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ABSTRACT

Multivariate time series forecasts are widely used, such as industrial, transportation
and financial forecasts. However, the dominant frequencies in time series may
shift with the evolving spectral distribution of the data. Traditional Mixture of
Experts (MoE) models, which employ a fixed number of experts, struggle to adapt
to these changes, resulting in frequency coverage imbalance issue. Specifically,
too few experts can lead to the overlooking of critical information, while too many
can introduce noise. To this end, we propose Ada-MoGE, an adaptive Gaussian
Mixture of Experts model. Ada-MoGE integrates spectral intensity and frequency
response to adaptively determine the number of experts, ensuring alignment with
the input data’s frequency distribution. This approach prevents both information
loss due to an insufficient number of experts and noise contamination from an
excess of experts. Additionally, to prevent noise introduction from direct band
truncation, we employ Gaussian band-pass filtering to smoothly decompose the
frequency domain features, further optimizing the feature representation. The
experimental results show that our model achieves state-of-the-art performance on
six public benchmarks with only 0.2 million parameters.

1 INTRODUCTION

Time series forecasting models hold immense application value and are widely utilized in fields such
as industrial manufacturing, finance, and meteorology. Historically, time series forecasting models
have primarily been categorized into four architectural families: RNN Hochreiter & Schmidhuber
(1997), MLP Zeng et al. (2022), Transformer Vaswani et al. (2023), and Mamba Gu & Dao (2024). In
recent years, Mixture of Experts (MoE) models have gained popularity in large language models due to
their diverse feature representations and accelerated inference capabilities. The inherent characteristic
of mixture of experts models, where different experts handle different features, naturally lends itself
to processing features of varying frequencies in time series forecasting tasks. Frequency domain
features represent the periodicity of signals, and capturing complex periodic signals is crucial for time
series forecasting tasks.Therefore, the application of mixture of experts in time series forecasting
tasks is urgently in need of exploration.

Recently, several hybrid expert-based time series forecasting models have been proposed. Time-
MoE Liu et al. (2025) constructs a MoE model with 2.4 billion parameters, replacing the feed-forward
layers in the transformer with MoE layers. However, the model primarily focuses on time-domain
features while neglecting the importance of frequency-domain features. MoFE-Time Liu et al. (2024c)
equips every expert with parallel FFT MLP and time domain MLP branches. However, it merely
applies the expert to the whole spectrum without decoupling individual frequencies, so dominant
harmonics stay mixed with noisy bins and are easily missed. FreqMoE Yang et al. (2025) takes a
step further by splitting the spectrum into sub-bands fusing each expert based on a soft-weighting
approach. However, this soft-weighting method does not explicitly discard noise experts, making it
unable to completely filter out noisy frequency bands, which results in suboptimal performance.

Furthermore, employing the Hard MoE method that retains the top K experts in the frequency domain
also presents issues. The number of experts in a Hard MoE model is fixed, which can lead to an
imbalance in frequency coverage. The range of the dominant frequency domain varies for different
data, thus requiring a different number of experts. Selecting fewer experts may result in the omission
of major frequencies. On the other hand, selecting too many experts may introduce noise bands,
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Figure 1: Performance comparison of Ada-MoGE with other state-of-the-art Models. Figure (a)
shows a radar map based on MSE which shows that AdaMoGE has achieved advanced performance
on six public benchmarks. Figure (b) shows the parameters and FLOPs of Ada-MoGE versus other
state-of-the-art models. The parameter of Ada-MoGE is only 0.2M, and the FLOPs are significantly
less than those of the existing models. And the MAE on ETTh1 of our model is significantly lower
than that of other models.

causing the dominant frequencies to be drowned out by noise. This frequency coverage imbalance
issue limits the performance of frequency domain MoE models in time series forecasting.

To address the frequency coverage imbalance issue, we propose an adaptive mixture of Gaussians
experts model, named Ada-MoGE, which can adaptively select the number of experts based on the
input data. It simultaneously computes univariate spectral intensity and cross-variable frequency
response features for fusion, and uses the fused features to adaptively determine the number of
activated experts. The joint representation of frequency and variable dimensions enables the model to
learn high-energy regions representing dominant frequencies and high-energy channels representing
sensitive variables, thereby activating only the experts that process dominant frequencies as much as
possible. Experts with higher noise levels are explicitly turned off to reduce noise interference. This
approach effectively resolves the frequency coverage imbalance caused by processing different data.

Besides, to reduce the introduction of time-domain noise caused by direct truncation in the frequency
domain, we designed Gaussian experts to perform soft decoupling of the frequency-domain fea-
tures. Specifically, we first pass the input sequence through a set of learnable Gaussian band-pass
filters whose center frequencies are optimized end-to-end. Each resulting sub-band is assigned to
a lightweight expert network. This design ensures that the true dominant frequency becomes the
principal component of at least one expert’s input, eliminating cross-band interference and allowing
each expert to capture fine-grained, frequency-specific dynamics without disturbance. To this end,
the proposed Ada-MoGE can achieve less noise introduction and more comprehensive retention of
dominant frequency features. The experimental results in Figure 1 demonstrate that our model has
achieved state-of-the-art performance on six benchmark datasets, with only 0.2M parameters and
significantly lower FLOPs compared to existing methods.

2 RELATED WORK

2.1 TIME SERIES FORECASTING METHOD

Current advanced time series forecasting primarily includes linear models, Transformer, Mmaba,
and other architectures. Firstly, linear models represented by DLinear Zeng et al. (2022), and
RLinear Kim et al. (2023) directly perform regression on historical sequences using a single layer or
very shallow MLP. They have achieved advanced performance on long sequence benchmarks due to
their small parameter size, fast training, and stability over long windows. Secondly, Transformers
capture dependencies of arbitrary distances through self-attention or sparse attention. Models like
PatchTST Nie et al. (2023), FEDformer Zhou et al. (2022), and iTransformer Liu et al. (2024b),
continuously reconstruct normalization, patch division, and frequency domain attention, maintaining
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Figure 2: The overview of the Ada-MoGE method. It integrates spectral intensity and frequency
response to adaptively determine the number of experts, thereby ensuring that the number of experts
matches the frequency distribution of the input data. Additionally, to prevent noise introduced
by direct band truncation, experts based on Gaussian band-pass filters are employed to smoothly
decompose the frequency-domain features.

leading accuracy in multivariate and multi-step prediction tasks. However, their quadratic complexity
and memory consumption remain bottlenecks for practical deployment. In recent years, mamba-
based methods represented by S-Mamba Wang et al. (2025) and TimePro Ma et al. (2025) have
begun to emerge, reducing complexity to O(L) while retaining global receptive fields, providing
new scalable solutions for long-range time series modeling. However, existing methods generally
rely on end-to-end training for feature extraction, failing to explicitly decouple dominant frequency
components, which results in critical spectral information being overwhelmed by redundant features,
thus becoming a bottleneck for further performance improvement.

2.2 MIXTURE OF EXPERTS IN TIME SERIES FORECASTING

In recent years, the Mixture-of-Experts (MoE) paradigm has begun to migrate from the fields of NLP
and CV to the domain of time series prediction, aiming to expand model capacity while maintaining
low inference costs. Time-MoE Liu et al. (2025) is the first to replace the expert layer in the
Transformer’s Feed-Forward layer, allowing different experts to capture distinct features. However,
it does not practically assign different inputs to each expert. MoFE-Time Liu et al. (2024c) equips
every expert with parallel FFT MLP and time domain MLP branches, using sparse MoE routing to
assign frequency components to the most appropriate expert. However, it merely applies the MLP to
the whole spectrum without decoupling individual frequencies, so dominant harmonics stay mixed
with noisy bins and are easily missed. FreqMoE Yang et al. (2025) takes a step further by splitting the
spectrum into sub-bands and routing each to a dedicated expert before SoftMoE fusion, yet the abrupt
band-wise truncation introduces Gibbs-like edge oscillations when the signal is converted back to the
time domain, inadvertently re-introducing interference. In summary, existing MoE models are not
well-equipped to effectively address the dominant frequency suppression issue.

3 METHOD

3.1 OVERVIEW OF ADA-MOGE

In time series forecasting, the dominant frequency may vary according to changes in the frequency
distribution of the data. Using a fixed number of experts often leads to an imbalance in frequency
domain coverage. To address this issue, we propose an adaptive Gaussian Mixture-of-Expert model
called Ada-MoGE. It integrates spectral intensity and frequency response to adaptively determine
the number of experts, ensuring that the number of experts matches the frequency distribution of
the input data. This approach avoids information loss due to too few experts and noise introduction
due to too many experts. Additionally, to prevent noise introduction caused by direct truncation of
frequency bands, we employ Gaussian band-pass filtering to smoothly decompose the frequency
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domain features, further optimizing the feature representation. Moreover, our Ada-MoGE is highly
flexible. It can replace the FFN layers in Mamba and Transformer models or be used independently.

3.2 ADAPTIVE EXPERT SELECTION

To adaptively select the expert that dominates the frequency and suppresses noise, we propose an
adaptive expert selection mechanism. It captures both the dominant frequency and key features by
simultaneously capturing the average spectral intensity and the cross-variable average frequency
response, achieving a dual-drive frequency-variable adaptive expert selection.

First, the Fast Fourier Transform (FFT) is employed to convert time-domain features into the
frequency domain. Subsequently, to identify the dominant frequencies, we first perform cross-
variable averaging at each frequency. Specifically, we sum the magnitudes of the Fourier coefficients
across all V channels at the same frequency f , and then divide by V to obtain the cross-variable
averaged frequency response µ(f). This µ(f) reflects the overall response intensity of the system
at each frequency point, aiding in the identification of the system’s dominant frequencies. When
µ(f) at a certain frequency is significantly higher than its neighboring frequencies, it indicates that
the frequency component is highly reproducible across different variables, likely corresponding
to the system’s inherent period or external forcing signal. Conversely, if µ(f) is at a low level
without significant peaks, it suggests that the frequency is dispersed across channels, with the energy
source primarily being random noise or measurement error, thus having limited value for subsequent
predictions. Therefore, µ(f) provides a global clue as to which frequencies are truly important. The
formula for calculating the cross-variable averaged frequency response is as follows:

µ(f) =
1

V

V∑
v=1

|Xv(f)|, (1)

where V denotes the number of variables andXv(f) the complex FFT result of variable v at frequency
f . The vector µ ∈ RF will be referred to as the frequency response vector.

Furthermore, to identify key variables, the average spectral intensity E(v) for each variable is
calculated. Specifically, we sum the amplitudes of all frequencies for the variable v and then divide
by the maximum frequency F . E(v) reflects the average intensity of the variable across the entire
frequency domain and can serve as a quick indicator of its activity level. A larger E(v) typically
indicates the presence of significant seasonal components or high-frequency switching in the variable.
Conversely, a smaller E(v) suggests that the sequence tends to be stationary or subject to strong
damping. The formula for calculating the cross-variable average frequency response across the entire
band is as follows:

Ev =
1

F

F−1∑
f=0

|Xv(f)|, (2)

where F represents the number of frequencies, Xv(f) denotes the complex Fast Fourier Transform
(FFT) result of variable v at frequency f . The vector Ev will be referred to as the spectral intensity
vector.

By concatenating E(v) with µ(f), the model can simultaneously grasp two complementary pieces of
information: the dominance in the frequency dimension and the activity in the variable dimension.
The former informs the model which frequencies to focus on, while the latter indicates which
variables to pay attention to, enabling the model to accurately capture key features for learning the
number of experts. The fused feature vector is further refined by an MLP to output the selected
number of experts K to a lightweight gating network. The gating network outputs the activation
probabilities of the experts and selects the top K experts for activation. In this way, an adaptive expert
budget allocation driven by both frequency and variable is achieved, enhancing the ability to capture
dominant frequencies. The overall formula is as follows:

K = W2 · σ(W1 · χ(µ,E) + b1) + b2 (3)

where χ(µ,E) denotes the concatenation of the frequency response vector µ ∈ RF and the spectral
intensity vector E ∈ RV . W1 ∈ RH×(F+V ) and W2 ∈ RD×H are the weight matrix of the linear
layer. b1 ∈ RH and b2 ∈ RD are bias vectors. σ(·) is the ReLU activation function.
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3.3 GAUSSIAN FEATURE DECOUPLING

To avoid the noise introduced by direct band truncation, we employed a Gaussian band-pass filter
to perform a smooth decomposition of the frequency domain features. Specifically, based on the
frequency domain features obtained from the fast Fourier transform, a Gaussian band-pass filter was
established for feature filtering. The Gaussian band-pass filter retains only the energy within the target
passband while exponentially suppressing the out-of-band components, ensuring a smooth filtering
characteristic. The boundaries of each Gaussian band-pass filter are learned through an end-to-end
optimization process. This optimization process automatically reallocates the support regions of
the filters. Information-rich frequency bands are directed to experts with higher activation values,
while frequency bands dominated by interference or noise are directed to other experts with lower
activation values. This learnable frequency partitioning strategy avoids spectral aliasing, providing
each expert with a statistically independent input subspace and laying the foundation for the adaptive
selection of dominant frequency bands. The equation for Gaussian band-pass filtering is as follows:

H(f) = exp

(
− (f − f1)2

2σ2

)
− exp

(
− (f − f2)2

2σ2

)
(4)

where H(f) denotes the frequency response of the filter at frequency f . The parameters f1 and f2
represent the upper and lower cutoff frequencies of the passband, respectively. The term σ is the
standard deviation that controls the bandwidth of each Gaussian component. A larger σ results in a
smoother transition and wider frequency coverage. By subtracting two Gaussian functions centered
at f1 and f2, this formulation creates a bandpass effect that suppresses both low and high frequencies
while preserving those within the desired range.

Besides, we design a spectrum-driven adaptive standard deviation mechanism. This method auto-
matically determines the standard deviation σ by analyzing the energy distribution of the frequency
spectrum. Specifically, we first compute the average spectral intensity and normalize it by the current
center frequency. As the center frequency increases, the standard deviation decreases dynamically,
achieving adaptive frequency tuning. The low-frequency band often contains the long-term periodic
components of a signal, such as seasonal variations or long-term trends. A larger standard deviation
can better capture these components, ensuring that the filter does not miss important periodic informa-
tion. The high-frequency band often contains more noise components. A narrower filter bandwidth
can more accurately separate the useful components in the signal, avoiding the misjudgment of noise
as signal. Meanwhile, we employ a parameter α to adjust its magnitude, ensuring it remains within
a reasonable range. Compared to manually setting σ, this method is more adaptable to different
frequency band characteristics.

σj = σ0 ·
α

Dj
· 1
N

N∑
i=1

|X(fi)|2 (5)

where the σj denotes the automatically determined standard deviation, which controls the bandwidth
of the Gaussian bandpass filter. σ0 is the initial standard deviation. The term Dj represents the center
frequency of the filter. α refers to the adjustment coefficient.

4 EXPERIMENT

4.1 DATASETS

We evaluate our method on widely-used benchmarks for long-term multivariate time-series fore-
casting, covering electricity load, renewable energy, and meteorology. ETTh1/ETTh2 Zhou et al.
(2021) are two hourly datasets originate from transformer load and oil temperature monitoring.
ETTm1/ETTm2 Zhou et al. (2021) are the minute-level counterparts of ETTh1/ETTh2, sampled
every 15 minutes. ECL (Electricity Consuming Load) Wu et al. (2021) is a time series data set of
power loads, which records hourly consumption from 321 clients. The Weather Angryk et al. (2020) is
a real-world weather dataset. Solar-Energy Lai et al. (2018) is collected from 137 solar power plants,
which provides 10-minute resolution energy production data. Unless specified otherwise, all datasets
follow the standard train/validation/test splits with prediction horizons of {96, 192, 336, 720}.
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Table 1: Performance comparison of models before and after integrating the Ada-MoGE module.

Models TimeMixer TimePro iTransformer PatchTST
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 Original 0.447 0.440 0.438 0.438 0.454 0.447 0.453 0.446
+Ada-MoGE 0.432 0.431 0.436 0.433 0.453 0.447 0.438 0.434

ETTh2 Original 0.383 0.407 0.377 0.403 0.383 0.407 0.385 0.410
+Ada-MoGE 0.373 0.400 0.374 0.401 0.378 0.403 0.371 0.399

ETTm1 Original 0.381 0.395 0.391 0.400 0.407 0.410 0.396 0.406
+Ada-MoGE 0.377 0.395 0.386 0.396 0.406 0.408 0.384 0.398

ETTm2 Original 0.275 0.323 0.281 0.326 0.288 0.332 0.287 0.330
+Ada-MoGE 0.272 0.321 0.276 0.321 0.286 0.330 0.281 0.327

4.2 IMPLEMENTATION DETAILS

Optimization and Metrics The models are trained with mean squared error (MSE) as the objective.
During evaluation, both MSE and mean absolute error (MAE) are reported to reflect variance- and
bias-related performance. We adopt the Adam optimizer combined with cosine annealing for gradual
learning rate decay.

Model and Hardware Configuration We conduct a grid search over the following hyperparame-
ters: the maximum number of experts ∈ {5, 6, 7, 8, 9, 10}, the encoder depth ∈ {1, 2, 3, 4}, and the
feature dimension ∈ {8, 16, 32}. All experiments were run on eight NVIDIA Tesla V100 GPUs.

4.3 MAIN RESULTS

To evaluate the effectiveness of the proposed Ada-MoGE module, we integrate it into several existing
models. As shown in Table 1, the integration yields consistent performance improvements by a
clear reduction in both MSE and MAE metrics in most cases. For instance, on the ETTh2 dataset,
PatchTST with Ada-MoGE achieves an MSE of 0.371 and MAE of 0.399, outperforming its original
scores of 0.385 and 0.410. Similarly, for TimeMixer on the ETTm1 dataset, the MSE decreases from
0.391 to 0.386 after integration. It is noteworthy that in the few scenarios where significant gains
are not observed (e.g., iTransformer on ETTh1), the performance remains on par with the original
model, indicating that the module introduces no detriment. Among all enhanced models, Ada-MoGE
empowers TimeMixer to achieve the most competitive performance.

Table 2 presents a performance comparison of various state-of-the-art time series forecasting models,
including Ada-MoGE (our proposed model), TimePro Ma et al. (2025), FreqMoE Yang et al. (2025),
SOFTS Han et al. (2024), TimeMixer Liu et al. (2024a), iTransformer Liu et al. (2024b), PatchTST
Nie et al. (2023), and TimesNet Wu et al. (2023), across several datasets, with different forecasting
horizons (96, 192, 336, and 720) and a fix lookback window 96. Ada-MoGE consistently achieves
the best performance in terms of both MSE and MAE across multiple datasets and time horizons.
For example, in the ETTh1 dataset, Ada-MoGE delivers the best MAE of 0.388 at the 96-step
horizon, outperforming TimePro (0.394) and FreqMoE (0.399). This trend of outperforming other
models is also observed across other datasets like ETTh2, ETTm1, and Weather, where Ada-MoGE
maintains a consistent edge in both error metrics. Notably, Ada-MoGE’s average MSE and MAE
values at different time horizons are lower than those of the competing models. On the ETTh1
dataset, for instance, Ada-MoGE achieves an average MSE of 0.432, outperforming TimePro (0.438)
and FreqMoE (0.440). This superior performance remains evident at longer forecasting horizons,
such as 720 steps, where Ada-MoGE continues to yield more accurate predictions than models
like iTransformer and PatchTST. Overall, Ada-MoGE achievs 51 first-place rankings, significantly
outperforming all other models for multivariate long-term time series forecasting.

To provide a more intuitive demonstration of Ada-MoGE’s forecasting performance, Fig. 3 presents
a comparison of the 96-step forecasts from Ada-MoGE, FreqMoE, and TimeMixer on the ETTm2
dataset. The GroundTruth (blue) is plotted alongside the predictions (orange). While all models
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Table 2: Multivariate long-term forecasting results across different horizons (H∈ {96, 192, 336, 720})
under a lookback window of L = 96. Per-row best (red) and second-best (blue) results are highlighted.

Ada-MoGE TimePro FreqMoE SOFTS TimeMixer iTransformer PatchTST TimesNet
(Ours) (ICML’25) (ArXiv’25) (NeurIPS’24) (ICLR’24) (ICLR’24) (ICLR’23) (ICLR’23)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.373 0.394 0.375 0.398 0.382 0.404 0.381 0.399 0.375 0.400 0.386 0.405 0.394 0.406 0.384 0.402
192 0.422 0.426 0.427 0.429 0.433 0.429 0.435 0.431 0.429 0.421 0.441 0.436 0.440 0.435 0.436 0.429
336 0.462 0.443 0.472 0.450 0.475 0.451 0.480 0.452 0.484 0.458 0.487 0.458 0.491 0.462 0.491 0.469
720 0.469 0.462 0.476 0.474 0.485 0.476 0.499 0.488 0.498 0.482 0.503 0.491 0.487 0.479 0.521 0.500
Avg 0.432 0.431 0.438 0.438 0.444 0.440 0.449 0.442 0.447 0.440 0.454 0.447 0.453 0.446 0.458 0.450

E
T

T
h2

96 0.287 0.339 0.293 0.345 0.290 0.340 0.297 0.347 0.294 0.345 0.297 0.349 0.288 0.340 0.340 0.374
192 0.367 0.390 0.367 0.394 0.369 0.390 0.373 0.394 0.376 0.396 0.380 0.400 0.376 0.395 0.402 0.414
336 0.411 0.429 0.419 0.431 0.411 0.427 0.410 0.426 0.423 0.436 0.428 0.432 0.440 0.451 0.452 0.452
720 0.426 0.442 0.427 0.445 0.421 0.443 0.411 0.433 0.438 0.451 0.427 0.445 0.436 0.453 0.462 0.468
Avg 0.373 0.400 0.377 0.403 0.373 0.400 0.373 0.400 0.383 0.407 0.383 0.407 0.385 0.410 0.414 0.427

E
T

T
m

1

96 0.313 0.352 0.326 0.364 0.319 0.357 0.325 0.361 0.320 0.357 0.334 0.368 0.329 0.365 0.338 0.375
192 0.358 0.381 0.367 0.383 0.363 0.384 0.375 0.389 0.361 0.381 0.377 0.391 0.380 0.394 0.374 0.387
336 0.387 0.403 0.402 0.409 0.393 0.404 0.405 0.412 0.390 0.404 0.426 0.420 0.400 0.410 0.410 0.411
720 0.449 0.439 0.469 0.446 0.457 0.443 0.466 0.447 0.454 0.441 0.491 0.459 0.475 0.453 0.478 0.450
Avg 0.377 0.394 0.391 0.400 0.383 0.397 0.393 0.403 0.381 0.395 0.407 0.410 0.396 0.406 0.400 0.406

E
T

T
m

2

96 0.173 0.256 0.178 0.260 0.176 0.259 0.180 0.261 0.175 0.258 0.180 0.264 0.184 0.264 0.187 0.267
192 0.235 0.297 0.242 0.303 0.240 0.299 0.246 0.306 0.237 0.299 0.250 0.309 0.246 0.306 0.249 0.309
336 0.292 0.339 0.303 0.342 0.299 0.338 0.319 0.352 0.298 0.340 0.311 0.348 0.308 0.346 0.321 0.351
720 0.389 0.393 0.400 0.399 0.396 0.394 0.405 0.401 0.391 0.396 0.412 0.407 0.409 0.402 0.408 0.403
Avg 0.272 0.321 0.281 0.326 0.278 0.323 0.287 0.330 0.275 0.323 0.288 0.332 0.287 0.330 0.291 0.333

E
C

L

96 0.153 0.244 0.139 0.234 0.152 0.246 0.143 0.233 0.153 0.247 0.148 0.240 0.164 0.251 0.168 0.272
192 0.167 0.256 0.156 0.249 0.165 0.255 0.158 0.248 0.166 0.256 0.162 0.253 0.173 0.262 0.184 0.289
336 0.185 0.275 0.172 0.267 0.181 0.274 0.178 0.269 0.185 0.277 0.178 0.269 0.190 0.279 0.198 0.300
720 0.224 0.310 0.209 0.299 0.219 0.307 0.218 0.305 0.225 0.310 0.225 0.317 0.230 0.313 0.220 0.320
Avg 0.182 0.271 0.169 0.262 0.179 0.270 0.174 0.264 0.182 0.273 0.178 0.270 0.189 0.276 0.192 0.295

W
ea

th
er

96 0.161 0.209 0.166 0.207 0.168 0.215 0.166 0.208 0.162 0.209 0.174 0.214 0.176 0.217 0.172 0.220
192 0.206 0.250 0.216 0.254 0.212 0.253 0.217 0.253 0.209 0.251 0.221 0.254 0.221 0.256 0.219 0.261
336 0.261 0.291 0.273 0.296 0.268 0.291 0.282 0.300 0.265 0.293 0.278 0.296 0.275 0.296 0.280 0.306
720 0.341 0.344 0.351 0.346 0.342 0.345 0.356 0.351 0.344 0.346 0.358 0.347 0.352 0.346 0.365 0.359
Avg 0.242 0.273 0.251 0.276 0.247 0.276 0.255 0.278 0.245 0.275 0.258 0.278 0.256 0.279 0.259 0.287

So
la

rE
ne

rg
y 96 0.182 0.258 0.196 0.237 0.221 0.266 0.200 0.230 0.189 0.259 0.203 0.237 0.205 0.246 0.250 0.292

192 0.208 0.277 0.231 0.263 0.253 0.287 0.229 0.253 0.222 0.283 0.233 0.261 0.237 0.267 0.296 0.318
336 0.224 0.280 0.250 0.281 0.264 0.296 0.243 0.269 0.231 0.292 0.248 0.273 0.250 0.276 0.319 0.330
720 0.217 0.273 0.253 0.285 0.263 0.289 0.245 0.272 0.223 0.285 0.249 0.275 0.252 0.275 0.338 0.337
Avg 0.208 0.272 0.232 0.266 0.250 0.284 0.229 0.256 0.216 0.280 0.233 0.262 0.236 0.266 0.301 0.319

Average 0.298 0.337 0.306 0.339 0.308 0.341 0.311 0.342 0.304 0.341 0.314 0.344 0.314 0.345 0.325 0.353

1st Count 51 10 4 13 2 0 0 0

Table 3: Contribution of individual components in Ada-MoGE to forecasting performance.

Adaptive Gaussian ETTh1 Solar
Learner Experts MSE MAE MSE MAE

× × 0.447 0.44 0.242 0.296
× X 0.441 ↓1.3% 0.438 ↓0.5% 0.229 ↓5.5% 0.278 ↓6.3%
X X 0.432 ↓3.1% 0.431 ↓2.1% 0.208 ↓14.2% 0.272 ↓8.1%

are able to capture the overall trend of the data, the forecasted curves of Ada-MoGE are noticeably
closer to the actual data, particularly at key points such as the peaks and valleys. In comparison, the
predictions from FreqMoE and TimeMixer show more noticeable deviations from the GroundTruth,
especially during the inflection points, where Ada-MoGE maintains a more accurate fit.

4.4 MODEL ANALYSIS

To evaluate the impact of different hyperparameters and the effectiveness of the model structure, we
carry out a comprehensive set of experiments.
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FreqMOE TimeMixer Ada-MoGE (Ours)

Figure 3: Comparison of 96-step Forecasts by FreqMoE, TimeMixer, and Ada-MoGE on the ETTm2
Dataset. GroundTruth (blue) versus forecasts (orange).

4.4.1 ABLATION STUDY

To verify the effectiveness of the adaptive learner and the Gaussian expert, related ablation experiments
are performed. As shown in Table 3, starting from the baseline without either module (ETTh1: 0.447
MSE; Solar: 0.242 MSE), adding Gaussian experts alone reduces errors (ETTh1: 0.441 MSE; Solar:
0.229 MSE), decreasing by 1.3% on ETTh1 and 5.5% on Solar. This confirms the benefit of Gaussian
feature decoupling. After FFT, learnable Gaussian bandpass filters split the spectrum into compact
subbands, providing each expert with a clean frequency range and reducing aliasing—especially
effective for highly seasonal data like Solar. Enabling adaptive learner on top of Gaussian experts
brings the largest improvements (ETTh1: 0.432 MSE; Solar: 0.208 MSE), down 3.1% and 14.2%
from baseline. The gain stems from dual feature gating to activate the Top-K most relevant experts
while suppressing noise-dominated bands, with the spectral decoupling of Gaussian experts.

4.4.2 ANALYSIS OF DIFFERENT EXPERT NUMBER SELECTION METHODS

As shown in Table.4, with the rest of the pipeline fixed, we compare different expert number selection
designs. A simple MLP gate provides modest gains over the baseline (ETTh1: 0.438 MSE, 0.432
MAE; Solar: 0.234 MSE, 0.289 MAE), though it lacks explicit spectral guidance. Squeeze-and-
Excitation (SE) Attention improves variable weighting and performs better on Solar (ETTh1: 0.442
MSE, 0.436 MAE; Solar: 0.229 MSE, 0.282 MAE), yet it cannot identify dominant frequency bands.
This joint frequency-aware and variable-aware gating yields the best results on both datasets (ETTh1:
0.432 MSE, 0.431 MAE; Solar: 0.208 MSE, 0.272 MAE), demonstrating that allocating expert
capacity to the most predictive subbands and channels is essential.

4.4.3 COMPARISON OF BETWEEN ADA-MOGE AND FREQ-MOE

The comparative results on the ETTh1 and ETTm1 datasets clearly demonstrate the advantage of
integrating our proposed Ada-MoGE module over the Freq-MOE baseline. As shown in Fig. 4,
Ada-MoGE consistently achieves superior performance across both TimeMixer and iTransformer
models. On the ETTm1 dataset, Ada-MoGE yields a lower MSE for TimeMixer (0.377 vs. 0.383).
The improvement is more pronounced on the ETTh1 dataset, where Ada-MoGE attains a lower MSE
in TimeMixer (0.432 vs. 0.444). These consistent gains on key benchmarks validate that Ada-MoGE
is a more effective enhancement for capturing temporal dependencies than the Freq-MOE module.

Table 4: Comparison of different expert number selec-
tion methods.

ETTh1 Solar
Method MSE MAE MSE MAE

Baseline 0.447 0.440 0.242 0.296
MLP 0.438 0.432 0.234 0.289

SE Hu et al. (2018) 0.442 0.436 0.229 0.282
Dual Feature(Ours) 0.432 0.431 0.208 0.272
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Figure 4: Performance comparison of Ada-
MoGE versus Freq-MOE modules.
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Figure 5: Hyperparameter sensitivity analysis of Ada-MoGE on ETT datasets.

4.4.4 ANALYSIS OF HYPERPARAMETERS

Analysis of Maximum number of experts As shown in Fig. 5, when the maximum number of
experts increases from 5 to 10, the model exhibits a distinct ”moderate-is-best” pattern. ETTh1
achieves its lowest MAE of 0.436 with 7 experts, while ETTh2 performs best with 9 experts
(MAE=0.404). ETTm1 stabilizes at its minimum error of 0.397 with 9 to 10 experts, and ETTm2
remains largely flat, with MAE between 0.322 and 0.323. These results align with the design
principle of Ada-MoGE: Gaussian band-pass filtering allocates spectrally compact sub-bands to
independent experts, while the dual-dimensional adaptive gating activates only the most informative
bands. An insufficient number of experts prevents the model from covering the full range of dominant
frequencies, leading to residual aliasing. Conversely, an excessive number of experts introduces
noise-dominated sub-bands and intensifies competition within the gating mechanism, which can
slightly degrade performance. Overall, a configuration of 7 to 9 experts provides the optimal balance
between comprehensive frequency coverage and effective noise suppression.

Analysis of Layers of encoder As shown in Fig. 5, depth brings limited gains because the
frequency-domain decoupling already concentrates predictive energy into clean, narrow bands han-
dled per expert. ETTh1 is best at 1 layer (0.436) and degrades when stacked deeper (0.454 at 3 layers,
0.452 at 4 layers). ETTh2 favors 2 layers (0.404), with deeper settings offering no improvement.
ETTm1 changes marginally and is best at 4 layers (0.397), while ETTm2 is best at 1 layer (0.322)
and worsens slightly as depth increases. These results suggest that 1–2 layers are generally sufficient:
adding depth can re-mix already purified sub-band features, causing over-smoothing or optimization
noise with little benefit.

Analysis of Dimension of features As shown in Fig. 5, a feature dimension of 16 yields optimal
performance, with metrics plateauing or degrading at lower (8) or higher (32) values. Specifically,
this setting yields MAEs of 0.436 on ETTh1, 0.405 on ETTh2, 0.397 on ETTm1, and 0.322 on
ETTm2. A moderate dimension of 16 is sufficient to encode µ(f) (Eq. 1) and E(v) (Eq. 2),
whereas an 8-dimensional space is too limited, causing underfitting, and a 32-dimensional space
introduces redundant parameters and estimation noise that undermine gating confidence. Therefore,
16 dimensions achieves the optimal balance between parameter efficiency and model generalization.

5 CONCLUSION

In this paper, we propose Ada-MoGE, an adaptive Gaussian Mixture of Experts model. Ada-MoGE
can effectively address the issue of frequency coverage imbalance. It integrates spectral intensity
and frequency response to adaptively determine the number of experts, ensuring alignment with
the input data’s frequency distribution. This approach prevents both information loss due to an
insufficient number of experts and noise contamination from an excess of experts. Additionally,
we employ Gaussian band-pass filtering to smoothly decompose the frequency domain features to
prevent noise introduction from direct band truncation. We conduct extensive experiments to validate
the effectiveness of our method. The experimental results demonstrate that our approach achieves
state-of-the-art performance on six benchmarks. And our method requires fewer parameters and
FLOPs compared to other existing methods.
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A USE OF LARGE LANGUAGE MODELS

We adopt large language models (LLMs) to aid and polish the writing of this manuscript. Specifically,
LLM is used to improve grammar, wording, and clarity. However, the logic and main content of the
manuscript are completed by all authors.
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