV f(2F) where =

(8]
T srem IVFEOIL 3)

The derivations of the update rule (3) are deferred to Appendix E. By appropriately choosing 35 we
obtain a diagonal version of NGN step-size. Note that by choosing X, to be an identity matrix, the
step-size 7y in (3) reduces to vanilla NGN step-size.

A

possible choice of 3 is a RMSprop preconditioner. When combined with momentum, this

results in a more practical algorithm, which we refer to as NGN-MDv1. (Alg. 2). From an empirical
evaluation of NGN-MD in Figure 2, we observe that this choice improves the performance of NGN-M
while maintaining robustness to step-size hyper-parameter.

Instead of relying on the minimizing the model in (2) we can follow a more straightforward ap-
proach. We can replace the gradient norm in NGN step-size by the j-th partial derivative to update

the j-th parameter. This leads to the update of the form X, 'V fs, (z*) where () % = ry](j) =

G

1+

D

p—— (Cv FEE? We name the algorithm with this choice of 35 as NGN-D. We believe that NGN-
2f(ak) 7Y

is the first algorithm that uses a Polyak-type step-size per coordinate while at least achieving the

standard O(1/v/ K) convergence rate under smoothness and bounded noise variance assumptions
(see Theorem 2). Even though the convergence guarantees of NGN-D are interesting on its own, we

de
to

fer the detailed NGN-D description and its convergence to Appendix C as the resilience of NGN-M
the step-size hyper-parameter tuning is the main focus of the paper. A more detailed discussion on

the two versions of NGN-MD algorithms is deferred to Appendix E.1 together with the computation

CcO

4

4.

st of their step in Appendix E.2.

THEORETICAL ANALYSIS OF NGN-M

1 PROBLEM FORMULATION AND NOTATION

We consider the classic Empirical Risk Minimization (ERM) problem that typically appears when
training machine learning models, namely,

min [f(2) = LS ()], 0

zER4

Under review as a conference paper at ICLR 2025

Algorithm 2 NGN-MD
0

1: Input: 2° € R?, step-size hyper-parameter ¢ > 0, momentum parameters (3;, 32 € [0,1),
stabilization parameter € > 0

2: fork=0,1,..., K — 1do

3: Sample batch Sk C [n] and compute fs, and V fs, (z%)

4: Compute v* = Bovk1 4 (1 — B2)(Vfs, (%) © Vs, (zF))

5: Compute Dy, = diag(el + /v*¥/(1 — 85))

6 Compute v, = <

c only for NGN-MDv1
T e TV s @, Y

7: Compute E;l = ka,zl for NGN-MDv1
. -1 _ 3 c/(Dg)))

8: Compute X, = diag <1+2fsk(wk;'(Dk)(j) (Vifsh, (wk))2) for NGN-MDv2

9: Update zF+1 = 2% — (1 — 1), 'V s, (zF) + B (aF — 2F~1)

10: end for

where x are the parameters of a model we aim to train, n is the number of data points in the dataset, d
is the number of parameters, and f; represents the loss associated with the i-th data point/batch. We
assume that each f; is differentiable and non-negative® and that the global optimal value is bounded,
ie. f* = argmin, f(z) € R. Moreover, we assume that we have access to mini-batch stochastic
losses fg during training such that f% := argmin, fs(z) < oo forany S C [n] picked uniformly at
random.

Next, we provide the definitions that are frequently used in the analysis.
Definition 1. The function ¢: R? — R is convex if for all z,y € R? we have

(Vf(@),y—=) = f(z) - f(y). (5)
Assumption 1. We assume that the mterpolatlon op = Es[f* — f&] and positive o2, = Es[f$]

errors are bounded by real numbers o2, and apos correspondmgly

Convexity and the aforementioned noise structure are commonly used assumptions in the context
of Polyak-like step-sizes (Loizou et al., 2021; Orvieto et al., 2022; Jiang & Stich, 2024; Orvieto &
Xiao, 2024; Oikonomou & Loizou, 2024; Schaipp et al., 2024). We say that the interpolation holds
if a?nt =0.

4.2 CONVERGENCE GUARANTEES

Theorem 1. Assume that each f; is convex and L-smooth and that Assumptlon 1 holds. Let the
step-size hyper-parameter ¢ > 0 and the momentum parameter 3 = be constants where A <

1+A
min{cL,0.5(1 + ¢L)~*(1 + 2cL)~'}. Then the iterates of NGN-M (Alg. 1) satisfy
K— « O*12 2 c2 ¢
E[f@) - fla")] < Ll 4 s0Lo2 4 1280 max {2zt 0f o2, (©)
where T5 1 is chosen uniformly at random from {20, 2K-1 p= W‘m Moreover, if

we set ¢ = O(Y/VE) then we obtain E [f(7"~1) = [(27)] < O(/VE).

In more detail, we observe that (i) NGN-M converges with the same rate as SGDM (Garrigos &
Gower, 2023) in the convex setting. The analysis is performed under standard smoothness and
convexity assumptions. In contrast, convergence guarantees in previous works that combine SPS
and momentum require strong assumptions such as bounded gradients and interpolation, or bounded
domain. (i¢) NGN-M converges to the exact solution while algorithms such as MomSPS and ALR-
SMAG were shown to converge up to a non-vanishing neighborhood of the solution only*. Notably,
the non-vanishing neighborhood disappears when the problem satisfies interpolation. We refer to
Table 1 for more details and exact rates. (i) The step-size hyper-parameter c is not constrained to

3Common losses, e.g. cross-entropy, satisfy this condition.
*In fact, this is an inherited property of SPS analysis from (Loizou et al., 2021).

Under review as a conference paper at ICLR 2025

be on the order of O(1/L), as is commonly required in the analysis of gradient-based algorithms. (4v)
Finally, in the special case where momentum is absent, i.e. A = 0, there are no requirements on the
step-size hyper-parameter ¢, similarly to the results by Orvieto & Xiao (2024), which shows the
tightness of our analysis.

The convergence theory and detailed algorithm description of NGN-D are deferred to Appendix C.
We highlight that to the best of our knowledge, NGN-D is the first algorithm that uses a diagonal
Polyak-type step-size and attains the standard convergence rate for general non-convex functions
under the Polyak-t.ojasiewicz condition.

4.3 KEY INGREDIENTS OF THE PROOF

We discuss the key steps of the proof to highlight the main challenges in the analysis.

First, we make use of the Iterative Moving Average (IMA) formulation of momentum (Sebbouh
et al., 2021). Specifically, we define a sequence of virtual iterates {2*} whose update rule is of the
form

1 , 1 A ko 1 k4l) A
P =ab — Vs, (ab), 28 = 2saf 4 2525 where 20 =20 and f = 2. (7)

Next, one of the key technical strategies we follow is splitting the step-size -y into two parts: a

non-adaptive term p = 757z = O(c) and an adaptive term 75 < fﬁfL = O(c?). In
the analysis, this decomposition of the step-size ~;, enables us to regulate the balance between the
descent term, which drives improvement in the objective, and the error term, which reflects possible
inaccuracies. More precisely, the descent term is weighted by ¢ while the error term proportional to
o2, is weighted by c?, which suggests that ¢ has to be chosen to trade off the two terms to lead to the
exact convergence similarly to the standard analysis of SGD (Garrigos & Gower, 2023). In contrast,

MomSPS and Momo algorithms achieve the exact convergence only under the interpolation regime.

5 EXPERIMENTS

We now turn to the empirical evaluation of the proposed algorithms against several benchmarks.
The detailed experiment setup, including the choice of hyper-parameters as well as additional ex-
perimental results and details, can be found in Appendix G. The best performance of algorithms
is reported in Tables 3 (momentum-based algorithms), 4 (algorithms with momentum and diagonal
step-size), and 5 (algorithms with diagonal step-size).

5.1 COMPARISON OF ALGORITHMS WITH MOMENTUM

First, we test the performance of NGN-M against other methods that use momentum such as SGDM,
Momo (Schaipp et al., 2024), MomSPS (Oikonomou & Loizou, 2024), and ALR-SMAG (Wang et al.,
2023), and NGN (Orvieto & Xiao, 2024) (which already exhibits a high degree of robustness without
momentum). The tests include the training of Resnet20 (He et al., 2016) and ViT (Dosovitskiy et al.,
2021) on CIFARI10 dataset (Krizhevsky et al., 2009), and Resnetl 10 on CIFAR100 dataset. All
experiments in this section do not use learning rate schedulers or weight decay.

First, from Table 3 we observe that the best performance of NGN-M matches the results of other
algorithms (the interval of one standard deviation of validation score of NGN-M always intersects
with the interval of the best algorithm). This demonstrates that tuned NGN-M exhibits competitive
performance across all settings we tested. Importantly, NGN-M demonstrates significantly greater
robustness to the choice of the step-size hyper-parameter. Indeed Figure 2 shows that the range
of step-size hyper-parameters that allows NGN-M to perform optimally is much wider. We can
for instance use step-sizes that are 1-2 orders in magnitude larger than the optimal one without a
significant drop in the performance. This is particularly evident during the training of Resnet20 and
ViT. Besides, we clearly observe that momentum consistently improves the stability of NGN across
all settings. We refer to Appendix G.2 for the train loss stability and to Appendix G.5 for additional
comparison against Lion, Adabound, and Adabelief, and to Appendix G.10 for the results in training
NLP models.

Under review as a conference paper at ICLR 2025

NGN SGDM Momo NGN-M

100 80 100
> > >

S 8 8 80
5 5 60 5

S 60 S S 60

% 40 e E, 40

S 20 g 20 T 20
i i i«

g 102 10° 10? g 102 10° 10° 015 10° 10! 107
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10
Adam Momo-Adam NGN-MDv1 NGN-MDv2

80 100
850 z z

c O © 80
Seo g% 3

< g 2 60
s =40 =

0 40 0 D40
= [@

2% e g 2
[[i= [

0105 10-1 1079 102 10 10" 10 102 015- 1073 107! 101 0 g 10°° 102
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10

Figure 2: Stability performance of algorithms varying step-size hyper-parameter (¢ for NGN-M,
NGN-MDv1 and NGN-MDv2, oy for Momo and Momo-Adam, and step-size for SGDM and Adam).
For NGN-M and NGN-MDv1, we observe that the range of the step-size hyper-parameters that provide
competitive performance is wider than that for other algorithms. We refer to Figures 7 to 9 and 11
to 13 for train loss stability and for the results on additional workloads.

5.2 COMPARISON OF ALGORITHMS WITH MOMENTUM AND DIAGONAL STEP-SIZE

Next, we test the performance of NGN-MDv1 and NGN-MDv2 against other methods that use both
momentum and diagonal step-size such as Adam and Momo-Adam (Schaipp et al., 2024). We use
the same set of workloads as in Section 5.1. All experiments in this section do not use any learning
rate schedulers or weight decay.

Again, in Table 4 we observe that NGN-MDv1 always matches the performance of the best optimizer
while NGN-MDv2 is slightly worse in the training of both Resnet models and LSTM models, but
better in the training of ViT. On top of this, NGN-MDv1 outperforms other competitors in terms of
stability w.r.t. step-size hyper-parameter tuning. The results in Figure 2 showcase that, for NGN-
MDv1, we can use a step-size hyper-parameter 1-2 orders of magnitude larger without noticeably
hurting the performance. In contrast, competing optimizers do not exhibit a competitive performance
for large step-size hyper-parameters. We refer to Appendix G.3 for the train loss stability results and
to Appendix G.5 for the additional comparison against Lion, Adabelief, and Adabound.

5.3 VISION EXPERIMENTS ON IMAGENET

Having observed promising results on workloads of small and medium size, we switch to larger
tasks and datasets. We first train a ResNet18 on ImageNetlk (Deng et al., 2009). This represents
the first task in which we pair our proposed algorithms with a learning rate schedule. As illustrated
in Figure 3 and Table 3, NGN-M achieves the highest validation accuracy, while exhibiting higher
robustness across larger step-sizes, improving over both NGN and Momo. Among adaptive methods,
NGN-MDv1 compares favorably against Adam and MomoAdam, while once again achieving higher
performance on a wider range of learning rates (Table 4). Appendix G.4 reports additional ablations
on ImageNet32 and train loss stability results.

We then test the effectiveness of the proposed algorithms on vision transformers (Dosovitskiy et al.,
2021). These models are trained for longer horizon compared to convolutional architectures, are no-
toriously sensitive to initial learning rate, and require adaptive step-sizes. We follow the protocol of
Schaipp et al. (2024), which includes cosine annealing, but without any weight decay regularization.
As highlighted in Figure 3 and Table 4, NGN-MDv1 achieves the highest validation accuracy across
adaptive methods. Moreover, at a larger learning rate, Adam diverges, whereas both MomoAdam
NGN-MDv1 maintain more stable training dynamics.

Under review as a conference paper at ICLR 2025

7
360 260 ol
© o O 60
<40 SGD <40 <40
? NGN it Adam B39
g 20 SGDM e 20 Momo-Adam EJ 20 Adam
© Momo © NGN-MDv1 o Momo-Adam
C f=s C
i NGN-M i NGN-MDv2 i 10 NGN-MDv1
(Jl()’2 107! 10° 10! 10? (}10’:’ 1074 1073 102 10~ ['10"'\ 1073 1072
Stepsize Stepsize Stepsize
Resnet18 for ImageNet1k Resnet18 for ImageNet1k ViT-tiny for ImageNetlk

Figure 3: Stability performance on ImageNetlk varying the step-size hyper-parameter. NGN-M and
algnameNGN-MDv1 achieve higher accuracy for a wider range of the step-size hyper-parameters.
We refer to Figure 10 for results on train loss stability and additional results on ImageNet32.

Adam Momo-Adam NGN-MDv1

w
o

w

3

w
3

Validation Perplexity
w N
o
=3

&
Validation Perplexity
B
Validation Perplexity

e — = = o
I B) =)
i

)

1073 102 10°° 1072 1072

Stepsize Stepsize Stepsize

70M Transformer++ 160M Transformer++ 420M Transformer++

))]
3 S ot

Validation Perplexity
o
(=}

-
=

108 100
FLOPs

Scaling Laws

Figure 4: Language Modeling on SlimPajama. First row: stability comparison with respect to the
step-size hyper-parameter across different model sizes and optimizers. At all model capacities, NGN-
MDv1 achieves the lowest perplexity, showing better stability and improved performance at larger
learning rates. Second row: the scaling laws for the three algorithms, highlighting the effectiveness
of NGN-MDv1 over Adam and Momo-Adam across all tested scales.

5.4 LANGUAGE MODELING

Pre-training Large Language Models represents a challenging optimization task. To achieve com-
petitive performance, optimizers with adaptive step-size are needed, and preventing instabilities in
low-precision training often requires careful hyper-parameter tuning.

To evaluate the capability of NGN-MDv1 in this setting, we train decoder-only transformers (Radford
et al., 2019) with 70M, 160M, and 420M parameters around Chinchilla optimum (Hoffmann et al.,
2022) on SlimPajama-627B (Soboleva et al., 2023). For each model, we retune the learning rate,
using 3 seeds for the first two models and 1 seed for the 420M. Appendix G provides additional
details about the training and tokenization pipeline.

Figure 4 and Table 4 report the final validation perplexity of the three medium-scale Language
Models, as well as scaling laws for different optimizers. We note that both NGN-MDv1 and Momo-
Adam match the performance of Adam at its optimal learning rate of 3 - 10~3. However, at larger
step-size 10~2, Momo and Adam face unrecoverable instabilities, whereas, as reported in Figure 21,
NGN-MDv1 remains stable throughout training. This phenomenon is consistent across all scales we
tested, suggesting that the optimal learning rate of NGN-MDv1 is shifted towards larger values, but
also that the algorithm is less sensible to such hyper-parameter.

In addition to the findings presented in this section, Appendix F discusses how to introduce weight
decay in NGN-MDv1, and reports additional ablations on its role in this training task.

Under review as a conference paper at ICLR 2025

10.0 — 316

0.0001 —— 0.000316

0.001 —— 0.00316

001 —— 0.0316

Effective Stepsize

!'h
ﬁm"“'ﬂlﬂ

Effective Stepsize

"
2

iy

e~

1ze

=)
&

Effective Steps

Effective Stepsize

107!

— o
15 =)

s

—

5 10 15 2
Iterations, x10*

Momo

)
L

5 10
Iterations, x10%

NGN-M

15 2

=)
1

5 10 15
Iterations, x10*

Momo-Adam

>
&

5 10 15
Iterations, x10*

NGN-MDv1

Figure 5: The step-size of Momo, NGN-M (two left), Momo-Adam and NGN-MDv1 (two right)
during the training of ViT on CIFAR10. We demonstrate the step-sizes 7, for Momo and Momo-
Adam and -y, for NGN-M and NGN-MDv1 varying step-size parameters g and c correspondingly.
We refer to Figures 14 and 15 for the results in training Resnet20.

5.5 CONVERGENCE TO FLATTER MINIMA

Following the discussion in Section 3.2, we conduct a similar evaluation when training a Resnet20
network; see results in Figure 16. We use a code base from Golmant et al. (2018). In particular, we
evaluate the test and training loss at the final point reached by NGN-M and SGDM along the eigen-
vectors corresponding to the first two largest by-magnitude eigenvalues. Increasing the step-size
hyper-parameter of NGN-M leads to convergence to flatter minima at the same test and training loss
levels. This fact explains why a larger step-size hyper-parameter does not hurt training. Conversely,
SGDM diverges for a large step-size value. We additionally demonstrate the evolution of the spec-
trum during the training with NGN-M and SGDM in Figures 19 and 20. We refer to Appendix G.8
for a more detailed description of the observed phenomenon.

5.6 EFFECTIVE STEP-SIZE OF NGN-M AND NGN-MDv1

The first observation from the results in Figure 5 is that the effective step-size of NGN-M and NGN-
MDv1 is always adaptive: if the step-size hyper-parameter c is large enough the effective step-size
sharply increases in the beginning up to a peak, and then it gradually decreases till the end of the
training. From this perspective, NGN-M and NGN-MDv1 step-sizes are close to annealing step-size
schedulers widely used in practice. In contrast, the effective step-size of Momo and Momo-Adam is
not adaptive for sufficiently large step-size hyper-parameter cg during the initial part or all of the
training. In other words, these algorithms reduce to SGDM and Adam which is one of the reasons
for the reduced resilience property of Momo and Momo-Adam in comparison with NGN-M and NGN-
MDv1. The effective step-sizes in training Resnet20 are provided Figures 14 and 15.

6 CONCLUSION AND FUTURE WORK

This work introduced several novel adaptations of the NGN step-size method, incorporating support
for momentum and/or diagonal step-size. We provided a theoretical analysis of the convergence
rates for these algorithms and conducted an extensive empirical evaluation of their performance. The
experimental results show that combining momentum with the NGN step-size yields high robustness
to step-size hyper-parameter choices and performs competitively with state-of-the-art algorithms
across various settings.

Given the significant complexity of the task, we defer the theoretical explanation of the step-size
resilience properties of NGN-M and analysis in the non-convex setting to future work. Further-
more, while the two proposed methods for incorporating weight decay into NGN-MDv1 outperform
AdamW and Momo-AdamW in training language models, they still exhibit some sensitivity to the
step-size hyper-parameter. This may, in part, be due to the limited understanding of the expected
effects of the weight decay technique, a topic that requires further investigation. Finally, one might
question the reasons behind the improvements of NGN-MDv1 over Adam, which could stem from
the sub-optimal use of momentum in Adam, a direction deserving further exploration.

10

2

Under review as a conference paper at ICLR 2025

REFERENCES

Maksym Andriushchenko, Francesco D’ Angelo, Aditya Varre, and Nicolas Flammarion. Why do
we need weight decay in modern deep learning? arXiv preprint arXiv:2310.04415, 2023. (Cited
on pages 28 and 30)

Mathieu Barré, Adrien Taylor, and Alexandre d’ Aspremont. Complexity guarantees for polyak steps
with momentum. In Proceedings of Thirty Third Conference on Learning Theory, 2020. (Cited on
page 2)

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, 2018. (Cited on pages 3 and 17)

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shiv-
anshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. Gpt-neox-20b:
An open-source autoregressive language model. arXiv preprint arXiv: 2204.06745, 2022. (Cited
on page 31)

Raghu Bollapragada, Tyler Chen, and Rachel Ward. On the fast convergence of minibatch heavy
ball momentum. arXiv preprint arXiv:2206.07553, 2022. (Cited on page 2)

Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv preprint
arXiv:2309.16620, 2023. (Cited on page 2)

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.
(Cited on page 1)

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 2024. (Cited on page 33)

Dami Choi, Christopher J Shallue, Zachary Nado, Jachoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019. (Cited on page 1)

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 2023. (Cited
on page 1)

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065,
2021. (Cited on page 37)

Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,
Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive
gradient methods at the edge of stability. arXiv preprint arXiv:2207.14484, 2022. (Cited on
page 37)

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International confer-
ence on machine learning. PMLR, 2020. (Cited on pages 1 and 2)

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 2019. (Cited on pages 1 and 2)

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition.
Teee, 2009. (Cited on page 8)

11

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021. (Cited on pages 7 and 8)

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 2011. (Cited on page 33)

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtarik. Momentum provably improves error feed-
back! Advances in Neural Information Processing Systems, 2024. (Cited on page 1)

Jingwen Fu, Bohan Wang, Huishuai Zhang, Zhizheng Zhang, Wei Chen, and Nanning Zheng. When
and why momentum accelerates sgd: An empirical study. arXiv preprint arXiv:2306.09000, 2023.
(Cited on page 1)

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023. (Cited on pages 6, 7, 17, 19, and 22)

Noah Golmant, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez. pytorch-
hessian-eigenthings: efficient pytorch hessian eigendecomposition, 2018. URL https://
github.com/noahgolmant /pytorch-hessian-eigenthings. (Cited on page 10)

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. (Cited
on page 2)

Robert Gower, Othmane Sebbouh, and Nicolas Loizou. Sgd for structured nonconvex functions:
Learning rates, minibatching and interpolation. In International Conference on Artificial Intelli-
gence and Statistics, 2021. (Cited on page 3)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
(Cited on page 7)

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Lecture notes, 2012. (Cited on page 1)

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural Computation, 1997.
(Cited on page 32)

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556. (Cited on page 9)

Rustem Islamov, Yuan Gao, and Sebastian U Stich. Near optimal decentralized optimization with
compression and momentum tracking. arXiv preprint arXiv:2405.2011, 2024. (Cited on page 1)

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerat-
ing stochastic gradient descent for least squares regression. In Conference On Learning Theory,
2018. (Cited on page 2)

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, 2022. (Cited on page 1)

Xiaowen Jiang and Sebastian U Stich. Adaptive sgd with polyak stepsize and line-search: Robust
convergence and variance reduction. Advances in Neural Information Processing Systems, 2024.
(Cited on pages 2 and 6)

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv: 2001.08361, 2020. (Cited on page 31)

12

https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

Under review as a conference paper at ICLR 2025

Andrej Karpathy. char-rnn. https://github.com/karpathy/char—rnn, 2015. (Cited on
page 32)

Andrej Karpathy. Nanogpt. https://github.com/karpathy/nanoGPT, 2022. (Cited on
pages 31 and 32)

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. (Cited on pages 1 and 33)

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Scientific Report, 2009. (Cited on page 7)

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
The Eleventh International Conference on Learning Representations, 2023. (Cited on page 3)

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. arXiv preprint
arXiv: 2402.19449, 2024. (Cited on page 3)

Kiwon Lee, Andrew Cheng, Elliot Paquette, and Courtney Paquette. Trajectory of mini-batch mo-
mentum: batch size saturation and convergence in high dimensions. Advances in Neural Infor-
mation Processing Systems, 2022. (Cited on page 2)

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assump-
tions. Advances in Neural Information Processing Systems, 2024. (Cited on page 1)

Shuang Li, William J Swartworth, Martin Taka¢, Deanna Needell, and Robert M Gower. Sp2: A
second order stochastic polyak method. arXiv preprint arXiv:2207.08171, 2022. (Cited on page 3)

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, 2021. (Cited on pages 1, 2, 3, and 6)

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:
1711.05101, 2019. (Cited on page 28)

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019. (Cited on page 33)

Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. arXiv preprint
arXiv:1810.06801, 2018. (Cited on pages 1 and 2)

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proceedings of 4th International Conference on Learning Representations (ICLR
2016), 2016. (Cited on page 32)

Tomas Mikolov, Martin Karafiit, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. Recur-
rent neural network based language model. Proceedings of the 11th Annual Conference of the
International Speech Communication Association, INTERSPEECH 2010, 2010. (Cited on page 32)

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on adam instability in large-
scale machine learning. arXiv preprint arXiv:2304.09871, 2023. (Cited on page 1)

Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
Advances in Neural Information Processing Systems, 2022. (Cited on page 3)

Dimitris Oikonomou and Nicolas Loizou. Stochastic polyak step-sizes and momentum: Conver-
gence guarantees and practical performance. arXiv preprint arXiv:2406.04142, 2024. (Cited on
pages 2,3,4,6,7,and 17)

Sharir Or, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900, 2020. (Cited on page 1)

13

https://github.com/karpathy/char-rnn
https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2025

Antonio Orvieto and Lin Xiao. An adaptive stochastic gradient method with non-negative gauss-
newton stepsizes. arXiv preprint arXiv: 2407.04358, 2024. (Cited on pages 1, 2, 3, 4, 6, 7, 17,
and 18)

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution. Advances in Neural
Information Processing Systems, 2022. (Cited on pages 2 and 6)

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the ACL, 2005. (Cited on page 32)

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. NIPS 2017 Workshop Autodiff, 2017. (Cited on page 30)

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 1964. (Cited on pages 1 and 2)

Boris T Polyak. Introduction to optimization. New York, Optimization Software, 1987. (Cited on
page 2)

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. Technical report, OpenAl, 2019. (Cited on page 9)

Peter Richtérik, Simone Maria Giancola, Dymitr Lubczyk, and Robin Yadav. Local curvature de-
scent: Squeezing more curvature out of standard and polyak gradient descent. arXiv preprint
arXiv:2405.16574, 2024. (Cited on page 3)

Samer Saab, Shashi Phoha, Minghui Zhu, and Asok Ray. An adaptive polyak heavy-ball method.
Machine Learning, 2022. (Cited on page 2)

Mher Safaryan and Peter Richtdrik. Stochastic sign descent methods: New algorithms and better
theory. In International Conference on Machine Learning, 2021. (Cited on page 17)

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M. Gower. MoMo:
Momentum models for adaptive learning rates. In Proceedings of the 41st International Confer-
ence on Machine Learning, 2024. (Cited on pages 1, 2, 3,4, 6,7, 8, and 31)

Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochas-
tic gradient descent and stochastic heavy ball. In Conference on Learning Theory, 2021. (Cited on
pages 7 and 17)

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv: 2002.05202, 2020. (Cited
on page 31)

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. (Cited on page 31)

J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes. Using the adap learn-
ing algorithm to forecast the onset of diabetes mellitus. In Symposium on Computer Applications
and Medical Care, 1988. (Cited on page 4)

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. (Cited on
pages 9 and 31)

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. (Cited on page 31)

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and

Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, 2021. (Cited on page 1)

14

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint arXiv: 2302.13971, 2023. (Cited on pages 1 and 31)

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between
the upper bound and lower bound of adam’s iteration complexity. Advances in Neural Information
Processing Systems, 2024. (Cited on page 1)

Jun-Kun Wang, Chi-Heng Lin, Andre Wibisono, and Bin Hu. Provable acceleration of heavy ball
beyond quadratics for a class of polyak-lojasiewicz functions when the non-convexity is averaged-
out. In International conference on machine learning, 2022. (Cited on page 2)

Xiaoyu Wang, Mikael Johansson, and Tong Zhang. Generalized polyak step size for first order
optimization with momentum. In International Conference on Machine Learning, 2023. (Cited
on pages 2, 3, 4, and 7)

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 2020. (Cited on page 18)

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. (Cited on page 31)

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 2017. (Cited on page 1)

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023. (Cited on page 1)

Lechao Xiao. Rethinking conventional wisdom in machine learning: From generalization to scaling.
arXiv preprint arXiv: 2409.15156, 2024. (Cited on pages 28 and 30)

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural net-
works via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022. (Cited on
page 2)

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023. (Cited on page 2)

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. (Cited on page 31)

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281, 2018. (Cited on page 28)

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019. (Cited
on page 3)

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 2020. (Cited on page 3)

Qi Zhang, Yi Zhou, and Shaofeng Zou. Convergence guarantees for rmsprop and adam
in generalized-smooth non-convex optimization with affine noise variance. arXiv preprint
arXiv:2404.01436, 2024a. (Cited on page 1)

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-

pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022. (Cited on page 1)

15

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2025

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024b. (Cited on
page 3)

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In Advances in Neural Information Processing Systems, 2020. (Cited on page 33)

16

Under review as a conference paper at ICLR 2025

A EQUIVALENT FORMULATIONS OF NGN-M

We remind that the iterates of NGN-M are the following
P = 2k — (1= BV fs, (a8) + Blak — 2t 1)

_ k(1 _ ¢ k E k-1
= O D s e o) A =,

We can rewrite the update rule using Iterative-Moving Average (IMA) approach presented in Propo-
sition 1.6, Sebbouh et al. (2021).

Lemma 1 (Proposition C.8 (Oikonomou & Loizou, 2024), Lemma 7.3 in (Garrigos & Gower,
2023)). The iterates {z*} generated by NGN-M are equivalent to the sequence {z*} generated by
IMA update

A 1
A N A e Gl s w (8)
where)
8= oY 2P = P NPT — %), and 27! =20 =20, 9)

Proof Let the sequences {z*} and {z*} be defined according to Equation (8). Let 3 be defined as
T + 5> Then we have
A 1
k+1 k k+1
v A T
A N 1

—=
14+ A 1+
A

1 ~
1A i e + A2k = APt =V fs, (2))

1
ok k
=T -1 +)\7kvfsk($)+

(=" =V s, (a"))

k_ k-1
1+>\($ 570,

It remains to use Equation (9) as we have 8 = Hi)\ andl1—fB=1-— 1+/\ %

B TECHNICAL LEMMAS AND DEFINITIONS

Definition 2. We say that the function ¢ admits L-smooth with parameters L := (L1,...,Ly), L; >
0Vj € [d], if the following inequality holds for all =, h € R?

¢ (z+h) < ¢(x)+ (Vo(z),h) + $hLh. (10)
Remark 1. If we set for all j € [d] L; := L then Definition 2 reduces to standard L-smoothness.

This assumption is typically used in the context of coordinate adaptive algorithms such as Sign SGD
(Bernstein et al., 2018; Safaryan & Richtérik, 2021).

Definition 3. The function ¢: R? — R satisfies PEL-condition with constant ;. > 0 if for all =,y €

R¢ we have
IV ()12 = 2u(f(z) — f*). (11)

Assumption 2. We assume that the coordinate-wise variance of the stochastic estimator is bounded,
ie. forall v € R% and j € [d] we have

s [[(Vfs(x) = Vif(x)]?] <o (12)

Lemma 2 (Lemma 4.9 from (Orvieto & Xiao, 2024)). Let each f; be L-smooth for all ¢, then the
step-size of NGN satisfies

(13)

C
Vi € |:1+CL7C:| .

17

Under review as a conference paper at ICLR 2025

Lemma 3 (Lemma 4.2 from (Orvieto & Xiao, 2024)). Let each f; be L-smooth for all ¢, then the
iterates of NGN satisfy

4cL 2cl —1
1+2¢ " %L+ 1’

Lemma 4 (Gradient Upper Bound). Let ¢: R? — R satisfy Definition 2. Then, for all z € R¢ and
all j € [d] we have

27 £, ()2 < (Fon @) = £5) + L tnax olre. e
Yk Sk y Sk Sk 1+ cL Sk

2L;(f(x) — f*) > (V;f(x)). (15)

Proof. From Definition 2 we have

L;
f min, f(z) < }rl?géf(x—khje]) < f(x)+}rl?é% {ij(x)h] +5 hj} .

Now we can explicitly compute the minimum in the right-hand side. The optimal value is achieved
at

. 1
therefore,
S f@)+ Vi@ + 205

_ L v e £ L (v re))?

= @)= (VT @) + 5 (V@)

— 1 2

= [f(z) ﬁj(v]f(x)))
which equivalent to the statement of the lemma. O

C CONVERGENCE OF NGN-D

First, we provide NGN-D pseudocode and the main convergence results.

Algorithm 3 NGN-D

1: Input: 2° € R?, step-size parameter ¢ > 0
2: fork=0,1,..., K — 1do
3: Sample batch Sy, C [n] and compute fs, and V fs, (z¥)

4: Compute 7,2‘7) = <

1+W (Vjfsy (zF))?
5: Update .
ait = afy =)V fs. ()
6: end for

Theorem 2. Let each f; satisfies Definition 2. Assume that Assumption 2 holds. Then the iterates
of NGN-D (Alg. 3) with step-size parameters {c; };l:l such that c¢; < 1/2L; satisfy

d

. 12(f(2%) — f*) | 1

ky (|2 2 2
JDin, E IV < ok too ;18chjaj, (16)
where Cpin = minjeq ¢;. Moreover, if ¢; = O(e?) for all j € [d] then after K = O(e~*) we

. : k(2 2
obtain 0;1}161<nKIE [IVf(z*)]?] < O(e?).

NGN-D converges with classic rate O(1/vK) similar to Adagrad (Ward et al., 2020). We highlight
that, to the best of our knowledge, NGN-D is the first algorithm that uses diagonal Polyak-type
stepsize and converges under standard smoothness and bounded variance assumptions without re-
quirements of bounded gradients and interpolation.

18

Under review as a conference paper at ICLR 2025

Theorem 3. Let f satisfies PE-condition and each f; satisfies Definition 2. Assume that Assump-
tion 2 holds. Then the iterates of NGN-D (Alg. 3) with step-size parameters {c; }?:1 such that

¢; < min{l/2r;,6/u} satisfy

d
* * 9
E [£() = 1] < (U= peanfo) S (F(a%) =) + - ST Lo, (17)
min]:1
where cnin = minjciq cj. Moreover, if ¢; = Ole) for all j € [d] then after K =

max{O(e~1),0(1)}loge~! iterations we obtain E [f(z) — f*] < O(e).

To the best of our knowledge, this is the first result of the convergence of the Polyak-like step-size
algorithm under the PL-condition. The convergence guarantees are similar to that of SGD (Garrigos
& Gower, 2023).

Now we are ready to derive the step-size bounds.

Lemma 5 (Step-size Bounds). Let fgs, (z): R? — R be a stochastic loss of batch S}, at iteration k.
Let fs, () satisfy Definition equation 2. Consider 'yj’? as in NGN-D (Algorithm 3), then we have

k Cj
. . 18
,y.] E |:1 +Cij7c]:| ()

Proof. From Lemma 4 we have 2L, (fs, (z¥) — f5.) > (Vjfs, (x%))2. Since we assume that each
f&, >0, then 2L; fs, (2%) > (V; fs, («*))?, or equivalently,

(Vifs (@) _

0< <L,.
2fs, (1‘) !
Therefore, for all j € [d] we have
k Cj G
Y = Cj < = Cj,
Tt g (Vifs (29)2 7 1 !
and
«'}/k = - € >)
Tl g o (Vifs (@)? T 1+ oLy
that concludes the proof. O

Lemma 6 (Fundamental Equality). Consider ’yJ’? as in NGN-D (Algorithm 3). Then the following
equality holds

k

Y (V;fs, (a¥)? =2 (Cj —) fs. (). (19)

Cj
Proof. From NGN-D (Algorithm 3) we have

(1 b s (Vs <xk>>2) V=,

which one can rewrite as
Cj k\\2,. k k
\va i — e — AR
2fSk (.’L‘k)(]fsk(x)) 7] CJ 7]

2fS;é(zk) D

J

It is left to divide both sides by

19

Under review as a conference paper at ICLR 2025

C.1 CONVERGENCE IN GENERAL NON-CONVEX SETTING

Theorem 2. Let each f; satisfies Definition 2. Assume that Assumption 2 holds. Then the iterates
of NGN-D (Alg. 3) with step-size parameters {c; }?:1 such that c¢; < 1/2L; satisfy

0
min E [[VF@)P] < 2LE0) - ZlSLJ 3202, (16)

0<k<K cminK len i=1

where ¢uin ‘= minje(q ¢;. Moreover, if ¢; = O(e?) for all j € [d] then after K = O(e™*) we
obtain_min_ E [||V f(z*)[]?] < O(?).
0<k<K

Proof. First, we write separable Definition 2

d
FE) = f@h) = flat =D Vfsab)e; | - fa")
j=1
d
< =) Vb)) A Vifs (@ ZL IVifs, (2"))?
=1
d
< =D Vi) AVt (a ZLJ (V,fs, (z))%. (20)
j=1

Note that both fyj’-“ and V, fs, (%) depend on the realization Sy, thus we can not directly apply

conditional expectation with respect to ¥, as in this case we would have to analyze the product
VEV fs. (z*). Given bounds of the step-size ¥ from Lemma 5, we can write the step-size as
follows 9

G o p Gl
1+Cij]1+Cij’

where y’“ € [0,1] is a random variable. Varying the value of VJ’? from 0 to 1 we cover the whole

W=

range of 7’“ Thus, we continue as follows
~ 1V, f @)V fs, ()
2

chJ y &
= —— LV, f@")V,fs, (zF) - I IV @)V fs (2F)

1+ 5L 14¢
S e Vil EVafe) £ I VIV)
2L
S T gr, VIV N+ VY @)

Now we use the inequality [ab| < $a® + 2b? + 1|a — b|?, and derive

2By [V, f(a*)V; fs,, («F)]] < Vi f (@) + By [V S5, (@F)P] + Bk [IV; f(2*) = Vi fs, («5)[?]
< 2|V, f (@) + 2By, [|V;f(a*) = Vi fs, (z")]
< 2|V, f(a")]> + 207,

Therefore, we get
2

—Ey, [V}V; f(z")V; fs, (z%)] < —%;;L_ij(xkﬂz ﬁ (IV;f(a®)] +0F)
_ (ol 2, Gl ,
_ (1+ = >|v SR+ el 21

20

Under review as a conference paper at ICLR 2025

We plug in equation 21 into equation 20 and get

d 2
L;c;
Ex [f@*)] = fa") < =) (e)V fs, (2")] + #Ek [Iijsk(xk)IQO
Jj=1
d 2
< L; i€
<y [e) 19,
j=1
2
i jLJ LjCj 02
1 + CjL 2 J ’
If ¢; i? we get
d c .CQ
k+1 k J ky(2 175 2
B (A - S < (ulvm P+ = aj>
O
We continue as follows
c ¢ c
B [f(@*)] — (%) < —FFIVIE)IP + }: Jf 22)
Taking full expectation and unrolling the recursion above for all iterations {0, ..., K — 1}. Thus,
we obtain
= 12 18 o
0 *
,in, B[V (" 2; (197 GHIP) < —=(7@) - f Cmn};LJJJ
If we choose each ¢; = 2L such that co,; < 57~ we ensure that ¢; < 57— as well. Plugging this
step-size into the bound we get
min E[|V£()) < mpo(73%) ~) + mog ijvcf? %
— €0,min €0,min 1%3
0<k<K N VE =1 K
12
< — " (f(z%) = F* Lo c ,
N CO,min\/?(f() f) Co, mm Z 07

where ¢o min = mhl;l] co,;- If we choose K = O(s~*) we get that

min E [|Vf(z")[*] = 0(1/VE) = O(?).

0<k<K

C.2 CONVERGENCE UNDER PL-CONDITION

Theorem 3. Let f satisfies PL-condition and each f; satisfies Definition 2. Assume that Assump-
tion 2 holds. Then the iterates of NGN-D (Alg. 3) with step-size parameters {c; }?:1 such that

¢; < min{l/2r;,6/u} satisfy

E [f(a®) = £] < (1 — neminf6) ¥ (f(20) —

ZLJ G J’ (17

,Ucmm A

where Cupin = minjeciq cj. Moreover, if ¢; = Olg) for all j € [d] then after K =
max{O(e~*),O(1)}loge™! iterations we obtain E [f(z5) — f*] < O(e).

21

Under review as a conference paper at ICLR 2025

Proof. We obtain equation 22 and use Definition 3

d
len 3L C
By [f(@*)] = fa¥) < = =22V AR + Z
HCmin k * d 3chj 2
<= (E) =)+ Y
j=1
Subtracting f* from both sides of the inequality above and taking full expectation we obtain
d
3L; c
E [f(z*T1) = f*] < (1 — nemin/6)E [f (2] + Z
Unrolling the recursion above for {0, ..., K — 1} iterations we derive
d 2
.) 1 9L 0%
E @) =] < (A= nemnfo)(£a%) =) 4 =3 = .
min j:].
Aj

Now we follow the proof of Lemma A.3 in Garrigos & Gower (2023). Let us choose ¢; =
min{l/2L;,¢/2dA,}. Together with the choice of K > max max { 1124, 12L; } log M

jeld] I
we get
€
(1 = mewinf0) (£(a0) =) < .
Now we have two cases:
1. cmin does not depend on ¢, then we have
A]CJ < 0O(£?).

len

2. Cmin does depend on ¢, i.e. cpin = (9(5) then we have

Ac < O(e).

cmln
Therefore, combining all together we get
E[f(®) —] < O(e)

. . 0 _— * . .
after K > rré?;](max {é 12:‘: , 12}#} log M iterations.
j

D CONVERGENCE OF NGN-M

Theorem 1. Assume that each f; is convex and L-smooth and that Assumptlon 1 holds. Let the
step-size hyper-parameter ¢ > 0 and the momentum parameter 3 = be constants where A <

1+A
min{cL,0.5(1 + ¢L)~*(1 + 2cL)~1}. Then the iterates of NGN-M (Alg. 1) satisfy
—K— * T — 2 C c2 C.
E [f(xK D~ f(z)] < < l=° p;{c [Lg'mt + %12+CLL max{gciﬁ,O} Tposs (6)
where TX 1 is chosen uniformly at random from {2°,... x5}, p = Wclﬂd) Moreover, if

we set ¢ = O(1/VK) then we obtain E [f(@* 1) — f(z*)] < O(YVE).
Remark 2. In fact, if A <
any xz > 0.

then it implies that A < - because 1 > (for

1 1
(14+cL)(1+2cL)> 1+z)(142z)

22

Under review as a conference paper at ICLR 2025

Proof. To prove the convergence of NGN-M we consider IMA formulation Equation (8):

A 1
—1 1
T _ ZO — $07 Zk+1 — l‘k o %stk (IL‘k), $k+ _ 7xk + Zk+1,

1+A 1+ A
AL = ghtl 4 \(2P T — 2F).

At iteration £ = 0 we have
2t=20— YoV fs, (ato) =20 — YoV fs, (xo).

where 3 = 1%\,

Therefore, we get
I8 = 2*|* = [|2° — 27| = 290(V fs, (2%), 2 — 2%} + 7|V f5, (") |

Lem.3 dcL ’YO(fSo (1,0) - f;'o)

< 1% = @) = 290(Vsy (2°), 2% — a*) +

14 2cL
2c2L 2cl —1
0 f&. 23
+1+chaX{2cL+1’ }fsﬂ (23)
Letyo = p + 7o where p = 7 75675.7- Then we have
Yo="—p
Legl.2 c
= T (0 +cL)(1+2cL)

_ Cl +3cL+22L% -1
7 (I+cL)(1+2cL)

I 3+ 3cL
(1+cL)(142cL)
- 3c2L
C1+42cL’
Using the above we continue from (23)
2t =22 “E" [0 = 27 — 29007 (0°) = Fi(*)) + 1y gm0 (00) — £3,)

n 2¢2L . 2cL —1 ol f
1+ e ™\ 2eL g1 [150

<2 = 2% = 2p(fs,(2°) = fso(a)) = 290(fs (2°) = £5,) + 20 (fs0 (") = £5,)

2
=112 17 = 20 0) ~ Fin () 2 (0= 9= g) ()~ £3)
1+ 2cL 0 0
2
Bolf (o) — J5) + oy s { o 10} fi,- 4)
Here we have
2cL 1
TP e O T T2 0P
1 c
T 1+ 2L (U eL)(L + 2cL)
Lem.2 1 c c
= T42Li+el (14 ¢L)(1 + 2¢L)
= 07
Yo < f’f%, and fs,(z") — f§, > 0. Hence, we get
ot = 2 < 120 = 21 = 2p(fn (1) — fio(2) + o (f (") — f5)
- 0 0 1+ 2¢cL™° So
2¢2L 2cL —1 N
1+cL max{chH’O} Iso-

23

Under review as a conference paper at ICLR 2025

Rearranging terms and taking expectation we get

6c2L
20E [(a°) = S@)] SE[le" =" IP] = 12 = "> + g 7 0
2¢2L 2cL -1 9
. 25
+1JrchX{2cL+1’O}UPOS (@)

Next, for k& > 0 we can use the relation z* = x* + \(z* — 2%~1). We expand ||z*+! — z*||?

12 =P = ot = | - 29 (V s (a%), 2 — 27) RV s, ()
R et - P - 2V s (a8, 0¥ — 2%) - 29 A (V fs, (aF), 2 —aM T
+ 92V fs (24117
< b = 2| = 29 (fs (5F) = fs(2) — 20 (fs, (27) = f, (2F7)
+ %l V fs (M)
<2t = 2P = 2% (fs, (2°) = fo (27) = 2%A(fs, (&%) — fs, (z771)

4eL k 262 L 2cL —1
_ _ fx it ol
1+26L7k(fsk(33)= f§,)+ 1T ol maX{%LJrl, }fs,c

Let v, = p + 7k, where p, 7, > 0, and p is a constant step-size independent of Sy which will be
defined later. Therefore, we have

szJrl B x*”Z < ||1:k - ‘T*H2 o 2P(fSk(517k) _ fSk (I*)) — 2§k(fsk(;z;k) — fSk(z*))
= 27 he(fs, (2%) = £5,) + 2mA(fs, (2") = £5,)

4dcL & N 2¢%L 2cL —1 N
m’?k(fsk(x) — fs,)+ lJrchaX{2cL+1’0} I35,

= la* = 2*|* = 20(f5, (2%) = fs,. (")) = 29 (fs. (%) = £5,) + 29(fs,. (27) = £5,)
= 2% A(fs, (2) = £5,) + 2mA(fs, (2" 71) = £5,)

4cL & . 2¢%L 2cL -1 N
+ m%(fsk(x) — fs.)+ 11 el maX{MH’O} I35,

L
= et = P = 27)~ S =2 (Bt - g) () - £3)

+ 2% (fs, (2%) = £5,) + 2% A (fs,, (") = £5,)

2¢°L 2cL — 1
— — 0 f5 . 26
1+6Lmax{2cL+1> }fsk (26)
We need to find p such that
54 2cL S
T RA T e R =
Since 7 = v — p, then we have
cL
- A —— >
Ve — P+ Yk 1+26L’7k_0

= 1+>\—£ >
Tk 1+2¢L) ="

The inequality above is satisfied if it is satisfied for the lower bound on 7 (which is ¢/1+cL), i.e.

¢ L)
1+cL \1+2cL =P

24

Under review as a conference paper at ICLR 2025

We can take p = m since A > 0.
Ve = —p
<c-— ¢
- (1+cL)(1+42cL)

_ 143cL+220% -1

T+ eL)(1 + 2¢L)

o2 3+ 3cL

=" YA+ cl)(1 +2¢cL)
3¢2L

T 142l

Using the above, we get from (26)

297 — a2 < J|a* — 2%|* = 2p(fs, (a%) = s, (27)) + 2eA(fs, (" 71) = [, (27))
6L

+ 2eM(fs(0) = 50 + Toger s @) = £5,)

N 2¢%L 2cL — 1 ol p2
Ttel "\ 2eL 11 [75

Taking expectations we get

E[[I* —2*|?] < E[lla® - 2*|*] = 20E [f(2*) — f(2")] + 2eAE [f(2"71) - f(2")]

6¢2L 2¢2L 2¢L — 1
20N+ ——— | o2 002 . (27
+ (C +1—|—2CL>Ulnt+1+CLmaX{20L+17 }UP% @7)

Rearranging terms we get
20E [f(a") = f(2")] = 2AE [f(a"") = f(2")] SE[[la® —2*|]"] —E[|]**" —2*|?]

’L
+ (20)\ + 60) ol

1+ 2cL
262 L 2cL —1
0yo2 .. (28
1+chaX{2cL+1’ }UPOS (28)

Combining Equation (25) and Equation (28) for iterations {1,..., K — 1} we get

K—-1 K—-1
20E [f(2°) — f(z*)] +2p D E[f(@*) = f(z%)] = 2eA Y E[f(="") = f(2")]
t=1 t=1

K-1 T—2
=2p > E[f(a*) = f(=")] = 2eA Y E[f(z*) - f(z")]
k=0 k=0
K—-1
< (2p—2c)) Y E[f(z*) - f(a")]
k=0

14207t T T o MO gep 110 [Tes

6¢2L 2¢2L 2cl — 1
2cA K102, + (K —1) —— T 0t o2,
+ (C +1+20L>(o + (K —1) 1+chaX{2cL+1’ }UP%

6c2L 2¢2L 2¢cL — 1
< ||zo—x*||2+ c 2 C x{ c 0}02

6¢2L 2¢2L 2¢L —1
< 120 — z*||? 2e\ Kol +K —— =~ 0y02 .. 29
<l - (2ent oy) Kobt K e {3 Lok 09

We need to ensure that p — cA > 0 which is satisfied for A such that
p c
- = > cA
2 - 21 +cl)1+2cL) ¢

&1 > 2\(1+cL)(1 + 2¢L).

25

Under review as a conference paper at ICLR 2025

Note that we also assume that A < cL. Therefore, from (29) we get

LN ki) - s < 22 7
pors ~2(p—cNK c/\) 1+2 in
N 1 202L 2cL 52
max
2(p—cA\)1+cL 1 2cL Tpos
|20 — z*|? 8c?L 52
20p—c\K ' 2(p—c))
1 2¢2L 2cL — 1
- 0po2 .. 30
+ Q(pc/\)1+chax{2¢:L+1’ }UPOS (30)
Since p — cA > § and setting 7" be uniformly at random chosen from {z°, ... 2% ~1} we get
O —a2*|? 8L 1 2¢°L 2cL —1
E —k\ _ * < ||Z € H 2 - 2 . 31
[f(x) f("Lz)]7 pK + p 1nt+p1+chaX 20L+17 JPOS ()
Plugging the value of p = (1+<:L)(++20L) inside we get
—k a1 < 122 — 2|
E[f(@") - f(a")] € = (1+ cL)(1 4 2L) + 8cL(1 + cL)(1 + 2cL)od,
+ 2cLmax {2¢L — 1,0} UPOS (32)

Choosing ¢ = O(1/vK) we get

|20 —2*||2 o2

E[f@") - f(z*)] <0 (NI + \/ﬂ + fpﬁ max {2cL — 1,0}) . (33)

Therefore, if K > O(c~2) then E [f(z*) — f(2*)] < O(e). O

26

Under review as a conference paper at ICLR 2025

E HoOWw TO DERIVE DIAGONAL NGN-BASED STEP-SIZE?

Here we provide derivations of how combine NGN and diagonal step-size following Section 3.3 for
completeness.

We consider the following model

. 1
pk = arg min |:f§;k,c(iﬂk +p) = (r(z®) + Vr(z®) Tp)? + 2—||p||22k , (34)
pER? c
where r(z) = +/ f(x). We compute the gradient of RHS of (34) w.r.t. p and equal it to zero:

fozk,c(f’“ £9) =2 (r(4) + Vr(a) Tp) Vr(eh) + S Sp
- (QVT(xk)VT(zk)T + 1Ek> p+2r(a")Vr(zh).
c
Therefore, we have

p= (VR T+))

Using Shermann-Morrison formula (A +uv)™t = A~1 H«ﬁ% with A = 1/c3;, we derive
228V (xF)Vr(2F) TSt
k -1 _ k k k k
=)y 2 \%
P (C § 1+ 2cVr(zk) T2 Vr(zh)) r@)vre)
2V k TE—IV k
= —2¢r(zh) <1 _ 2@ - rat))2;1Vr(xk)
1+ 2cVr(zh) X, Vr(zF)
2cr(zF)

=— =1V (2h).
1+ 2cVr(zk) B, ' Vr(xk) e V@)

Now we plug-in r(z*) = /f(«*) and Vr(2*) = 2\/va(k) and obtain

k_ 2¢y/ f(xF) —1
D T 2oy Vi) TS, 'V f (ah) 2~/ Vi)

C -1
= Vf(x).
c kN2 k
1+ zf(zk-)”Vf(l')| -1

E.1 DESIGN COMPARISON OF NGN-MDv1 AND NGN-MDv2

The derivations in equation 3 are used to provide an intuition of how one can add a diagonal step-
size into NGN by choosing the regularization matrix . By choosing 3, = Dj, we recover the
update direction of NGN-MDv1. In this case, we have only one global NGN step-size in front of Dy,.
The design of NGN-MDv2 follows a more straightforward intuition. In particular, it can be seen as a
direct extension of NGN to diagonal case by replacing the squared gradient norm ||V fs, (z¥)||? by
the squared partial derivative (V; fs, (z*))? for each parameter j € [d].

The main difference in comparison with Adam is the order in which the preconditioning and mo-
mentum is applied. In both NGN-MDv1 and NGN-MDv2 we average the preconditioned updates
E,ZIV fs, (z%), i.e. we first apply preconditioning and momentum later. In contrast, in Adam the
stochastic gradients are averaged to construct new momentum term, and then the momentum is
preconditioned. In other words, the momentum is applied first and then it is followed by precondi-
tioning. We believe this change might be one of the reasons behind the step-size hyper-parameter
resilience as well.

In practice, we found out that the tuned performance of NGN-MDv1 is slightly better than that of
NGN-MDv2. Moreover, NGN-MDv1 demonstrates higher resilience to the choice of the step-size
hyper-parameter than NGN-MDv2.

27

Under review as a conference paper at ICLR 2025

E.2 COMPUTATION COST OF NGN-MD

Implementing any version of NGN-MD in practice might be slightly more computationally expen-
sive. However, we highlight that computing a step of NGN-MD does not involve matrix-vector
operations since the preconditioner is a diagonal matrix, and the matrix notation is used only for
the convenience of presentation. The additional computation cost that we have in NGN-MDv1 is the
computation of ||V fs, (%) ||]23_1. This can be done by one pass over the gradient and summing the
k

terms ﬁ(v i fs, (x%))? for j € [d]. This operation does not require additional matrix multiplica-
tion and can be computed while updating Dy,. The rest of the NGN-MDv1 implementation does not
add any significant costly operations in comparison with Adam.

F HoOw TO ADD WEIGHT DECAY TO NGN-MDv1?

Regularization techniques serve a fundamental purpose in minimizing generalization error. Orthog-
onally to their role for generalization, modern deep learning tasks often benefit from the use of
weight decay (Xiao, 2024). Despite its widespread application, the role of weight decay is poorly
understood. Andriushchenko et al. (2023) suggested that it might provide implicit regularization by
stabilizing the loss in over-parameterized neural networks and helping to balance the bias-variance
trade-off that leads to lower training loss in under-parameterized networks. However, even in the
case of SGD, there is still uncertainty regarding how the weight decay mechanism should be incor-
porated, as various implementations may exist (Zhang et al., 2018).

We propose two ways of adding weight decay to NGN-MDv1. The first variant follows the approach
of Loshchilov & Hutter (2019), adding decoupled weight decay A:

2FH = aF — Nea® — (1 - ﬁl)EIZlstk (z%) 4 By (aF — 2P 1. (35)

In this update rule, the weight is added separately from the update direction zglv fs,. (z%). We call
the resulting algorithm (35) Dec-NGN-MDv1, that stands for decoupled NGN-MDv1.

F.1 COMBINING NGN-MDv1 AND WEIGHT DECAY REGULARIZATION

We now discuss how to combine NGN-MDv1 and weight decay, following the idea that weight decay
should perform weight regularization.

We consider the following model
1 A
Fooa@® +p) = (r(@") + Vr@)Tp)* + —lpl%, + 52" + pl, -
By taking the gradient of fx, » w.r.t. p we get

0

2r(*) + Vr(e) D)) + - Bep+ ABk(o* +p)
= <2Vr(xk)Vr(xk)T + %Ek +)\Ek> p 4 2r(z®)Vr(zh) + AZ k.
Therefore, we get
pb=— <2Vr(xk)Vr(xk)T + %2;6 +)\Ek>1 (2r(2®)Vr(zF) 4 AZpab).

Using Sherman-Morrison formula (A +uv)™ = A=! — % with A = (A+1/¢) Xy and
u=wv = 2Vr(z*) we get that
1 —1
(QVr(xk)Vr(xk)T + Ezk +)\Ek>
2c? S V(@R Vr(ak) TE !

¢ o O
L+ Ak 1+ 1i§\CVT(xk)E,;1Vr(mk)

28

Under review as a conference paper at ICLR 2025

Algorithm 4 NGN-MDv1W
0

1: Input: 2° € R, step-size parameter ¢ > 0, momentum parameters (31, f2 € [0,1), weight
decay parameter \ > 0, stabilization parameter € > 0
fork=0,1,...,K —1do

Sample batch Sy, C [n] and compute fs, and V fs, (z%)

Compute v* = Bov* ! + (1 — B2)(V fs, (2%) © V fs, (%))

Compute Dy, = diag(el + /v¥/(1 — %))

Compute

AR S

c k
(1+Xe) {1 2fs vfsk() z :|+
1+ WWJ’SNC -

7: Update 21 = ook — (1 - B)mD, 'V s, (%) + Bi (2% — 2F 1)
8: end for
[]+ denotes max{0, -}.

Ve =

Therefore, we have

2 »; ! k BT -1
eyt Vr(z®)Vr(z®)' X
k ¢ L T k A . .
==\ 7wk 2 \Y + A2
b 1+ X F 1+ 1+)\CV7“(1:k) ,;1V7“($k') (2r(2"™)Vr(z"))

726T(Ik) (1 1_~2_C)\LV7‘()T2—1V7‘(xk) >2kV7’(Ik)

1+ Xe 1+ 1_i2_c)mVT(xk) 2 Vr(ak)

e, f;;cz IVr(2*)Vr(zh) T ab

TTlaet 14 25 Vr(ah) S Vr(2k)

2cr(x k) 1
L+ Ae 14 25 Vr(zh)D 2V (zk)
Ae fj;pz IVr(z*)Vr(zh) Tk

T Tt 1 + 1i°ACVr(xk) 2 Vr(ak)

=, Vr(z")

Using the connection Vr(z*) = 5 WV f(x%) and r(2*) = \/f(2*) we get

k:_2c f(@") 1 -1 1 YV f (2"
P T+ Ae 1+ gamsimg V) TSV @R) T8 23/ FF))

Ak Tty Sk V)V f (k) Tt
14+ Xe 1-‘,—va()TEIZIVf(xk)

C/(1+)‘C) k cA k
o c S Vf(a") — T
L+ sremame |V (@015 1+ Ac
A %Vf(fk)—rxk
15 — 5V A(ab).

c 2
1+Acl+ anﬂka =1

To summarize, the update of NGN-Dv1W is the following

29

Under review as a conference paper at ICLR 2025

ZF L = gk 4k

(6]

1 cA va(xk)Txk

T+ E*IV .Z‘k
1+ Ac 1+Acl+m‘|Vf(zk)||22;1 r V()

¢/(14+Ac)
_ c 2
L+ arammea 1V)5
c cA
1, e (1 e VI)

= zk — >V (h). (36)
L™ 1+ g V@) 15

2;1Vf(sck')

To prevent the step-size next to E;lv f(x*) from being negative, the final update has the form

—_c |1— in(a:k)Txk
1 1+Ac 2f(xk
k1 _ U [.) - J*’Elef(mk), (37
1+ Ac 1+W“Vﬂx)Hzil

where []4 = max{-,0}. Now we can add momentum on top and obtain the following update of
NGN-MDv1W

c_[1_ _ex Vf(xk)Txk}
1 1+Ac |: 2f(xk)
k+1 _ k +5-1 k ko k-1
" = " — - X UVS(a®) 4+ B — 2. (38)

This combination of NGN-MDv1 and weight decay is summarized in Algorithm 4. We highlight
that now the weight decay is incorporated inside the adaptive step-size as well as regularizing the
coefficient next to z*.

F.2 EMPIRICAL VALIDATION OF THE PROPOSED COMBINATIONS

Having two possible ways of adding weight decay to NGN-MDv1, we test them on pretraining a
70M transformer on language modeling. The validation perplexity at the end of training is reported
in Figure 6. We note that when weight decay is turned off, both NGN-MDv1W and Dec-NGN-MDv1
reduce to NGN-MDv1.

First, we observe that when weight decay is properly tuned, all algorithms improve over the base-
line case with no weight decay, which is consistent with the observation of Xiao (2024) and An-
driushchenko et al. (2023) on AdamW. We also note that Dec-NGN-MDv1 and NGN-MDv1W require
a smaller weight decay value compared to the other algorithms. Finally, the stability and perfor-
mance of NGNMDv1 are preserved by both variations, allowing training with larger learning rates,
and significantly improving over AdamW and Momo-Adam.

We do not observe a substantial difference between the two proposed modifications of NGN-MDv1
for this task. We remark however that these two versions serve substantially different purposes,
and pretraining language models might not be the most representative task to evaluate the effect of
adding regularization.

G ADDITIONAL EXPERIMENTS AND TRAINING DETAILS

G.1 TRAINING DETAILS

The detailed experiment setup with hyper-parameters and training details is presented in Table 2.
We provide links to the exact model architectures used in our experiments (the links are clickable)
as well as links to the tables and figures for each workload. We demonstrate the results averaged
across 3 different random seeds for small and middle-range size experiments. We use standard
values of momentum parameters (51, 82) = (0.9,0.999) if the opposite is not specified. The step-
size hyper-parameter is tuned across powers of 10 (for some workloads we add additional values
of the step-size hyper-parameter shown in the step-size resilience plots). We use PyTorch (Paszke
et al., 2017) implementation of Adam. The implementation of MomSPS, Momo, Momo-Adam are

30

Under review as a conference paper at ICLR 2025

AdamWw Momo-AdamW —e— NGN-MDv1W Dec-NGN-MDv1

N EN BN

o
g
o
2
B
3

@
i
)
g
=
=

N

10°% 1072 1073 1072 10°° 1072 10°% 1072
Stepsize Stepsize Stepsize Stepsize

A=0 A=10"3 A =102 A=10""1

@
@
&
w
]

Validation Perplexity
&

Validation Perplexity
Validation Perplexity
v}a}lidation Pe_(p\ex_i;y

Figure 6: Adding weight decay when pretraining a 70M Transformer++. When properly tuned,
a value of weight decay > 0 enhances the performance of all algorithms. NGN-MDv1 retains his
characteristic stability, and achieves smaller perplexity in all scenarios.

provided in the corresponding papers. Finally, when employing SGD-M, we set dampening equal to
0.9.

For vision transformers experiments, we follow the setup of Schaipp et al. (2024), and use Pytorch
Image Models codebase (Wightman, 2019). We trainavit_tiny_patchl6_224 for 200 epochs
on Imagenetlk, using a cosine learning rate schedule with a linear warmup of 5 epochs. Differently
than Schaipp et al. (2024), we train in bf 1oat 16, instead of £1o0at16, and do not employ weight
decay regularization.

For pre-training Transformers on Causal Language Modeling, we build upon the nanoGPT (Karpa-
thy, 2022) implementation, augmenting it with Rotational Positional Embedding (Su et al., 2023),
RMSNorm (Zhang & Sennrich, 2019), and SwiGLU (Shazeer, 2020). We call this enhanced ver-
sion Transformer++. Models are trained with a batch size of 256, context length of 2048 tokens,
vocabolary size of 50280 and make use of GPT-Neox tokenizer (Black et al., 2022). We adopt an
enhanced training recipe, made popular by large language models such as LLaMa (Touvron et al.,
2023). These modifications include: training in bf loat 1 6; employing a linear learning rate warm-
up for 10% of the training steps, followed by cosine annealing to 10~°; omitting biases from linear
layers; using (81, f2) = (0.9,0.95) for all algorithms; clipping gradient norms above 1; no weight
tying between embedding and last linear layer. All models are trained on SlimPajama-627B (Sobol-
eva et al., 2023), a cleaned and deduplicated version of RedPajama We report validation perplexity
on a separate subset of Slim-Pajama consisting of 10M tokens. The total compute is estimated fol-
lowing Kaplan et al. (2020), where the estimated number of floating-point operations (FLOPs) is 6
x Number of Parameters x Number of Tokens.

Experiments of small and middle size are performed on 1xRTX 4090. We perform ImageNet32 ex-
periments on 2xA100-40GB, and ImageNet1k experiments on 4xA100-SXM4-40GB. For pretrain-
ing Transformers on Language Modeling, we employ 8xH100-HBM3-80GB GPUs. With multiple
devices in use, we employ Distributed Data Parallel to parallelize the training process.

G.2 COMPARISON ALGORITHMS THAT SUPPORT MOMENTUM

In the main paper, we provided the test performance only. Now we additionally illustrate the per-
formance of algorithms w.r.t. training loss convergence. Figure 7 demonstrates that NGN-M is the
most robust algorithm for the choice of the step-size hyper-parameter from this perspective as well.
In Figure 7, we additionally demonstrate the performance of the algorithms on (VGG16 (Simonyan
& Zisserman, 2014), CIFAR10) and (MLP, MNIST) workloads where NGN-M matches the perfor-
mance of the state-of-the-art algorithms in this setting and archives higher resilience to the step-size
hyper-parameter choice. The best performance results are reported in Table 3 and showcase that
NGN-M always matches the performance of other optimizers or improves it.

G.3 COMPARISON OF ALGORITHMS THAT SUPPORT MOMENTUM AND DIAGONAL
STEP-SIZE

Next, we illustrate the performance of the algorithms that support both momentum and diagonal

step-size. According to the results in Figures 8 and 9, NGN-MDv1 achieves the best resilience to the
step-size hyper-parameter choice among all considered algorithms. Again, NGN-MDv1 is the most

31

Under review as a conference paper at ICLR 2025

Table 2: Summary of experiment setup with all the details on hyper-parameters used in each case.

tahils Effective
Performance Stability Qe o, Epochs / Batch
Model Dataset Results Results Stepsize Iterations Size Comments
Results
Resnet20 CIFAR10 Tab. 3,4, 5 Fig. 2,7,8,11 Fig. 14, 15,22 50 128
Resnet1 10 CIFAR100 Tab. 3,4 Fig. 2,7,8,12 100 128
VGG16 CIFAR10 Tab. 3,4 Fig. 7,8 50 128
MLP MNIST Tab. 3,4 Fig. 7,9 10 128 2 hidden layers
ViT CIFAR10 Tab. 3, 4 Fig. 2,7,8,13 Fig. 5, 14,15,23 200 512
LSTM PTB Tab. 4,5 Fig. 9 150 20 3 layers
LSTM ‘Wikitext-2 Tab. 4,5 Fig. 24 150 20 3 layers
e Rotten . . # heads 8
Transformer Tomatoes Tab. 4,5 Tab. 24 2000 16 #layers 24
e Tiny . . # heads 8
Transformer Shakespeare Tab. 4,5 Fig. 9,24 2000 16 #layers 24
Resnet18 ImageNet32 Tab. 3,4, Fig. 10 45 128 e e e

learning rate decay every
Resnet18 ImageNetlk Tab. 3,4 Fig. 2, 10 90 256 30 epochs by 0.1
no weight decay

cosine learning rate
schedule with linear warm-up
for 5 epochs
no weight decay, bfloat16
dim=512, # heads 8
layers 6, context length 2048
70M Transformer++ SlimPajama-627B Tab. 4 Fig. 4,6 2400 256 (81, B2) = (0.9,0.95), bfloat 16
clipping norm 1, linear warm-up
for 10% of iterations

dim=768, # heads 12
layers 12, context length 2048
160M Transformer++ SlimPajama-627B Tab. 4 Fig. 4 4800 256 (B1,82) = (0.9,0.95), bfloat 16
clipping norm 1, linear warm-up
for 10% of iterations
dim=1024, # heads 16
layers 24, context length 2048
420M Transformer++ SlimPajama-627B Tab. 4 Fig. 4,21 13500 256 (B1,82) = (0.9,0.95), bfloat 16
clipping norm 1, linear warm-up
for 10% of iterations

ViT-Tiny ImageNetlk Tab. 4 Fig. 3 200 512

Table 3: The best validation score (with one standard deviation across 3 runs; accuracy for computer
vision tasks; perplexity for NLP tasks) for the best learning rate choice for each method that supports
momentum.

Model Dataset NGN SGDM NGN-M___ MomSPS __ Momo _ ALR-SMAG
Resnet20 CIFARIO 88.301020 8542:070 88761005 87201035 888061011 88.88:0.10
Resnet110 CIFARIO0 64761926 57.161205 04985020 63.371071 04811035 6473118

VGGI6 CIFARIO 9021:040 89.671043 90421006 87262021 90431017 90.49:0.55

MLP MNIST 98.041007 97632040 97.97100s 97732000 97.971001 97.64r0.00

ViT CIFARIO 83341021 83.741011 84951020 83772027 85471027 85.541030
Resnetl8 ImageNet32 48.63 48.56 48.29 N/A 43.68 N/A
Resnetl8 ImageNetlk 67.00 66.73 67.12 N/A 67.09 N/A
Transformer g MY 927a0ns 873i01s T6Taez NA 880kon N/A
Transformer qoowel 90l.gz 8754001 7120003 NA 865u00s NA
LSTM Wikitext-2 75.332015 82071016 75.5li022 NA 76.09i040 N/A

stable algorithm to the choice of step-size hyper-parameter w.r.t. training loss convergence. Its best
performance is competitive to that of other algorithms but the step-size hyper-parameter range that
gives such performance is wider.

Moreover, we support our claims about stability on additional workloads such as (VGG16, CI-
FAR10) (in Figure 7), (MLP, MNIST), (LSTM (Hochreiter & Schmidhuber, 1997), PTB (Mikolov
et al., 2010)), and (Transformer (Karpathy, 2022), Tiny Shakespeare (Karpathy, 2015)) workloads.
We observe that NGN-MDv1 attains higher robustness to the choice of the step-size hyper-parameter.
Finally, the performance results on (LSTM, Wikitext-2 (Merity et al., 2016)) and (Transformer, Rot-
ten Tomatoes (Pang & Lee, 2005)) are reported in Table 4. The results demonstrate competitive
performance of NGN-MDv1 against other benchmarks across all considered workloads.

32

https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
https://github.com/chengyangfu/pytorch-vgg-cifar10/blob/master/vgg.py
https://github.com/fabian-sp/step-back/blob/main/stepback/models/basic_models.py
https://github.com/lucidrains/vit-pytorch
https://github.com/fhueb/parameter-agnostic-lzlo/tree/main/model
https://github.com/fhueb/parameter-agnostic-lzlo/tree/main/model
https://github.com/karpathy/ng-video-lecture/blob/52201428ed7b46804849dea0b3ccf0de9df1a5c3/bigram.py
https://github.com/karpathy/ng-video-lecture/blob/52201428ed7b46804849dea0b3ccf0de9df1a5c3/bigram.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://github.com/huggingface/pytorch-image-models/blob/e3242a52584bbc69f848f762d254e8a23932832c/timm/models/vision_transformer.py#L2071
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2025

Table 4: The best validation score (with one standard deviation; accuracy for computer vision tasks;
perplexity for NLP tasks) for the best learning rate choice for each method that supports diagonal
step-sizes and momentum.

Model Dataset Adam Momo-Adam NGN-MDvi NGN-MDv2 Lion Adabelief Adabound

Resnet20 CIFAR10 86.96:1070 89414035 89.531011 87.80:016 88.094027 87471048 85.001056

Resnet110 CIFAR100 64.12:004 67101053 66101045 64332040 61.85:077 65321043 61.28:0.30
VGG16 CIFARI10 90.261025 90951025 90.641015 90.07:0.37 N/A N/A N/A
MLP MNIST 97441010 97961010 98101005 97.670.17 N/A N/A N/A

ViT CIFAR10 85.96.003 85.74i012 85.654010 86.561011 86.894019 85.051047 80.3240.47
Transformer T(Fn(l);tt?)gs 6.80+0.07 6.8140.05 6.90+0.05 6.83+£0.05 N/A N/A N/A

T

Transformer Shakel?geare 6.801006 6.80+0.05 6.89:1006 6.8210.05 N/A N/A N/A
LSTM PTB 70.95100s 71.09:+005 70.841020 71.3710a7 N/A N/A N/A
LSTM Wikitext-2 81491140 82231064 75241021 8199078 N/A N/A N/A
Resnet18 ImageNet32 48.11 48.09 48.06 47.55 N/A N/A N/A
Resnet18 ImageNet1k 67.17 67.06 67.15 67.32 N/A N/A N/A
ViT-Tiny ImageNetlk 71.051016 71.222036 71.34510.22 N/A N/A N/A N/A
Transfommer 4 SlimPajama-627B 35201006 34961011 3384p053 NA N/A N/A N/A
Tfa“{gg;}f”* SlimPajama-627B 24.2610.10 24.2940.10 23.4240.10 N/A N/A N/A N/A
Tf"‘“f%‘ff”* SlimPajama-627B 17.00 17.07 16.60 N/A N/A N/A N/A

G.4 ADDITIONAL IMAGENET EXPERIMENTS

Now we turn to the experiments involving training Resnetl18 on ImageNetlk and ImageNet32. In
Figure 10 we provide the train loss curves and results on (Resnetl8, ImageNet32) workload that
demonstrate that NGN-M and NDN-MDv1 attain better resilience to the step-size hyper-parameter
choice than competitors not only from the train loss point of view as well. The best performance
of algorithms is provided in Table 3 and 4. According to them, both NGN-M and NGN-M achieve
competitive performance against considered benchmarks.

G.5 ADDITIONAL COMPARISON AGAINST LION, ADABELIEF, ADABOUND

This section compares algorithms from Section 5.1 and Section 5.2. Moreover, we include the
comparison against Lion (Chen et al., 2024), Adabound (Luo et al., 2019), and Adabelief (Zhuang
et al., 2020). The results are presented in Table 4.

We observe that NGN-MDv1 and NGN-MDv2 both achieve competitive performance across various
Deep Learning workloads. In Figures 11 to 13, we observe that Lion, Adabound and Adabelief
algorithms do not match always the performance of NGN-MDv1 and Adam: Adabelief has worse
performance on (Resnet20, CIFAR10) workload; Adabound has worse performance on (Resnet20,
CIFAR10), (Resnet110, CIFAR100), and (ViT, CIFAR10) workloads; Lion has worse performance
on (Resnet110, CIFAR100) workload. Moreover, their resilience to the step-size hyper-parameter
choice is lower than that of NGN-MDv1. To summarize, NGN-M and NGN-MDv1 are the most robust
algorithms to the choice of step-size hyper-parameter.

G.6 COMPARISON OF ALGORITHMS WITH DIAGONAL STEP-SIZE

Now we compare algorithms with diagonal step-size such as NGN-D, Adagrad Duchi et al. (2011),
and RMSprop Kingma & Ba (2015). Since NGN-D requires to find constants {c; }?:1 where d is the
size of the model. Finding sufficiently good constants c¢; might be a challenging task since d is a
large number. Therefore, we use RMSprop preconditioner Dy, to set them as ¢; = ¢/(Dy)(;). We
leave the exploration of how to set constants c; properly for future research.

For each method, we tune its learning rate hyper-parameter over the powers of 10: {1074, ...,10%}
and present the best performance averaged across 3 random seeds in Table 5. We observe that
NGN-D performs similarly to RMSprop. NGN-D has slightly worse performance on (LSTM, PTB)

33

Under review as a conference paper at ICLR 2025

NGN SGDM Momo NGN-M
10? 10° 10!
%] %] wn
8 10! 8 10! 8
S 3 = 10°
= = c
® 10° © 10° ©
= = =
® ® w107
c107! c107! c
[w w
-2 -2 -2
107 g 102 10° 102 10755 102 10° 10% 10755 10° 10 102
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10
> 10
(080 %]
LB) S § 10(!
£ <
P40 s
i F107!
2 £
w
-2
T 1072 10° 10? 10 1074 1072 10° 10°
Stepsize Stepsize
VGG16 for CIFAR 10 VGG16 for CIFAR 10
100 10°
9
© 80 ﬁ
g 60 A
=)
= e
D 40 =
[<1072
S 20 £
= -3
T 107! 10! 10° 10 1073 1071 10! 10°
Stepsize Stepsize
MLP for MNIST MLP for MNIST

Figure 7: Stability performance of algorithms supporting momentum varying step-size hyper-
arameter (c for NGN and NGN-M, ay for Momo, and step-size for SGDM). We observe that NGN-M
achieves the training loss close to the best possible for a wider range of the step-size hyper-parameter.

Table 5: The best validation score (with one standard deviation; accuracy for image classification;
perplexity for language modeling) for the best learning rate choice for each method that supports
diagonal step-sizes.

Model Dataset Adagrad RMSprop NGN-D
Resnet20 CIFARI10 85.90+0.30 86.711064 86.984+0.15

Transformer Rotten Tomatoes 7.77+0.02 6.8710.05 6.9210.03

Transformer Til’ly Sheaksper 7.77:{:0'05 7.00:‘:0,13 6.90:‘:0‘05
LSTM PTB 99.241 5135 69.004017 71.5410.11
LSTM Wikitext-2 113.191436 79484045 75.4410.12

dataset but significantly better on (LSTM, Wikitext-2) workload. Besides, Adagrad always has the
worst performance. Moreover, these algorithms do not have high resilience to the choice of hyper-
parameter. Therefore, we omit their comparison from this perspective.

G.7 EFFECTIVE STEP-SIZE OF NGN-M, Momo, NGN-MDv1, AND Momo-Adam

Next, we compare the effective step-size applied throughout the training with NGN-M, Momo, NGN-
MDv1, and Momo-Adam in Figures 14 and 15. First, both NGN-M and Momo perform a warm-up
in the beginning: the effective step-size increases at the beginning of the training. Then we observe
the main difference between the two algorithms above: effective step-size of Momo for sufficiently
large step-size hyper-parameter is not adaptive within some part of the training, it always hits the
upper bound. Consequently, during that part of the training Momo reduces to SGDM. In contrast, the
effective step-size of NGN-M is always adaptive: it gradually decreases after a short warm-up. This

34

Under review as a conference paper at ICLR 2025

Adam Momo-Adam NGN-MDv1 NGN-MDv2
10 103 10
7)) "] 2 w0
g 10 g 8
-) - 10()
< c 10 £
o 10 o [
= F 100 =
® . T c 107!
£ £107! £
—2 -2 -2
O 5 101107 10210 100 107 102 107555 10°° 1071 10! 10 10~ 10°° 102 107!
Stepsize Stepsize Stepsize
Resnet20 for CIFAR 10 Resnet110 for CIFAR 100 ViT for CIFAR 10
9
@ 80 @ 10!
3 o
560 2 ,
: g
&40 =
£ R
820 i
£
s 101 102 100 05 10 10 10°
Stepsize Stepsize
VGG16 for CIFAR 10 VGG16 for CIFAR 10

Figure 8: Stability performance of algorithms supporting momentum and diagonal step-size varying
step-size hyper-parameter (c for NGN-MDv1 and NGN-MDv2, ap for Momo-Adam, and step-size for
Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a wider
range of the step-size hyper-parameter.

Adam Momo-Adam NGN-MDv1 NGN-MDv2

—
o
]
—
S
o
—
=)

Final Test Perplexity
. S & g
Final Test Perplexity
S

80

—
o
S

60

—
o
T

40

=
=)
T
=
1S

20

Final Test Accuracy

._.
<

05 102 10° 10° 104 1073 1072 107! 107°107410731072107" 10° 10' 10?

Stepsize Stepsize Stepsize
Transformer for

MLP for MNIST LSTM for PTB Tiny Shakespeare

=
=)
=
o
9
= =
=) =)
9 W

Final Train Loss
-
<
Final Train Loss
—
(=]

Final Train Loss

—
S
>
=
1S)
1

1074 102 10° 10° 04 100 10 0t 10° 101 101
Stepsize Stepsize Stepsize

Transformer for

MLP for MNIST LSTM for PTB Tiny Shakespeare

Figure 9: Stability performance of algorithms supporting momentum and diagonal step-size varying
step-size hyper-parameter (c for NGN-MDv1 and NGN-MDv2, g for Momo-Adam, and step-size for
Adam). We observe that NGN-MDv1 achieves the training loss close to the best possible for a wider
range of the step-size hyper-parameter.

trend is similar to the state-of-the-art learning rate schedulers used in practice. Similar observations
can be made in comparison of NGN-MDv1 and Momo-Adam.

G.8 SPECTRUM EVOLUTION DURING THE TRAINING WITH NGN-M AND SGDM

We include the results that demonstrate the spectrum evolution of the training and test losses in the
training of Resnet20. From Figure 19 and Figure 20, we see that

35

Under review as a conference paper at ICLR 2025

501
360’ > Adam
© © 40 Momo-Adam
2 2 NGN-MDv1
40 sGD £30 NGN-MDv2
@ NGN B2
90l SGDM =
© Momo =0}
[NGN-M ir
T T S T 10! 102 006 107 102 100 102
Stepsize Stepsize
Resnet18 for ImageNet32 Resnet18 for ImageNet32
12 12
SGD Adam
7 107 NGN 7 107 Momo-Adam
S N SGDM S 8l NGN-MDv1
£ Momo £ NGN-MDv2
@© :l @© il
|: 6 NGN-M |: 6
24 24
[T 27 [T 27
106 10% 102 100 @ 102 106 104 102 100 102
Stepsize Stepsize
Resnet18 for ImageNet32 Resnet18 for ImageNet32
5 5
SGD Adam
$47 NGN $47 Momo-Adam
S SGDM s NGN-MDv1
£ Momo £ 5 NGN-MDv2
©3 - © 31
2 NGN-M 2
© ©
£27 £27
[[
o2 gt 10° 10! 102 Yo% 107 108 102 10
Stepsize Stepsize

Resnet18 for ImageNetlk

Resnet18 for ImageNetlk

Figure 10: Stability performance of algorithms supporting momentum (first row), and momentum
with diagonal step-size (second row) varying step-size hyper-parameter (¢ for NGN, NGN-M, NGN-
MDv1, and NGN-MDv2, o,y for Momo and Momo-Adam, and step-size for SGD, SGDM, and Adam).

9
E80
]
UGO’
<< |
0 40,
i
_gzo—
i b A}
0= " 10 107 10 103
Stepsize
NGN Momo Adam
SGDM NGN-M Momo-Adam

Final Train Loss

102
101,

100,

1071 10 10°

Stepsize

105 103

NGN-MDv1 Adabound

NGN-MDv2

Lion
—@— Adabelief

Figure 11: Stability performance of various optimizers for Resnet20 on CIFAR10.

1. Both NGN-M and SGDM increase the sharpness throughout the training for small step-size
hyper-parameter values (¢ € {107%,1073}. The sharpness throughout the training has
similar values for NGN-M and SGDM.

Under review as a conference paper at ICLR 2025

Final Test Accuracy

Final Test Accuracy

=)
S

DO

102
()]
8 1014
—
£
01 g 1004
0 2101
] [T
070=6 " 10=1 " 10-2 100 102 107206 0 d 02 100 102
10 10 10 10 10 10 10 10 10 10
Stepsize Stepsize
NGN Momo Adam NGN-MDv1 Lion Adabound
SGDM NGN-M Momo-Adam NGN-MDv2 —@— Adabelief

Figure 12: Stability performance of various optimizers for Resnet110 on CIFAR100.

100 10!

801 a

| Eﬁ 10% f

601 c

l °

407 E ~1

4 810 3

207 i

000 5 10-4 103 10-2 10-1 10° 101 102 1072 —410-310-210-% 10° 10! 102
1071071072 107°107" 10" 10" 10 107107*107°107°10 10" 10" 10

Stepsize Stepsize

NGN Momo Adam NGN-MDv1 Lion Adabound
SGDM NGN-M Momo-Adam NGN-MDv2 —@— Adabelief

Figure 13: Stability performance of various optimizers for ViT on CIFAR10.

. Both NGN-M and SGDM increase the sharpness in the beginning of the training, and de-

crease to the end of the training for middle-range values of ¢ € {1072,10~!}. The sharp-
ness throughout the training has similar values for NGN-M and SGDM.

. Both NGN-M and SGDM decrease the sharpness for ¢ = 10°. However, the sharpness

throughout the training with NGN-M is higher than that with SGDM.

. NGN-M converges with ¢ = 10! step-size hyper-parameter while SGDM fails. Moreover,

the sharpness throughout the training with NGN-M with ¢ = 10 is smaller than that with
smaller values of ¢ € {1074, ..., 10°}. This result suggests that for large enough values of
¢ NGN-M tends to converge to flatter minima with increasing the step-size hyper-parameter.
Being in flat minima allows the use of large effective step-sizes as the function value does
not increase much there.

These observations are also supported from the loss landscape perspective along top two eigenvec-
tors; see Figures 16 and 17.

The observed phenomenon is strongly related to training at the Edge of Stability (EoS), as explored
in Cohen et al. (2021) and other studies. However, we emphasize that Cohen et al. (2021) focuses
on non-adaptive methods, both with and without momentum. The only work we are aware of that
examines EoS behavior in adaptive methods is Cohen et al. (2022). According to Cohen et al. (2022),
Adam operates at an adaptive EoS (determined by the eigenvalues of the preconditioned Hessian),
even as standard sharpness continues to increase throughout training. Our findings indicate that
NGN-M operates at the Edge of Stability (EoS), despite employing adaptive step sizes.

37

Under review as a conference paper at ICLR 2025

0.0001 — 0.001 0.01 — 0.1 1.0 — 10.0 100.0 —— 1000.0
10° 10* 10* 10°
g ’uwwmmww K S T Y } n
g 10! 3 10! - 2 10! w——" 2 10! A
g . g g 2 lE
gi10! 10! ﬁ10*1 ﬁm*‘ ¥
£ 2/ 2 2
g g 3 g
E10° £10°° & 107 £10°?
0 5 10 15 2 0 100 200 300 400 500 0 5 10 15 2 0 100 200 300 400 500
Iterations, x10* Iterations Iterations, x10* Iterations
Momo for Resnet20 for CIFAR 10 NGN-M for Resnet20 for CIFAR 10
0.1 — 0.316 1.0 — 3.16 10.0 — 31.6
10% 10 10* 10
g g g g
2 10 2 10t 2 10 ‘2 10!
2 2 2]
2 2 %]
e 100 ':.,‘ i ¢ 100 ¥ v 100 ‘§ wy o f
B Wi | = =l - . g b
@ 10 I @10 10 D10
= & b= &
w w w w
s s - -
10755 5 10 15 2 7% 100 200 a0 400 so0 MO 5 10 15 20 076 10 200 800 400 500
Iterations, x10* Iterations Iterations, x10* Iterations
Momo for ViT for CIFAR 10 NGN-M for ViT for CIFAR 10

Figure 14: The step-size of Momo and NGN-M during the training. We demonstrate the step-sizes
Tk for Momo and v for NGN-M varying step-size parameters oy for Momo and c for NGN-M.

0.0001 — 0.001 0.01 — 0.1 1.0 — 10.0 100.0 — 1000.0

5 10 15 20 0 400 800 1200 1600 2 0 5 10 15 2 0 400 800 1200 1600 2000
Iterations, x10* Iterations Iterations, x10* Iterations

Momo-Adam for Resnet20 for CIFAR 10 NGN-MDv1 for Resnet20 for CIFAR 10

0.0001 —— 0.000316 0.001 — 0.00316 0.01 — 0.0316

2,

10° 10 10

<

_—

Effective Stepsize
o
s
i

[
15}
1

=3

s

‘

Effective Stepsize
S -
LS

Effective Stepsize

N

Effective Stepsize
s

S

0

1=}
|
-
=)
d
1=
|
-
=)
d

8 8 & &

@ 7 @ 7

& & & &

o 2 o 2

Qm* Qw* 5 b §10" L 210*3 m~‘~-~w~mwwmw~~\
& g £ mm— £

2 107") g 10t 2 107" e | @ 10"

w w w el

1077 Bl T 07 100 2o S0 abo a0 1077 B0 T 1075 160 2o 50 ad0abo
terations, x10 terations terations, x10° terations
Momo-Adam for ViT for CIFAR 10 NGN-MDv1 for ViT for CIFAR 10

Figure 15: The step-size of Momo-Adam and NGN-MDv1 during the training. We demonstrate the
step-sizes 7 for Momo-Adam and v, for NGN-MDv1 varying step-size parameters oy for Momo and
c for NGN-MDv1.

G.9 COMPARISON OF ADAPTIVE STEP-SIZES OF Adam, Momo-Adam, AND NGN-MDv1

Next, we conduct experiments to compare the adaptive step-size of Adam, Momo-Adam, and
NGN-MDv1. Note that ResNet20 model consists of 3 base blocks, and each block has 3
convolution layers. In Figure 22 we plot the average adaptive step-size of the layers j €
{layer1.0.conv1, layer2.0.convl, layer3.0.convl} of ResNet20 that corresponds to the first convo-
lution layer within each base block. Similarly, in Figure 23 we plot the average adaptive step-size of
the layers j € {layer0.0.fn.to_gkv, layer3.0.fn.to_gkv, layer5.0.fn.to_qkv} that corresponds to the
attention layers of the first, fourth, and sixth base blocks.

38

Under review as a conference paper at ICLR 2025

m 2.0 g
Slkis I Y
Jg 1.0 ‘% 0.8
= =
0.5 0.1
Stepsize 1.0 Stepsize 10.0
2.2
& 2.0 &
Q ks S|t
Jg’-.; 1.0 '% 0.8
-1 . 0.5 = 0.1
1 3 3 1
Stepsize 0.1 Stepsize 1.0 Stepsize 10.0

Figure 16: Loss landscape of train (lower surface) and test (upper surface) losses along two largest
unit eigenvectors around the last iterate of SGDM (first row) and NGN-M (second row) for Resnet20
on CIFAR10 for a fixed random seed.

0.59 93212 | 2323

0.56

Train Loss
e
Test Loss
Train Loss
Train Loss
Test Loss

0.28 0.53 2,320 BF2.322

0.57 0.71
1.26 042

0.59 0.55

Train Loss
Test Loss
Test Lo

Test Loss

o
5
S

0271 3

Train Loss
Train Loss

0.26 0.5 0.12 0.47

Step-size 10~* Step-size 10Y Step-size 10*

Figure 17: Zoomed loss landscape of train and test losses along top eigenvectors around the last
iterate of SGDM (first row) and NGN-M (second row) for Resnet20 on CIFAR10. The change
of test and train losses is given in the color bars. We observe that increasing the step-size hyper-
parameter for NGN-M leads to convergence to flatter minima while for SGDM it leads to divergence.

Since the adaptivity of Adam is only in the second-order momentum applied as a normalization, in
our experiment we compare the following quantities

B Tk
————— for Adam, ———— for Momo-Adam,
(Dk)) (D))

where 7 is the step-size hyper-parameter of Adam.

Yk
Dr)()

for NGN-MDv1, (39)

Let us first describe the results for ResNet20 in Figure 22. We observe that NGN-MDv1 tends to set
smaller effective step-size compared to two other algorithms. This is especially visible for the large
step-size hyper-parameter values where the adaptive step-size of NGN-MDv1 is by several orders in
magnitude smaller than that of Adam and Momo-Adam. In contrast, the coordinate-wise adaptive
step-size of Momo-Adam is mostly follow that of Adam. Considering that the stability performance
of NGN-MDv1 is much higher for this task, this happens mainly due to the fact that the adaptation
mechanism of NGN-MDv1 step-size is more conservative than that of Momo-Adam.

39

Under review as a conference paper at ICLR 2025

[[Q
3 Ronmaoon S 2000 — rowmaon S 1600 — oo
=400 \ = \ =
= =4 A c
\ 1600
@300\ g g1200
= \ = 1200 =
5200\ 3 00 ER
S 100 K\ S S 400 \
g S~ £ 400 g S
) ~_——) N —— o N o e e Y
o O o O i 0
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 10~! Step-size 10° Step-size 101
2400 —=] g% T] 815 e
E NGNM 01 2 E NGNM 100
C 300 5,60 <
2 g 210
= =40 =
200 o ©
> 3 =}
© © 20 T 5
2100 2 R 2
(9]
& o)
w 0 w w
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 10~} Step-size 10° Step-size 101
3600 T scom T g i g I
° \‘ ° A 10 ° N\ rain 10.0
2 1" ool 21501 e el 2201 Tt
c B SGDM Test 0.1 c | SGDM Test 10 c A SGDM Test 100
24001 X Scom Test 01 g | Saom Tem 10 D15] N Saom Tem 106
= T honmTramos = 1007 o 7 o Ten10 = " Netetirin 100
[—— NGN-M Train 0.1 GJ —— NGN-M Train 1.0 Q 10 —— NGN-M Train 10.0
3 -+ NGN-M Test 01 = -+ NGN-M Test Lo =} =+ NGN.M Test 100
©200 - Newwrenos S 50 e [Mo Tet 100
c c c 5 T
[[[
= === R - k=i
[l o 0 —— o 0
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 10~ * Step-size 10° Step-size 101

Figure 18: First and Second rows: 20 largest train eigenvalues averaged across 3 runs after 50
epochs of training with SGDM and NGN-M of Resnet20 on CIFAR10. Third row: 20 largest train
and test eigenvalues for 3 different random seeds after 50 epochs of training with SGDM and NGN-M
of Resnet20 on CIFAR10.

[(] Q
S T S 3 E]
2400 — oo | 22000 2
— tpocn1s .
5 — toenn 5’1600 S
g 300 — tooen rzu (EB
— tpoch
200 = Y
,—; 100 r_>° 800 §
g @ 400 é
o 0 - o O i
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 104 Step-size 1073 Step-size 102
g™ —w] S ST T
2) = e E 0.4 — Epoch 10
—— Epoch 15 = T e
S500 - L oo | I
—— Epoch 25 z —— Epoch 30 E
= o 50 grons
o 3 e 3o
= 250 — Epoch 15 = o =
> > 25 >
c c c
] (] 9}
2 0 20 o
i w w
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 107! Step-size 10° Step-size 10*

Figure 19: The evolution of 20 largest train eigenvalues averaged across 3 runs during the training
with SGDM of Resnet20 on CIFAR10.

Now we switch to the results on ViT model in Figure 23. Here both Momo-Adam and NGN-MDv1
tend to utilize smaller effective coordinate-wise step-size, by several orders in magnitude smaller
than that of Adam. However, the adaptation mechanism of NGN-MDv1 is still more conservative
than that of Momo-Adam, especially for large step-size hyper-parameters. We also highlight that in
this experiment the best performance of NGN-MDv1 is achieved with ¢ = 1073, When we vary the

40

Under review as a conference paper at ICLR 2025

() () [
g i g g —eoono
2400 Tt 2 3 —
s —oesl S '€, 1600 e
8300 = G 2 g \ T
s = s = 1200 = G
£200 —zel 5 5 s00 =y
© © ©
2100 2 2 400
)))
= 0 . = = 0
w w w
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 1074 Step-size 1073 Step-size 102
s —w| 3 —z| S ==
2 — a0 2 — choch o 2 — eoenno
€ e £300 — e = — g
5,750 e S e S5 e
2 e 2200 e 2 e
%0 ol anl w30 sy
= — Epoch 45 = =) — Epoch 1
© 95 T 100 15
> 250 > > 157 &
2 0 . 2 9 20 i
w w w
1 5 9 13 17 1 5 9 13 17 1 5 9 13 17
Eigenvalue Number Eigenvalue Number Eigenvalue Number
Step-size 10~* Step-size 10° Step-size 101

Figure 20: The evolution of 20 largest train eigenvalues averaged across 3 runs during the training
with NGN-M of Resnet20 on CIFAR10.

10%
>
=
x
K
=)
5
a Optimizer
£, Adam
g 10 Momo-Adam
NGN-MDv1
Peak LR
— 0.003
--- 0.01
107 10% 10°

Tokens

Figure 21: Training dynamics of a 420M Transformer+++ trained on SlimPajama. NGN-MDv1
achieves lowest perplexity, and, unlike Adam and Momo-Adam, it remains stable at a larger learning
rate of 0.01.

step-size hyper-parameter c, the effective coordinate-wise step-size does not change dramatically,
especially for layers.0.0.fin.to_gkv layer.

G.10 EXTENDED COMPARISON OF MOMENTUM-BASED ALGORITHMS ON NLP TASKS

We switch to comparison of NGN-M, Momo, NGN, and SGDM on NLP tasks. In particular, we
consider the training of Transformer (based on NanoGPT) on the Tiny Shakespeare and Rotten
Tomatoes datasets and LSTM on the Wikitext-2 dataset from Appendix G.3. We report the results
in Figure 24 while the best performance is shown in Table 3. First, note that all algorithms do
not match the best performance of those that incorporate diagonal step-size and momentum (see
Table 4). Such results are expected since the training of NLP models has significantly different
coordinate-wise conditioning. Nonetheless, NGN-M algorithm achieves better resilience to the step-
size hyper-parameter choice, especially in the training of Transformer models. Therefore, NGN-M
across various model architectures and task domains.

41

Under review as a conference paper at ICLR 2025

0.0001 — 0.001 0.01 — 0.1 1.0 — 10.0 100.0
1010 1010 1010
L & &
2 10 2 107 a 107
o o Q v s
a0t @ 10t @ g0t N
¢ ¢ g | et
g 10 g 10 S 0! ’M
£ - G ——| £
-2 W02 W2
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10° Iterations, x10% Iterations, x10*
layer1.0.convl layer1.0.convl layer1.0.conv1
Adam Momo-Adam NGN-MDv1
1010 101 101
& o &
2 107 g 107 @ 107
i 2 3 !
0 g0t O 1044 [ZIENE POl !
g g e | i
=i 1 =1 1 =} 1],
g 10 g 10 3 10"
= = b=
Wip-2 Wqp-2 L p-2
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10° Iterations, x10* Iterations, x10%
layer2.0.conv1 layer2.0.convl layer2.0.conv1
Adam Momo-Adam NGN-MDv1
1010 1010 1010
g 8 LI
o 10 n 10 v 10
(2R n 104’/_,___.-.-—-"“"""" [ZITE 4 gk
2 2 2 |F
g 10t g 10t g 1047
£ = T b=
Wip-? W2 -2
5 10 15 20 0 5 10 15 20 0 5 10 15 20
Iterations, x10% Iterations, x10% Iterations, x10*
layer3.0.conv1 layer3.0.convl layer3.0.convl
Adam Momo-Adam NGN-MDv1

Figure 22: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and NGN-
MDv1 (third column) algorithms in training ResNet20 model on CIFAR10 dataset. We plot the

average stepsize ﬁ (for Adam), # (for Momo-Adam), and (D’S(') (for NGN-MDv1) for
0 e 0

the first convolution layer within each of 3 base blocks of ResNet20 architecture varying the step-
size hyper-parameter of the algorithms (¢ for NGN-M and NGN, «(for Momo, and learning rate
parameter for Adam).

42

Under review as a conference paper at ICLR 2025

0.0001 — 0.000316 0.001 — 0.00316
10° 10°
& 0 &0
8 1% 8 103
g g
o 10° o 10°
< o < 10
s 0 _— 5 ()
10 10
102 102 :
0 5 10 15 20 0 5 10 15 20
Iterations, x10% Iterations, x10%
layers.0.0.fn.to_gkv layers.0.0.fn.to_gkv
Adam Momo-Adam
10° 10°
& 10 S g
3 3 a 3
g g
O 0~ o 10%
2 10! g 10!
) 0!—//——) 0
g g
10 10
1072 102
0 5 10 15 20 0 5 10 15 20
Iterations, x10° Iterations, x10°
layers.3.0.fn.to_gkv layers.3.0.fn.to_gkv
Adam Momo-Adam
10° 10°
o ; (0]
N 107 N 10?
a 3/ a :
g - g
n 10° »n 10°
g 10‘;/ g 10 1
=R g ‘
E 101 E 101
10 10
1072 1072
5 10 15 20 5 10 15 20

Iterations, x10°

layers.5.0.fn.to_gkv
Adam

Iterations, x10*

layers.5.0.fn.to_gkv
Momo-Adam

10
10
10
10
10

Effective Stepsize

10~
10~

_ e e
ISERSES)

Effective Stepsize
S5 o = e
[===}

10
10

ective Stepsize
e
(===

Eff
[
S S =
| =)

0.01 — 0.0316

5
4
3
2
1

0
1 »
) -

0 5 10 15 20
Iterations, x10%

layers.0.0.fn.to_gkv
NGN-MDv1

-2 2R RS

S=smisoes

5 10 15 20
Iterations, x10%

layers.3.0.fn.to_gkv

o

o

NGN-MDv1
'\
20 5 10 15 20

Iterations, x10%

layers.5.0.fn.to_gkv
NGN-MDv1

Figure 23: The adaptive stepsize of Adam (first column), Momo-Adam (second column), and NGN-
MDv1 (third column) algorithms in training ViT model on CIFAR10 dataset. We plot the average

stepsize ﬁ (for Adam), ﬁ (for Momo-Adam), and

7 . °
(Dr)) (for NGN-MDv1) for the at

tention layer within each of the first, fourth, and sixth base blocks of ViT architecture varying the
step-size hyper-parameter of the algorithms (¢ for NGN-M and NGN, o for Momo, and learning rate

parameter for Adam).

9 9 NGN 9 NGN
a a SGDM a SGDM
] 7 9 7 Momo S 7 Momo
< < NGN-M < NGN-M
© © ©
=5 NGN =5 =5
© SGDM © ©
-uE_ 3 Momo uE_ 3 l_% 3

NGN-M
g 1072 10° 102 10t TR T 10t 10° T T BT 10t 10%
Stepsize Stepsize Stepsize

10° 10 10°
= NGN = NGN NGN
b 101 SGDM b SGDM o SGDM
= Momo 2102 Momo S10? Momo
% 10° NGN-M § NGN-M g NGN-M
%] 7] =
('U U 1 = 1
= 102 = 10 g 10
© © w
£ £
1ot ; ; 100l 3 3 100~ ; 3

1074 1072 10° 102 10* 107° 10°% 107! 10! 10° 107° 10°% 10! 10! 10°
Stepsize Stepsize Stepsize
LSTM for Transformer for Transformer for
Wikitext-2 Tiny Shakespeare Rotten Tomatoes

Figure 24: Stability performance of algorithms supporting momentum and diagonal step-size vary-
ing step-size hyper-parameter (c for NGN-M and NGN, « for Momo, and step-size for SGDM). We
observe that NGN-M achieves the training loss close to the best possible for a wider range of the

step-size hyper-parameter.

43

	Introduction
	Related Works
	Algorithm design of NGN-M and NGN-D
	How to Add Momentum and What to Expect from It?
	Evidence of Robustness of NGN-M
	Diagonal Step-size for NGN

	Theoretical Analysis of NGN-M
	Problem Formulation and Notation
	Convergence Guarantees
	Key Ingredients of the Proof

	Experiments
	Comparison of Algorithms with Momentum
	Comparison of Algorithms with Momentum and Diagonal Step-size
	Vision Experiments on ImageNet
	Language Modeling
	Convergence to Flatter Minima
	Effective Step-size of NGN-M and NGN-MDv1

	Conclusion and Future Work
	Equivalent Formulations of NGN-M
	Technical Lemmas and Definitions
	Convergence of NGN-D
	Convergence in General Non-convex Setting
	Convergence under PŁ-condition

	Convergence of NGN-M
	How to Derive Diagonal NGN-based Step-size?
	Design Comparison of NGN-MDv1 and NGN-MDv2
	Computation Cost of NGN-MD

	How to add weight decay to NGN-MDv1?
	Combining NGN-MDv1 and Weight Decay Regularization
	Empirical Validation of the Proposed Combinations

	Additional Experiments and Training Details
	Training Details
	Comparison Algorithms that Support Momentum
	Comparison of Algorithms that Support Momentum and Diagonal Step-size
	Additional ImageNet Experiments
	Additional Comparison against Lion, Adabelief, Adabound
	Comparison of Algorithms with Diagonal Step-size
	Effective Step-size of NGN-M, Momo, NGN-MDv1, and Momo-Adam
	Spectrum Evolution during the training with NGN-M and SGDM
	Comparison of Adaptive Step-sizes of Adam, Momo-Adam, and NGN-MDv1
	Extended Comparison of Momentum-based Algorithms on NLP Tasks

