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ABSTRACT

Large language models (LLMs) have achieved impressive few-shot performance
when provided with a small number of demonstrations as input context. In this
paper, we systematically investigate what types of demonstrations are highly ef-
fective. Unlike prior approaches that select demonstrations based on similarity
or diversity without considering LLMs, our insight is that the effectiveness of
demonstrations depends on the specific LLMs used. In light of this, we introduce
FEEDER (FEw yet Essential Data minER), a novel data miner that evaluates “suf-
ficiency” and “necessity” of incorporating demonstrations as the context, taking
into account the LLMs in use. The set of demonstrations that are both sufficient
and necessary, referred to as parsimonious sets, can be viewed as a core subset of
the training dataset, containing the most informative samples. Since evaluating
all possible subsets is impractical, we devise novel tree-based search algorithms
for identifying parsimonious sets. We demonstrate that these sets can serve two
primary purposes. One is in-context learning, where FEEDER allows demonstra-
tion retrievers to operate on a subset rather than the entire training dataset, thus
avoiding the retrieval of insufficient or unnecessary demonstrations. The other is
fine-tuning, where fine-tuning LLMs on the set identified by FEEDER can yield
improved performance while also reducing computational costs. Our empirical
results on six text classification datasets and four LLM bases (ranging from 335M
to 7B) consistently demonstrate: (i) In terms of few-shot inference, FEEDER allows
the LLMs to achieve superior (or comparable) performance while utilizing only
half the size of the input training data. (ii) With fine-tuning setting, FEEDER can
significantly improve the LLM’s performance.

1 INTRODUCTION

Large language models (LLMs), e.g., GPT-3 (Brown et al., 2020) and Llama (Touvron et al., 2023),
have demonstrated impressive performance across a wide range of tasks by employing few-shot
inference, often referred as in-context learning (Brown et al., 2020; Dong et al., 2022). This approach
avoids the computational expense associated with fine-tuning LLMs. Here, the core challenge is
how to select the most effective demonstrations from a large training set. Early methods (Qiu et al.,
2022; Liu et al., 2021; Rubin et al., 2021; Wang et al., 2022) primarily selected demonstrations based
on relevance, using similarity scores between each demonstration and the input question. Recent
studies (Levy et al., 2022) have also incorporated diversity along with similarity, acknowledging
that measuring each example in isolation can lead to sub-optimal results. We argue that all these
previously used metrics should be thoroughly revised in the new era of LLMs because they measure
each data instance regardless of the LLMs in use.

Our main idea is that the effectiveness of demonstrations should depend on the LLMs used. In light
of this, we propose a data miner, named FEEDER (FEw yet Essential Data minER), to determine what
types of demonstrations are effective and develop efficient methods for their selection.

We begin by investigating sufficiency and necessity of prompting each demonstration. Sufficiency
assesses whether prompting a demonstration enhances LLM performance on domain-specific tasks,
while necessity gauges whether a newly considered demonstration provides redundant information
compared to those already included. The resulting sets of selected demonstrations, deemed sufficient
and necessary, form what we term parsimonious sets.
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To efficiently select a parsimonious set from the training dataset, the exhaustive enumeration and
evaluation of all possible subsets is impractical. Instead, we devise tree-based algorithms to first
examine whether each demonstration is sufficient and necessary to represent other demonstrations,
and then form a parsimonious set. Our approach functionality can be regarded as an unsupervised
core-set selection method, producing a subset of training instances that are highly informative for the
downstream tasks including in-context learning and fine-tuning. Under the in-context learning setting,
FEEDER can collaborate with various demonstration retrievers, employing the parsimonious set as
the retrieval pool instead of the entire training dataset to generate n-shot demonstrations. Besides,
we also demonstrate that the parsimonious set can enhance the fine-tuning process. Typically, we
evaluate the LLM performance in terms of using one epoch (called warm-up), since more extended
epochs usually require a larger amount of multiple-domain data and greater computational resources.
The above observations together can lead to a novel bi-level framework, in which we formulate the
parsimonious set selection and the LLM fine-tuning as a unified bi-level optimization problem. It
comprises an outer level for extracting the parsimonious set using a frozen LLM and an inner level
for fine-tuning the LLM with fixed plug-in data. This process could be iterated with the tuned LLM
serves for the new parsimonious set selection in the next iteration.

While practical, we could pre-compute and store parsimonious sets to reduce computational overhead
for downstream tasks. Considering that the training dataset can continuously expand, we develop an
incremental update version for FEEDER. This algorithm allows FEEDER to run selectively to the newly
added or modified examples, avoiding the need to recompute every example. Our empirical results,
which span across six text classification datasets, four LLM bases (ranging from 335M to 7B), and
three popular demonstration retrievers (including random, similarity-based, and diversity-based re-
trievers), demonstrate the effectiveness and efficiency of FEEDER. It efficiently selects a parsimonious
set from the entire training dataset, saving nearly half of the data size. Furthermore, utilizing this se-
lected subset, instead of the full training dataset, consistently yields better or comparable performance
in 1-shot, 2-shot, 5-shot, and 10-shot settings. Our results also show that fine-tuning LLMs on the
parsimonious set consistently leads to significant improvements compared to fine-tuning on the entire
training dataset. We further expand the evaluation of FEEDER to reasoning and semantic-parsing tasks
using GPT-6B providing consistent results with the trends observed in the text classification task.

2 A DATA-CENTRIC VIEW FOR IN-CONTEXT LEARNING AND FINE-TUNING

We begin by describing two different contexts where FEEDER operates: the in-context learning setting
and the fine-tuning setting. In this paper, we explore both of them from a data-centric viewpoint
(Strickland, 2022), where data quality outweighs data quantity.

In the in-context learning setting, we are given a training dataset DTRAIN = {(xn,yn)}Nn=1 consisting
of pairs of input data (e.g., questions) and output labels (i.e., answers). Additionally, we have a test
dataset DTEST = {(xm,ym)}Mm=1, where we assume that DTRAIN share the same support set (Yosida,
2012) with DTEST. Our goal is to develop a demonstration miner that extracts a subset of training
examples, denoted as D̃TRAIN ⊂ DTRAIN. We use ΨLLM : X×D → Y to represent a LLM using selected
demonstrations as the context. Here, x· ∈ X is an input text, y· ∈ Y is the corresponding output, and
(x·,y·) ∈ D is one demonstration. Formally, our objective is to minimize:

L(D̃TRAIN,DTEST; Ψ
∗
LLM) =

∑
(xm,ym)∈DTEST

ℓ
(
Ψ∗

LLM(xm, D̃TRAIN),ym

)
, (1)

where ℓ(·) is the given task-specific loss function, and Ψ∗
LLM(·) means that the LLM is frozen.

However, we do not have direct access to the test dataset DTEST, making it impractical to optimize the
demonstration selection directly by minimizing L(D̃TRAIN,DTEST; Ψ

∗
LLM).

Instead, we re-consider the demonstration miner task to select a set of high-quality demonstrations
from the training samples. Our key idea is that high-quality training examples D̃TRAIN should be both
representative of the entire training dataset DTRAIN and as minimal in size as possible. Formally, we
formulate this objective as:

min
D̃TRAIN⊂DTRAIN

|D̃TRAIN|, s.t. L(D̃TRAIN,DTRAIN; Ψ
∗
LLM) ≤ L(DTRAIN,DTRAIN; Ψ

∗
LLM). (2)

This formulation ensures that D̃TRAIN is not only sufficient but also necessary to represent DTRAIN, thus
removing redundant data points to save computation costs meanwhile maintaining LLM performance.
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Figure 1: Overview of FEEDER that operates effectively within both in-context learning and fine-tuning contexts.
In the in-context learning setting, depicted in (a), FEEDER selects a parsimonious set from the training dataset,
and this selected set is characterized by its sufficiency and necessity conditioned on the frozen LLM. In the
fine-tuning setting, shown in (b), FEEDER allows the LLM to be tuned on the fixed parsimonious set, and this
parsimonious set is intentionally selected to be a faithful representation of the training dataset, with the dual
objectives of maintaining data quality and minimizing computational expenses.

The above data-centric viewpoint of mining a subset of high-quality demonstrations also can be
applied to fine-tune LLMs. Given a training dataset DTRAIN and a test dataset DTEST, our objective
is to minimize L(∅, D̃TRAIN; ΨLLM), where D̃TRAIN is expected to be both sufficient and necessary to
represent DTRAIN, which allows us to fine-tune the LLM effectively while reducing computation costs.
In this case, the LLM ΨLLM is usually trainable, and our goal can be formulated as:

min
ΨLLM

E(xn,yn)∈D̃∗
TRAIN

[ℓ
(
ΨLLM(xn, ∅),yn

)
], (3)

where D̃∗
TRAIN means that the selected parsimonious set is fixed during fine-tuning.

Bridging Parsimonious Set Selection and LLM Fine-Tuning into a Unified Bi-level Optimization
Framework. On the outer level, following Eq. (2), we optimize the parsimonious set D̃TRAIN in the
context of a frozen LLM Ψ∗

LLM (as illustrated in Figure 1(a)), while on the inner level, following
Eq. (3), we optimize the LLM ΨLLM using the fixed parsimonious set D̃∗

TRAIN (as shown in Figure 1(b)).
It is noteworthy that this bi-level optimization procedure is amenable to repetition, allowing for
iterative refinement of both the selected parsimonious set and the tuned LLM.

Connections to Existing Work. With the growing capabilities of LLMs, a new paradigm, called
in-context learning (Dong et al., 2022), has emerged, where the core challenge is selecting appro-
priate training examples as the context, often referred to as “demonstrations”. Previous solutions
have revolved around constructing either parameter-free retrieval mechanisms (Wang et al., 2022;
Zemlyanskiy et al., 2022) or neural-based retrieval methods (Pasupat et al., 2021; Liu et al., 2021;
Gupta et al., 2021; Rubin et al., 2021). However, as pointed out in (Levy et al., 2022), greedily re-
trieving demonstrations solely based on their similarity to the input question can result in sub-optimal
performance. Different from the above retrievers, which do not consider the specific LLM in use,
FEEDER evaluates the sufficiency and necessity of each demonstration’s incorporation based on the
LLM used. Our bi-level optimization framework is also related to core-set selection techniques in
active learning (Feldman, 2020; Guo et al., 2022). Prior literature (Dor et al., 2020) has summarized
existing state-of-the-art strategies for models like BERT (Devlin et al., 2018), including uncertainty
sampling (based on entropy metric) (Lewis, 1995; Gal & Ghahramani, 2016) and diversity sampling
(focused on diversity metric) (Gissin & Shalev-Shwartz, 2019). In contrast, FEEDER identifies the
parsimonious set, which can serve a dual purpose: it can be used as candidate input contexts and,
alternatively, to fine-tune the LLM.

We provide a comprehensive summary of other existing methods in Appendix A.

3 SUFFICIENCY AND NECESSITY: FROM INSTANCE TO SET

Let X,C denote variables for the input and the context (i.e., selected demonstrations). We introduce
Y , a boolean variable, to represent whether the output to the input is correct. For simplicity, we use
Yxn = 1 to denote Y = 1|X = xn, meaning that the LLM generates the correct output for the input
xn. Similarly, Yxn

= 0, equivalent to Y = 0|X = xn, indicates that LLM produces an incorrect
output for xn. For convenience, we introduce S, a variable to record the original status of the LLM
before new plug-in and unplug operations (denoted as plug(·) and unplug(·) respectively).

We begin by considering the relationship between two examples, denoted as (xn,yn) and (xm,ym).
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Sufficiency relationship is introduced to assess whether plugging in one data point is adequate for the
LLM to produce the correct answer to another data point. Formally, this relationship is expressed as:

Definition 1 (Sufficiency). Given tuple (X,Y,C, S), a training example (xn,yn) is considered a
sufficient instance for another example (xm,ym), if the following equation holds:

Yxm
= 1|plug((xn,yn));C = ∅, S, (4)

where S can be any value. It means that prior to plugging in (xn,yn), there is no existing plugged-in
data as contexts (i.e., C = ∅), and when we do plug-in (xn,yn) (i.e., plug((xn,yn))), it results in
the LLM providing the correct output (i.e., Yxm = 1).

Necessity relationship is introduced to assess whether it is necessary to retain a particular plugged-in
data point to maintain the correct output of another data point. Its formal definition can be written as:

Definition 2 (Necessity). Given tuple (X,Y,C, S), a training example (xn,yn) is considered a
necessary instance for another example (xm,ym), if the following equation holds:

Yxm = 0|unplug((xn,yn));C = ((xn,yn)), S = (Yxm = 1). (5)

It means that prior to unplugging (xn,yn), there is plugged-in data as contexts (i.e., C = ((xn,yn))),
and the LLM’s output to xm is correct (i.e., S = (Yxm

= 1)). However, when we do unplug (xn,yn)
(i.e., unplug((xn,yn))), it causes the LLM offering an incorrect output (i.e., Yxm

= 0).

The above definitions of sufficiency and necessity metrics, operating on the instance level, are further
clarified with examples in Appendix B.1. Extending these definitions to the set level, a sufficient
set signifies that plugging in a specific set is adequate to ensure the correct outputs for all examples
in another set, while a necessary set implies that removing any example from this set would result
in incorrect answers for at least one example within another set. Formal definitions for the above
set-level metrics, along with examples, are available in Appendix B.2.

Taking into account both the sufficiency and necessity metrics, we define a subset of the training
dataset DTRAIN, which is both sufficient and necessary to effectively represent the entire training
dataset DTRAIN, as parsimonious set DFEED. Formally, we define DFEED as follows:

Definition 3 (Parsimonious Set). Given tuple (X,Y,C, S) and the training dataset DTRAIN, a subset
of DTRAIN, is considered as a parsimonious set, if the following conditions are satisfied:

(i) Y(x1...,xN ) = 1N |plug(DFEED);C = ∅, S holds, where S can be any value. 1N and 0N de-
notes N -dimensional vectors whose elements are all 1s and 0s. It implies that plugging in the
parsimonious set DFEED alone is sufficient to maintain Y(x1...,xN ) = 1N .

(ii) Y(x1...,xN ) ̸= 1N |unplug(D′
FEED ∪ DFEED);C = DTRAIN, S = (Y(x1...,xN ) = 1N ) holds for

any subset of DFEED (denoted as D′
FEED) and DFEED = DTRAIN − DFEED. It indicates that given

DFEED is unplugged, then unplugging any example in DFEED would make the plugged-in data not
sufficient to keep the outputs correct for all the inputs. Namely, plugging in DFEED is necessary
for maintaining Y(x1...,xN ) = 1N .

We illustrate the concept of the parsimonious set through specific examples and establish the relation-
ships between the parsimonious set and the concepts of sufficient and necessary sets in Appendix B.2.

4 SEARCHING PARSIMONIOUS SET: FROM CONCEPT TO PRACTICE

Directly searching DFEED using an exhaustive approach, which involves evaluating all possible subsets
of DTRAIN, is impractical due to its computational complexity, requiring O(2N ) computations.

To streamline the computation, we develop tree-search algorithms to extract sufficient and necessary
sets separately from the given dataset. For convenience, we use DIN = {(xn,yn)}NIN

n=1 to denote
the input set for these algorithms, and use DOUT to denote the output set. The trees in our approach
expand from the bottom to the top. We use the variable K to represent the depth of these trees, which
corresponds to the number of iterations. To be more specific, we use k = 1, 2, . . . ,K to refer to each
k-th iteration, and during each k-th iteration, we generate the (k + 1)-th layer of the tree.
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Figure 2: An illustrated example of mining a sufficient set and a necessary set through building sufficiency and
necessity trees. In (a), we use a sufficiency checker to check each pair of nodes, and after checking, we remove
them from W·; in other words, each node would only be checked once. In (b), we run a necessity checker to
check each pair of nodes, and we do not remove them from H·; instead, we assign MAINTAIN signals to newly
generated nodes and the node with the maximum size, and those nodes without MAINTAIN signals, circled with
dashed lines, would be removed from H·. In (c), we approximate (b) by removing nodes after checking (similar
to (a)), and we repeat the above process for multiple rounds, at the beginning of each round, we unplug all the
previously selected data points. The repeat should stop until there is no or only one node in H0 (i.e., H4), and
therefore, the result in (c) is H1 ∪H2 ∪H4, same as the result in (b).

Searching Sufficient Set. We begin by introducing the following assumption: sufficiency follows a
transitive relationship among sets. Namely, if DA is a sufficient set for DB, and DB is a sufficient set
for DC, then DA is considered a sufficient set for DC. This assumption is based on the capability of
LLMs to infer with a chain of thoughts (Wei et al., 2022). We also include case studies in Appendix E
to illustrate the feasibility of the above assumptions.

We leverage the transitivity of sufficiency to build a sufficiency tree, where each node is a set of
examples. Formally, we denote Wk as the set of nodes after the k-th iteration. We initialize W0 by
assigning all the candidate examples in DIN as the bottom nodes:

W0 := {Wn := {(xn,yn)}|(xn,yn) ∈ DIN}. (6)

During each k-th iteration, we employ a sufficiency checker to generate Wk. This is accomplished
by examining the sufficiency relationship between every pair of nodes, denoted as Wi and Wj from
Wk−1. In this evaluation, we assess whether the following equation holds true by assigning Wi and
Wj as WIN and WOUT, or vice versa.

Y({xn|xn∈WOUT}) = 1|WOUT||plug(WIN);C = ∅, S, (7)

where S can be any value. If Eq. (7) holds, it signifies that plugging in WIN is sufficient for the LLM
to generate the correct output to any input in WOUT. There are three possible scenarios: (i) Reciprocal
Sufficiency: If both Wi and Wj are sufficient set for each other, then we select the one with fewer
elements to append to Wk. (ii) One-sided Sufficiency: If only one of Wi and Wj is a sufficient set
for the other, then we append the sufficient set to Wk. (iii) Insufficiency: If neither Wi nor Wj is
a sufficient set, we append Wi ∪Wj to Wk. After performing the above calculations for each pair
of nodes, we remove them from Wk−1. When there is only one element left in Wk−1, it is directly
appended to Wk. This process continues until W· contains only one element, which is denoted as
WSUFFICIENT ∈ WK . We then assign DOUT as DOUT = WSUFFICIENT.

We illustrate the above process with an example in Figure 2(a), and running the sufficiency tree search
algorithm requires O(log

|DIN|
2 ) iterations.

Searching Necessary Set. Notice that if unplugging set DA causes the output to at least one input in
set DC to change from correct to wrong, then unplugging the union of sets DA and DB also can not
maintain the correctness of all outputs in set DC. Our goal here is to extract the unnecessary part from
the input set DIN so that the remaining part becomes a necessary set. For this purpose, we create a
necessity tree, where each node represents a set of unnecessary examples. We use Hk to denote a
set of nodes after the k-th iteration. We initialize H0 by identifying all examples in DIN for which
unplugging them individually does not affect the LLM’s performance. Formally, we construct H0 as
follows. H0 := {Hn := {(xn,yn)}} where (xn,yn) ∈ DIN satisfies:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug((xn,yn));C = DIN, S = (Y({xn′ |xn′∈DIN}) = 1|DIN|). (8)

During each k-th iteration, we employ a necessity checker to generate Hk by examining the necessity
relationship between each pair of nodes (denoted as Hi and Hj in Hk−1). Here, we verify whether
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Table 1: Performance comparisons on text classification datasets for the in-context learning setting. We report
both the mean and variance of accuracy using four different seeds and four different permutations of n-shots.
See Table 4 for more extended results on datasets COLA, SST-2, and FPB.

ΨLLM(·) D̃TRAIN n
SUBJ SST-5 TREC

RAN SIM DIV RAN SIM DIV RAN SIM DIV

MED

DTRAIN

1 41.3 (7.2) 41.1 (0.1) 41.1 (0.1) 14.5 (6.1) 22.7 (0.2) 22.7 (0.2) 19.4 (6.4) 42.8 (0.1) 42.8 (0.1)

2 47.3 (7.2) 62.8 (0.1) 71.9 (0.2) 18.0 (5.8) 25.6 (0.1) 23.7 (0.2) 21.4 (4.7) 57.2 (0.2) 51.4 (0.1)

5 51.8 (5.5) 85.8 (0.3) 70.1 (0.2) 26.5 (5.3) 32.3 (0.2) 27.8 (0.1) 37.6 (5.1) 66.0 (0.3) 61.4 (0.3)

10 62.4 (5.0) 88.0 (0.2) 78.2 (0.1) 14.9 (3.9) 35.3 (0.1) 30.4 (0.2) 53.0 (5.2) 71.4 (0.2) 65.8 (0.3)

DFEED

1 42.8 (2.4) 44.9 (1.1) 44.9 (1.1) 15.4 (5.2) 23.7 (1.7) 23.7 (1.7) 37.4 (3.6) 48.4 (1.6) 48.4 (1.6)

2 55.9 (3.3) 63.4 (1.6) 74.7 (0.9) 20.9 (4.7) 27.9 (1.1) 25.8 (1.3) 27.6 (3.2) 56.8 (2.2) 52.2 (1.9)

5 57.5 (4.0) 86.9 (0.7) 69.8 (1.0) 28.6 (3.4) 33.2 (1.8) 27.4 (1.7) 40.8 (3.0) 67.4 (1.2) 61.8 (1.3)

10 63.5 (4.4) 88.1 (1.3) 79.7 (2.0) 17.6 (2.2) 36.9 (1.9) 29.8 (1.7) 44.6 (2.8) 74.6 (1.4) 64.6 (1.9)

LAR

DTRAIN

1 42.5 (5.2) 43.6 (0.1) 43.6 (0.1) 14.2 (4.9) 25.2 (0.1) 25.2 (0.1) 21.0 (4.6) 53.2 (0.2) 53.2 (0.2)

2 58.1 (6.3) 88.3 (0.2) 87.0 (0.3) 18.1 (5.1) 29.7 (0.1) 24.4 (0.2) 28.2 (4.4) 62.6 (0.2) 60.6 (0.2)

5 66.7 (4.5) 86.2 (0.2) 86.7 (0.1) 25.6 (4.8) 34.1 (0.1) 30.8 (0.1) 35.4 (5.7) 63.4 (0.1) 64.6 (0.1)

10 48.6 (6.0) 85.9 (0.1) 73.9 (0.2) 28.7 (4.2) 38.7 (0.1) 36.6 (0.1) 43.2 (4.8) 66.0 (0.1) 68.8 (0.1)

DFEED

1 42.8 (5.4) 46.4 (0.4) 46.4 (0.4) 18.7 (3.0) 25.5 (2.2) 25.5 (2.2) 17.4 (3.8) 52.6 (2.1) 52.6 (2.1)

2 63.1 (4.5) 88.5 (1.5) 86.8 (1.3) 25.2 (3.8) 29.7 (1.9) 24.1 (2.1) 34.6 (3.5) 62.2 (1.8) 59.4 (2.0)

5 73.4 (4.3) 86.2 (1.9) 86.8 (1.7) 39.3 (2.9) 35.2 (1.1) 31.0 (1.2) 45.4 (3.3) 65.5 (1.5) 63.7 (1.7)

10 52.0 (3.8) 85.4 (1.3) 75.6 (1.2) 39.6 (3.0) 38.8 (1.8) 37.8 (1.6) 55.8 (3.8) 70.4 (2.0) 68.6 (1.7)

NEO

DTRAIN

1 42.8 (3.9) 42.1 (0.1) 42.1 (0.1) 12.8 (2.7) 20.2 (0.1) 20.2 (0.1) 11.0 (3.2) 57.2 (0.2) 57.2 (0.2)

2 48.5 (4.2) 68.3 (0.2) 72.6 (0.3) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 17.6 (3.1) 52.6 (0.2) 42.2 (0.2)

5 51.6 (5.0) 80.5 (0.2) 61.7 (0.2) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 25.2 (3.8) 66.4 (0.1) 61.8 (0.1)

10 48.5 (5.8) 85.9 (0.3) 81.9 (0.1) 12.7 (2.8) 33.7 (0.2) 31.9 (0.1) 41.6 (4.4) 70.6 (0.1) 69.0 (0.1)

DFEED

1 43.2 (4.0) 46.3 (1.0) 46.3 (1.0) 18.5 (2.1) 20.6 (1.8) 20.6 (1.4) 18.2 (2.4) 56.4 (1.3) 56.4 (1.3)

2 62.6 (3.5) 68.4 (1.5) 73.8 (2.1) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 27.8 (2.7) 54.0 (1.4) 44.5 (1.6)

5 69.4 (5.6) 79.2 (1.8) 61.9 (1.3) 19.2 (3.2) 30.2 (2.7) 26.4 (2.4) 50.4 (3.2) 66.0 (1.4) 61.6 (1.5)

10 78.7 (3.3) 87.2 (1.7) 82.3 (2.8) 15.4 (2.4) 37.0 (1.5) 34.5 (1.9) 45.2 (2.9) 72.8 (1.4) 68.8 (1.3)

LLA

DTRAIN

1 42.9 (6.6) 48.5 (0.1) 48.5 (0.1) 28.6 (2.9) 29.7 (0.1) 29.7 (0.1) 35.2 (3.7) 54.2 (0.1) 54.2 (0.1)

2 51.9 (4.4) 60.7 (0.1) 55.2 (0.2) 35.9 (3.1) 33.9 (0.1) 33.5 (0.3) 45.0 (4.0) 69.4 (0.1) 63.6 (0.1)

5 51.6 (3.2) 76.8 (0.2) 62.9 (0.1) 37.9 (2.3) 38.3 (0.2) 37.0 (0.1) 53.0 (3.6) 79.0 (0.2) 70.4 (0.3)

10 56.1 (4.6) 81.3 (0.1) 65.1 (0.1) 38.4 (3.8) 37.5 (0.1) 40.0 (0.2) 58.0 (2.3) 83.4 (0.1) 79.2 (0.1)

DFEED

1 42.8 (4.3) 49.7 (1.0) 49.7 (1.0) 27.6 (2.4) 32.3 (1.5) 32.3 (1.3) 41.2 (2.1) 56.8 (1.8) 56.8 (1.8)

2 54.8 (3.0) 60.5 (1.1) 54.8 (0.7) 39.5 (2.5) 32.6 (1.2) 32.7 (1.1) 53.8 (2.3) 68.6 (1.7) 63.5 (1.3)

5 53.7 (3.8) 77.9 (0.8) 61.5 (1.4) 39.2 (2.0) 38.3 (1.3) 39.4 (1.0) 58.2 (2.8) 78.8 (1.6) 71.8 (1.4)

10 58.0 (3.4) 85.8 (0.9) 67.8 (1.2) 39.7 (2.8) 39.0 (1.0) 41.6 (1.3) 59.8 (3.1) 86.0 (1.9) 83.4 (2.0)

solely unplugging Hi ∪Hj does not impact the LLM’s performance. Formally, we check whether
the following equation holds:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug(Hi ∪Hj);C = DIN, S = (Y({xn′ |xn′∈DIN}) = 1|DIN|), (9)

which determines whether plugging Hi ∪Hj is unnecessary for maintaining the correct outputs to all
inputs in DIN. If Eq. (9) holds, we create a new node Hi ∪ Hj and add it to Hk, labeling it with a
MAINTAIN signal. Otherwise, we add both Hi and Hj to Hk. After this computation, we identify
HMAX = argmaxH·∈Hk

|H·| and label it with a MAINTAIN signal. Subsequently, we remove the
nodes in Hk that lack MAINTAIN signals. This process continues until H· contains only one element,
denoted as HUNNECESSARY ∈ HK . Finally, we calculate DOUT as DOUT = DIN −HUNNECESSARY.

We provide an illustrated example of this process in Figure 2(b). However, since at each iteration, we
need to run the checker for O(C2NIN

) times (where C·· denotes a combination operator), this becomes
impractical. To this end, we develop an alternative algorithm. Specifically, at each k-th iteration, we
remove the checked nodes (i.e., Hi and Hj) from Hk (similar to the sufficiency tree search). Then, it
requires O(log

|DIN|
2 ) iterations to finish one round. Then, similarly, it requires O(log

|DIN|
2 ) iterations

to finish one round. To obtain a necessary set, we need to repeat the above process for multiple
rounds. This process continues until there is no or only one element left in H0. When practical, we
can set RMAX as the maximum number of rounds to approximate. Overall, this approximate algorithm
requires O(RMAX log

|DIN|
2 ) iterations. We illustrate the above process in Figure 2(c).

Theorem 1. If we successively apply the sufficiency tree search algorithm and the necessity tree
search algorithm (either the original one or the alternative one) on DTRAIN to obtain DFEED, then
DFEED is a parsimonious set of DTRAIN, namely DFEED satisfying Definition 3.

Theorem 1 tells that both our sufficiency tree search algorithm and necessity tree search algorithm
can serve as an efficient filter to eliminate the insufficient or unnecessary portion from DTRAIN. We
provide comprehensive descriptions of the tree search algorithms, along with the analysis and the
proof of the above theorem in Appendix C.
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Figure 3: Performance comparisons of using different numbers of rounds of sufficient tree-search algorithm in
terms of accuracy (denoted as ACC) and the size of the resulting sufficient set (denoted as Size). Each sub-figure
is entitled with Dataset+LLM bases+n shots.

Due to the inherent limitation of context window size (up to 1024 word pieces), while practical, it
is infeasible to directly finish the necessary check over all the instances in DTRAIN when |DTRAIN| is
large. To overcome this challenge, we propose to incorporate a demonstration retriever between the
sufficient set miner and the necessary set miner. In other words, we can first iteratively employ the
sufficiency tree search for multiple rounds to obtain the sufficient set. Then, with each test input
x ∈ DTEST, we run the retriever to get several demonstrations, and thus the necessary set miner only
needs to filter out the unnecessary portions from the retrieved demonstrations. We illustrate the above
justification in Appendix D.1.

5 DEPLOYING FEEDER INTO REAL-WORLD USE CASES

As previously discussed in Section 2, our primary focus lies in the in-context learning and fine-tuning
settings, where our parsimonious set can represent and replace the whole training dataset. We mainly
conducted our experiments using six text classification datasets: SST-2 (Socher et al., 2013), SST-5
(Socher et al., 2013), COLA (Warstadt et al., 2018), TREC (Voorhees & Tice, 2000), SUBJ (Pang
& Lee, 2004), and FPB (Malo et al., 2014). These datasets cover a range of tasks from sentiment
classification and linguistic analysis to textual entailment.

To evaluate the performance of our approach, we employed two GPT-2 variants (Radford et al., 2019):
one with 335M parameters denoted as MED, and the other with 774M parameters denoted as LAR; one
GPT-3 variant with 1.3B parameters denoted as NEO; and one Llama 2 variant (Touvron et al., 2023)
with 7B parameters denoted as LLA as the LLM base (i.e., ΨLLM(·)).
We also evaluate FEEDER on reasoning dataset GSM8K (Cobbe et al., 2021) and semantic-parsing
dataset SMCALFlow (Andreas et al., 2020) with one GPT-3 variant with 6B parameters as the LLM,
and report the results in Appendix D.3. All the code will be made available upon publication.

5.1 PERFORMANCE COMPARISONS FOR IN-CONTEXT LEARNING

We first evaluate the performance of FEEDER under the in-context learning setting. Due to the inherent
limitation of context window size (up to 1024 word pieces), we assessed the LLM’s accuracy in the
n-shot setting across all datasets, with n values of one, two, five, and ten. We integrate FEEDER with
existing demonstration retrievers, which involves first mining the parsimonious set using FEEDER
and then retrieving relevant demonstrations from this set. We conducted an evaluation of FEEDER
in conjunction with three commonly used retrievers: (i) RAN is the random retriever, which selects
input demonstration randomly from the retrieval pool. (ii) SIM is the similarity-based retriever
(Sorensen et al., 2022; Gonen et al., 2022), which selects relevant demonstrations in terms of the
cosine similarity metric. (iii) DIV is the diversity-based retriever (Ye et al., 2022), which selects
similar and diverse demonstrations in terms of maximal marginal relevance (Carbonell & Goldstein,
1998). When applying FEEDER, the retrieval pool is DFEED; otherwise, it is DTRAIN. Considering that
the necessity tree search algorithm is time-consuming and either the sufficiency tree search algorithm

7
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Table 2: Performance comparisons on text classification datasets for the fine-tuning setting. We report both the
mean and variance of accuracy using four different seeds and four different permutations of n-shots. See Table 7
for more extended results on datasets COLA, SUBJ, and FPB.

ΨLLM(·) D̃TRAIN n
SUBJ SST-5 TREC

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO

DTRAIN

1 72.7 (5.7) 91.0 (0.0) 91.0 (0.0) 17.3 (4.1) 24.6 (0.0) 24.6 (0.0) 63.3 (5.2) 79.5 (0.0) 79.5 (0.0)

2 74.1 (4.6) 93.7 (0.0) 92.1 (0.0) 24.5 (3.2) 25.8 (0.0) 26.4 (0.0) 63.5 (5.7) 57.2 (0.0) 51.4 (0.0)

5 70.8 (5.1) 93.3 (0.0) 92.7 (0.0) 23.6 (4.1) 27.8 (0.0) 27.3 (0.0) 67.8 (4.7) 66.6 (0.0) 73.0 (0.0)

10 89.2 (4.4) 94.0 (0.0) 91.6 (0.0) 26.8 (2.9) 26.5 (0.0) 27.8 (0.0) 66.9 (3.8) 68.8 (0.0) 72.4 (0.0)

DGOLD

1 93.0 (4.3) 93.5 (1.8) 93.5 (1.8) 19.5 (3.1) 26.7 (2.0) 26.7 (2.0) 64.6 (3.2) 80.6 (0.8) 80.6 (0.8)

2 96.1 (3.8) 94.1 (1.3) 92.6 (1.2) 25.6 (2.7) 26.4 (0.7) 28.6 (0.8) 64.2 (3.7) 79.6 (0.7) 80.3 (0.9)

5 85.7 (3.5) 94.7 (1.5) 94.1 (1.1) 27.4 (2.9) 29.5 (1.8) 29.7 (1.5) 70.8 (3.2) 78.2 (2.3) 79.6 (1.9)

10 90.5 (3.3) 95.5 (1.3) 95.6 (1.4) 28.9 (2.0) 28.6 (1.7) 29.0 (1.6) 69.7 (2.7) 71.2 (1.7) 76.7 (1.9)

or the necessity tree search algorithm can serve as a data miner, we only operated the alternative
necessity tree search algorithm for one round and ran the sufficiency tree search algorithm for five
rounds. We conducted experiments with four different permutations for various n-shot scenarios and
employed four different seeds for each experiment. In Appendix D.3, we also present additional
results obtained using active learning techniques as retrievers. These retrievers encompass both the
entropy-based retriever (Roy & McCallum, 2001) and the uncertainty-based retriever (Köksal et al.,
2022). We offer comprehensive retriever descriptions in Appendix D.2.

Table 1 reports our main results, including both the mean and variance of accuracy. We evaluate
the impact of the number of rounds running the sufficiency tree search algorithm and report the
corresponding FEEDER’s performance and the size of the sufficient set in Figure 3.

Our findings are summarized as follows:

FEEDER is an effective data miner. By combining Table 1 and Figure 3, one can observe that FEEDER
allows us to retain nearly half of the training samples while still achieving superior or comparable
performance in most scenarios. These results verify the effectiveness of FEEDER as an effective data
filtering method.

FEEDER is an effective input demonstration pre-filter, especially for large LLM bases and the
random retriever. Table 1 tells us that the performance of FEEDER is indeed influenced by both the
choice of LLM and the retriever used in conjunction with it. Concretely, FEEDER tends to benefit from
larger LLMs like LAR, NEO and LLA, with NEO and LLA showing especially significant improvements.
This suggests that FEEDER leverages the capabilities of LLMs, including their reasoning skills and
stored knowledge. Larger LLMs often possess more powerful capabilities, making them better suited
for FEEDER. Additionally, FEEDER is also influenced by the choice of retrievers, with retrievers like
RAN, FEEDER can provide significant improvements. This implies that FEEDER could effectively filter
high-quality data from the training dataset.

FEEDER operating on the set level, works well when the number of shots is large. Table 1 shows
that good performance of FEEDER often occurs when the number of shots is 5 or 10. This suggests
that FEEDER measuring input demonstrations on the set level, can effectively address reciprocal
inhibitions among data.

5.2 PERFORMANCE COMPARISONS FOR FINE-TUNING

We evaluate the performance of FEEDER under the fine-tuning setting. As introduced in Section 4
(and Appendix D.1), our approach can re-compute and store the sufficient set. Here, different from
the in-context learning setting, we run our sufficiency tree search algorithm only for one round, and
use the resulting sufficient set to fine-tune the LLM.

Table 2 reports our main results, including both the mean and variance of accuracy. We evaluate
the performance changes of FEEDER in the context of using the different number of rounds of the
sufficiency tree search algorithm and report the corresponding zero-shot results in Figure 4.

Our findings are summarized as follows:

FEEDER can yield substantial enhancements when compared to fine-tuning with DTRAIN. As
shown in Table 2, FEEDER consistently delivers significant improvements over using DTRAIN. This
demonstrates that achieving better performance is possible by using a small but high-quality dataset
for fine-tuning, while also reducing computational expenses.
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Table 3: Performance comparisons between using different LLM bases as the miner for acquiring a sufficient set
on COLA dataset with different retrievers under a 1, 2, 5-shot in-context learning setting.

DFEED n
MED LAR NEO

RAN SIM DIV RAN SIM DIV RAN SIM DIV

MED
1

22.7 (5.7) 31.0 (1.3) 34.0 (1.4) 28.3 (4.1) 34.6 (1.8) 34.6 (1.2) 29.4 (5.2) 29.5 (1.9) 30.5 (1.8)

LAR 24.1 (5.6) 33.7 (1.4) 36.1 (0.8) 24.5 (3.2) 35.8 (1.2) 36.4 (1.0) 23.5 (5.7) 27.2 (2.0) 31.4 (1.8)

NEO 29.4 (4.6) 35.1 (1.5) 35.1 (1.5) 29.6 (3.8) 35.1 (1.1) 35.1 (1.1) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

MED
2

29.2 (4.4) 38.9 (1.8) 31.6 (2.0) 34.8 (3.9) 36.5 (2.3) 27.8 (1.8) 66.9 (3.8) 63.8 (1.0) 62.4 (1.3)

LAR 30.2 (4.3) 41.3 (1.8) 32.2 (1.8) 33.9 (3.1) 37.4 (2.0) 30.6 (2.0) 65.6 (3.2) 63.6 (0.8) 63.5 (0.8)

NEO 31.1 (2.2) 41.7 (1.2) 34.9 (1.2) 36.6 (3.5) 37.0 (2.8) 34.6 (2.0) 69.3 (3.7) 64.7 (1.4) 64.7 (1.6)

MED
5

64.2 (4.4) 56.9 (0.6) 51.6 (0.4) 66.8 (2.9) 67.4 (1.0) 67.8 (2.0) 66.9 (3.8) 65.8 (2.3) 62.6 (1.6)

LAR 65.3 (4.3) 56.3 (1.8) 52.4 (1.8) 68.8 (3.1) 67.7 (2.0) 67.7 (2.0) 67.7 (3.2) 66.0 (0.8) 64.3 (0.8)

NEO 65.2 (2.0) 57.3 (1.2) 54.6 (1.7) 69.2 (3.3) 68.6 (1.6) 66.6 (1.7) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

FEEDER performs optimally when the sufficiency tree search algorithm runs for just one round.
Figure 4 illustrates the influence of employing varying numbers of rounds for constructing the
sufficient set for NEO’s fine-tuning. For ease of comparison, we also include the results of fine-tuning
NEO on DTRAIN with the blue lines. These findings suggest that fine-tuning with a smaller dataset can
improve final performance, but an excessively small dataset may not yield the desired results. Similar
results would be found in (Chen et al., 2023).

5.3 SCALING UP FEEDER TO LLMS AND DYNAMIC DATA

Figure 4: Performance comparisons on fine-tuning
NEO on the sufficient set with different rounds of
running our sufficiency tree search algorithm (i.e.,
RSUFFICIENT). Our evaluation operates on COLA
dataset in the zero-shot setting after fine-tuning on
1000 and 2000 batches.

Scaling Up FEEDER to Larger LLMs. As the LLM
scales up in size, the execution of our sufficiency
and necessity tree search algorithms can become ex-
ceedingly time-consuming. In response, we suggest
employing a smaller LLM to generate a sufficient set,
which can then be stored and utilized by the larger
LLM. To assess the viability of this approach, we con-
ducted an experiment to compare the performance
of using MED, LAR and NEO as the LLM to get the
sufficient set and use it as the retrieval pool to get
demonstrations for the LLM MED, LAR and NEO, and
we summarize the results in Table 3. From the ta-
ble, we can observe that there are slight differences
in using different LLMs as the miner to compute
DFEED. This observation suggests the potential feasi-
bility of employing a more compact LLM for mining
high-quality demonstrations to benefit a larger LLM.
However, this inference may not hold true when com-
paring a smaller LLM fine-tuned on domain-specific data to a larger LLM fine-tuned on general
knowledge, due to their dissimilar knowledge bases and inferential capabilities.

Scaling Up FEEDER to Dynamic Data. Notice that many real-world datasets for training are temporal
and require frequent updates. Re-running FEEDER for all the samples is super time-consuming.
Instead, we treat the unchanged part of plug-and-play the parsimonious set and the LLM as the whole,
as a new “LLM model”, and therefore, we only apply FEEDER to compute incremental data for the
changed part (including newly added and modified data points). We illustrate the above process in
Appendix D.1.

In Appendix D.5, we present a time complexity evaluation for FEEDER. Additionally, in Appendix E,
we offer a case study based on some artificial cases to provide a detailed illustration of FEEDER’s
functionality.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel LLM framework FEEDER, addressing the identification of highly
effective data and the efficient approach to discovering them. Our experimental findings demonstrate
FEEDER could offer substantial benefits across various LLMs with the collaborations with different
retrievers. In the future, it would be interesting to explore additional use cases for FEEDER in data
safety and data management.
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A CONNECTIONS TO EXISTING APPROACHES

A.1 CONNECTIONS TO CAUSALITY

Concepts of sufficiency and necessity have a broad application scope, especially in causality (Pearl,
1980; 2009), where sufficiency and necessity are proposed to define the causal relationship between
two binary variables. Let X and Y denote a pair of variables. Then, the probability of sufficiency
measures the capacity of setting X = true to produce Y = true, while the probability of necessity
measures the changing the value of X from X = true to X = false would cause the value of Y
changing from Y = true to Y = false.

In this paper, we adopt the concepts of sufficiency and necessity in the context of demonstration
mining, where we investigate whether prompting certain data points is sufficient or necessary for the
given LLM to generate the correct answers for the input questions. For this purpose, we introduce the
plugging-in operation, denoted as plug(·), to examine the sufficiency and the unplugging operation,
denoted as unplug(·), to examine the necessity. Both of the above operations are similar to the
do operation in the causality, denoted as do(·), which indicates that the system operates under the
condition that certain variables are controlled by external forces.

To be more specific, in our setting, the external force can be explained as: we can choose to either
plug-in or unplug some data points to change what is already plugged for the LLM. Our intuition is
similar to the counterfactual idea in the casualty, which investigates what if some variables are set
with some different values. In our case, we study what if the plugged-in data includes some data
points that are different from the historical (a.k.a., factual) setting. One significant difference between
ours and the counterfactual setting in casualty is that we do not need to estimate the “counterfactual”
situations (namely setting plugged-in data with different values), as we can directly do evaluations.

A.2 CONNECTIONS TO DEMONSTRATION SELECTION

As LLMs have shown great potential in few-shot inference, a core challenge is how to select “shots”.
One principal solution is to select some training examples as the extra input, which are named as
demonstrations or prompts (Levy et al., 2022; Liu et al., 2021; Dong et al., 2022). One implicit
assumption here is that the training set is a support set (Yosida, 2012) of test samples. Previous
investigations (Wang et al., 2022; Rubin et al., 2021) show that plugging in similar training examples
can improve the performance of LLMs on test instances. However, as pointed out in (Levy et al.,
2022), these methods only measure each data point in isolation, instead of considering the data
points as a whole. In other words, a retriever based on the similarity metric, only operates on the
instance level and could select two same data points together as the extra input, which are definitively
redundant. To address this issue, a recent paper (Levy et al., 2022) proposes to consider the diversity
among the data points, to avoid the case where too “similar” data points are selected together.

In this paper, our main insight is that the quality of demonstrations would be aware of the LLM in use.
In other words, a high-quality demonstration for one LLM could be a low-quality demonstration for
another LLM. In light of this, we propose sufficiency and necessity as the new set-level metrics. Our
method conveys the following advantages. Firstly, compared to the similarity and diversity metrics,
sufficiency and necessity measure the quality of data points depending on the LLM in use. Secondly,
compared to instance-level metrics, our proposed sufficiency and necessity can be extended to the set
level, and thus can consider the data points as a whole. In our framework, the “similarity” can be
translated as “sufficiency”, meaning that plugging in the data points can improve the performance
of the LLM, while the “diversity” can be translated as “necessity”, indicating that each data point
should play an irreplaceable role.

A.3 CONNECTIONS TO ACTIVE LEARNING AND CORE-SET SELECTION

Core-set selection (Feldman, 2020; Guo et al., 2022), aiming to select a subset of the most informative
training samples, is a long-standing learning problem that can benefit many downstream tasks such
as active learning. One prior work (Dor et al., 2020) has summarized and evaluated existing state-
of-the-art active learning approaches for BERT (Devlin et al., 2018), including random sampling,
uncertainty-sampling (using entropy metric) (Lewis, 1995; Gal & Ghahramani, 2016) and diversity
sampling (using diversity metric) (Gissin & Shalev-Shwartz, 2019). Different from active learning,
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FEEDER selects core sets (called parsimonious sets) that can be either used as the extra input contexts
or used to train the LLM. And, the “uncertainty” could select the data points with max entropy,
independent of the LLM. In contrast, “informative training samples” in our framework are defined as
those training samples that can benefit the LLM’s performance on a specific task.

B A FAMILY OF ANALYSIS ON DATA RELATIONSHIPS

We begin by describing some key notations used in the paper.

Notation. Let X,C denote variables for the input and the context (i.e., previously plugged-in
demon stations). We use Y , a boolean variable, to denote whether the output to the input is correct.
Concretely, we use Yx = 1 to denote Y = 1|X = x, meaning that the LLM generates the correct
output to the input x. Similarly, Yx = 0, equivalent to Y = 0|X = x, indicates that the LLM
produces the incorrect output to x. For clarity, we introduce S, a variable to record the original
status of the LLM before new plug-in and unplug operations (denoted as plug(·) and unplug(·)
respectively), e.g., C = ((x,y)), S = (Yx = 1) means that without plugging-in any new data or
unplugging any plugged-in data, the plugged-in data is (x,y) and the LLM’s performance is Yx = 1.

B.1 DATA RELATIONSHIPS ON INSTANCE LEVEL

In this subsection, we consider two instances, denoted as (xn,yn) and (xm,ym).

Sufficiency relationship is proposed to evaluate whether plugging-in one data point is sufficient to
enable the LLM to generate the correct output to the other one. Formally, we have:
Definition 4 (Sufficient Instance). Given tuple (X,Y,C, S), we say that the data point (xn,yn) is
a sufficient instance for (xm,ym) (namely plugging-in (xn,yn) is sufficient to get the correct output
to xm), if the following equation holds:

Yxm
= 1|plug((xn,yn));C = ∅, S, (10)

where S can be any value. It indicates that before plugging-in (xn,yn), there is no plugged-in data
as contexts (i.e., C = ∅), and when we plug-in (xn,yn) (i.e., plug((xn,yn))), then it results in the
LLM’s output to xm is correct (i.e., Yxm = 1).

Example A1. Let xm,xn be Which country does Sherlock Holmes live? and Which city does
Sherlock Holmes live? Suppose that without any plugged-in data, the LLM generates wrong answers
for the above two questions, e.g., Sherlock Holmes lives in the United States for xm and Sherlock
Holmes lives in New York for xn. Then, after telling the LLM the correct answer of xn (e.g., yn is
Sherlock Holmes lives in London), then the LLM can infer the correct answer of xm (e.g., ym is
Sherlock Holmes lives in the United Kingdom). In this case, the LLM is using the city where Sherlock
Holmes lives to infer the country in which he lives.

Necessity relationship is proposed to evaluate whether it is necessary to keep one plugged-in data
point in terms of maintaining the correct output to the other one. Formally, we have:
Definition 5 (Necessary Instance). Given tuple (X,Y,C, S), we say that the data point (xn,yn)
is a necessary instance for (xm,ym) (namely plugging-in (xn,yn) is necessary to get the correct
output to xm), if the following equation holds:

Yxm = 0|unplug((xn,yn));C = ((xn,yn)), S = (Yxm = 1). (11)

It means that before unplugging (xn,yn), there is plugged-in data as the context (xn,yn) (i.e.,
C = ((xn,yn))) and the LLM’s answer to xm is correct (i.e., S = (Yxm = 1)), and when we unplug
(xn,yn) (i.e., unplug((xn,yn))), then it would cause the LLM offering an incorrect output (i.e.,
Yxm

= 0).

Example A2. Let xm,xn be Which city does Sherlock Holmes live? and What is the detailed address
of Sherlock Holmes lives? Suppose that the LLM knows nothing about Sherlock Holmes without
previous plugged-in (xn,yn) (where yn is 221B Baker Street, London). After plugging-in (xn,yn),
the LLM can produce a correct output ym (where ym is Sherlock Holmes live in London) to xm. If
unplugging (xn,yn), the LLM would produce an incorrect output to xm, e.g., Sherlock Holmes live
in New York.
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Ideally, when we aim to ensure the LLM’s performance, a principle solution is to extract data points
that are both sufficient and necessary, to guarantee accuracy meanwhile avoiding data redundancy.
Definition 6 (Sufficient and Necessary Instance). Given tuple (X,Y,C), we say that data point
(xn,yn) is a sufficient and necessary instance for (xm,ym) (namely plugging-in (xn,yn) is both
sufficient and necessary to get the correct output to xm), if the following equation holds:(

Yxm = 1|plug((xn,yn));C = ∅
)
∧
(
Yxm = 0|unplug((xn,yn));C = ((xn,yn))

)
, (12)

which indicates that plugging-in data point (xn,yn) can respond to the LLM’s answering xm in
both ways. We omit S here, because we can derive the original status of the necessary instance based
on the condition of the sufficiency instance.

Although neither of the above two quantities (i.e., sufficiency and necessity) is sufficient for deter-
mining the other one, they are not entirely independent, as shown in the following lemma.
Lemma 1. Supposing that we only consider using the data point (xn,yn) as the plug-in data, and
only care about the LLM’s performance regarding the input question xm, then overall there are
only two situations here: (i) (xn,yn) is plugged-in, and (ii) (xn,yn) is not plugged-in. Based on
the above assumption, we re-write (i) as plugging-in (xn,yn) when there is no plugged-in data
(i.e., plug((xn,yn));C = ∅, and re-write (ii) as unplugging (xn,yn) when there is plugged-in
data (xn,yn) (i.e., unplug((xn,yn));C = ((xn,yn))). For simplicity, we use C∗ and C to denote
(i) and (ii) respectively; and we use Y ∗ and Y to denote Yx1

= 1 and Yx1
= 0. Then, we have:

C∗ ∨ C = true, C∗ ∧ C = false, Y ∗ ∨ Y = true, Y ∗ ∧ Y = false.

We define PS as the probability of being sufficient instance as:

PS := Pr
(
Yxm

= 1|plug((xn,yn));C = ∅
)
= Pr(Y ∗|C∗). (13)

We define PN as the probability of being necessary instance as:

PN := Pr
(
Yxm = 0|unplug((xn,yn));C = ((xn,yn))

)
= Pr(Y |C). (14)

We further define PNS as the probability of being sufficient and necessary instance as:

PNS := Pr(Y ∗|C∗, Y |C). (15)

Then, PS, PN, PSN satisfy the following relationship:

PSN = Pr(Y,C) · PS+ Pr(Y ∗, C∗) · PN. (16)

Proof. From the above description of Y ∗, Y , C∗, C, we can write:

Y ∗|C∗ ∧ Y |C = (Y ∗|C∗ ∧ Y |C) ∧ (C ∨ C∗)

=(Y ∗|C∗ ∧ Y ∧ C) ∨ (Y |C ∧ Y ∗ ∧ C∗).
(17)

Taking probabilities on both sides and using the disjointedness of C∗ and C, we have:

PSN =Pr(Y ∗|C∗, Y |C) = Pr(Y |C, Y ∗, C∗) + Pr(Y ∗|C∗, Y, C)

=Pr(Y,C) · PS+ Pr(Y ∗, C∗) · PN. (18)

B.2 DATA RELATIONSHIPS ON SET LEVEL

In this subsection, we first extend Definitions 4 and 5 to the set level as:
Definition 7 (Sufficient Set). Given tuple (X,Y,C, S), we say that the input set DIN is a sufficient
set for output set DOUT (namely plugging-in DIN is sufficient to get the correct output to any data
point in DOUT), if the following equation holds:

Y({xn|xn∈DOUT}) = 1NOUT
|plug(DIN);C = ∅, S, (19)

where S can be any value and NOUT = |DOUT|. It indicates that when plugging-in DIN (i.e.,
plug(DIN)), then it would guarantee that the LLM’s output to any input question in DOUT is correct
(i.e., Y({xn|xn∈DOUT}) = 1NOUT

).
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Definition 8 (Necessary Set). Given tuple (X,Y,C, S), we say that the input set DIN is a necessary
set for output set DOUT (namely plugging-in any subset of DIN, denoted as D′

IN, is necessary to get the
correct output to at least one data point in DOUT), if the following equation holds:

Y({xn|xn∈DOUT}) ̸= 1NOUT
|unplug(D′

IN);C = DIN, S = (Y({xn|xn∈DOUT}) = 1NOUT
), (20)

where NOUT = |DOUT|. It means that before unplugging any subset of DIN, there is plugged-in data DIN

(i.e., C = DIN) and the LLM’s output to any input in DOUT is correct (i.e., S = (Y({xn|xn∈DOUT}) =
1NOUT

)), and when we unplug any subset of DIN (i.e., unplug(D′
IN)), then it would cause the LLM’s

output to at least one input in DOUT being incorrect (i.e., Y({xn|xn∈DOUT}) ̸= 1NOUT
).

From the above descriptions, one can see that when we say one set is a sufficient set, we require that
the overall set of data points is sufficient; when we say one set is a necessary set, we require that each
data point in the set is necessary.

Example A3. Let DOUT = {(xm,ym)} and DIN = {(xi,yi), (xj ,yj)}. We assign xm and ym as
Which country does Sherlock Holmes live? and Sherlock Holmes lives in the United Kingdom. Let xi

and yi denote Which street does Sherlock Holmes live? and Baker street. We assign xj and yj as
Where is Baker street? and Bake street is located in London. Supposing that the LLM does not know
that Bake street is located in the United Kingdom, then solely plugging-in either (xi,yi) or (xj ,yj)
is not sufficient for the LLM to get the right answer ym to the input question xm. In this regard, it
is easy to derive that DIN is both sufficient and necessary plug-in set for DOUT: (i) plugging-in DIN

is sufficient to maintain the right answer for DOUT; and (ii) unplugging any subset of DIN can not
maintain the right answer for DOUT.

Then, we investigate the following problem: how to define a subset in the given dataset D that is both
sufficient and necessary to represent D. Formally, we have:

Definition 9 (Parsimonious Set). Given tuple (X,Y,C, S) and dataset D = {(xn,yn)}Nn=1, we
say that D can be partitioned into two parts: one is a parsimonious set, denoted as DFEED, and the
other part is denoted as DFEED, if the following conditions are satisfied:

(i) Y(x1...,xN ) = 1N |plug(DFEED);C = ∅, S holds, where S can be any value, and 1N and 0N

denotes N -dimensional vectors whose elements are all 1s and 0s. It indicates that plugging-in
DFEED alone is sufficient for maintaining Y(x1...,xN ) = 1N .

(ii) Y(x1...,xN ) ̸= 1N |unplug(D′
FEED ∪ DFEED);C = D, S = (Y(x1...,xN ) = 1N )) holds for any

subset of DFEED (denoted as D′
FEED). It indicates that if DFEED would be unplugged, then unplugging

any data point in DFEED would make the plugged-in data not sufficient to keep the output accurate
for all the inputs. Namely, plugging-in DFEED is necessary for maintaining Y(x1...,xN ) = 1N .

Example A4. If we merge DIN and DOUT exemplified in Example A3 into one set D, namely let
D = DIN ∪ DOUT, then in this case, it is easy to derive that DIN is a parsimonious set for D.

Theorem 2. For the given dataset D, DFEED is a parsimonious set of D, iff DFEED is a sufficient set of
D and DFEED is a necessary set of D.

Proof. Firstly, it is simple to show that condition (i) in Definition 9 is equivalent to the sufficiency in
Definition 7. Both of them can reach that

Y({xn|xn∈D}) = 1N |plug(DFEED);Z = ∅, (21)

which indicates that plugging-in DFEED is sufficient to guarantee the LLM’s output to any input in D.

Secondly, we re-write condition (ii) in Definition 9 as:

Y({xn|xn∈D}) ̸= 1N |unplug(D′
FEED);Z = DFEED, S = (Y({xn|xn∈D}) = 1N ), (22)

where D′
FEED can be any subset of DFEED. It means that any data point is necessary to maintain the

LLM’s correct outputs to the inputs in D, namely DFEED is a necessary set for D.

Similarly, one can directly combine sufficiency and necessity to derive conditions (i) and (ii).
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Algorithm 1: Sufficiency Tree Search Algorithm in FEEDER

Input: Input dataset DIN = {(xn,yn)}NIN

n=1.
Output: A sufficient set of DIN, denoted as DOUT.
Initialize k = 1 and W0 = {Wn = {(xn,yn)}|(xn,yn) ∈ DIN}.
repeat
Initialize k = 1 and W0 = {Wn = {(xn,yn)}|(xn,yn) ∈ DIN}.
foreach pair (Wi,Wj) where Wi,Wj ∈ Wk−1 do

Check Y({xn|xn∈Wj}) = 1|Wj ||plug(Wi);C = ∅ (a).
Check Y({xn|xn∈Wi}) = 1|Wi||plug(Wj);C = ∅ (b).
Case I (both (a) and (b) hold), if |Wi| ≥ |Wj |, append Wj to Wk; otherwise, append Wi to
Wk.

Case II (either one of (a) and (b) holds), if (a) holds, append Wi to Wk; otherwise, append
Wj to Wk.

Case III (neither (a) nor (b) holds), append Wi ∪Wj to Wk.
Remove Wi,Wj from Wk−1, i.e., Wk−1 = Wk−1 − {Wi,Wj}.

end
if |Wk−1| = 1 then

Append only element in Wk−1 to Wk.
end
Grow tree from bottom to top via k = k + 1.
until |Wk| = 1, and we assume the current iteration is K.
Let WSUFFICIENT denote only one element (i.e. the root node) in WK .
Assign DOUT as WSUFFICIENT, i.e., DOUT = WSUFFICIENT.

C FROM THEORY TO PRACTICE

Aligning with notations introduced in Appendix B.2, we use DIN = {(xn,yn)}NIN

n=1 to denote the
input dataset of the following sufficiency tree search algorithm and necessity tree search algorithm,
and use DOUT to denote the output set. Both the sufficiency tree and the necessity tree grow from
bottom to top. Let K denote the depth of these trees (i.e., the number of iterations), and we use
k = 1, . . . ,K to denote the k-th iteration to produce the (k + 1)-th layer of the tree.

C.1 MINING SUFFICIENT SET WITH TREE SEARCH

We begin by introducing our assumption on the transitivity of sufficiency. We assume that sufficiency
is transitive among sets. Formally, given arbitrary three set, denoted as DA,DB,DC, if DA is a sufficient
set of DB and DB is a sufficient set of DC, then we can derive that DA is a sufficient set of DC. The
intuition behind the above assumption is that LLMs are proven to hold a chain-of-thought reasoning
ability (Wei et al., 2022).

We leverage the transitivity of sufficiency to develop a sufficiency tree search algorithm to efficiently
mine a sufficient set from the given dataset DIN. We summarize the process of building the sufficiency
tree and generate the sufficiency set in Algorithm 1, where the key operations lie in lines 1, 1, and
1 to use the sufficient one to replace each pair of nodes. We notice that the output of the algorithm
often includes more than just one possibility, since the sufficient set of the given dataset is usually not
only one.

From the algorithm, we can see that we generate the tree from the bottom (including |DIN| nodes) to
the top (including one root node) by one-to-one comparisons shown in lines 1 and 1. Thus, the depth
of the tree is O(log

|DIN|
2 ), and the widths of layers in the tree are |DIN|, |DIN|/2, . . . , 1.

C.2 MINING NECESSARY PLUG-IN SET WITH TREE SEARCH

The intuition behind building the necessity tree is that if unplugging DA could cause the outputs to at
least one input in DC from correct to incorrect, then unplugging DA ∪ DB also can not maintain the
outputs to all the input in DC correct. In other words, necessity is transitive through the inclusion
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Algorithm 2: Necessity Tree Search Algorithm in FEEDER

Input: Input dataset DIN = {(xn,yn)}NIN

n=1.
Output: A necessary plug-in set of DIN, denoted as DOUT.
Initialize k = 1 and H0 = ∅.
foreach instance (xn,yn) in DIN do

Check Y({xn′ |xn′∈DIN}) = 1NIN
|unplug((xn,yn));C = DIN (a).

If (a) holds, let Hn = {(xn,yn)} and append Hn to H0.
end
repeat
Initialize Hk = ∅.
foreach pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do

Check Y({xn|xn∈DIN}) = 1NIN
|unplug(Hi ∪Hj);C = DIN (b).

If (b) holds, generate a new node Hi ∪Hj , append it to Hk, and assign Hi ∪Hj with
MAINTAIN signals; otherwise, append Hi and Hj to Hk.

end
Assign HMAX = argmaxH·∈Hk

|H·| with MAINTAIN signal.
Remove the nodes without MAINTAIN signals in Hk.
Grow tree from bottom to top via k = k + 1.
until |Hk| = 1 where we assume the iteration is K.
Let HUNNCESSARY denote only one element (i.e. the root node) in HK .
Assign DOUT as removing HUNNCESSARY from DIN, i.e., DOUT = DIN −HUNNECESSARY.

relation of sets, namely if unplugging a subset would degrade the performance, then unplugging the
whole set would also degrade the performance.

We summarize the process of building the necessity tree and generate the necessary set in Algorithm 2,
where MAINTAIN signals are introduced as a pruning technique, as we only need to take care of those
nodes whose size would increase (i.e., assigning MAINTAIN signals to newly generated nodes in
line 2), and the nodes with the maximum size (i.e., assigning a MAINTAIN signal to the node with the
maximum size in line 2). From the algorithm, we can see that the computation of each iteration is
super costly, as it requires running checker for O(C2NIN

) times (where C·· is a combination operator),
which is infeasible in many real-world scenarios.

Therefore, we propose an alternative algorithm as summarized in Algorithm 3, where we introduce
the maximum number of rounds RMAX to trade-off the effectiveness and efficiency. From the algorithm,
we can see that for each round, we need to build a tree whose depth is O(logNIN

2 ) (which is similar to
Algorithm 1). Comparing to Algorithm 2, Algorithm 3 introduces RMAX to control the complexity. If
we want to obtain a conceptually necessary plug-in set of the given dataset, then we should assign
RMAX = +∞.
In the following, we prove that by combining our sufficiency tree search algorithm (i.e., Algorithm 1)
and necessity tree search algorithm (i.e., either Algorithm 2 or Algorithm 3), the resulting set is a
parsimonious set of DTRAIN. Formally, we have the following theorem.
Theorem 3. If we successively apply the sufficiency tree search algorithm and the necessity tree
search algorithm (either the original one or the alternative one) on DTRAIN to obtain D̃TRAIN, then
D̃TRAIN is a parsimonious set of DTRAIN.

Proof. According to Theorem 2, to prove the above theorem, we only need to prove that D̃TRAIN is a
sufficient set of DTRAIN and a necessary set of DTRAIN. For convenience, we use D̂TRAIN to denote the
output of the sufficient tree search algorithm (i.e., Algorithm 1).

We begin by proving sufficiency. Firstly, for each data point in DTRAIN, the root node in the tree is a suf-
ficient set for each leaf node in the tree. Formally, we have Y{xn|xn∈DTRAIN} = 1N |plug(D̂TRAIN), Z =

∅, meaning that the resulting set D̂TRAIN is a sufficient set of DTRAIN.

Then, either Algorithm 2 or 3 preserves the sufficiency during the necessity checker, i.e., lines 2 and
2 in Algorithm 2, and lines 3 and 3 in Algorithm 3. In other words, we have:

Y({xn|xn∈D̂TRAIN}) = 1N̂ |unplug(D̂TRAIN − D̃TRAIN);C = D̂TRAIN, (23)
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Algorithm 3: Alternative Necessity Tree Search Algorithm in FEEDER

Input: Input dataset DIN = {(xn,yn)}NIN

n=1, maximum number of rounds RMAX.
Output: A necessary plug-in set of DIN, denoted as DOUT.
Initialize the number of rounds r = 0, and the set of unnecessary data Dr = ∅.
repeat
Initialize k = 1 and H0 = ∅.
Update input dataset by removing the unnecessary part DIN = DIN −Dr.
foreach instance (xn,yn) in DIN do

Check Y({xn′ |xn′∈DIN}) = 1NIN
|unplug((xn,yn));C = DIN (a). If (a) holds, let

Hn = {(xn,yn)} and append Hn to H0.
end
repeat
Initialize Hk = ∅.
foreach pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do

Check Y({xn|xn∈DIN}) = 1NIN
|unplug(Hi ∪Hj);C = DIN (b).

If (b) holds, generate a new node Hi ∪Hj , append it to Hk; otherwise, append Hi and Hj to
Hk.

Remove Hi,Hj from Hk−1, i.e., Hk−1 − {Hi,Hj}.
end
Grow tree from bottom to top via k = k + 1.
until |Hk| = 1 where we assume the iteration is K.
Let HUNNCESSARY denote only one element (i.e. the root node) in HK .
Update the number of rounds, i.e., r = r + 1.
Update Dr to include the unnecessary part HUNNCESSARY, i.e., Dr = Dr ∪HUNNCESSARY.
until |HUNNCESSARY| ≤ 1 or r ≥ RMAX.
Assign DOUT as removing Dr from DIN, i.e., DOUT = DIN −Dr.

where N̂ = |D̂TRAIN|. It can be re-written as Y({xn|xn∈D̂TRAIN}) = 1N̂ |plug(D̃TRAIN);C = ∅, showing

that plugging-in D̃TRAIN is sufficient for D̂TRAIN.

Combining D̂TRAIN being a sufficient set of DTRAIN and D̃TRAIN being a sufficient set of D̂TRAIN, we
arrive at D̃TRAIN is a sufficient set of DTRAIN.

Next, we investigate necessity. Our goal is to prove unplugging any data point in D̃TRAIN would lead
to a degradation of the LLM’s performance. For convenience, we use (xn,yn) ∈ D̃TRAIN to denote
an arbitrary data point. If we applying Algorithm 2 to execute the necessary tree search algorithm,
then (xn,yn) must be in H0, or out of H0.

If (xn,yn) is not an element in H0. Then, according to the computing process of H0 (shown in
lines 1 and 1 in Algorithm 2), unplugging (xn,yn) it would definitively cause the LLM’s performance
on the input dataset D̂TRAIN from Y({xn|xn∈D̂TRAIN}) = 1N̂ to Y({xn|xn∈D̂TRAIN}) ̸= 1N̂ .

If (xn,yn) is an element in H0, then according to lines 1, 1 and 1 in Algorithm 2, (xn,yn) must
be in HUNNECESSARY; otherwise, HUNNECESSARY ∪ {(xn,yn)} should be HMAX and always stay in H· until
becoming the root node (i.e., HUNNECESSARY should be updated to be HUNNECESSARY ∪{(xn,yn)}). Thus,
(xn,yn) must be in HUNNECESSARY. However, all the data points in HUNNECESSARY are removed from
D̂TRAIN, causing a contradiction. Hence, unplugging (xn,yn) would change the LLM’s performance,
namely necessity holds.

Then, we consider the case where we apply Algorithm 3 to execute the necessary tree search.

Similarly, if (xn,yn) is not selected by the necessity checker shown in line 3 in Algorithm 3, then
unplugging (xn,yn) would definitively cause a degradation of the LLM’s performance.

If (xn,yn) is selected by the necessity checker, then (xn,yn) must be included in Dr; otherwise,
Dr would continue to update, since the condition of stopping iteration is that there is no or only one
unnecessary node. However, all the data points are removed from D̂TRAIN, causing a contradiction.
Hence, unplugging (xn,yn) would change the LLM’s performance, namely necessity holds.
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Figure 5: Scaling up FEEDER to real-world applications, where (a) we first run the sufficiency tree algorithm,
then run a retriever to retrieve items according to test data, and run the necessity tree algorithm to remove the
unnecessary part from the retrieved data; (b) we develop an incremental update algorithm to avoid re-computing
over all the unchanged and changed training examples, which can both used to re-compute the sufficiency and
necessary parsimonious set of the given datasets, and used to incrementally select each demonstration.

Combining the above sufficiency and necessity, we can conclude that D̃TRAIN is a parsimonious data
for DTRAIN.

D SCALING UP FEEDER INTO REAL-WORLD APPLICATIONS

D.1 FITTING FEEDER TO REAL-WORLD CASES

We summarize two main limitations of FEEDER in real-world applications.

Scaling Up FEEDER by incorporating it with Demonstration Retriever. One limitation is that
the produced DFEED is too large to be directly used as input demonstrations. For this purpose, we
incorporate FEEDER to existing demonstration retrievers to retrieve relevant demonstrations from
DFEED, namely first mining a parsimonious set, and then retrieval. In this regard, our approach can be
used as a core-set selection method that mines informative training samples from the whole training
dataset, to benefit the downstream tasks. However, directly applying the necessity search algorithm
on sufficiency-filtered data could also be problematic, since sufficiency-filtered demonstrations would
be too large to be prompted. Therefore, we design to place the retriever between the sufficient plug-in
data miner and the necessary plug-in data miner. Then, we only need to filter the unnecessary parts
from the retrieved demonstrations. We depict the above resulting process in Figure 5(a). Here, the
input is the whole training dataset, and the output is the parsimonious set, and thus the whole process
corresponds to FEEDER component in Figure 1. We note that we could run the sufficiency tree search
multiple rounds to obtain a condensed sufficient set before employing the retriever.

Scaling Up FEEDER by Incremental Update. Another limitation is that many real-world (training)
datasets are temporal (and some even require daily updates), and directly re-calculating the parsimo-
nious set over all the unchanged and changed samples is time-consuming. To address this, we develop
a new incremental update algorithm for FEEDER allowing us to only re-compute the changed parts
(including new adding and modified samples). As shown in Figure 5(b), once we generate the golden
parsimonious set for the original dataset, then we can treat the unchanged part of plug-and-play
plug-in data and the LLM as the whole (shown as the dashed box), as a new “LLM model”, and
therefore, we only apply FEEDER to compute incremental data for the changed part (including newly
added and modified data points). When incorporating into the above process shown in Figure 5(a),
we could store and update the sufficient plug-in database instead of the parsimonious database, and
treat the retrieved data, instead of the whole plug-in data, and the LLM as a whole.

D.2 IMPLEMENTATION DETAILS

For each dataset, we directly follow the official splits to obtain DTRAIN and DTEST. We further
introduce detailed descriptions of three different retrievers in our paper. The first one is a random
retriever, denoted as RAN, which randomly retrieves samples from the retrieval pool. The second one
is a similarity based retriever, denoted as SIM, which retrieves samples similar to the test samples.
Formally, let DRETRIEVE denote the retrieval pool. Then, for each test sample xm, the metric of SIM
can be written as:

SIM(xm,xn) = COS(TRANSFORMER(xm), TRANSFORMER(xn)), where xn ∈ DRETRIEVE, (24)
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Table 4: Performance comparisons on text classification datasets for the in-context learning setting. We report
both the mean and variance of accuracy using four different seeds and four different permutations of n-shots.

ΨLLM(·) D̃TRAIN n
FPB SST-2 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

MED

DTRAIN

1 27.2 (6.1) 25.3 (0.1) 25.3 (0.1) 48.9 (4.6) 24.5 (0.2) 24.5 (0.2) 29.0 (5.4) 38.8 (0.1) 38.8 (0.1)

2 27.4 (6.2) 45.8 (0.2) 40.4 (0.1) 51.2 (5.8) 65.7 (0.1) 62.5 (0.2) 30.9 (4.6) 38.5 (0.2) 36.2 (0.1)

5 26.3 (4.5) 55.9 (0.1) 44.7 (0.2) 62.6 (5.6) 79.4 (0.2) 61.7 (0.1) 69.4 (5.8) 49.3 (0.1) 47.0 (0.2)

10 27.8 (5.1) 63.1 (0.1) 50.7 (0.1) 50.9 (4.9) 83.8 (0.3) 76.9 (0.2) 31.6 (4.6) 52.5 (0.2) 58.8 (0.2)

DFEED

1 28.4 (3.4) 28.8 (2.1) 28.8 (2.1) 49.8 (4.2) 48.1 (1.9) 48.1 (1.9) 29.4 (4.6) 35.1 (1.5) 35.1 (1.5)

2 35.5 (4.3) 47.4 (2.6) 37.9 (1.9) 67.3 (4.4) 67.7 (1.4) 64.7 (1.5) 31.1 (2.2) 41.7 (1.2) 34.9 (1.9)

5 28.3 (3.0) 54.6 (1.7) 47.9 (1.0) 70.3 (4.4) 77.9 (1.2) 68.5 (1.9) 65.2 (2.0) 57.3 (1.2) 54.6 (1.7)

10 39.6 (3.4) 63.2 (2.3) 49.8 (1.2) 75.2 (6.2) 83.0 (1.7) 77.2 (1.5) 69.3 (3.8) 68.7 (2.4) 68.5 (2.9)

LAR

DTRAIN

1 33.8 (5.2) 29.9 (0.1) 29.9 (0.1) 49.0 (4.3) 42.3 (0.2) 42.3 (0.2) 22.1 (5.7) 38.3 (0.1) 38.3 (0.1)

2 27.0 (6.1) 55.4 (0.2) 49.9 (0.3) 68.0 (5.2) 70.7 (0.1) 59.6 (0.2) 41.1 (4.2) 36.8 (0.2) 37.7 (0.1)

5 27.2 (4.8) 64.3 (0.1) 45.1 (0.3) 49.1 (4.3) 80.6 (0.1) 67.5 (0.2) 66.2 (4.7) 53.8 (0.2) 48.5 (0.3)

10 47.0 (5.5) 65.5 (0.2) 52.9 (0.1) 71.1 (4.5) 84.6 (0.1) 73.1 (0.2) 43.4 (4.5) 55.5 (0.2) 56.1 (0.4)

DFEED

1 33.8 (4.4) 32.6 (0.7) 32.6 (0.7) 49.1 (3.0) 47.7 (1.3) 47.7 (1.3) 29.6 (3.8) 35.1 (1.1) 35.1 (1.1)

2 37.5 (4.7) 54.8 (1.1) 47.6 (1.3) 67.8 (3.8) 73.0 (2.9) 61.2 (2.1) 36.6 (3.5) 37.0 (2.8) 34.6 (2.0)

5 38.9 (3.3) 64.5 (1.3) 48.0 (2.7) 59.3 (2.4) 80.9 (1.3) 69.6 (1.7) 69.2 (3.3) 68.6 (1.6) 66.6 (1.7)

10 63.5 (2.8) 64.7 (1.6) 50.1 (1.5) 76.0 (3.0) 84.7 (1.4) 75.6 (1.8) 69.3 (4.8) 68.8 (2.0) 68.9 (1.8)

NEO

DTRAIN

1 54.9 (3.9) 61.6 (0.1) 61.6 (0.1) 49.2 (3.7) 33.8 (0.1) 33.8 (0.1) 25.5 (3.4) 36.5 (0.2) 36.5 (0.2)

2 53.6 (4.0) 66.8 (0.2) 60.0 (0.1) 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 28.2 (4.0) 68.2 (0.1) 60.4 (0.1) 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

10 49.0 (4.8) 75.8 (0.1) 71.1 (0.2) 69.8 (4.8) 84.1 (0.1) 69.7 (0.1) 69.6 (4.5) 59.3 (0.3) 63.4 (0.1)

DFEED

1 58.1 (4.7) 61.8 (1.4) 61.8 (1.4) 49.3 (5.1) 48.3 (1.9) 48.3 (1.9) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

2 61.4 (3.3) 64.1 (1.5) 58.8 (1.1) 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 69.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 43.2 (2.6) 68.8 (1.8) 62.7 (1.3) 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

10 61.4 (2.3) 74.8 (1.9) 71.9 (1.8) 72.4 (3.4) 85.8 (2.5) 71.8 (2.9) 69.8 (2.8) 68.8 (1.4) 68.9 (1.3)

LLA

DTRAIN

1 29.0 (4.7) 47.1 (0.1) 47.1 (0.1) 48.2 (2.9) 47.0 (0.1) 46.2 (0.1) 38.9 (6.7) 41.2 (0.2) 41.2 (0.2)

2 27.4 (3.4) 68.4 (0.2) 67.1 (0.3) 67.8 (3.2) 68.7 (0.2) 67.5 (0.1) 43.5 (4.5) 47.4 (0.2) 49.6 (0.1)

5 39.7 (3.2) 80.3 (0.2) 78.9 (0.1) 75.2 (3.3) 80.7 (0.1) 77.8 (0.2) 50.2 (3.7) 52.6 (0.2) 48.2 (0.3)

10 37.9 (2.6) 87.4 (0.3) 86.5 (0.2) 82.1 (3.8) 87.6 (0.1) 86.5 (0.2) 59.6 (4.3) 55.3 (0.2) 60.0 (0.4)

DFEED

1 33.7 (5.3) 51.7 (0.8) 51.7 (0.8) 49.6 (2.4) 51.3 (1.6) 51.3 (1.6) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 39.6 (5.0) 68.7 (1.5) 69.8 (0.7) 63.5 (2.5) 65.7 (4.2) 66.1 (2.1) 50.8 (2.3) 48.6 (1.7) 43.5 (1.3)

5 45.6 (4.8) 87.9 (4.8) 77.5 (3.4) 77.6 (4.0) 81.0 (1.3) 79.4 (1.0) 53.8 (2.8) 55.3 (1.6) 51.8 (1.4)

10 37.8 (6.4) 87.1 (3.9) 87.8 (2.2) 83.8 (2.8) 86.4 (2.0) 87.2 (1.3) 59.5 (3.1) 64.0 (1.9) 65.4 (2.0)

where COS(·) denotes a cosine similarity metric, and TRANSFORMER(·) denotes a sentence transformer
(Reimers & Gurevych, 2019). Here, we directly use the Sentence Transformers library1 from Hugging
Face in our implementation. Then, we are able to retrieve Nshot samples with maximum SIM values
from DRETRIEVE. The third one is a diversity based retriever, denoted as DIV, where we adopt the
maximal marginal relevance method (Carbonell & Goldstein, 1998) as the metric of DIV.

Formally, we have:

DIV(xm,xn) = SIM(xm,xn)− η · max
xn′∈D′

RETRIEVE

SIM(xm,xn′), where xn ∈ DRETRIEVE −D′
RETRIEVE,

(25)
where D′

RETRIEVE denotes the set of previously selected instances. We can see that DIV prefers the
instance that is both similar to the test samples meanwhile distant to previously selected instances. η
is a hyper-parameter to balance the above two parts. We set η = 1 in our experiment.

We list some key hyper-parameters used in our supervised learning setting: the batch size is set as 32,
the warm steps is set as 100, the learning rate is set as 5× 10−5, and the weight decay is set as 0.01.

D.3 ADDITIONAL RESULTS FOR IN-CONTEXT LEARNING

We report performance comparison results on text classification datasets SUBJ, SST-5, and TREC
datasets in Table 1. We include the results of COLA, SST-2, and FPB datasets in Table 4.

To further evaluate FEEDER on reasoning dataset GSM8K (Cobbe et al., 2021) and semantic-parsing
dataset SMCALFlow (Andreas et al., 2020) with one GPT-3 variant with 6B parameters as the LLM.
We use SIX to denote the LLM base.

We summarize the results in Table 5. The table shows that our FEEDER exhibits adaptability to more
intricate tasks and consistently enhances the performance of the LLM. Furthermore, it is evident that
tasks involving reasoning and semantic parsing pose significant challenges for the 6B-sized LLM,
making it difficult to achieve satisfactory performance.

1https://huggingface.co/sentence-transformers
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Table 5: Performance comparisons on reasoning GSM8K dataset and semantic-parsing SMCALFlow dataset for
gpt-j-6B LLM base with different retrievers RAN, SIM) in 1-shot and 2-shot settings. We report both the mean
and variance of accuracy using four different seeds and four different permutations of n-shots.

ΨLLM(·) D̃TRAIN n
GSM8K SMCALFlow

RAN SIM RAN SIM

SIX
DTRAIN

1 1.21 (0.83) 2.81 (0.12) 1.78 (0.72) 8.95 (0.19)

2 1.44 (0.65) 4.01 (0.13) 2.67 (0.98) 9.91 (0.20)

DFEED
1 2.27 (0.49) 3.03 (0.15) 2.35 (0.59) 9.19 (0.08)

2 2.80 (0.53) 4.16 (0.14) 3.51 (0.71) 10.73 (0.07)

Table 6: Performance comparisons on text classification COLA dataset for different LLM bases with different
retrievers IP and ET. We report both the mean and variance of accuracy using four different seeds and four
different permutations of n-shots.

D̃TRAIN n
MED LAR NEO

IP ET IP ET IP ET

DTRAIN

1 37.8 (0.3) 37.6 (0.4) 43.5 (0.4) 42.5 (0.3) 26.7 (0.2) 27.4 (0.3)

2 39.2 (0.2) 39.4 (0.5) 41.4 (0.6) 41.6 (0.4) 28.5 (0.4) 31.0 (0.3)

5 53.5 (0.5) 52.8 (0.3) 66.9 (0.7) 65.4 (0.2) 41.3 (0.4) 40.8 (0.1)

10 54.1 (0.6) 52.9 (0.4) 42.5 (0.5) 46.7 (0.2) 71.6 (0.4) 70.4 (0.2)

DFEED

1 35.9 (0.3) 34.7 (0.3) 48.6 (0.5) 48.4 (0.3) 26.6 (0.3) 27.6 (0.5)

2 43.5 (0.5) 42.7 (0.1) 40.5 (0.7) 41.4 (0.6) 69.9 (0.3) 67.4 (0.2)

5 54.5 (0.3) 55.0 (0.4) 69.6 (0.5) 68.8 (0.2) 69.7 (0.2) 68.7 (0.1)

10 69.4 (0.3) 67.8 (0.4) 69.9 (0.1) 69.4 (0.7) 72.4 (0.2) 72.7 (0.2)

Besides three basic demonstration retrievers introduced in Section 5, we also examine the performance
of FEEDER with some active learning techniques as the retrievers. One (Köksal et al., 2022), denoted
as IP, uses inter-prompt uncertainty sampling to get demonstrations. The other (Roy & McCallum,
2001), denoted as ET, adopts entropy-based sampling techniques to retrieve demonstrations. We
summarize the corresponding results in Table 6. These results verify that our FEEDER can collaborate
with various demonstration retrievers.

D.4 ADDITIONAL RESULTS FOR FINE-TUNING

We report performance comparison results on text classification datasets SUBJ, SST-5, and TREC
datasets in Table 2. We include the results of COLA, SST-2, and FPB datasets in Table 7.

D.5 COMPLEXITY STUDY

We report the time complexity of running the sufficient tree search algorithm (i.e., Algorithm 1) on
COLA and TREC datasets in Figure 6. From the figure, we can observe that as the number of samples
reduces, the time consumption of Algorithm 1 would also reduce. Combining Figure 6 and 3, we can
see that the time consumption is almost linear to the size of data samples.

We also test the time complexity of inference time of the LLM base NEO in the context of the
in-context learning on COLA dataset in Figure 7, which includes running our necessary set miner.
From the figure, we can see that our method using DFEED instead of DTRAIN can largely reduce the
computation cost. And, since we employ Algorithm 3 with RMAX = 1 as our necessary set miner, it
almost makes no difference in the time cost.
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Figure 6: Time comparisons of running the sufficient tree search algorithm on COLA and TREC datasets with
different rounds.
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Table 7: Performance comparisons on text classification datasets for the fine-tuning setting. We report both the
mean and variance of accuracy using four different seeds and four different permutations of n-shots.

ΨLLM(·) D̃TRAIN n
FPB SST-2 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO

DTRAIN

1 62.7 (5.7) 78.4 (0.1) 78.4 (0.1) 41.3 (4.1) 52.6 (0.2) 52.8 (0.2) 49.3 (5.2) 68.5 (0.2) 68.5 (0.2)

2 63.1 (4.6) 74.2 (0.3) 73.1 (0.2) 74.5 (3.2) 75.8 (0.4) 76.4 (0.5) 70.8 (5.7) 63.9 (0.2) 64.3 (0.4)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 53.6 (4.1) 57.8 (0.3) 57.3 (0.2) 30.7 (4.7) 54.4 (0.3) 54.0 (0.3)

10 62.2 (4.4) 63.0 (0.6) 69.6 (0.5) 50.8 (2.9) 55.5 (0.2) 57.8 (0.2) 30.7 (3.8) 50.7 (0.3) 47.6 (0.4)

DFEED

1 73.0 (4.4) 83.5 (1.5) 83.5 (1.5) 49.5 (4.1) 56.7 (1.5) 56.7 (1.5) 56.8 (3.3) 72.6 (0.9) 72.6 (0.9)

2 76.1 (3.8) 84.1 (1.4) 82.5 (1.7) 75.6 (2.8) 76.4 (0.6) 75.2 (0.5) 74.2 (3.7) 71.3 (0.7) 71.5 (0.9)

5 75.7 (3.5) 78.7 (1.5) 83.1 (1.9) 67.4 (2.9) 69.5 (1.8) 68.7 (1.9) 71.7 (3.2) 69.4 (2.3) 70.0 (1.9)

10 70.5 (3.3) 75.6 (1.3) 77.6 (1.8) 68.9 (2.0) 68.6 (1.6) 69.0 (1.4) 71.3 (2.7) 68.5 (1.7) 68.5 (1.9)
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Figure 7: Time comparisons of running the LLM base NEO in the in-context learning setting (including necessary
tree search algorithm) on COLA dataset with different retrievers (RAN, SIM) in different shot setting (1, 2, 5,
10). Here, we use TRAIN+X to denote the result of using DTRAIN as the retrieval pool in the setting of X-shot
inference, and use FEED+X to denote the result of using DFEED as the retrieval pool in the setting of X-shot
inference.

E CASE STUDY WITH ARTIFICIAL DATA POINTS GENERATED BY LLMS

We begin by verifying the transitivity of the sufficiency with a simple case. With gpt-3.5-turbo,
we ask it with which place does Jerry lives in? LLM responses with I’m sorry, but I don’t have access
to personal information about individuals, including your friend Jerry. Then, let DA, DB, DC denote
the city, the country, and the continent he lives in. Then, we can observe that if we tell the LLM about
the city (e.g., London), then the LLM can tell about the country (e.g., United Kingdom); if we tell
the LLM about the country (e.g., United Kingdom), then the LLM can tell about the continent (e.g.,
Europe). Also, if we tell the LLM about the city (e.g., London), then we ask about the continent,
and the LLM also can tell (e.g., Europe). This observation is one case to prove the transitivity of the
sufficiency.

Then, we establish a case study to verify the key idea of this paper, i.e., whether a demonstration is
high-quality or not should consider the LLM in use.

We consider the factual error made by Google Bard in the first demo2. Bard said The James Webb
Space Telescope took the very first pictures of a planet outside of our own solar system. However,
the fact is The Very Large Telescope took the very first pictures of a planet outside of our own solar
system. Based on the above statements, we produce the question What took the very first pictures of a
planet outside of our own solar system?

We ask the question to gpt-3.5-turbo. The corresponding answer is:

The first pictures of a planet outside of our own solar system were
taken by the Hubble Space Telescope in 2008. The planet, named
Fomalhaut b, orbits the star Fomalhaut, which is located about 25
light-years away from Earth in the constellation Piscis Austrinus.

We can see that the above answer is incorrect. We prompt the fact into the LLM, then the answer is:

The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.

2https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo
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This indicates that prompting works. We further ask gpt-3.5-turbo to generate some sufficient
statements for the fact. The following is its output:

1. The Very Large Telescope made history by capturing the first-ever
images of a planet beyond our solar system.
2. Thanks to the advanced technology of the Very Large Telescope,
scientists were able to capture the first-ever photographs of an
exoplanet.
3. The groundbreaking images captured by the Very Large Telescope
marked a major milestone in the study of exoplanets.
4. The discovery of a planet outside of our solar system was made
possible by the cutting-edge capabilities of the Very Large Telescope.
5. The Very Large Telescope’s ability to capture images of distant
celestial bodies allowed scientists to observe an exoplanet for the
first time in history.

We also evaluate separately using the above statements as a prompt to gpt-3.5-turbo, and either
one of them can lead to the correct answer. We provide detailed answers as follows.

1. The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.
2. The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.
3. The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.
4. The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.
5. The Very Large Telescope took the very first pictures of a planet
outside of our own solar system.

We can see, in this case, that either one of the statements generated by gpt-3.5-turbo, is a
sufficient instance and a necessary instance to answer What took the very first pictures of a planet
outside of our own solar system?

We further evaluate the performance of gpt-j-6b. Without any prompt (i.e., in the zero-shot
setting), its answer is:

The Hubble Space Telescope.

We then prompt the above five statements into gpt-j-6b, then the answer is:

1. The first-ever images of a planet beyond our solar system have
been captured by the Very Large Telescope in Chile.
2. The Hubble Space Telescope.
3. A team of astronomers led by the University of Arizona’s Michael
Liu.
4. The Hubble Space Telescope.
5. The Very Large Telescope.

We can see that only the first or the fifth statement is a sufficient instance. Combining the results
of gpt-j-6b and the results of gpt-3.5-turbo can verify the core insight of our paper: the
measurement over a plug-in instance should consider what LLM is in use.

Furthermore, we also evaluate the performance of three GPT variants used in the paper. We begin by
evaluating the zero-shot performance of gpt-neo-1.3B (denoted as NEO in the experiment), and
its result is:

The first pictures of a planet outside of our own solar system were
taken by the Voyager 1 spacecraft in 1977

We then prompt the above five statements into gpt-neo-1.3B, then the answer is:
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1. The very large telescope was built in the early 1990s by the
European Southern Observatory (ESO) in Chile.
The Very Large Telescope.
2. The Very Large Telescope in Chile.
3. The Very Large Telescope (VLT) in Chile.
4. The Very Large Telescope.
5. The Very Large Telescope in Chile

The above results show that either one of the latter four statements is a sufficient instance. The results
of gpt2-large (denoted as LAR in the experiment) show that neither of the five statements is a
sufficient instance:

1. The very large telescope was built in the early 1990s by the
European Southern Observatory (ESO) in Chile.
The Very Large Telescope.
2. The Hubble Space Telescope.
3. The first pictures of a planet outside of our own solar system
were taken by the Hubble Space Telescope in 1990.
4. The Hubble Space Telescope.
5. The very first pictures of a planet outside of our own solar
system were taken by the Hubble Space Telescope.

The results of gpt2-medium (denoted as MED in the experiment) show that only the fourth statement
is not a sufficient instance:

1. The Very Large Telescope.
2. The Very Large Telescope.
3. The Very Large Telescope.
4. The Hubble Space Telescope.
5. The Very Large Telescope.

All the above results verify that quality of one demonstration should be LLM-specific, which is the
key idea of our paper.
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