
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL-HSS: HIERARCHICAL SEMI-SEPARABLE
NEURAL PDE SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning-based methods have shown remarkable effectiveness in solving
PDEs, largely due to their ability to enable fast simulations once trained. However,
despite the availability of high-performance computing infrastructure, many critical
applications remain constrained by the substantial computational costs associated
with generating large-scale, high-quality datasets and training models. In this work,
inspired by studies on the structure of Green’s functions for elliptic PDEs, we intro-
duce Neural-HSS, a parameter-efficient architecture built upon the Hierarchical
Semi-Separable (HSS) matrix structure that is provably data-efficient for a broad
class of PDEs. We theoretically analyze the proposed architecture, proving that it
satisfies exactness properties even in very low-data regimes. We also investigate its
connections with other architectural primitives, such as the Fourier neural operator
layer and convolutional layers. We experimentally validate the data efficiency of
Neural-HSS on the three-dimensional Poisson equation over a grid of two million
points, demonstrating its superior ability to learn from data generated by elliptic
PDEs in the low-data regime while outperforming baseline methods. Finally, we
demonstrate its capability to learn from data arising from a broad class of PDEs in
diverse domains, including electromagnetism, fluid dynamics, and biology.

1 INTRODUCTION AND RELATED WORK

Machine learning is emerging as a powerful tool for accurately simulating complex physical phe-
nomena (Brandstetter et al., 2022; Li et al., 2021; Boullé et al., 2023). Unlike traditional numerical
methods, which rely on explicit mathematical models and require problem-specific implementations
for spatial resolution, timescales, domain geometry, and boundary conditions, machine learning mod-
els learn directly from data—either from simulations or real-world observations—enabling greater
flexibility and scalability. Moreover, these models leverage ongoing advances in GPU acceleration
and large-scale parallelization, with continued improvements in both accuracy and efficiency.

A wide range of architectural primitives has been explored for modeling different physical systems,
each leveraging structural biases that arise in the solution operator of specific classes of PDEs. As
prominent examples, the Fourier neural operator (Li et al., 2021) learns a kernel integral operator
through convolution in Fourier space, enabling efficient representation of global interactions; message
passing neural networks (Brandstetter et al., 2022) capture localized interactions via graph-based
message updates; U-Net ConvNets (Gupta & Brandstetter, 2022) exploit multiscale representations
to couple fine- and coarse-scale features; while operator transformers (Hao et al., 2023) leverage
transformers to handle challenging settings such as irregular meshes. Other methods directly approx-
imate the action of linear operators in the elliptic setting (Boullé et al., 2023), bypassing explicit
discretization of the underlying equations. Moreover, Boullé et al. (2023) show that the underlying
learning problem is well-posed for a very small number of datapoints and prove that the class of
elliptic PDEs is “data efficient”: the number of training points needed to learn the solution operator
depends only on the problem dimension. This effect is due to the nature of the solution operator
for elliptic-type PDEs, which is highly structured: the Green function G(x, y) associated with the
solution operator is a Hierarchical Semi-Separable (HSS) mapping that exhibits low rank when
restricted to off-diagonal subdomains.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In fact, the Multipole Graph Neural Operator employed in (Boullé et al., 2023) is motivated by a
hierarchical structure observed in Green functions (Boullé & Townsend, 2024, Section 2.4), known
as the Hierarchical Off-Diagonal Low-Rank (HODLR) structure. In an HODLR matrix, off-diagonal
blocks at different scales are well-approximated by low-rank factorizations. When used within a
neural architecture, this flexible representation allows the network to capture both near-field and
far-field interactions in a multiscale fashion and is one of the key factors behind the data-efficiency
property of the neural architecture.

The HSS structure is a special case of the more general HODLR format, a hierarchical domain-
decomposition strategy that has been widely studied in the scientific computing literature for devel-
oping fast and memory-efficient solvers for elliptic-type PDEs, e.g., (Martinsson & Rokhlin, 2005;
Gillman et al., 2012). Compared to HODLR, the HSS model enforces a nested basis across levels in
addition to low-rank off-diagonal blocks. This nested parameterization greatly reduces redundancy,
yielding a more compact representation and faster matrix–vector products, improvements that are not
available in the plain HODLR structure.

In this work, we propose Neural-HSS, a neural architecture that injects this type of structure into
a neural network model for PDE learning. Thanks to the efficient data representation of HSS, the
proposed model is able to approximate solution operators with far fewer parameters than baseline
models while retaining better or comparable accuracy.

The geometric structure of HSS operators imposes an inductive bias that concentrates modeling capac-
ity on local interaction effects in the physical system—modeled through full-rank submatrices—while
approximating interaction effects between distant subdomains using low-rank matrices, resembling a
mean-field approximation. This modeling strategy underlies many popular neural PDE solvers. In fact,
architectures such as ResNets (He et al., 2016), Swin Transformers (Liu et al., 2021), and Message
Passing Neural Networks (Gilmer et al., 2017) devote the majority of their representational capacity
to modeling local interactions. This bias aligns well with the nature of PDE dynamics, in which the
dominant behavior is driven by localized interactions, in contrast to integro-differential equations,
which can incorporate global interaction effects. The effect of this implicit bias was also highlighted
in (Holzschuh et al., 2025), where the authors demonstrate that in a Swin-Transformer-based model,
increasing the attention window size leads to a rapid performance plateau.

Overall, our main contributions are as follows:

• We propose Neural-HSS, a parameter-efficient neural architecture with a novel type of layer
inspired by HSS theory for PDEs (Hackbusch, 2015), and we establish its universal approximation
property.

• We prove that the proposed architecture is exact and data-efficient on the class of elliptic PDEs,
i.e., (a) the global minimizers of the empirical loss represent the discretized solution operator
exactly, and (b) the number of data points required to learn the exact operator depends only on
the intrinsic dimensionality of the problem. To the best of our knowledge, this is the first result
for an architecture that can handle arbitrary types of PDEs while guaranteeing exactness and data
efficiency for a broad class of PDEs.

• We highlight an intriguing connection between the proposed architecture and a discretized version of
the convolutional-type layer used in FNO architectures, showing that an HSS layer can approximate
it arbitrarily well with very few parameters.

• Under the assumptions of Theorem 2.3, which match the setting of (Boullé et al., 2023), we conduct
two experiments in 1D and 3D. The 3D experiment is performed on a grid with 2M points, a
well-known challenge for machine learning models. In both cases, we demonstrate the superior
performance and scalability of Neural-HSS.

• We conduct extensive experiments on a broad class of PDEs arising from electromagnetism, fluid
dynamics, and biology, showcasing strong performance relative to commonly used architectural
primitives such as ResNet and FNO layers in terms of parameter efficiency, test error, and computa-
tional time. In particular, this last advantage becomes more evident for higher-dimensional PDEs.
Moreover, we demonstrate the effectiveness of Neural-HSS beyond elliptic PDEs, showing that the
same architecture is also effective for different classes of nonlinear PDEs.

Related Work. There has been a surge of interest in learning-based approaches for improving
classical solvers for linear PDEs. Several works focus on accelerating iterative methods such as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Conjugate Gradient for symmetric positive definite systems (Li et al., 2023; Kaneda et al., 2023;
Zhang et al., 2023), or GMRES-type solvers for specific applications like the Poisson equation (Luna
et al., 2021). Others focus on learned preconditioning strategies: neural networks have been used
to construct preconditioners that speed up convergence (Greenfeld et al., 2019; Luz et al., 2020;
Taghibakhshi et al., 2021), or to optimize heuristics such as Jacobi and ILU variants (Flegar et al.,
2021; Stanaityte, 2020). NeurKItt (Luo et al., 2024), for example, employs a neural operator to
predict the invariant subspace of the system matrix and accelerate solution convergence. However,
these approaches are primarily designed to enhance classical linear numerical pipelines. In contrast,
our work takes a fundamentally different perspective: we aim to learn an end-to-end solver.

Moreover, recent work has focused on learning low-dimensional latent representations of PDE
states for efficient simulation, extending classical projection-based reduction (Benner et al., 2015)
with deep learning methods such as autoencoders (Wiewel et al., 2019; Maulik et al., 2021), graph
embeddings (Han et al., 2021), and implicit neural representations (Du et al., 2024; Chen et al.,
2022). Koopman-inspired methods enforce linear latent dynamics (Geneva & Zabaras, 2022; Yeung
et al., 2019), while latent neural solvers and transformer-based ROMs have been developed for
end-to-end modeling (Li et al., 2025b; Hemmasian & Barati Farimani, 2023). In addition, Kissel
& Diepold (2023b) introduces a hierarchical Fan et al. (2019b) network to model the nonlinear
Schrödinger equation. Another key challenge remains long-horizon stability, motivating strategies
like autoregressive training, architectural constraints, and spectral or stochastic regularization (Geneva
& Zabaras, 2020; McCabe et al., 2023; Stachenfeld et al., 2022). More recently, generative models, in
particular using diffusion-based models, have shown promise for stable rollout and data assimilation
by producing statistically consistent trajectories (Shysheya et al., 2024; Li et al., 2025a; Andry et al.,
2025).

The use of structured matrices in neural network architectures is also highly relevant and used across
different areas of deep learning. Recent approaches include the use of low-rank (Schotthöfer et al.,
2022; Zangrando et al., 2024) and hierarchical decompositions (Fan et al., 2019a; Kissel & Diepold,
2023a), low-displacement rank (Thomas et al., 2019; Zhao et al., 2017; Choromanski et al., 2024),
butterflies and monarchs (Fu et al., 2023; Dao et al., 2019; 2022).

2 SETTING AND MODEL

In this section, we present the necessary definitions and theoretical motivations for our proposed
architecture. We start with the following formal definition of HSS structure:
Definition 2.1. (HSS structure (Casulli et al., 2024, Definition 3.1)) Let T be a cluster tree of depth
L for the indices [1, . . . , d]. A matrix A ∈ Rd×d belongs to HSS(r, T) or simply HSS(r) if there
exist real matrices

{Uτ , Vτ : τ ∈ T , 1 ≤ depth(T)} and {Dτ : τ ∈ T }

called telescopic decomposition and for brevity denoted by {Uτ , Vτ , Dτ}τ∈T or simply {Uτ , Vτ , Dτ},
with the following properties:

1. Dτ is of size |τ | × |τ | if depth(τ) = L and 2r × 2r otherwise;

2. Uτ , Vτ are of size |τ | × r if depth(τ) = L and 2r × r otherwise;

3. if L = 0 (i.e., T consists only of the root γ) then A = Dγ ;

4. if L ≥ 1 then A = D(L) +U (L)A(L−1)(V (L))T where

U (L) := blkdiag(Uτ : τ ∈ T ,depth(τ) = L), V (L) := blkdiag(Vτ : τ ∈ T ,depth(τ) = L),

D(L) := blkdiag(Dτ : τ ∈ T ,depth(τ) = L)

and the matrix A(L−1) := (U (L))T (A − D(L))V (L) has the telescopic decomposition
{Uτ , Vτ , Dτ}τ∈T (L−1)

2r
, where T (L−1)

2r denotes a balanced cluster tree of depth L − 1 for the

indices [1, . . . , 2Lr], see Definition A.2.

This definition is a natural extension of the idea of a low-rank linear operator, when the matrix is not
globally low-rank but admits a low-rank expansion on subdomains that do not intersect.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Model overview. The lifting and projection layers can be implemented either as HSS layers
or as full-rank layers. We illustrate, as an example, the weight matrix structure with two different
hierarchical levels.

The utility and efficiency of these structures become immediately clear when considering elliptic-type
PDEs. In fact, when one discretizes an elliptic partial differential operator—say by finite differences,
finite elements, or boundary integral methods—a large algebraic system Au = f arises, where A is
associated with discretized Green’s functions. It turns out that many of the off-diagonal blocks of A
have low numerical rank because of the smoothing properties of elliptic operators, making distant
interactions "weak" and therefore inducing a decay in the singular values, which depends on the
regularity of the kernel (Bebendorf, 2000; Bebendorf & Hackbusch, 2003). HSS matrices exploit
exactly this feature by organizing the matrix into a hierarchical block structure in which off-diagonal
blocks are approximated by low-rank factorizations. Thus, HSS-based models are used to design
fast numerical solvers or preconditioners for elliptic PDEs by efficiently approximating the operator,
thereby reducing storage and computational complexity (Börm, 2010; Börm & Grasedyck, 2005;
Gillman et al., 2012). As the HSS structure is invariant under matrix inversion, these properties
demonstrate that HSS operators can effectively model the structure of the solution operator and offer
a powerful modeling primitive for a neural PDE solver.

Based on this key observation, we propose below the Neural-HSS model.

2.1 MODEL OVERVIEW

In this section, we present the proposed Neural-HSS architecture, as illustrated in Figure 1.

One-dimensional HSS layer. For 1-dimensional problems, the HSS layer consists of an HSS
structured matrix followed by a nonlinear activation. In Appendix D we describe the forward pass
in more detail, along with input and output channels of the layers, the number of levels, and the
rank of the layer. The rank controls the size of the low-rank coupling matrices between sub-blocks,
enabling efficient compression of off-diagonal interactions. The number of levels determines the
recursion depth, i.e., how many hierarchical splits the input undergoes. Clearly, the HSS layer is fully
compatible with the backpropagation algorithm. The structure of the layer allows us to stack multiple
layers, enabling the construction of deeper architectures.

Activation function. We employ the LeakyReLUα activation. α is typically a tunable hyperpa-
rameter; however, in our implementation, α is learnable. In particular, if the underlying PDE is
linear, the model adapts α→ 1, effectively recovering the identity function. Instead, for nonlinear
PDEs, α can deviate from 1 to capture the nonlinearity where necessary. This activation function is
also relevant because it fulfills the exactness guarantees presented in Theorem 2.3. While this is the
activation of choice in our implementation, we emphasize that this choice is not restrictive: other
activation functions can be used if better suited for the problem at hand. We also highlight that as
long as the activation acts entrywise, the HSS-induced structural bias is maintained as the topology
of the interlayer connections is not affected.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

m-dimensional HSS layer. The complex hierarchical architecture of HSS operators in higher
dimensions poses significant challenges, as it depends on the geometry of a partition of the domain,
which can be arbitrarily complex. For this reason, different possible models can be used to extend the
HSS structure to higher-dimensional tensors (Hackbusch, 2015, Chapter 8). Here we extend the HSS
layer to higher-dimensional PDEs by parametrizing each layer as a high-dimensional tensor obtained
as a low-rank expansion of the outer product of one-dimensional HSS layers. More precisely, an
m-dimensional HSS layer is a tensor of outer CP-rank rout parametrized as follows:

Hm
θ : R

m︷ ︸︸ ︷
d × · · · × d → Rd×···×d, Hm

θ (Z) :=
rout∑
k=1

Z
m×
j=1

W
(k)
j

W
(k)
j ∈ HSS(rk,j) ⊂ Rd×d, θ = (W

(k)
j)j,k trainable parameters

(1)

where the definition of modal product×is recalled in Definition A.1 and Z is the layer’s input tensor.
This model is motivated by the effectiveness of the Canonic Polyadic decomposition in representing
very high-dimensional tensors with a small number of variables (Hitchcock, 1927; Lebedev et al.,
2015). In fact, while the parameter count on a generic linear map between tensors with m modes
would scale as O(d2m), the memory for this m-dimensional HSS layer scales as O(routmrd) when
rk,j are all equal to r. Thus, the architecture’s parameter-efficiency increases as the dimensionality of
the PDE grows.

2.2 THEORETICAL RESULTS

In this section, we present our main theoretical results, showing that the proposed Neural-HSS enjoys
some useful properties.

First of all, we notice in the next Theorem that the HSS structure is efficient in representing
convolutional-type operators in which the kernel is regular. Thus, each HSS layer in the proposed
model can be interpreted as a generalization of a (discretized) convolutional-type linear layer, such as
those implemented in popular FNO or CNO architectures (Li et al., 2021; Raonic et al., 2023), as
well as classical convolutional filters.
Theorem 2.2. (Convolutional kernels are HSS approximable) Let D ≥ 1, Ω ⊆ RD be a compact
set, let k : Ω→ R be an asymptotically smooth convolutional kernel (Definition A.4). Consider the
operator

T : C0(Ω;R)→ C0(Ω;R), (Tf)(x) =

∫
Ω

k(x− y)f(y) dy

For a set of basis functions {ϕj}Kj=1, consider the discretization matrix

Aij =

∫
Ω

k(x− y)ϕi(x)ϕj(y) dx dy, i, j = 1, . . . ,K.

Then, for every η-admissible pair (Definition A.3) of well-separated clusters τ, τ ′, there exist r =
O(log(1/ε)D) such that

inf
B : rank(B)=r

∥A|τ×τ ′ −B∥F ≤ ε

where A|τ×τ ′ := Πτ ′AΠτ is the orthogonally projected operator in the subdomains spanned by the
nodes τ, τ ′.

The result in Theorem 2.2 shows that each regular convolutional operator on well-separated domains
can be well approximated by a low-rank matrix, where the rank grows logarithmically with the
tolerance. In other terms, if the domains are well-separated and the kernel is regular enough, then
interactions between subdomains can be well-approximated through a low-rank expansion. Thus,
the whole convolution can be approximated in HSS(r) by recursively partitioning the index set into
clusters. The proof of Theorem 2.2 is included in Appendix B.

Next, we analyze approximation and data efficiency properties of the model. Note that by setting the
number of hierarchical levels to its minimum and simultaneously increasing the rank to its maximum,
the backbone effectively reduces to a standard multilayer perceptron (MLP). This observation
immediately implies that Neural-HSS inherits the well-known universal approximation property of
MLPs, at the cost of possibly increasing the number of levels of the tree and the rank.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Moreover, in combination with piecewise linear activation functions with learnable slope, it satisfies
data-efficiency and exactness recovery properties, as formalized in the following:
Theorem 2.3. (Exact Recovery and Data-Efficiency) Consider the model

Nθ(b) = Hℓ ◦ · · · ◦H1(b), Hi(z) = LeakyReLUαi
(Wi[z]), θ = (W1, α1, . . . ,Wℓ, αℓ)

and for λ > 0, the loss function together with its set of global minimizers

LN (θ) =

N∑
i=1

∥Nθ(bi)− ui∥22 +
λ

2

ℓ∑
i=1

(αi − 1)2, MN := argmin
Wi∈HSS(ri,T),αi∈R

LN ,

where the datapoints {(bi, ui)}Ni=1 ⊆ Rdk × Rdk

are standard-Gaussian distributed and satisfying
Gui = bi with G−1 ∈ HSS(r, T). Furthermore, suppose maxi ri ≥ r.

Then there exists a constant C > 0 such that, whenever N ≥ C ·
∑ℓ

i=1 ri, the following exact
recovery identity holds with high probability

sup
θ∈MN

∥∥Nθ(·)− G−1(·)
∥∥
L∞ = 0.

Consequently, any global minimizer θ∗ ∈MN has zero generalization gap, i.e., Nθ∗ = G−1 and the
model is data-efficient as exact recovery is possible with a number of data points N that depends
only on the architecture’s intrinsic dimensionalities ri.

A proof of Theorem 2.3 is included Appendix C. This result shows that even in possession of only a
possibly very small number of examples, if the underlying operator is HSS, then all global minimizers
of LN recover the exact solution operator. This is, for example, the case for linear elliptic PDEs.
Moreover, notice that Theorem 2.3 formalizes the “data-efficiency” for the proposed architectures,
in the spirit of what was done in (Boullé et al., 2023). An experimental validation of this result is
presented in Section 3.1 and Figure 3, where we numerically compare the data-efficiency of our
architecture against that of other baseline models.

3 EXPERIMENTS

In this section, we will present the numerical results. For a more complete description of the PDE
problems considered and the data generation, we refer to Appendix F; for the hyperparameter settings
and model implementation details, we refer to Appendix L; for more details on the training loss and
evaluation metrics used, we refer to Appendix G.

3.1 DATA EFFICIENCY

101 102 103

Training dataset size

10 3

10 2

10 1

100

Re
la

tiv
e

L2 T
es

t e
rro

r

Green Learning
DeepONet
Neural-HSS
ResNet
FNO

Figure 2: Train size vs relative test error for dif-
ferent models. The models are trained on a 1D
Poisson equation.

We conduct two experiments analogous to those
in (Boullé et al., 2023). The first experiment
focuses on the one-dimensional Poisson equa-
tion, where we train our models on datasets
of varying sizes, ranging from 10 to 103 sam-
ples. The second experiment considers the three-
dimensional equation on a grid with resolution
128×128×128, corresponding to approximately
2× 106 grid points. Here, we vary the training
set size from 16 to 256 samples. We use fewer
training samples in three dimensions because, as
shown in (Boullé et al., 2023), meaningful con-
clusions can already be drawn with training sets
of around 200 samples. Moreover, generating
three-dimensional data and training models on it
is computationally expensive, further motivating
the need for data-efficient models in 3D simulations.

In the 3D experiment in Figure 3, we do not report the performance of the Green Learning model
(Boullé et al., 2023), since the memory of an NVIDIA A100 80GB was not sufficient already using a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

16 32 64 128 256
Training dataset size

100

3 × 10 1

4 × 10 1

6 × 10 1

Re
la

tiv
e

L2 T
es

t e
rro

r

Neural-HSS
FNO
DeepONet
ResNet

Neural-HSS FNO DeepONet ResNet
10

100

1000

10000

Ti
m

e
fo

rw
ar

d
&

ba
ck

wa
rd

 [m
s]

3D Poisson

Figure 3: Left: Train size vs relative test error for different models. The models are trained on a 3D
Poisson equation. Right: Timing of forward and backward for the different models.

batch size of 1 and a depth of 1. We also omit DeepONet results for training set sizes smaller than
128, as its performance in this regime was poor and including it would clutter the visualization. The
full plot can be found in Appendix H. Details on the models are provided in Appendix L.

1D Our findings in Section 3.1 are consistent with those reported in (Boullé et al., 2023). With a
limited training sample budget, Green Learning outperforms the FNO model, as observed in (Boullé
et al., 2023); however, as the number of samples increases, FNO scales more effectively and surpasses
Green Learning once the training size exceeds 102. In contrast, Neural-HSS consistently outperforms
all baselines across all training budgets. Notably, with very small datasets (around ∼ 10 samples),
the performance gap between Neural-HSS and the Green Learning model remains small. As the
training size increases, this gap grows substantially in favor of Neural-HSS, highlighting its superior
scalability in this setting.

3D The 3D setting is particularly challenging for neural PDE solvers, as generating large, high-
fidelity 3D datasets is costly, not only in terms of simulation but also in data storage and model
training. This makes it of paramount importance to have a model that can be trained with a very
reduced number of samples when the underlying solution operator is structured.

As shown in the results in Figure 3, Neural-HSS consistently outperforms all baselines. With only 16
samples, Neural-HSS matches the performance of FNO trained on 64 samples and ResNet trained on
128 samples. At 32 samples, Neural-HSS achieves performance comparable to FNO trained on 256
samples. Training time is a crucial factor Figure 3. Neural-HSS trains significantly faster than both
FNO and ResNet, completing training in about two and a half hours, compared to six hours for FNO
and nearly one day and eighteen hours for ResNet. DeepONet trains even faster, requiring only about
one hour, but it needs a much larger training set to achieve comparable performance. With a training
size of only 256 samples, DeepONet cannot match Neural-HSS’s accuracy. Since generating new
samples is highly expensive, Neural-HSS is overall the most efficient choice, also in terms of time.

Together with the results in Table 2, this shows that the choice of higher-order HSS layer for
m−dimensional problems proposed in Equation (1) is both simple and effective, even with very
small outer rank values rout, which for this experiment was set to two (see Appendix L).

3.2 ADDITIONAL EVALUATION OF PDE LEARNING PERFORMANCE

1D PDEs. We train the models to predict the dynamics of the Heat and Burgers’ equations.
Specifically, the models learn the time-stepping operator G : ut 7→ ut+δt. At this timescale, prior
work has shown that learning the residual yields better performance than direct prediction (Li et al.,
2022). Following this strategy, our model M is trained to predict δu = ut+δt − ut, so that, during
inference, the state is updated as ut+δt = ut + M(ut). For training stability, we normalize the
residuals by the maximum value in the training set, i.e., max δu. We defer the model details with
all the hyperparameters to Appendix L. We want to remark that we do not provide results for Green
Learning on the Burgers equation, as the method requires the underlying PDE to be linear.

In both experiments, Neural-HSS outperforms the baselines while using fewer parameters, see Table 1.
For the Heat equation, we observe trends consistent with the data efficiency experiments (Section 3.1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Neural-HSS FNO ResNet DeepONet Green Learning

Equation Params Test Err Params Test Err Params Test Err Params Test Err Params Test Err

Heat Eq. 45K 3× 10−3 150K 8× 10−3 165K 1× 10−2 247K 1× 10−2 83K 1× 10−2

Burgers’ Eq. 1.5M 0.12 1.5M 0.26 1.7M 0.57 1.7M 0.44 - -

Table 1: Comparison between Neural-HSS and baseline models. We report the number of learnable
parameters for each model and the test error Eq. (3).

Neural-HSS FNO DeepONet Green Learning ResNet

10

Ti
m

e
fo

rw
ar

d
&

ba
ck

wa
rd

 [m
s]

Heat Equation

Neural-HSS FNO DeepONet ResNet

10

100

Ti
m

e
fo

rw
ar

d
&

ba
ck

wa
rd

 [m
s]

Burger Equation

Figure 4: Timing of one forward+backward pass, calculated on two different datasets: Left: Heat
equation. Right: Burgers’ equation.

When trained on a larger dataset (approximately 104 samples), Green Learning underperforms
compared to both Neural-HSS and FNO. DeepONet is the most parameter-hungry model, we fix
it at 247K parameters, since smaller variants consistently yielded weaker performance. We notice,
moreover, that by the end of training, the parameter α of the LeakyReLU converged to 1, reflecting
that the model has learned the underlying relation to be linear.

For the Burgers’ equation, we find that employing a full-rank lifting and projection improves
performance. This observation is aligned with findings in the literature on training models with
low-rank parameter matrices, where the last and sometimes first layers are typically kept full-rank
(Schotthöfer et al., 2022; Zangrando et al., 2024; Wang et al., 2021). Moreover, with respect to the
heat equation, it is necessary to employ a higher rank in the intermediate layers to achieve sufficient
expressivity. In this case, Neural-HSS consistently outperforms all other baselines while using fewer
parameters and, similarly to the heat equation, the FNO emerges as the second-best performing.

We run another series of experiments on a modified version of the Burgers’ equation, where, using
a parameter β, we shift the equation towards the elliptic setting. While the other models seem
to be unaffected by the change in the PDE setting, Neural-HSS shows a significant performance
improvement as the equation approaches the elliptic setting, without any change to the hyperparameter
setting. We defer to Appendix I the detailed results.

As shown in Figure 4, Neural-HSS’s time for a single optimization step is comparable with other
baseline models, while being significantly more effective as shown in Table 1. The efficiency is
comparable to that of FNO, for which most of the computations are performed in Fourier space while
truncating the modes, which significantly reduces cost. DeepONet is the fastest model; however, it
also has the highest test error. Timings of only the inference phase are reported in Appendix J.

2D PDEs. In Table 2 and Figure 5, we test model performance on 2D problems, when predicting
the steady state of an equation or a specific time step. For the incompressible Navier-Stokes, we use a
Z-score normalization as in the original papers (Yao et al., 2025; Huang et al., 2024); for the other
equations, we use a max rescaling as for the 1D experiments. We defer the model details with all the
hyperparameters to Appendix L. We do not provide results for Green Learning on the non-elliptic
equation, as the method requires the underlying PDE to be linear.

For the Poisson equation, similar to the 1D case, smaller DeepONet architectures underperform.
We clearly observe that the Neural-HSS significantly outperforms all baselines, with an even larger
performance gap in the 2D experiments compared to the 1D case. As before, the FNO model ranks
second, followed by the Green Learning model, consistent with the findings from the 1D experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Neural-HSS FNO ResNet DeepONet Green Learning

Equation Params Test Err Params Test Err Params Test Err Params Test Err Params Test Err

Poisson Eq. 37K 7× 10−8 132K 7× 10−6 165K 3× 10−4 280K 2× 10−2 83K 5× 10−5

Gray–Scott Eq. (Forward) 329K 0.294 2.1M 0.331 1.99M 0.273 2.3M 0.315 - -
Gray–Scott Eq. (Inverse) 329K 0.203 2.1M 0.208 1.99M 0.193 2.3M 0.276 - -
NS Eq. (Forward) 329K 0.123 2.1M 0.483 1.99M 0.481 2.3M 0.409 - -
NS Eq. (Inverse) 329K 0.208 2.1M 0.19 1.99M 0.383 2.3M 0.514 - -

Table 2: Comparison between Neural-HSS and baseline models on 2D problems. We report the
number of learnable parameters for each model and the test error Equation (2). With NS Eq., we refer
to the incompressible Navier-Stokes equation.

Neural-HSS FNO DeepONet Green Learning ResNet

3 × 101

4 × 101

5 × 101

6 × 101

Ti
m

e
fo

rw
ar

d
&

ba
ck

wa
rd

 [m
s]

Poisson Equation 2D

Neural-HSS FNO DeepONet ResNet

100

Ti
m

e
fo

rw
ar

d
&

ba
ck

wa
rd

 [m
s]

Gray-Scott and Navier-Stokes

Figure 5: Timing of one forward+backward pass, calculated on two different datasets: Left: 2D
Poisson Equation Right: Gray-Scott and Navier-Stokes.

In the non-elliptic setting, Neural-HSS demonstrates competitive performance compared to other
models. This is particularly evident for the incompressible Navier–Stokes equation, where Neural-
HSS outperforms all baselines in the forward problem. For the Gray–Scott model, Neural-HSS ranks
as the second-best model, with ResNet achieving a slightly lower test error, but using significantly
fewer parameters and fewer training steps. As for the 1D experiments, we use full-rank layers for the
lift and the projection.

Also for these experiments, we report in Figure 5 the time required for a training step. In this setting,
Neural-HSS remains highly competitive. In particular, for the Poisson equation, it is the second
most computationally efficient model after DeepONets, but with a gap of six orders of magnitude in
performance. For the Gray–Scott model and incompressible Navier–Stokes equation, training step
timing is comparable to that of the FNO layer, which benefits from a low-cost forward pass due to
mode truncation. The Gray–Scott experiment highlights an interesting trade-off: although ResNet
achieves the lowest test error, it requires more than one order of magnitude more in terms of time
compared to Neural-HSS, which attains the second-lowest error. Given that the test-error gap between
the two models is very small, Neural-HSS may be preferable in practice due to its substantially lower
memory and computational cost.

Finally, compared to the one-dimensional experiments, we observe that the efficiency of Neural-HSS
compared to the other baselines increases with the dimension as discussed in Section 2.1. We also
refer to Section 3.1 for the three-dimensional case, in which this effect is even more evident.

CONCLUSION

In this work, we present Neural-HSS, a novel hierarchical architecture inspired by the structure of
the solution operator of Elliptic-type linear PDEs. Leveraging this very structured representation,
we are able to produce lightweight neural PDE solvers with competitive performance with respect
to state-of-the-art baselines and provable data-efficiency guarantees. The proposed architecture
has an exact HSS structure for the one-dimensional case, while for higher-dimensional problems
uses an approximate outer product expansion. Our model demonstrates superior scalability with
respect to problem dimensionality compared to baseline approaches for data-efficient learning in the
elliptic setting. Notably, the Green Learning model could not be trained in 3D at high resolution.
Furthermore, in lower dimensions (1 and 2), our model also exhibits better scalability with respect to
training set size, again outperforming all the baselines on linear and nonlinear PDEs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gérôme Andry et al. Appa: Bending weather dynamics with latent diffusion models for global data
assimilation. arXiv preprint arXiv:2502.04567, 2025.

Mario Bebendorf. Approximation of boundary element matrices. Numerische Mathematik, 86(4):
565–589, 2000.

Mario Bebendorf and Wolfgang Hackbusch. Existence of H -matrix approximants to the inverse
fe-matrix of elliptic operators with L∞-coefficients. Numerische Mathematik, 95(1):1–28, 2003.

Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM Review, 57(4):483–531, 2015.

Steffen Börm. Efficient numerical methods for non-local operators: H2-matrix compression, algo-
rithms and analysis, volume 14. European Mathematical Society, 2010.

Steffen Börm and Lars Grasedyck. Hybrid cross approximation of integral operators. Numerische
Mathematik, 101(2):221–249, 2005.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. In Handbook of
Numerical Analysis, volume 25, pp. 83–125. Elsevier, 2024.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. Advances in neural
information processing systems, 33:14243–14253, 2020.

Nicolas Boullé, Diana Halikias, and Alex Townsend. Elliptic pde learning is provably data-efficient.
Proceedings of the National Academy of Sciences, 120(39):e2303904120, 2023.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=vSix3HPYKSU.

Angelo A Casulli, Daniel Kressner, and Leonardo Robol. Computing functions of symmetric
hierarchically semiseparable matrices. SIAM Journal on Matrix Analysis and Applications, 45(4):
2314–2338, 2024.

Peter Yichen Chen, Yang Liu, Hao Sun, and George Em Karniadakis. Crom: Continuous reduced-
order modeling of pdes using implicit neural representations. In International Conference on
Learning Representations, 2022.

Krzysztof Marcin Choromanski, Arijit Sehanobish, Somnath Basu Roy Chowdhury, Han Lin, Ku-
mar Avinava Dubey, Tamas Sarlos, and Snigdha Chaturvedi. Fast tree-field integrators: From
low displacement rank to topological transformers. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=Eok6HbcSRI.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pp. 1517–1527. PMLR, 2019.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–4721.
PMLR, 2022.

T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty Publications, 2014.

Pan Du, Zongyu Liu, Zhongkai Xu, Yaodong Li, and Chongjie Li. Conditional neural field latent
diffusion model for generating spatiotemporal turbulence. volume 15, pp. 2564, 2024.

Yuwei Fan, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A multiscale neural network
based on hierarchical matrices. Multiscale Modeling & Simulation, 17(4):1189–1213, 2019a. doi:
10.1137/18M1203602. URL https://doi.org/10.1137/18M1203602.

10

https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=vSix3HPYKSU
https://openreview.net/forum?id=Eok6HbcSRI
https://openreview.net/forum?id=Eok6HbcSRI
https://doi.org/10.1137/18M1203602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuwei Fan, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A multiscale neural network based
on hierarchical matrices. Multiscale Modeling & Simulation, 17(4):1189–1213, 2019b. doi:
10.1137/18M1203602. URL https://doi.org/10.1137/18M1203602.

Goran Flegar, Hartwig Anzt, Terry Cojean, and Enrique S. Quintana-Ortí. Adaptive precision
block-jacobi for high performance preconditioning in the ginkgo linear algebra software. ACM
Trans. Math. Softw., 47(2), April 2021. ISSN 0098-3500. doi: 10.1145/3441850. URL https:
//doi.org/10.1145/3441850.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Benjamin
Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-quadratic
gemm-based architecture. Advances in Neural Information Processing Systems, 36:77546–77603,
2023.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural
Networks, 146:272–289, 2022.

Adrianna Gillman, Patrick M Young, and Per-Gunnar Martinsson. A direct solver with o (n)
complexity for integral equations on one-dimensional domains. Frontiers of Mathematics in China,
7(2):217–247, 2012.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. Pmlr, 2017.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid PDE solvers. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 2415–2423. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/greenfeld19a.html.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Wolfgang Hackbusch. -matrices. In Hierarchical Matrices: Algorithms and Analysis, pp. 203–240.
Springer, 2015.

Xu Han, Yuan Yin, Haotian Wen, Xiaoyang Li, and Anima Anandkumar. Predicting physics in mesh-
reduced space with temporal attention. In International Conference on Learning Representations,
2021.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

AmirPouya Hemmasian and Amir Barati Farimani. Reduced-order modeling of fluid flows with
transformers. Physics of Fluids, 35(5):057114, 2023.

Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathe-
matics and Physics, 6(1-4):164–189, 1927. doi: https://doi.org/10.1002/sapm192761164. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164.

Benjamin Holzschuh, Qiang Liu, Georg Kohl, and Nils Thuerey. PDE-transformer: Efficient and
versatile transformers for physics simulations. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=3BaJMRaPSx.

11

https://doi.org/10.1137/18M1203602
https://doi.org/10.1145/3441850
https://doi.org/10.1145/3441850
https://proceedings.mlr.press/v97/greenfeld19a.html
https://proceedings.mlr.press/v97/greenfeld19a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/sapm192761164
https://openreview.net/forum?id=3BaJMRaPSx

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiahe Huang et al. Diffusionpde: Generative pde-solving under partial observation. In Advances in
Neural Information Processing Systems, volume 37, 2024.

Ayano Kaneda, Osman Akar, Jingyu Chen, Victoria Alicia Trevino Kala, David Hyde, and Joseph
Teran. A deep conjugate direction method for iteratively solving linear systems. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 15720–15736. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/kaneda23a.html.

Aly-Khan Kassam and Lloyd N. Trefethen. Fourth-order time-stepping for stiff pdes. SIAM Journal
on Scientific Computing, 26(4):1214–1233, 2005.

Matthias Kissel and Klaus Diepold. Structured matrices and their application in neural networks:
A survey. New Gen. Comput., 41(3):697–722, July 2023a. ISSN 0288-3635. doi: 10.1007/
s00354-023-00226-1. URL https://doi.org/10.1007/s00354-023-00226-1.

Matthias Kissel and Klaus Diepold. Structured matrices and their application in neural networks: A
survey. 41(3):697–722, 2023b. doi: 10.1007/s00354-023-00226-1. URL https://doi.org/
10.1007/s00354-023-00226-1.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-
up convolutional neural networks using fine-tuned cp-decomposition, 2015. URL https://
arxiv.org/abs/1412.6553.

James Levitt and Per-Gunnar Martinsson. Linear-complexity black-box randomized compression of
rank-structured matrices. SIAM Journal on Scientific Computing, 46(3):A1747–A1763, 2024.

Yichen Li, Peter Yichen Chen, Tao Du, and Wojciech Matusik. Learning preconditioner for conjugate
gradient pde solvers, 2023.

Zijie Li et al. Generative latent neural pde solver using flow matching. arXiv preprint
arXiv:2501.01234, 2025a.

Zijie Li et al. Latent neural pde solver: A reduced-order modeling framework for partial differential
equations. Journal of Computational Physics, 524:112345, 2025b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic
systems. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, pp. 16768–16781, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021. URL
https://arxiv.org/abs/2103.14030.

Kevin Luna, Katherine Klymko, and Johannes P. Blaschke. Accelerating gmres with deep learning in
real-time, 2021. URL https://arxiv.org/abs/2103.10975.

Jian Luo, Jie Wang, Hong Wang, huanshuo dong, Zijie Geng, Hanzhu Chen, and Yufei Kuang. Neural
krylov iteration for accelerating linear system solving. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=cqfE9eYMdP.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid
using graph neural networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 6489–6499. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/luz20a.html.

12

https://proceedings.mlr.press/v202/kaneda23a.html
https://doi.org/10.1007/s00354-023-00226-1
https://doi.org/10.1007/s00354-023-00226-1
https://doi.org/10.1007/s00354-023-00226-1
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/1412.6553
https://openreview.net/forum?id=c8P9NQVtmnO
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.10975
https://openreview.net/forum?id=cqfE9eYMdP
https://openreview.net/forum?id=cqfE9eYMdP
https://proceedings.mlr.press/v119/luz20a.html
https://proceedings.mlr.press/v119/luz20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Per-Gunnar Martinsson and Vladimir Rokhlin. A fast direct solver for boundary integral equations in
two dimensions. Journal of Computational Physics, 205(1):1–23, 2005.

Romit Maulik, Stefan Wiewel, Richard D Sandberg, and Simon Schmidt. Reduced-order modeling
of advection-dominated systems with recurrent neural networks and convolutional autoencoders.
Physics of Fluids, 33(3):037106, 2021.

Michael McCabe, Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar.
Towards stability of autoregressive neural operators. Transactions on Machine Learning Research,
2023.

Robert P. Munafo. Reaction-diffusion by the gray-scott model: Pearson’s parametrization. https:
//www.mrob.com/pub/comp/xmorphia/, 2013.

Ruben Ohana, Michael McCabe, Lucas Thibaut Meyer, Rudy Morel, Fruzsina Julia Agocs, Miguel
Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond Buschman Fielding,
Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich Kerswell, Surya-
narayana Maddu, Jonah M. Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain
Watteaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam Holden Parker, Miles Cranmer,
and Shirley Ho. The well: a large-scale collection of diverse physics simulations for machine
learning. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2024. URL https://openreview.net/forum?id=00Sx577BT3.

Bogdan Raonic, Zhongkai Li, Kamyar Azizzadenesheli, and Anima Anandkumar. Convolutional
neural operators for robust and accurate learning of pdes. In Advances in Neural Information
Processing Systems, volume 36, 2023.

Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco Tudisco.
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equa-
tions. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=IILJ0KWZMy9.

Aliaksandra Shysheya, George Papamakarios, Danilo Jimenez Rezende, Yunzhe Li, Ricky TQ Chen,
Andrew Brock, and Shakir Mohamed. On conditional diffusion models for pde simulations. In
Advances in Neural Information Processing Systems, volume 37, 2024.

Kim Stachenfeld, Drummond Buschman Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
simulators for turbulence. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=msRBojTz-Nh.

Rita Stanaityte. ILU and Machine Learning Based Preconditioning For The Discretized Incompress-
ible Navier-Stokes Equations. PhD thesis, University of Houston, 2020.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021.
Curran Associates Inc. ISBN 9781713845393.

Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed trans-
forms with low displacement rank, 2019. URL https://arxiv.org/abs/1810.02309.

B. J. Walker, A. K. Townsend, A. K. Chudasama, and A. L. Krause. Visualpde: Rapid interactive
simulations of partial differential equations. arXiv preprint, 2023.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

Stefan Wiewel, Markus Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019.

13

https://www.mrob.com/pub/comp/xmorphia/
https://www.mrob.com/pub/comp/xmorphia/
https://openreview.net/forum?id=00Sx577BT3
https://openreview.net/forum?id=IILJ0KWZMy9
https://openreview.net/forum?id=IILJ0KWZMy9
https://openreview.net/forum?id=msRBojTz-Nh
https://arxiv.org/abs/1810.02309

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiachen Yao, Abbas Mammadov, Julius Berner, Gavin Kerrigan, Jong Chul Ye, Kamyar Azizzade-
nesheli, and Anima Anandkumar. Guided diffusion sampling on function spaces with applications
to pdes. arXiv preprint arXiv:2505.17004, 2025.

Enoch Yeung, Soumya Kundu, and Nathan O Hodas. Learning deep neural network representations
for koopman operators of nonlinear dynamical systems. In American Control Conference (ACC),
pp. 4832–4839, 2019.

Emanuele Zangrando, Steffen Schotthöfer, Gianluca Ceruti, Jonas Kusch, and Francesco Tudisco.
Geometry-aware training of factorized layers in tensor tucker format. Advances in Neural Informa-
tion Processing Systems, 37:129743–129773, 2024.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao Lin,
Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng Wang, Alex
Strasser, Haiyang Yu, YuQing Xie, Xiang Fu, Shenglong Xu, Yi Liu, Yuanqi Du, Alexandra Saxton,
Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards, Nicholas Gao, Adriana
Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang, Ameya Daigavane,
Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu, Chaitanya K. Joshi,
Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik, Erik Bekkers, Michael
Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro Liò, Rose Yu, Stephan
Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay, Tommi Jaakkola, Connor W.
Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji. Artificial intelligence for
science in quantum, atomistic, and continuum systems, 2023.

Liang Zhao, Siyu Liao, Yanzhi Wang, Zhe Li, Jian Tang, Victor Pan, and Bo Yuan. Theoretical
properties for neural networks with weight matrices of low displacement rank, 2017. URL
https://arxiv.org/abs/1703.00144.

14

https://arxiv.org/abs/1703.00144

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATION AND USEFUL DEFINITION

Definition A.1. (Modal product)

Let Z ∈ Rd1×···×dm ,W ∈ RDk×dk . We denote with (Z×k
W) ∈ Rd1×...dk−1×DK×dk+1×···×dm

the k−th modal product of Z and W as

(Z×
k

W)i1,...,in :=

dk∑
jk=1

Zi1,...,ik−1,jk,ik+1,...,imWik,jk

Definition A.2 (Cluster tree). Let d ∈ N. A cluster tree is a perfect binary tree T that defines subsets
of indices obtained by recursively subdividing I = [1, . . . , d].

The root γ of the tree corresponds to the full index set I . Each non-leaf node τ is associated with a
consecutive set of indices Iτ , and its two children, α and β, correspond to two consecutive subsets Iα
and Iβ such that Iτ = Iα ∪ Iβ and Iα ∩ Iβ = ∅.

If depth(T) = L and d = 2Lk for k ∈ N, we say that T is a balanced cluster tree if every non leaf
node τ = [a, . . . , b] is split exactly in the middle, i.e.

Iα = [a, a+b
2], Iβ = [a+b

2 + 1, b].

Definition A.3. (η- strong admissibility condition (Hackbusch, 2015, Definition 4.9))

Let (Ω, ∥ · ∥) be a normed space. We say that two subdomains X,Y ⊆ Ω satisfy the η-strong
admissibility condition if

max(diam(X),diam(Y)) ≤ η dist(X,Y)

where

diam(X) := sup
x,x′∈X

∥x− x′∥, dist(X,Y) := max{sup
x∈X

inf
y∈Y
∥x− y∥, sup

y∈Y
inf
x∈X
∥x− y∥}

Definition A.4. (Asymptotic-smoothness (Hackbusch, 2015, Definition 4.14))

We say that k : Ω→ R is asymptoticall smoth if there exist constants C0, C1 > 0 and µ ≥ 0 such
that for all multi-indices α

|∂αk(z)| ≤ C0 C
|α|
1 |α|! |z|−µ−|α|, z ̸= 0,

.

B PROOF OF THEOREM 2.2

Thanks to (Hackbusch, 2015, Lemma 4.29), we have the bound

inf
B:rank(B)=r

∥A−B∥F ≤ ∥k − k(r)∥L2(Ωτ−Ωτ′)∥Rτ∥2∥Rτ ′∥2 := C∥k − k(r)∥L2(Ωτ−Ωτ′) ≤

≤ C|Ωτ − Ωτ ′ |∥k − k(r)∥L∞(Ωτ−Ωτ′)

In order for the upper bound to be controlled by ε, we need ∥k − k(r)∥ ≤ ε
C . Thanks to (Hackbusch,

2015, Theorem 4.22) we have that for m = r1/D

∥k − k(r)∥L∞(Ωτ−Ωτ′) ≤ c1

(
c′2diam∞(Ωτ)

dist(Ωτ ,Ωτ ′)

)m

≤ c1(c
′
2η)

m

Therefore we finally have

inf
B:rank(B)=r

∥A−B∥F ≤ Cc1(c
′
2η)

r1/D ≤ ε

Therefore, for r = O(log(1/ε)D) the inequality is satisfied.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOF OF THEOREM 2.3

Proof. First, we note that if we assume, without loss of generality, that maxi ri = r1 ≥ r, and we
choose H1 = G−1, set Hj equal to the identity matrix for all j ≥ 2, and take αi = 1 for every i, then
we obtain

sup
x∈Rd

∥Nθ(x)− G−1x∥2 = 0.

Conversely, in order to satisfy LN (θ) = 0, it is necessary that αi = 1 for each i. Under this
condition, Nθ can be expressed as a product of HSS matrices associated with the same cluster tree
T , which implies that Nθ is itself an HSS matrix associated with T , with HSS rank

∑ℓ
i=1 ri. By

the results in (Levitt & Martinsson, 2024), such an HSS matrix can be recovered uniquely with
high probability from O

(∑ℓ
i=1 ri

)
observations. Therefore, all global minimizers must satisfy

Wℓ . . .W1 = G−1, αi = 1, and therefore the claim.

D FORWARD PASS

We assume, for simplicity, that the input and output vectors are of equal length.

Algorithm 1: Forward pass of the Neural-HSS linear layer
Input: x ∈ Rn, tree T with depth L, rank r
Output: y ∈ Rn

Function HSSForward(x, T , r):
if depth(T) > 0 then

// Split input into leaf partitions

Split x = [x1, . . . , x2L], with xi ∈ R|τi| for each i ; // τi: leaf index set
// Apply projection V to each block
for i = 1, . . . , 2L do

zi ←W
(V)
i xi ; // weights W

(V)
i ∈ Rr×|τi|

// Recurse on compressed representation
z ← [z1, . . . , z2L];
y ← HSSForward()(z, T (L−1)

2r , r) ; // Balanced cluster tree T (L−1)
2r

// Split recursive output into blocks
Split y = [y1, . . . , y2L], with yi ∈ Rr for each i;
// Reconstruct using U and diagonal D blocks
for i = 1, . . . , 2L do

yi ←W
(U)
i yi ; // weights W

(U)
i ∈ R|τi|×r

yi ← yi +W
(D)
i xi ; // weights W

(D)
i ∈ R|τi|×|τi|

return [y1, . . . , y2L];
else

// Base case: leaf transformation
return Wx ; // weight W ∈ Rn×n

Complexity analysis A key advantage of Neural-HSS lies in its efficient memory footprint and
inference cost. Under the simplifying assumption that the number of leaf indices equals 2r, the
storage requirement of an HSSForward() operator scales as O(nr), and the cost of a matrix–vector
multiplication is likewise O(nr).

E LIFTING FOR SYSTEM OF PDES

Several PDEs have input and output multiple channels: to adapt our architecture for these kinds of
problems, one needs to specify a lifting and projection architectures as depicted in Figure 1. While

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

multiple choices are possible, we employed the simplest possible choice as a backbone and, as a final
layer, a (low-rank) linear tensor map

ϕW : RD1×···×DM → Rd1×···×dm , ϕW(Z)α =
∑
β

Wα,βZβ ,

W =

r∑
i=1

ciu
(1)
i ⊗ · · · ⊗ u

(m)
i ⊗ v

(1)
i ⊗ · · · ⊗ v

(M)
i , ci ∈ R, u(j)

i ∈ Rdj , v
(j)
i ∈ RDj ,

where ci, u
(j)
i , v

(j)
i are learnable parameters. This allows us to easily extend Neural-HSS for a system

of vector PDEs.

The overall model architecture, including a potential lifting layer for a system of PDEs, is depicted in
Figure 1.

F DATA SPECIFICATION

For complete transparency and full reproducibility of our results in this section, we provide all the
details about the data generation. If we did not generate them, we also include the source and the
procedure for their generation.

F.1 DATASETS

Poisson equation. The n-dimensional Poisson equation

−∇ ·
(
a(x)∇u

)
= f,

models diffusion or conduction in heterogeneous media, where a(x) > 0 is a spatially varying
diffusivity and f an external source. Although linear, the discretized problem is usually ill-conditioned,
making it difficult to solve numerically. The Poisson equation is used to model different physical
phenomena such as heat conduction, porous flow, and electrostatics in nonhomogeneous materials.
During our experiments, we kept a = 1 and we trained the models to represent the mapping G : f 7→ u.
To assess the quality of the model, we used the relative L2 error on the test set.

Heat equation. The heat equation is a fundamental linear partial differential equation that describes
the diffusion of heat over time. In one spatial dimension, it is written as

ut = κuxx,

where κ denotes the thermal diffusivity. The equation smooths out spatial inhomogeneities by
dissipating gradients, leading to a monotone decay of energy in the system. In our experiments, we
fixed the diffusion coefficient at κ = 0.0002. The objective was to learn the temporal dynamics
of the system by approximating the mapping from the current state to its future evolution, i.e.,
G : ut 7→ ut+δt. In our experiments, we fixed δt = 0.8. Model performance is evaluated by rolling it
through time and calculating the L2 trajectory error on the test set.

Burgers equation. The Burgers equation is a fundamental nonlinear partial differential equation
that captures the competing effects of nonlinear convection and viscous diffusion. In one spatial
dimension, it takes the form

ut + uux = νuxx,

where ν denotes the kinematic viscosity. The viscous term νuxx regularises these shocks, but
introduces thin internal layers that are numerically stiff. In our experiments, we fixed the viscousity
coefficient at ν = 0.001, and the objective was to learn the temporal dynamics of the system, that is,
to approximate the mapping from the current state to its future evolution, more formally learn the
mapping G : ut 7→ ut+δt, to evaluate the models we use the L2 trajectory error on the test set.

Incompressible Navier-Stokes equation. We consider the incompressible Navier–Stokes equations
expressed in terms of the vorticity w = ∇× v:

∂τw(c, τ) + v(c, τ) · ∇w(c, τ) = ν∆w(c, τ) + q(c),

∇ · v(c, τ) = 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Here v(c, τ) is the velocity field, q(c) a forcing term, and ν the viscosity; in the dataset, the viscosity
is fixed ν = 10−3. These equations describe nonlinear, incompressible flow and are widely used
to study vorticity dynamics, turbulence, and coherent structures. We use the data from (Yao et al.,
2025; Huang et al., 2024) and we conduct a similar series of experiments, we learned the mapping
G : w0 7→ w10 and the related inverse problem G : w10 7→ w0. The model performances are evaluated
using the relative L2 error on the test set.

Gray–Scott model The Gray–Scott equations describe a prototypical reaction–diffusion system
involving two interacting chemical species, A and B, whose concentrations vary in space and time.
They are given by 

∂A

∂t
= δA∆A−AB2 + f(1−A),

∂B

∂t
= δB∆B +AB2 − (f + k)B.

Here, the parameters f and k regulate the feed and kill rates, respectively: f controls the rate
at which A is supplied to the system, while k controls the rate at which B is removed. The
diffusion constants δA and δB determine the spread of the two species in space. We used the
dataset provided by (Ohana et al., 2024), where each trajectory consists of 1000 steps. Rolling out a
machine learning model over so many steps becomes impractical due to the accumulation of errors.
Therefore, as suggested in (Ohana et al., 2024), a relevant task is to predict the final state in order to
understand the long-term behavior of the two chemical species. To this end, we model the mapping
G : (A0, B0) 7→ (A1000, B1000), and we also pass the model the input parameters f and k. Similarly
to the incompressible Navier-Stokes, we also made an experiment for the inverse problem. The model
performance is evaluated using the relative L2 error on the test set.

F.2 POISSON EQUATION (1D, 2D & 3D)

F.2.1 1D (DATA EFFICIENCY)

We generate datasets of solutions to the one-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 1024 grid points
over x ∈ [0, 1], with grid spacing h = 1/1024. For each sample, the right-hand side f(x) is drawn
from a truncated Fourier sine series with 20 random modes:

f(x) =

10∑
k=1

ck sin
(
2kπx

)
, ck ∼ U(0, 1),

with f(x) set to zero at the first two and last two grid points to enforce the boundary conditions. The
Poisson problem is discretized using a fourth-order central finite difference scheme for the second
derivative. The resulting banded linear system (with five diagonals) is solved efficiently using a direct
banded solver. We generate 1,000 samples for training and 1,000 for testing. For training and testing
our model, we downsample to 256.

F.2.2 2D

We generate datasets of solutions to the two-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 64× 64 grid points
over (x, y) ∈ [0, 1]2, with grid spacing h = 1/64. For each sample, the right-hand side f(x, y) is
drawn from a truncated Fourier sine series with up to 10 random modes in each direction:

f(x, y) =

10∑
kx=1

10∑
ky=1

ckx,ky
sin(2πkxx) sin(2πkyy) ckx,ky

∼ U(0, 1),

where kx, ky ∈ {1, . . . , 10} are drawn uniformly at random for each sample. The forcing term
f(x, y) is set to zero along the boundary to enforce Dirichlet conditions.

The Poisson problem
−∆u(x, y) = f(x, y), u|∂Ω = 0,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

is discretized using a fourth-order finite difference scheme (nine-point Laplacian stencil), with a
spatial resolution of 128 × 128. This resulting linear system is solved using a direct solver. We
generate 4, 200 samples for training and 800 for testing, and we downsample the spatial resolution to
64× 64.

F.2.3 3D (DATA EFFICIENCY)

We generate datasets of solutions to the three-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 1283 grid points over
(x, y, z) ∈ [0, 1]3, with grid spacing h = 1/n where n ∈ {128}. For each sample, the right-hand
side f(x, y, z) is constructed as a truncated Fourier sine series with randomly selected modes:

f(x, y, z) =

20∑
kx=1

20∑
ky=1

20∑
kz=1

ckx,ky,kz sin(kxπx) sin(kyπy) sin(kzπz), ckx,ky,kz ∼ U(0, 1),

where kx, ky, kz ∈ {3, . . . , 23} are drawn uniformly at random for each sample. The forcing term
f(x, y, z) is set to zero on the boundary of the domain to impose Dirichlet conditions.

The Poisson problem
−∆u(x, y, z) = f(x, y, z), u|∂Ω = 0,

is discretized using a higher-order finite difference scheme based on a 19-point stencil, yielding a
sparse linear system of size n3 × n3. The system is solved using a sparse direct solver. We generate
one dataset of 256 samples for training and 200 for testing.

F.3 HEAT EQUATION

For the one-dimensional Heat equation, we generate 2000 trajectories (1800 for training and 200 for
testing) with a time horizon T = 8 and time step δt = 0.2. The spatial domain is X = [0, 1] with
spatial resolution ∆x = 1/1023 (1024 grid points) and homogeneous Dirichlet boundary conditions
u(0, t) = u(1, t) = 0. The initial conditions are sampled from a truncated Fourier sine series with 10
modes and random coefficients ck ∼ U(0, 1):

u0(x) =

10∑
k=1

2 · ck · sin(kπx)

Each initial condition is normalized to have a maximum absolute value of 1. We use a second-order
finite difference scheme for spatial discretization with diffusion coefficient D = 0.0002, and solve the
resulting system of ODEs using the BDF (Backward Differentiation Formula) method with relative
tolerance 10−4 and absolute tolerance 10−6. For training and testing our model, we downsample to
256.

F.4 BURGERS EQUATION

For the one-dimensional Burgers equation, we generate 2000 trajectories (1800 for training and
200 for testing) with a time horizon T = 15.0 and output time step δt = 0.2. The spatial domain
is X = [0, 1) with spatial resolution ∆x = 1/1024 (1024 grid points) and Dirichlet boundary
conditions. The initial conditions are sampled using a random Fourier series with 10 modes:

u0(x) =

10∑
k=1

ck sin(2π(k + 1)x)

where the coefficients ck ∼ U(−1, 1) are drawn from a uniform distribution. Each initial condition is
normalized to have a maximum absolute value of 1. We employ second-order finite difference schemes
for spatial discretization and solve the resulting system using the BDF (Backward Differentiation
Formula) method with relative tolerances of 10−4 and absolute tolerances of 10−6. For training and
testing our model, we downsample to 256.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F.5 GRAY–SCOTT MODEL

We use the dataset from (Ohana et al., 2024), the follwoing are the datails for generating the
data. Many numerical methods exist to simulate reaction–diffusion equations. If low-order finite
differences are used, real-time simulations can be carried out using GPUs, with modern browser-
based implementations readily available (Munafo, 2013; Walker et al., 2023). They choose to
simulate with a high-order spectral method for accuracy and stability purposes. Specifically, they
simulate equations (15)–(16) in two dimensions on the doubly periodic domain [−1, 1]2 using a
Fourier spectral method implemented in the MATLAB package Chebfun (Driscoll et al., 2014).
The implicit–explicit exponential time-differencing fourth-order Runge–Kutta method (Kassam &
Trefethen, 2005) is used to integrate this stiff PDE in time. The Fourier spectral method is applied in
space, with linear diffusion terms treated implicitly and nonlinear reaction terms treated explicitly
and evaluated pseudospectrally.

Simulations are performed using a 128× 128 bivariate Fourier series over a time interval of 10,000
seconds, with a simulation time step size of 1 second. Snapshots are recorded every 10 time steps.
The simulation trajectories are seeded with 200 different initial conditions: 100 random Fourier series
and 100 randomly placed Gaussians. In all simulations, they set δA = 2× 10−5 and δB = 1× 10−5.

Pattern formation is then controlled by the choice of the “feed” and “kill” parameters f and k. They
choose six different (f, k) pairs which result in six qualitatively different patterns, summarized in the
following table:

Pattern f k

Gliders 0.014 0.054
Bubbles 0.098 0.057
Maze 0.029 0.057
Worms 0.058 0.065
Spirals 0.018 0.051
Spots 0.030 0.062

On 40 CPU cores, it takes 5.5 hours per set of parameters, for a total of 33 hours across all simulations.

F.6 NAVIER–STOKES EQUATION

We use the data provided by (Huang et al., 2024) for the two-dimensional Navier–Stokes equations.
They follow this procedure to generate the data: The initial condition w0 is sampled from a Gaussian
random field

w0 ∼ N
(
0, 71.5(−∆+ 49I)−2.5

)
.

The external forcing term is defined as

q(x1, x2) =
1
10

(
sin(2π(x1 + x2)) + cos(2π(x1 + x2))

)
.

We solve the Navier–Stokes equations in the stream-function formulation using a pseudo-spectral
method. Specifically, the equations are transformed into the spectral domain via Fourier transforms,
the vorticity equation is advanced in time in spectral space, and inverse Fourier transforms are applied
to compute nonlinear terms in the physical domain. The system is simulated for 1 second with 10
time steps, and the vorticity field wt is stored at a spatial resolution of 128 × 128. In the dataset
ν = 10−3 therefore the Reynolds number corresponding to Re = 1000.

G METRICS

Training Loss. As a training objective, we use the Mean Squared Error (MSE), defined as

L(pred, target) =
1

|B|
∑
b∈B

||predb − targetb||22

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Evaluation Metrics. We assess the performance of our model using two different metrics. For
steady-state problems or predictions at a specific time step, we employ the relative L2 error, formally
defined as

L(pred, target) =
1

|B|
∑
b∈B

∥predb − targetb∥2
∥targetb∥2

. (2)

For temporal rollouts, in which the model is evaluated over a sequence of time steps, we adopt the L2

trajectory error, mathematically expressed as

L(pred, target) =
1

|B|
∑
b∈B

∥predb − targetb∥2 . (3)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H COMPLETE PLOT DATA EFFICIENCY POISSON 3D

16 32 64 128 256
Training dataset size

100

101

Re
la

tiv
e

L2 T
es

t e
rro

r

Neural-HSS
FNO
ResNet
DeepONet

Figure 6: Train size vs relative test error for different models. The models are trained on a 3D Poisson
equation

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I ADDITIONAL EXPERIMENTS ON BURGERS’

We run the following series of experiments using β ∈ {1, 10−2, 10−4} on the modified Burgers’
equation

ut + βuux = νuxx.

10 410 2100

 value

10 1

L2 T
ra

je
ct

or
y

Te
st

 e
rro

r
Neural-HSS
FNO
ResNet
DeepONet

Figure 7: Trajectory test loss varying β

We adopt the same experimental setting used for the standard Burgers’ equation, generating the data
in the same manner and keeping the hyperparameters unchanged. When β = 0, the equation reduces
to the heat equation, which is elliptic. The ResNet shows improved performance as β decreases
from 1 to 10−2, but its accuracy deteriorates at β = 10−4. In contrast, the performance of FNO and
DeepONet remains nearly constant across this range. The only model that benefits from the transition
from the parabolic to the elliptic regime is Neural-HSS, highlighting its effectiveness in learning from
data generated by elliptic PDEs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

J TIMING

In this section we will present further timing results. In particular, the setting is the same of Figures 4
and 5, for which we present the time of a training step for non-embedding layers with the same batch
size used in the experiments (see Appendix L). In Figure 8, we present results in the same setting but
just for the inference time.

Neural-HSS FNO DeepONet Green Learning ResNet

1

10

Ti
m

e
fo

rw
ar

d
[m

s]

Heat Equation

Neural-HSS FNO DeepONet Green Learning ResNet

1

10

Ti
m

e
fo

rw
ar

d
[m

s]

Burger Equation

Neural-HSS FNO DeepONet ResNet

2 × 101

3 × 101

Ti
m

e
fo

rw
ar

d
[m

s]

Poisson Equation 2D

Neural-HSS FNO DeepONet ResNet

10

100

Ti
m

e
fo

rw
ar

d
[m

s]

Gray-Scott and Navier-Stokes

Figure 8: Timing of one forward pass, calculated on different datasets.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

K DATA VISUALIZATION

Figure 9: Example trajectories from the Heat equation dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 10: Example trajectories from the Burgers’ equation dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 11: Example of snapshot from the Navier–Stokes equation dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 1 initial state

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 1 steady state

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 2 initial state

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 2 steady state

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 3 initial state

0 20 40 60 80 100 120
X

0

20

40

60

80

100

120

Y

Sample 3 steady state

Figure 12: Gray-Scott data: input and steady state.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 13: Example of a snapshot from the Poisson 3D equation dataset.

Figure 14: Example of a snapshot from the Poisson 3D equation dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 15: Example of 2 slice of a snapshot from the Poisson 3D equation dataset.

Figure 16: Example of 2 slice of a snapshot from the Poisson 3D equation dataset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

L MODEL & TRAINING DETAILS

Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 6 12 41 6
Embedding Dimension 256 32 48 192 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 2

Levels 3 - - - -
Rank 2 - - - -
Modes - 12 - - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 1000 1000 1000 1000 1000
Batch size 256 256 256 256 256

Table 3: Models and training configuration for the Heat Equation.

Configuration Neural-HSS FNO ResNet DeepONet

Depth 4 6 12 4
Embedding Dimension 1024 64 150 512
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 3 - - -
Rank 32 - - -
Modes - 32 - -

Peak learning rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Minimum learning rate 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Epochs 1500 1500 1500 1500
Batch size 256 256 256 256

Table 4: Models and training configuration for the Burgers’ Equation.

1The depth is the same for the Trunk network and the Branch network
2(Boullé et al., 2020)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 4 4 43 6
Embedding Dimension 64 16 64 64 64
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 4

Levels 2 - - - -
Rank 2 - - - -
outer rank 8 - - - -
Modes - 8 - - -

Peak learning rate 8× 10−4 8× 10−4 8× 10−4 8× 10−4 8× 10−4

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 500 500 500 500 500
Batch size 128 128 128 128 128

Table 5: Models and training configuration for the 2D Poisson Equation.

Configuration Neural-HSS FNO ResNet DeepONet

Depth 3 4 4 4
Embedding Dimension 128× 128 32 64 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 2 - - -
Rank 8 - - -
Outer Rank 8 - - -
Modes - 32 - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 0 0 0 0
Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Epochs 10 10 10 10
Batch size 64 64 64 64

Table 6: Models and training configuration for the Incompressible Navier-Stokes and Gray-Scott.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Configuration Neural-HSS FNO ResNet DeepONet

Depth 1 2 2 4
Embedding Dimension 128× 128× 128 14 48 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 2 - - -
Rank 4 - - -
Outer Rank 2 - - -
Modes - 8 - -

Peak learning rate 5× 10−3 5× 10−3 1× 10−4 1× 10−3

Minimum learning rate 1× 10−3 1× 10−3 1× 10−5 1× 10−5

Weight decay 0 0 0 0
Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Trainig steps 16k 16k 16k 16k
Batch size 16 16 16 16

Table 7: Models and training configuration for the data efficiency for 3D Poisson Equation. We
report the training steps since for each training size we match the training steps at 16k.

Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 6 12 45 6
Embedding Dimension 256 32 48 192 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 6

Levels 3 - - - -
Rank 2 - - - -
Modes - 12 - - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 500 500 500 500 500
Batch size 256 256 256 256 256

Table 8: Models and training configuration for the data efficiency for 1D Poisson Equation.

33

	Introduction and Related Work
	Setting and Model
	Model Overview
	Theoretical Results

	Experiments
	Data Efficiency
	Additional Evaluation of PDE Learning Performance

	Notation and useful definition
	Proof of prop:convishss
	Proof of thm:globalminima
	Forward pass
	Lifting for system of PDEs
	Data Specification
	Datasets
	Poisson Equation (1D, 2D & 3D)
	1D (Data Efficiency)
	2D
	3D (Data Efficiency)

	Heat Equation
	Burgers Equation
	Gray–Scott model
	Navier–Stokes Equation

	Metrics
	Complete plot data efficiency Poisson 3D
	Additional Experiments on Burgers'
	Timing
	Data visualization
	Model & training details

