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ABSTRACT

Deep learning-based methods have shown remarkable effectiveness in solving
PDEs, largely due to their ability to enable fast simulations once trained. However,
despite the availability of high-performance computing infrastructure, many critical
applications remain constrained by the substantial computational costs associated
with generating large-scale, high-quality datasets and training models. In this work,
inspired by studies on the structure of Green’s functions for elliptic PDEs, we intro-
duce Neural-HSS, a parameter-efficient architecture built upon the Hierarchical
Semi-Separable (HSS) matrix structure that is provably data-efficient for a broad
class of PDEs. We theoretically analyze the proposed architecture, proving that it
satisfies exactness properties even in very low-data regimes. We also investigate its
connections with other architectural primitives, such as the Fourier neural operator
layer and convolutional layers. We experimentally validate the data efficiency of
Neural-HSS on the three-dimensional Poisson equation over a grid of two million
points, demonstrating its superior ability to learn from data generated by elliptic
PDEs in the low-data regime while outperforming baseline methods. Finally, we
demonstrate its capability to learn from data arising from a broad class of PDEs in
diverse domains, including electromagnetism, fluid dynamics, and biology.

1 INTRODUCTION AND RELATED WORK

Machine learning is emerging as a powerful tool for accurately simulating complex physical phe-
nomena (Brandstetter et al., 2022; Li et al., 2021; Boullé et al., 2023). Unlike traditional numerical
methods, which rely on explicit mathematical models and require problem-specific implementations
for spatial resolution, timescales, domain geometry, and boundary conditions, machine learning mod-
els learn directly from data—either from simulations or real-world observations—enabling greater
flexibility and scalability. Moreover, these models leverage ongoing advances in GPU acceleration
and large-scale parallelization, with continued improvements in both accuracy and efficiency.

A wide range of architectural primitives has been explored for modeling different physical systems,
each leveraging structural biases that arise in the solution operator of specific classes of PDEs. As
prominent examples, the Fourier neural operator (Li et al., 2021) learns a kernel integral operator
through convolution in Fourier space, enabling efficient representation of global interactions; message
passing neural networks (Brandstetter et al., 2022) capture localized interactions via graph-based
message updates; U-Net ConvNets (Gupta & Brandstetter, 2022) exploit multiscale representations
to couple fine- and coarse-scale features; while operator transformers (Hao et al., 2023) leverage
transformers to handle challenging settings such as irregular meshes. Other methods directly approx-
imate the action of linear operators in the elliptic setting (Boullé et al., 2023), bypassing explicit
discretization of the underlying equations. Moreover, Boullé et al. (2023) show that the underlying
learning problem is well-posed for a very small number of datapoints and prove that the class of
elliptic PDEs is “data efficient”: the number of training points needed to learn the solution operator
depends only on the problem dimension. This effect is due to the nature of the solution operator
for elliptic-type PDEs, which is highly structured: the Green function G(x, y) associated with the
solution operator is a Hierarchical Semi-Separable (HSS) mapping that exhibits low rank when
restricted to off-diagonal subdomains.
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In fact, the Multipole Graph Neural Operator employed in (Boullé et al., 2023) is motivated by a
hierarchical structure observed in Green functions (Boullé & Townsend, 2024, Section 2.4), known
as the Hierarchical Off-Diagonal Low-Rank (HODLR) structure. In an HODLR matrix, off-diagonal
blocks at different scales are well-approximated by low-rank factorizations. When used within a
neural architecture, this flexible representation allows the network to capture both near-field and
far-field interactions in a multiscale fashion and is one of the key factors behind the data-efficiency
property of the neural architecture.

The HSS structure is a special case of the more general HODLR format, a hierarchical domain-
decomposition strategy that has been widely studied in the scientific computing literature for devel-
oping fast and memory-efficient solvers for elliptic-type PDEs, e.g., (Martinsson & Rokhlin, 2005;
Gillman et al., 2012). Compared to HODLR, the HSS model enforces a nested basis across levels in
addition to low-rank off-diagonal blocks. This nested parameterization greatly reduces redundancy,
yielding a more compact representation and faster matrix–vector products, improvements that are not
available in the plain HODLR structure.

In this work, we propose Neural-HSS, a neural architecture that injects this type of structure into
a neural network model for PDE learning. Thanks to the efficient data representation of HSS, the
proposed model is able to approximate solution operators with far fewer parameters than baseline
models while retaining better or comparable accuracy.

The geometric structure of HSS operators imposes an inductive bias that concentrates modeling capac-
ity on local interaction effects in the physical system—modeled through full-rank submatrices—while
approximating interaction effects between distant subdomains using low-rank matrices, resembling a
mean-field approximation. This modeling strategy underlies many popular neural PDE solvers. In fact,
architectures such as ResNets (He et al., 2016), Swin Transformers (Liu et al., 2021), and Message
Passing Neural Networks (Gilmer et al., 2017) devote the majority of their representational capacity
to modeling local interactions. This bias aligns well with the nature of PDE dynamics, in which the
dominant behavior is driven by localized interactions, in contrast to integro-differential equations,
which can incorporate global interaction effects. The effect of this implicit bias was also highlighted
in (Holzschuh et al., 2025), where the authors demonstrate that in a Swin-Transformer-based model,
increasing the attention window size leads to a rapid performance plateau.

Overall, our main contributions are as follows:

• We propose Neural-HSS, a parameter-efficient neural architecture with a novel type of layer
inspired by HSS theory for PDEs (Hackbusch, 2015), and we establish its universal approximation
property.

• We prove that the proposed architecture is exact and data-efficient on the class of elliptic PDEs,
i.e., (a) the global minimizers of the empirical loss represent the discretized solution operator
exactly, and (b) the number of data points required to learn the exact operator depends only on
the intrinsic dimensionality of the problem. To the best of our knowledge, this is the first result
for an architecture that can handle arbitrary types of PDEs while guaranteeing exactness and data
efficiency for a broad class of PDEs.

• We highlight an intriguing connection between the proposed architecture and a discretized version of
the convolutional-type layer used in FNO architectures, showing that an HSS layer can approximate
it arbitrarily well with very few parameters.

• Under the assumptions of Theorem 2.3, which match the setting of (Boullé et al., 2023), we conduct
two experiments in 1D and 3D. The 3D experiment is performed on a grid with 2M points, a
well-known challenge for machine learning models. In both cases, we demonstrate the superior
performance and scalability of Neural-HSS.

• We conduct extensive experiments on a broad class of PDEs arising from electromagnetism, fluid
dynamics, and biology, showcasing strong performance relative to commonly used architectural
primitives such as ResNet and FNO layers in terms of parameter efficiency, test error, and computa-
tional time. In particular, this last advantage becomes more evident for higher-dimensional PDEs.
Moreover, we demonstrate the effectiveness of Neural-HSS beyond elliptic PDEs, showing that the
same architecture is also effective for different classes of nonlinear PDEs.

Related Work. There has been a surge of interest in learning-based approaches for improving
classical solvers for linear PDEs. Several works focus on accelerating iterative methods such as
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Conjugate Gradient for symmetric positive definite systems (Li et al., 2023; Kaneda et al., 2023;
Zhang et al., 2023), or GMRES-type solvers for specific applications like the Poisson equation (Luna
et al., 2021). Others focus on learned preconditioning strategies: neural networks have been used
to construct preconditioners that speed up convergence (Greenfeld et al., 2019; Luz et al., 2020;
Taghibakhshi et al., 2021), or to optimize heuristics such as Jacobi and ILU variants (Flegar et al.,
2021; Stanaityte, 2020). NeurKItt (Luo et al., 2024), for example, employs a neural operator to
predict the invariant subspace of the system matrix and accelerate solution convergence. However,
these approaches are primarily designed to enhance classical linear numerical pipelines. In contrast,
our work takes a fundamentally different perspective: we aim to learn an end-to-end solver.

Moreover, recent work has focused on learning low-dimensional latent representations of PDE
states for efficient simulation, extending classical projection-based reduction (Benner et al., 2015)
with deep learning methods such as autoencoders (Wiewel et al., 2019; Maulik et al., 2021), graph
embeddings (Han et al., 2021), and implicit neural representations (Du et al., 2024; Chen et al.,
2022). Koopman-inspired methods enforce linear latent dynamics (Geneva & Zabaras, 2022; Yeung
et al., 2019), while latent neural solvers and transformer-based ROMs have been developed for
end-to-end modeling (Li et al., 2025b; Hemmasian & Barati Farimani, 2023). In addition, Kissel
& Diepold (2023b) introduces a hierarchical Fan et al. (2019b) network to model the nonlinear
Schrödinger equation. Another key challenge remains long-horizon stability, motivating strategies
like autoregressive training, architectural constraints, and spectral or stochastic regularization (Geneva
& Zabaras, 2020; McCabe et al., 2023; Stachenfeld et al., 2022). More recently, generative models, in
particular using diffusion-based models, have shown promise for stable rollout and data assimilation
by producing statistically consistent trajectories (Shysheya et al., 2024; Li et al., 2025a; Andry et al.,
2025).

The use of structured matrices in neural network architectures is also highly relevant and used across
different areas of deep learning. Recent approaches include the use of low-rank (Schotthöfer et al.,
2022; Zangrando et al., 2024) and hierarchical decompositions (Fan et al., 2019a; Kissel & Diepold,
2023a), low-displacement rank (Thomas et al., 2019; Zhao et al., 2017; Choromanski et al., 2024),
butterflies and monarchs (Fu et al., 2023; Dao et al., 2019; 2022).

2 SETTING AND MODEL

In this section, we present the necessary definitions and theoretical motivations for our proposed
architecture. We start with the following formal definition of HSS structure:
Definition 2.1. (HSS structure (Casulli et al., 2024, Definition 3.1)) Let T be a cluster tree of depth
L for the indices [1, . . . , d]. A matrix A ∈ Rd×d belongs to HSS(r, T ) or simply HSS(r) if there
exist real matrices

{Uτ , Vτ : τ ∈ T , 1 ≤ depth(T )} and {Dτ : τ ∈ T }

called telescopic decomposition and for brevity denoted by {Uτ , Vτ , Dτ}τ∈T or simply {Uτ , Vτ , Dτ},
with the following properties:

1. Dτ is of size |τ | × |τ | if depth(τ) = L and 2r × 2r otherwise;

2. Uτ , Vτ are of size |τ | × r if depth(τ) = L and 2r × r otherwise;

3. if L = 0 (i.e., T consists only of the root γ) then A = Dγ ;

4. if L ≥ 1 then A = D(L) +U (L)A(L−1)(V (L))T where

U (L) := blkdiag(Uτ : τ ∈ T ,depth(τ) = L), V (L) := blkdiag(Vτ : τ ∈ T ,depth(τ) = L),

D(L) := blkdiag(Dτ : τ ∈ T ,depth(τ) = L)

and the matrix A(L−1) := (U (L))T (A − D(L))V (L) has the telescopic decomposition
{Uτ , Vτ , Dτ}τ∈T (L−1)

2r
, where T (L−1)

2r denotes a balanced cluster tree of depth L − 1 for the

indices [1, . . . , 2Lr], see Definition A.2.

This definition is a natural extension of the idea of a low-rank linear operator, when the matrix is not
globally low-rank but admits a low-rank expansion on subdomains that do not intersect.
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Figure 1: Model overview. The lifting and projection layers can be implemented either as HSS layers
or as full-rank layers. We illustrate, as an example, the weight matrix structure with two different
hierarchical levels.

The utility and efficiency of these structures become immediately clear when considering elliptic-type
PDEs. In fact, when one discretizes an elliptic partial differential operator—say by finite differences,
finite elements, or boundary integral methods—a large algebraic system Au = f arises, where A is
associated with discretized Green’s functions. It turns out that many of the off-diagonal blocks of A
have low numerical rank because of the smoothing properties of elliptic operators, making distant
interactions "weak" and therefore inducing a decay in the singular values, which depends on the
regularity of the kernel (Bebendorf, 2000; Bebendorf & Hackbusch, 2003). HSS matrices exploit
exactly this feature by organizing the matrix into a hierarchical block structure in which off-diagonal
blocks are approximated by low-rank factorizations. Thus, HSS-based models are used to design
fast numerical solvers or preconditioners for elliptic PDEs by efficiently approximating the operator,
thereby reducing storage and computational complexity (Börm, 2010; Börm & Grasedyck, 2005;
Gillman et al., 2012). As the HSS structure is invariant under matrix inversion, these properties
demonstrate that HSS operators can effectively model the structure of the solution operator and offer
a powerful modeling primitive for a neural PDE solver.

Based on this key observation, we propose below the Neural-HSS model.

2.1 MODEL OVERVIEW

In this section, we present the proposed Neural-HSS architecture, as illustrated in Figure 1.

One-dimensional HSS layer. For 1-dimensional problems, the HSS layer consists of an HSS
structured matrix followed by a nonlinear activation. In Appendix D we describe the forward pass
in more detail, along with input and output channels of the layers, the number of levels, and the
rank of the layer. The rank controls the size of the low-rank coupling matrices between sub-blocks,
enabling efficient compression of off-diagonal interactions. The number of levels determines the
recursion depth, i.e., how many hierarchical splits the input undergoes. Clearly, the HSS layer is fully
compatible with the backpropagation algorithm. The structure of the layer allows us to stack multiple
layers, enabling the construction of deeper architectures.

Activation function. We employ the LeakyReLUα activation. α is typically a tunable hyperpa-
rameter; however, in our implementation, α is learnable. In particular, if the underlying PDE is
linear, the model adapts α→ 1, effectively recovering the identity function. Instead, for nonlinear
PDEs, α can deviate from 1 to capture the nonlinearity where necessary. This activation function is
also relevant because it fulfills the exactness guarantees presented in Theorem 2.3. While this is the
activation of choice in our implementation, we emphasize that this choice is not restrictive: other
activation functions can be used if better suited for the problem at hand. We also highlight that as
long as the activation acts entrywise, the HSS-induced structural bias is maintained as the topology
of the interlayer connections is not affected.
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m-dimensional HSS layer. The complex hierarchical architecture of HSS operators in higher
dimensions poses significant challenges, as it depends on the geometry of a partition of the domain,
which can be arbitrarily complex. For this reason, different possible models can be used to extend the
HSS structure to higher-dimensional tensors (Hackbusch, 2015, Chapter 8). Here we extend the HSS
layer to higher-dimensional PDEs by parametrizing each layer as a high-dimensional tensor obtained
as a low-rank expansion of the outer product of one-dimensional HSS layers. More precisely, an
m-dimensional HSS layer is a tensor of outer CP-rank rout parametrized as follows:

Hm
θ : R

m︷ ︸︸ ︷
d × · · · × d → Rd×···×d, Hm

θ (Z) :=
rout∑
k=1

Z
m×
j=1

W
(k)
j

W
(k)
j ∈ HSS(rk,j) ⊂ Rd×d, θ = (W

(k)
j )j,k trainable parameters

(1)

where the definition of modal product×is recalled in Definition A.1 and Z is the layer’s input tensor.
This model is motivated by the effectiveness of the Canonic Polyadic decomposition in representing
very high-dimensional tensors with a small number of variables (Hitchcock, 1927; Lebedev et al.,
2015). In fact, while the parameter count on a generic linear map between tensors with m modes
would scale as O(d2m), the memory for this m-dimensional HSS layer scales as O(routmrd) when
rk,j are all equal to r. Thus, the architecture’s parameter-efficiency increases as the dimensionality of
the PDE grows.

2.2 THEORETICAL RESULTS

In this section, we present our main theoretical results, showing that the proposed Neural-HSS enjoys
some useful properties.

First of all, we notice in the next Theorem that the HSS structure is efficient in representing
convolutional-type operators in which the kernel is regular. Thus, each HSS layer in the proposed
model can be interpreted as a generalization of a (discretized) convolutional-type linear layer, such as
those implemented in popular FNO or CNO architectures (Li et al., 2021; Raonic et al., 2023), as
well as classical convolutional filters.
Theorem 2.2. (Convolutional kernels are HSS approximable) Let D ≥ 1, Ω ⊆ RD be a compact
set, let k : Ω→ R be an asymptotically smooth convolutional kernel (Definition A.4). Consider the
operator

T : C0(Ω;R)→ C0(Ω;R), (Tf)(x) =

∫
Ω

k(x− y)f(y) dy

For a set of basis functions {ϕj}Kj=1, consider the discretization matrix

Aij =

∫
Ω

k(x− y)ϕi(x)ϕj(y) dx dy, i, j = 1, . . . ,K.

Then, for every η-admissible pair (Definition A.3) of well-separated clusters τ, τ ′, there exist r =
O(log(1/ε)D) such that

inf
B : rank(B)=r

∥A|τ×τ ′ −B∥F ≤ ε

where A|τ×τ ′ := Πτ ′AΠτ is the orthogonally projected operator in the subdomains spanned by the
nodes τ, τ ′.

The result in Theorem 2.2 shows that each regular convolutional operator on well-separated domains
can be well approximated by a low-rank matrix, where the rank grows logarithmically with the
tolerance. In other terms, if the domains are well-separated and the kernel is regular enough, then
interactions between subdomains can be well-approximated through a low-rank expansion. Thus,
the whole convolution can be approximated in HSS(r) by recursively partitioning the index set into
clusters. The proof of Theorem 2.2 is included in Appendix B.

Next, we analyze approximation and data efficiency properties of the model. Note that by setting the
number of hierarchical levels to its minimum and simultaneously increasing the rank to its maximum,
the backbone effectively reduces to a standard multilayer perceptron (MLP). This observation
immediately implies that Neural-HSS inherits the well-known universal approximation property of
MLPs, at the cost of possibly increasing the number of levels of the tree and the rank.
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Moreover, in combination with piecewise linear activation functions with learnable slope, it satisfies
data-efficiency and exactness recovery properties, as formalized in the following:
Theorem 2.3. (Exact Recovery and Data-Efficiency) Consider the model

Nθ(b) = Hℓ ◦ · · · ◦H1(b), Hi(z) = LeakyReLUαi
(Wi[z]), θ = (W1, α1, . . . ,Wℓ, αℓ)

and for λ > 0, the loss function together with its set of global minimizers

LN (θ) =

N∑
i=1

∥Nθ(bi)− ui∥22 +
λ

2

ℓ∑
i=1

(αi − 1)2, MN := argmin
Wi∈HSS(ri,T ),αi∈R

LN ,

where the datapoints {(bi, ui)}Ni=1 ⊆ Rdk × Rdk

are standard-Gaussian distributed and satisfying
Gui = bi with G−1 ∈ HSS(r, T ). Furthermore, suppose maxi ri ≥ r.

Then there exists a constant C > 0 such that, whenever N ≥ C ·
∑ℓ

i=1 ri, the following exact
recovery identity holds with high probability

sup
θ∈MN

∥∥Nθ(·)− G−1(·)
∥∥
L∞ = 0.

Consequently, any global minimizer θ∗ ∈MN has zero generalization gap, i.e., Nθ∗ = G−1 and the
model is data-efficient as exact recovery is possible with a number of data points N that depends
only on the architecture’s intrinsic dimensionalities ri.

A proof of Theorem 2.3 is included Appendix C. This result shows that even in possession of only a
possibly very small number of examples, if the underlying operator is HSS, then all global minimizers
of LN recover the exact solution operator. This is, for example, the case for linear elliptic PDEs.
Moreover, notice that Theorem 2.3 formalizes the “data-efficiency” for the proposed architectures,
in the spirit of what was done in (Boullé et al., 2023). An experimental validation of this result is
presented in Section 3.1 and Figure 3, where we numerically compare the data-efficiency of our
architecture against that of other baseline models.

3 EXPERIMENTS

In this section, we will present the numerical results. For a more complete description of the PDE
problems considered and the data generation, we refer to Appendix F; for the hyperparameter settings
and model implementation details, we refer to Appendix L; for more details on the training loss and
evaluation metrics used, we refer to Appendix G.

3.1 DATA EFFICIENCY
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Figure 2: Train size vs relative test error for dif-
ferent models. The models are trained on a 1D
Poisson equation.

We conduct two experiments analogous to those
in (Boullé et al., 2023). The first experiment
focuses on the one-dimensional Poisson equa-
tion, where we train our models on datasets
of varying sizes, ranging from 10 to 103 sam-
ples. The second experiment considers the three-
dimensional equation on a grid with resolution
128×128×128, corresponding to approximately
2× 106 grid points. Here, we vary the training
set size from 16 to 256 samples. We use fewer
training samples in three dimensions because, as
shown in (Boullé et al., 2023), meaningful con-
clusions can already be drawn with training sets
of around 200 samples. Moreover, generating
three-dimensional data and training models on it
is computationally expensive, further motivating
the need for data-efficient models in 3D simulations.

In the 3D experiment in Figure 3, we do not report the performance of the Green Learning model
(Boullé et al., 2023), since the memory of an NVIDIA A100 80GB was not sufficient already using a
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Figure 3: Left: Train size vs relative test error for different models. The models are trained on a 3D
Poisson equation. Right: Timing of forward and backward for the different models.

batch size of 1 and a depth of 1. We also omit DeepONet results for training set sizes smaller than
128, as its performance in this regime was poor and including it would clutter the visualization. The
full plot can be found in Appendix H. Details on the models are provided in Appendix L.

1D Our findings in Section 3.1 are consistent with those reported in (Boullé et al., 2023). With a
limited training sample budget, Green Learning outperforms the FNO model, as observed in (Boullé
et al., 2023); however, as the number of samples increases, FNO scales more effectively and surpasses
Green Learning once the training size exceeds 102. In contrast, Neural-HSS consistently outperforms
all baselines across all training budgets. Notably, with very small datasets (around ∼ 10 samples),
the performance gap between Neural-HSS and the Green Learning model remains small. As the
training size increases, this gap grows substantially in favor of Neural-HSS, highlighting its superior
scalability in this setting.

3D The 3D setting is particularly challenging for neural PDE solvers, as generating large, high-
fidelity 3D datasets is costly, not only in terms of simulation but also in data storage and model
training. This makes it of paramount importance to have a model that can be trained with a very
reduced number of samples when the underlying solution operator is structured.

As shown in the results in Figure 3, Neural-HSS consistently outperforms all baselines. With only 16
samples, Neural-HSS matches the performance of FNO trained on 64 samples and ResNet trained on
128 samples. At 32 samples, Neural-HSS achieves performance comparable to FNO trained on 256
samples. Training time is a crucial factor Figure 3. Neural-HSS trains significantly faster than both
FNO and ResNet, completing training in about two and a half hours, compared to six hours for FNO
and nearly one day and eighteen hours for ResNet. DeepONet trains even faster, requiring only about
one hour, but it needs a much larger training set to achieve comparable performance. With a training
size of only 256 samples, DeepONet cannot match Neural-HSS’s accuracy. Since generating new
samples is highly expensive, Neural-HSS is overall the most efficient choice, also in terms of time.

Together with the results in Table 2, this shows that the choice of higher-order HSS layer for
m−dimensional problems proposed in Equation (1) is both simple and effective, even with very
small outer rank values rout, which for this experiment was set to two (see Appendix L).

3.2 ADDITIONAL EVALUATION OF PDE LEARNING PERFORMANCE

1D PDEs. We train the models to predict the dynamics of the Heat and Burgers’ equations.
Specifically, the models learn the time-stepping operator G : ut 7→ ut+δt. At this timescale, prior
work has shown that learning the residual yields better performance than direct prediction (Li et al.,
2022). Following this strategy, our model M is trained to predict δu = ut+δt − ut, so that, during
inference, the state is updated as ut+δt = ut + M(ut). For training stability, we normalize the
residuals by the maximum value in the training set, i.e., max δu. We defer the model details with
all the hyperparameters to Appendix L. We want to remark that we do not provide results for Green
Learning on the Burgers equation, as the method requires the underlying PDE to be linear.

In both experiments, Neural-HSS outperforms the baselines while using fewer parameters, see Table 1.
For the Heat equation, we observe trends consistent with the data efficiency experiments (Section 3.1).
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Neural-HSS FNO ResNet DeepONet Green Learning

Equation Params Test Err Params Test Err Params Test Err Params Test Err Params Test Err

Heat Eq. 45K 3× 10−3 150K 8× 10−3 165K 1× 10−2 247K 1× 10−2 83K 1× 10−2

Burgers’ Eq. 1.5M 0.12 1.5M 0.26 1.7M 0.57 1.7M 0.44 - -

Table 1: Comparison between Neural-HSS and baseline models. We report the number of learnable
parameters for each model and the test error Eq. (3).
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Figure 4: Timing of one forward+backward pass, calculated on two different datasets: Left: Heat
equation. Right: Burgers’ equation.

When trained on a larger dataset (approximately 104 samples), Green Learning underperforms
compared to both Neural-HSS and FNO. DeepONet is the most parameter-hungry model, we fix
it at 247K parameters, since smaller variants consistently yielded weaker performance. We notice,
moreover, that by the end of training, the parameter α of the LeakyReLU converged to 1, reflecting
that the model has learned the underlying relation to be linear.

For the Burgers’ equation, we find that employing a full-rank lifting and projection improves
performance. This observation is aligned with findings in the literature on training models with
low-rank parameter matrices, where the last and sometimes first layers are typically kept full-rank
(Schotthöfer et al., 2022; Zangrando et al., 2024; Wang et al., 2021). Moreover, with respect to the
heat equation, it is necessary to employ a higher rank in the intermediate layers to achieve sufficient
expressivity. In this case, Neural-HSS consistently outperforms all other baselines while using fewer
parameters and, similarly to the heat equation, the FNO emerges as the second-best performing.

We run another series of experiments on a modified version of the Burgers’ equation, where, using
a parameter β, we shift the equation towards the elliptic setting. While the other models seem
to be unaffected by the change in the PDE setting, Neural-HSS shows a significant performance
improvement as the equation approaches the elliptic setting, without any change to the hyperparameter
setting. We defer to Appendix I the detailed results.

As shown in Figure 4, Neural-HSS’s time for a single optimization step is comparable with other
baseline models, while being significantly more effective as shown in Table 1. The efficiency is
comparable to that of FNO, for which most of the computations are performed in Fourier space while
truncating the modes, which significantly reduces cost. DeepONet is the fastest model; however, it
also has the highest test error. Timings of only the inference phase are reported in Appendix J.

2D PDEs. In Table 2 and Figure 5, we test model performance on 2D problems, when predicting
the steady state of an equation or a specific time step. For the incompressible Navier-Stokes, we use a
Z-score normalization as in the original papers (Yao et al., 2025; Huang et al., 2024); for the other
equations, we use a max rescaling as for the 1D experiments. We defer the model details with all the
hyperparameters to Appendix L. We do not provide results for Green Learning on the non-elliptic
equation, as the method requires the underlying PDE to be linear.

For the Poisson equation, similar to the 1D case, smaller DeepONet architectures underperform.
We clearly observe that the Neural-HSS significantly outperforms all baselines, with an even larger
performance gap in the 2D experiments compared to the 1D case. As before, the FNO model ranks
second, followed by the Green Learning model, consistent with the findings from the 1D experiments.
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Neural-HSS FNO ResNet DeepONet Green Learning

Equation Params Test Err Params Test Err Params Test Err Params Test Err Params Test Err

Poisson Eq. 37K 7× 10−8 132K 7× 10−6 165K 3× 10−4 280K 2× 10−2 83K 5× 10−5

Gray–Scott Eq. (Forward) 329K 0.294 2.1M 0.331 1.99M 0.273 2.3M 0.315 - -
Gray–Scott Eq. (Inverse) 329K 0.203 2.1M 0.208 1.99M 0.193 2.3M 0.276 - -
NS Eq. (Forward) 329K 0.123 2.1M 0.483 1.99M 0.481 2.3M 0.409 - -
NS Eq. (Inverse) 329K 0.208 2.1M 0.19 1.99M 0.383 2.3M 0.514 - -

Table 2: Comparison between Neural-HSS and baseline models on 2D problems. We report the
number of learnable parameters for each model and the test error Equation (2). With NS Eq., we refer
to the incompressible Navier-Stokes equation.
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Figure 5: Timing of one forward+backward pass, calculated on two different datasets: Left: 2D
Poisson Equation Right: Gray-Scott and Navier-Stokes.

In the non-elliptic setting, Neural-HSS demonstrates competitive performance compared to other
models. This is particularly evident for the incompressible Navier–Stokes equation, where Neural-
HSS outperforms all baselines in the forward problem. For the Gray–Scott model, Neural-HSS ranks
as the second-best model, with ResNet achieving a slightly lower test error, but using significantly
fewer parameters and fewer training steps. As for the 1D experiments, we use full-rank layers for the
lift and the projection.

Also for these experiments, we report in Figure 5 the time required for a training step. In this setting,
Neural-HSS remains highly competitive. In particular, for the Poisson equation, it is the second
most computationally efficient model after DeepONets, but with a gap of six orders of magnitude in
performance. For the Gray–Scott model and incompressible Navier–Stokes equation, training step
timing is comparable to that of the FNO layer, which benefits from a low-cost forward pass due to
mode truncation. The Gray–Scott experiment highlights an interesting trade-off: although ResNet
achieves the lowest test error, it requires more than one order of magnitude more in terms of time
compared to Neural-HSS, which attains the second-lowest error. Given that the test-error gap between
the two models is very small, Neural-HSS may be preferable in practice due to its substantially lower
memory and computational cost.

Finally, compared to the one-dimensional experiments, we observe that the efficiency of Neural-HSS
compared to the other baselines increases with the dimension as discussed in Section 2.1. We also
refer to Section 3.1 for the three-dimensional case, in which this effect is even more evident.

CONCLUSION

In this work, we present Neural-HSS, a novel hierarchical architecture inspired by the structure of
the solution operator of Elliptic-type linear PDEs. Leveraging this very structured representation,
we are able to produce lightweight neural PDE solvers with competitive performance with respect
to state-of-the-art baselines and provable data-efficiency guarantees. The proposed architecture
has an exact HSS structure for the one-dimensional case, while for higher-dimensional problems
uses an approximate outer product expansion. Our model demonstrates superior scalability with
respect to problem dimensionality compared to baseline approaches for data-efficient learning in the
elliptic setting. Notably, the Green Learning model could not be trained in 3D at high resolution.
Furthermore, in lower dimensions (1 and 2), our model also exhibits better scalability with respect to
training set size, again outperforming all the baselines on linear and nonlinear PDEs.
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A NOTATION AND USEFUL DEFINITION

Definition A.1. (Modal product)

Let Z ∈ Rd1×···×dm ,W ∈ RDk×dk . We denote with (Z×k
W ) ∈ Rd1×...dk−1×DK×dk+1×···×dm

the k−th modal product of Z and W as

(Z×
k

W )i1,...,in :=

dk∑
jk=1

Zi1,...,ik−1,jk,ik+1,...,imWik,jk

Definition A.2 (Cluster tree). Let d ∈ N. A cluster tree is a perfect binary tree T that defines subsets
of indices obtained by recursively subdividing I = [1, . . . , d].

The root γ of the tree corresponds to the full index set I . Each non-leaf node τ is associated with a
consecutive set of indices Iτ , and its two children, α and β, correspond to two consecutive subsets Iα
and Iβ such that Iτ = Iα ∪ Iβ and Iα ∩ Iβ = ∅.

If depth(T ) = L and d = 2Lk for k ∈ N, we say that T is a balanced cluster tree if every non leaf
node τ = [a, . . . , b] is split exactly in the middle, i.e.

Iα = [a, a+b
2 ], Iβ = [a+b

2 + 1, b].

Definition A.3. (η- strong admissibility condition (Hackbusch, 2015, Definition 4.9))

Let (Ω, ∥ · ∥) be a normed space. We say that two subdomains X,Y ⊆ Ω satisfy the η-strong
admissibility condition if

max(diam(X),diam(Y)) ≤ η dist(X,Y )

where

diam(X) := sup
x,x′∈X

∥x− x′∥, dist(X,Y ) := max{sup
x∈X

inf
y∈Y
∥x− y∥, sup

y∈Y
inf
x∈X
∥x− y∥}

Definition A.4. (Asymptotic-smoothness (Hackbusch, 2015, Definition 4.14))

We say that k : Ω→ R is asymptoticall smoth if there exist constants C0, C1 > 0 and µ ≥ 0 such
that for all multi-indices α

|∂αk(z)| ≤ C0 C
|α|
1 |α|! |z|−µ−|α|, z ̸= 0,

.

B PROOF OF THEOREM 2.2

Thanks to (Hackbusch, 2015, Lemma 4.29), we have the bound

inf
B:rank(B)=r

∥A−B∥F ≤ ∥k − k(r)∥L2(Ωτ−Ωτ′ )∥Rτ∥2∥Rτ ′∥2 := C∥k − k(r)∥L2(Ωτ−Ωτ′ ) ≤

≤ C|Ωτ − Ωτ ′ |∥k − k(r)∥L∞(Ωτ−Ωτ′ )

In order for the upper bound to be controlled by ε, we need ∥k − k(r)∥ ≤ ε
C . Thanks to (Hackbusch,

2015, Theorem 4.22) we have that for m = r1/D

∥k − k(r)∥L∞(Ωτ−Ωτ′ ) ≤ c1

(
c′2diam∞(Ωτ )

dist(Ωτ ,Ωτ ′)

)m

≤ c1(c
′
2η)

m

Therefore we finally have

inf
B:rank(B)=r

∥A−B∥F ≤ Cc1(c
′
2η)

r1/D ≤ ε

Therefore, for r = O(log(1/ε)D) the inequality is satisfied.
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C PROOF OF THEOREM 2.3

Proof. First, we note that if we assume, without loss of generality, that maxi ri = r1 ≥ r, and we
choose H1 = G−1, set Hj equal to the identity matrix for all j ≥ 2, and take αi = 1 for every i, then
we obtain

sup
x∈Rd

∥Nθ(x)− G−1x∥2 = 0.

Conversely, in order to satisfy LN (θ) = 0, it is necessary that αi = 1 for each i. Under this
condition, Nθ can be expressed as a product of HSS matrices associated with the same cluster tree
T , which implies that Nθ is itself an HSS matrix associated with T , with HSS rank

∑ℓ
i=1 ri. By

the results in (Levitt & Martinsson, 2024), such an HSS matrix can be recovered uniquely with
high probability from O

(∑ℓ
i=1 ri

)
observations. Therefore, all global minimizers must satisfy

Wℓ . . .W1 = G−1, αi = 1, and therefore the claim.

D FORWARD PASS

We assume, for simplicity, that the input and output vectors are of equal length.

Algorithm 1: Forward pass of the Neural-HSS linear layer
Input: x ∈ Rn, tree T with depth L, rank r
Output: y ∈ Rn

Function HSSForward(x, T , r):
if depth(T ) > 0 then

// Split input into leaf partitions

Split x = [x1, . . . , x2L ], with xi ∈ R|τi| for each i ; // τi: leaf index set
// Apply projection V to each block
for i = 1, . . . , 2L do

zi ←W
(V )
i xi ; // weights W

(V )
i ∈ Rr×|τi|

// Recurse on compressed representation
z ← [z1, . . . , z2L ];
y ← HSSForward()(z, T (L−1)

2r , r) ; // Balanced cluster tree T (L−1)
2r

// Split recursive output into blocks
Split y = [y1, . . . , y2L ], with yi ∈ Rr for each i;
// Reconstruct using U and diagonal D blocks
for i = 1, . . . , 2L do

yi ←W
(U)
i yi ; // weights W

(U)
i ∈ R|τi|×r

yi ← yi +W
(D)
i xi ; // weights W

(D)
i ∈ R|τi|×|τi|

return [y1, . . . , y2L ];
else

// Base case: leaf transformation
return Wx ; // weight W ∈ Rn×n

Complexity analysis A key advantage of Neural-HSS lies in its efficient memory footprint and
inference cost. Under the simplifying assumption that the number of leaf indices equals 2r, the
storage requirement of an HSSForward() operator scales as O(nr), and the cost of a matrix–vector
multiplication is likewise O(nr).

E LIFTING FOR SYSTEM OF PDES

Several PDEs have input and output multiple channels: to adapt our architecture for these kinds of
problems, one needs to specify a lifting and projection architectures as depicted in Figure 1. While
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multiple choices are possible, we employed the simplest possible choice as a backbone and, as a final
layer, a (low-rank) linear tensor map

ϕW : RD1×···×DM → Rd1×···×dm , ϕW(Z)α =
∑
β

Wα,βZβ ,

W =

r∑
i=1

ciu
(1)
i ⊗ · · · ⊗ u

(m)
i ⊗ v

(1)
i ⊗ · · · ⊗ v

(M)
i , ci ∈ R, u(j)

i ∈ Rdj , v
(j)
i ∈ RDj ,

where ci, u
(j)
i , v

(j)
i are learnable parameters. This allows us to easily extend Neural-HSS for a system

of vector PDEs.

The overall model architecture, including a potential lifting layer for a system of PDEs, is depicted in
Figure 1.

F DATA SPECIFICATION

For complete transparency and full reproducibility of our results in this section, we provide all the
details about the data generation. If we did not generate them, we also include the source and the
procedure for their generation.

F.1 DATASETS

Poisson equation. The n-dimensional Poisson equation

−∇ ·
(
a(x)∇u

)
= f,

models diffusion or conduction in heterogeneous media, where a(x) > 0 is a spatially varying
diffusivity and f an external source. Although linear, the discretized problem is usually ill-conditioned,
making it difficult to solve numerically. The Poisson equation is used to model different physical
phenomena such as heat conduction, porous flow, and electrostatics in nonhomogeneous materials.
During our experiments, we kept a = 1 and we trained the models to represent the mapping G : f 7→ u.
To assess the quality of the model, we used the relative L2 error on the test set.

Heat equation. The heat equation is a fundamental linear partial differential equation that describes
the diffusion of heat over time. In one spatial dimension, it is written as

ut = κuxx,

where κ denotes the thermal diffusivity. The equation smooths out spatial inhomogeneities by
dissipating gradients, leading to a monotone decay of energy in the system. In our experiments, we
fixed the diffusion coefficient at κ = 0.0002. The objective was to learn the temporal dynamics
of the system by approximating the mapping from the current state to its future evolution, i.e.,
G : ut 7→ ut+δt. In our experiments, we fixed δt = 0.8. Model performance is evaluated by rolling it
through time and calculating the L2 trajectory error on the test set.

Burgers equation. The Burgers equation is a fundamental nonlinear partial differential equation
that captures the competing effects of nonlinear convection and viscous diffusion. In one spatial
dimension, it takes the form

ut + uux = νuxx,

where ν denotes the kinematic viscosity. The viscous term νuxx regularises these shocks, but
introduces thin internal layers that are numerically stiff. In our experiments, we fixed the viscousity
coefficient at ν = 0.001, and the objective was to learn the temporal dynamics of the system, that is,
to approximate the mapping from the current state to its future evolution, more formally learn the
mapping G : ut 7→ ut+δt, to evaluate the models we use the L2 trajectory error on the test set.

Incompressible Navier-Stokes equation. We consider the incompressible Navier–Stokes equations
expressed in terms of the vorticity w = ∇× v:

∂τw(c, τ) + v(c, τ) · ∇w(c, τ) = ν∆w(c, τ) + q(c),

∇ · v(c, τ) = 0.
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Here v(c, τ) is the velocity field, q(c) a forcing term, and ν the viscosity; in the dataset, the viscosity
is fixed ν = 10−3. These equations describe nonlinear, incompressible flow and are widely used
to study vorticity dynamics, turbulence, and coherent structures. We use the data from (Yao et al.,
2025; Huang et al., 2024) and we conduct a similar series of experiments, we learned the mapping
G : w0 7→ w10 and the related inverse problem G : w10 7→ w0. The model performances are evaluated
using the relative L2 error on the test set.

Gray–Scott model The Gray–Scott equations describe a prototypical reaction–diffusion system
involving two interacting chemical species, A and B, whose concentrations vary in space and time.
They are given by 

∂A

∂t
= δA∆A−AB2 + f(1−A),

∂B

∂t
= δB∆B +AB2 − (f + k)B.

Here, the parameters f and k regulate the feed and kill rates, respectively: f controls the rate
at which A is supplied to the system, while k controls the rate at which B is removed. The
diffusion constants δA and δB determine the spread of the two species in space. We used the
dataset provided by (Ohana et al., 2024), where each trajectory consists of 1000 steps. Rolling out a
machine learning model over so many steps becomes impractical due to the accumulation of errors.
Therefore, as suggested in (Ohana et al., 2024), a relevant task is to predict the final state in order to
understand the long-term behavior of the two chemical species. To this end, we model the mapping
G : (A0, B0) 7→ (A1000, B1000), and we also pass the model the input parameters f and k. Similarly
to the incompressible Navier-Stokes, we also made an experiment for the inverse problem. The model
performance is evaluated using the relative L2 error on the test set.

F.2 POISSON EQUATION (1D, 2D & 3D)

F.2.1 1D (DATA EFFICIENCY)

We generate datasets of solutions to the one-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 1024 grid points
over x ∈ [0, 1], with grid spacing h = 1/1024. For each sample, the right-hand side f(x) is drawn
from a truncated Fourier sine series with 20 random modes:

f(x) =

10∑
k=1

ck sin
(
2kπx

)
, ck ∼ U(0, 1),

with f(x) set to zero at the first two and last two grid points to enforce the boundary conditions. The
Poisson problem is discretized using a fourth-order central finite difference scheme for the second
derivative. The resulting banded linear system (with five diagonals) is solved efficiently using a direct
banded solver. We generate 1,000 samples for training and 1,000 for testing. For training and testing
our model, we downsample to 256.

F.2.2 2D

We generate datasets of solutions to the two-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 64× 64 grid points
over (x, y) ∈ [0, 1]2, with grid spacing h = 1/64. For each sample, the right-hand side f(x, y) is
drawn from a truncated Fourier sine series with up to 10 random modes in each direction:

f(x, y) =

10∑
kx=1

10∑
ky=1

ckx,ky
sin(2πkxx) sin(2πkyy) ckx,ky

∼ U(0, 1),

where kx, ky ∈ {1, . . . , 10} are drawn uniformly at random for each sample. The forcing term
f(x, y) is set to zero along the boundary to enforce Dirichlet conditions.

The Poisson problem
−∆u(x, y) = f(x, y), u|∂Ω = 0,
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is discretized using a fourth-order finite difference scheme (nine-point Laplacian stencil), with a
spatial resolution of 128 × 128. This resulting linear system is solved using a direct solver. We
generate 4, 200 samples for training and 800 for testing, and we downsample the spatial resolution to
64× 64.

F.2.3 3D (DATA EFFICIENCY)

We generate datasets of solutions to the three-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions. The spatial domain is discretized uniformly with 1283 grid points over
(x, y, z) ∈ [0, 1]3, with grid spacing h = 1/n where n ∈ {128}. For each sample, the right-hand
side f(x, y, z) is constructed as a truncated Fourier sine series with randomly selected modes:

f(x, y, z) =

20∑
kx=1

20∑
ky=1

20∑
kz=1

ckx,ky,kz sin(kxπx) sin(kyπy) sin(kzπz), ckx,ky,kz ∼ U(0, 1),

where kx, ky, kz ∈ {3, . . . , 23} are drawn uniformly at random for each sample. The forcing term
f(x, y, z) is set to zero on the boundary of the domain to impose Dirichlet conditions.

The Poisson problem
−∆u(x, y, z) = f(x, y, z), u|∂Ω = 0,

is discretized using a higher-order finite difference scheme based on a 19-point stencil, yielding a
sparse linear system of size n3 × n3. The system is solved using a sparse direct solver. We generate
one dataset of 256 samples for training and 200 for testing.

F.3 HEAT EQUATION

For the one-dimensional Heat equation, we generate 2000 trajectories (1800 for training and 200 for
testing) with a time horizon T = 8 and time step δt = 0.2. The spatial domain is X = [0, 1] with
spatial resolution ∆x = 1/1023 (1024 grid points) and homogeneous Dirichlet boundary conditions
u(0, t) = u(1, t) = 0. The initial conditions are sampled from a truncated Fourier sine series with 10
modes and random coefficients ck ∼ U(0, 1):

u0(x) =

10∑
k=1

2 · ck · sin(kπx)

Each initial condition is normalized to have a maximum absolute value of 1. We use a second-order
finite difference scheme for spatial discretization with diffusion coefficient D = 0.0002, and solve the
resulting system of ODEs using the BDF (Backward Differentiation Formula) method with relative
tolerance 10−4 and absolute tolerance 10−6. For training and testing our model, we downsample to
256.

F.4 BURGERS EQUATION

For the one-dimensional Burgers equation, we generate 2000 trajectories (1800 for training and
200 for testing) with a time horizon T = 15.0 and output time step δt = 0.2. The spatial domain
is X = [0, 1) with spatial resolution ∆x = 1/1024 (1024 grid points) and Dirichlet boundary
conditions. The initial conditions are sampled using a random Fourier series with 10 modes:

u0(x) =

10∑
k=1

ck sin(2π(k + 1)x)

where the coefficients ck ∼ U(−1, 1) are drawn from a uniform distribution. Each initial condition is
normalized to have a maximum absolute value of 1. We employ second-order finite difference schemes
for spatial discretization and solve the resulting system using the BDF (Backward Differentiation
Formula) method with relative tolerances of 10−4 and absolute tolerances of 10−6. For training and
testing our model, we downsample to 256.
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F.5 GRAY–SCOTT MODEL

We use the dataset from (Ohana et al., 2024), the follwoing are the datails for generating the
data. Many numerical methods exist to simulate reaction–diffusion equations. If low-order finite
differences are used, real-time simulations can be carried out using GPUs, with modern browser-
based implementations readily available (Munafo, 2013; Walker et al., 2023). They choose to
simulate with a high-order spectral method for accuracy and stability purposes. Specifically, they
simulate equations (15)–(16) in two dimensions on the doubly periodic domain [−1, 1]2 using a
Fourier spectral method implemented in the MATLAB package Chebfun (Driscoll et al., 2014).
The implicit–explicit exponential time-differencing fourth-order Runge–Kutta method (Kassam &
Trefethen, 2005) is used to integrate this stiff PDE in time. The Fourier spectral method is applied in
space, with linear diffusion terms treated implicitly and nonlinear reaction terms treated explicitly
and evaluated pseudospectrally.

Simulations are performed using a 128× 128 bivariate Fourier series over a time interval of 10,000
seconds, with a simulation time step size of 1 second. Snapshots are recorded every 10 time steps.
The simulation trajectories are seeded with 200 different initial conditions: 100 random Fourier series
and 100 randomly placed Gaussians. In all simulations, they set δA = 2× 10−5 and δB = 1× 10−5.

Pattern formation is then controlled by the choice of the “feed” and “kill” parameters f and k. They
choose six different (f, k) pairs which result in six qualitatively different patterns, summarized in the
following table:

Pattern f k

Gliders 0.014 0.054
Bubbles 0.098 0.057
Maze 0.029 0.057
Worms 0.058 0.065
Spirals 0.018 0.051
Spots 0.030 0.062

On 40 CPU cores, it takes 5.5 hours per set of parameters, for a total of 33 hours across all simulations.

F.6 NAVIER–STOKES EQUATION

We use the data provided by (Huang et al., 2024) for the two-dimensional Navier–Stokes equations.
They follow this procedure to generate the data: The initial condition w0 is sampled from a Gaussian
random field

w0 ∼ N
(
0, 71.5(−∆+ 49I)−2.5

)
.

The external forcing term is defined as

q(x1, x2) =
1
10

(
sin(2π(x1 + x2)) + cos(2π(x1 + x2))

)
.

We solve the Navier–Stokes equations in the stream-function formulation using a pseudo-spectral
method. Specifically, the equations are transformed into the spectral domain via Fourier transforms,
the vorticity equation is advanced in time in spectral space, and inverse Fourier transforms are applied
to compute nonlinear terms in the physical domain. The system is simulated for 1 second with 10
time steps, and the vorticity field wt is stored at a spatial resolution of 128 × 128. In the dataset
ν = 10−3 therefore the Reynolds number corresponding to Re = 1000.

G METRICS

Training Loss. As a training objective, we use the Mean Squared Error (MSE), defined as

L(pred, target) =
1

|B|
∑
b∈B

||predb − targetb||22
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Evaluation Metrics. We assess the performance of our model using two different metrics. For
steady-state problems or predictions at a specific time step, we employ the relative L2 error, formally
defined as

L(pred, target) =
1

|B|
∑
b∈B

∥predb − targetb∥2
∥targetb∥2

. (2)

For temporal rollouts, in which the model is evaluated over a sequence of time steps, we adopt the L2

trajectory error, mathematically expressed as

L(pred, target) =
1

|B|
∑
b∈B

∥predb − targetb∥2 . (3)
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H COMPLETE PLOT DATA EFFICIENCY POISSON 3D
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Figure 6: Train size vs relative test error for different models. The models are trained on a 3D Poisson
equation
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I ADDITIONAL EXPERIMENTS ON BURGERS’

We run the following series of experiments using β ∈ {1, 10−2, 10−4} on the modified Burgers’
equation

ut + βuux = νuxx.
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Figure 7: Trajectory test loss varying β

We adopt the same experimental setting used for the standard Burgers’ equation, generating the data
in the same manner and keeping the hyperparameters unchanged. When β = 0, the equation reduces
to the heat equation, which is elliptic. The ResNet shows improved performance as β decreases
from 1 to 10−2, but its accuracy deteriorates at β = 10−4. In contrast, the performance of FNO and
DeepONet remains nearly constant across this range. The only model that benefits from the transition
from the parabolic to the elliptic regime is Neural-HSS, highlighting its effectiveness in learning from
data generated by elliptic PDEs.
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J TIMING

In this section we will present further timing results. In particular, the setting is the same of Figures 4
and 5, for which we present the time of a training step for non-embedding layers with the same batch
size used in the experiments (see Appendix L). In Figure 8, we present results in the same setting but
just for the inference time.
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Figure 8: Timing of one forward pass, calculated on different datasets.
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K DATA VISUALIZATION

Figure 9: Example trajectories from the Heat equation dataset.
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Figure 10: Example trajectories from the Burgers’ equation dataset.
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Figure 11: Example of snapshot from the Navier–Stokes equation dataset.
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Figure 12: Gray-Scott data: input and steady state.
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Figure 13: Example of a snapshot from the Poisson 3D equation dataset.

Figure 14: Example of a snapshot from the Poisson 3D equation dataset.
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Figure 15: Example of 2 slice of a snapshot from the Poisson 3D equation dataset.

Figure 16: Example of 2 slice of a snapshot from the Poisson 3D equation dataset.
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L MODEL & TRAINING DETAILS

Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 6 12 41 6
Embedding Dimension 256 32 48 192 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 2

Levels 3 - - - -
Rank 2 - - - -
Modes - 12 - - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 1000 1000 1000 1000 1000
Batch size 256 256 256 256 256

Table 3: Models and training configuration for the Heat Equation.

Configuration Neural-HSS FNO ResNet DeepONet

Depth 4 6 12 4
Embedding Dimension 1024 64 150 512
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 3 - - -
Rank 32 - - -
Modes - 32 - -

Peak learning rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Minimum learning rate 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Epochs 1500 1500 1500 1500
Batch size 256 256 256 256

Table 4: Models and training configuration for the Burgers’ Equation.

1The depth is the same for the Trunk network and the Branch network
2(Boullé et al., 2020)
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Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 4 4 43 6
Embedding Dimension 64 16 64 64 64
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 4

Levels 2 - - - -
Rank 2 - - - -
outer rank 8 - - - -
Modes - 8 - - -

Peak learning rate 8× 10−4 8× 10−4 8× 10−4 8× 10−4 8× 10−4

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 500 500 500 500 500
Batch size 128 128 128 128 128

Table 5: Models and training configuration for the 2D Poisson Equation.

Configuration Neural-HSS FNO ResNet DeepONet

Depth 3 4 4 4
Embedding Dimension 128× 128 32 64 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 2 - - -
Rank 8 - - -
Outer Rank 8 - - -
Modes - 32 - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 0 0 0 0
Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Epochs 10 10 10 10
Batch size 64 64 64 64

Table 6: Models and training configuration for the Incompressible Navier-Stokes and Gray-Scott.
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Configuration Neural-HSS FNO ResNet DeepONet

Depth 1 2 2 4
Embedding Dimension 128× 128× 128 14 48 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU

Levels 2 - - -
Rank 4 - - -
Outer Rank 2 - - -
Modes - 8 - -

Peak learning rate 5× 10−3 5× 10−3 1× 10−4 1× 10−3

Minimum learning rate 1× 10−3 1× 10−3 1× 10−5 1× 10−5

Weight decay 0 0 0 0
Learning rate schedule Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1
Trainig steps 16k 16k 16k 16k
Batch size 16 16 16 16

Table 7: Models and training configuration for the data efficiency for 3D Poisson Equation. We
report the training steps since for each training size we match the training steps at 16k.

Configuration Neural-HSS FNO ResNet DeepONet Green
Learning

Depth 3 6 12 45 6
Embedding Dimension 256 32 48 192 128
Activation Trainable

LeakyReLU
GeLU GeLU GeLU Rational

activation 6

Levels 3 - - - -
Rank 2 - - - -
Modes - 12 - - -

Peak learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Minimum learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Learning rate schedule Cosine Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW AdamW
(β1, β2) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1 1 1 1 1
Epochs 500 500 500 500 500
Batch size 256 256 256 256 256

Table 8: Models and training configuration for the data efficiency for 1D Poisson Equation.
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