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ABSTRACT

Attention-based multiple instance learning (MIL) has emerged as a powerful
framework for whole slide image (WSI) diagnosis, leveraging attention to ag-
gregate instance-level features into bag-level predictions. Despite this success,
we find that such methods exhibit a new failure mode: unstable attention dynam-
ics. Across four representative attention-based MIL methods and two public WSI
datasets, we observe that attention distributions oscillate across epochs rather than
converging to a consistent pattern, degrading performance. This instability adds
to two previously reported challenges: overfitting and over-concentrated attention
distribution. To simultaneously overcome these three limitations, we introduce
attention-stabilized multiple instance learning (ASMIL), a novel unified frame-
work. ASMIL uses an anchor model to stabilize attention, replaces softmax with
a normalized sigmoid function in the anchor to prevent over-concentration, and
applies token random dropping to mitigate overfitting. Extensive experiments
demonstrate that ASMIL achieves up to a 6.49% F1 score improvement over
state-of-the-art methods. Moreover, integrating the anchor model and normal-
ized sigmoid into existing attention-based MIL methods consistently boosts their
performance, with F1 score gains up to 10.73%. All code and data are publicly
available at https://anonymous.4open.science/r/ASMIL-5018/.

1 INTRODUCTION

Computational pathology, at the intersection of digital imaging, machine learning, and clinical di-
agnostics, has transformed modern workflows (Verghese et al., 2023). Advances in whole slide
imaging (WSI) now allow glass slides to be digitized into gigapixel images (Bacus, 2001), which
are central to cancer diagnosis and treatment planning. WSIs preserve rich spatial context and en-
able large-scale sharing, but their extreme size and sparsity create major challenges: diagnostically
relevant regions often occupy only a tiny fraction of the slide, and exhaustive pixel- or tile-level an-
notations are infeasible in practice. As a result, most datasets provide only weak slide-level labels,
making it critical to design methods that learn effectively under weak supervision.

This weakly supervised setting naturally motivates multiple instance learning (MIL) (Keeler et al.,
1990; Dietterich et al., 1997; Maron & Lozano-Pérez, 1998). In MIL, a bag of instances is mapped
to a single bag-level label. For WSIs, the image is divided into tiles, each treated as an instance,
while only the slide-level label is required. This dramatically reduces annotation costs and makes
large-scale WSI datasets more practical for research and clinical use.

Early approaches to MIL-based WSI analysis focused on simple aggregation strategies, such as clus-
tering instance features (Xu et al., 2014) or applying global pooling layers (Kraus et al., 2016). A
major breakthrough came with the introduction of attention-based MIL (ABMIL) (Ilse et al., 2018),
which provided theoretical guidance for neural network-based MIL algorithms and introduced a
permutation-invariant attention mechanism to aggregate instance information into bag-level repre-
sentations. ABMIL established a strong baseline for WSI analysis (Shao et al., 2025) and, impor-
tantly, enhanced interpretability through visualized attention scores, which is an essential property
for clinical adoption. Building on this foundation, subsequent works have refined ABMIL to fur-
ther improve performance, scalability, and robustness (Xiong et al., 2021; Shao et al., 2021; Zhang
et al., 2022; Tang et al., 2023b; Zhang et al., 2024). In particular, TransMIL replaces independent
instance weighting with a transformer encoder that explicitly models inter-instance relations within
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a bag (Shao et al., 2021). As a result, attention-based MIL has become the de facto choice for WSI
subtyping not only because it aggregates instance features but also because its attention maps are
used as clinical evidence of model interpretability.

Despite its success, attention-based MIL still suffers from three major problems, which we denote
as (PI), (PII), and (PIII), and elaborate on in the sequel.

A critical yet underexplored aspect of MIL-based WSI analysis is the convergence behavior of at-
tention mechanisms during training. The gigapixel scale of WSIs, coupled with weak supervision,
high variability, and sparsity, makes it difficult for models to consistently identify informative tiles
among thousands of candidates. Our investigation reveals that existing MIL algorithms often fail
to converge stably on WSI datasets. To the best of our knowledge, we are the first to identify and
systematically analyze (PI) unstable attention dynamics, where attention distributions for individual
WSIs oscillate substantially across epochs instead of converging into consistent patterns. To quantify
this phenomenon, we measure the Jensen-Shannon divergence (Cover, 1999) between consecutive
attention distributions of the same WSI, as illustrated for TransMIL (Shao et al., 2021) in Figure 1.
Additional experiments across methods and datasets are provided in Appendix P. This persistent
oscillation results in unstable training and degraded performance, reflected in higher cross-entropy
values compared to our proposed method.

Beyond this new limitation identified in our study, prior work has highlighted two additional chal-
lenges. One is (PII) over-concentrated attention distribution (Zhang et al., 2024; Lu et al., 2021),
where models allocate excessive importance to only a few tiles, thereby harming generalization and
interpretability. The other is (PIII) overfitting (Zhang et al., 2022; Lin et al., 2023), a common issue
in histopathology WSI classification caused by the limited number of available training samples.

In this paper, we aim to simultaneously address the challenges (PI)–(PIII). To stabilize attention
distribution and the training process, we introduce an anchor model, which has the same archi-
tecture as the online model’s attention module and receives the same input, but is updated via an
exponential moving average (EMA) instead of by backpropagation. Acting as a stable reference,
the anchor provides smoother and more consistent attention distributions. To transfer this stability,
we encourage the online model to mimic the anchor by minimizing the Kullback–Leibler (KL) di-
vergence between their attention distributions. To mitigate over-concentration, which we attribute
to the exponential sensitivity of the softmax function, we replace softmax in the anchor branch with
a normalized sigmoid function (NSF), as defined in Equation (5). Finally, we propose a simple yet
effective token dropout strategy that regularizes the model and reduces overfitting. Together with
the anchor model, these components form a unified framework called attention-stabilized multiple
instance learning (ASMIL), which improves both the stability and generalization of MIL-based WSI
analysis.

In summary, this paper’s contributions are as follows:

•We are the first to identify and systematically analyze the problem of unstable attention dynamics
in attention-based MIL for WSI analysis. This overlooked issue not only limits predictive perfor-
mance but also undermines interpretability, since fluctuating attention distributions prevent consis-
tent identification of the tissue regions that drive the model’s decisions.

• To overcome this instability, we introduce an anchor model that stabilizes attention distribution
throughout training. The anchor model is updated using an exponential moving average of the online
model, which ensures stable training dynamics and improves both performance and interpretability.

• We show mathematically that replacing softmax with an NSF alleviates attention over-
concentration. Since applying the NSF to the online model causes vanishing gradients, we apply
it to the anchor model instead, ensuring stable and well-distributed attention.

• To mitigate overfitting, we introduce token dropout, which randomly discards a portion of feature
tokens during training while retaining all tokens during inference.

• By integrating these innovations, we present attention-stabilized MIL (ASMIL), a novel MIL-
based WSI analysis algorithm. Through comprehensive experiments on multiple public WSI
datasets, we demonstrate that ASMIL achieves state-of-the-art performance in subtyping and lo-
calization tasks.
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Paper Organization. The remainder of this paper is structured as follows: Section 2 reviews related
work on MIL and attention mechanisms in WSI analysis; Section 3 presents the preliminaries and
motivation of our approach; Section 4 details the ASMIL framework; Section 5 presents the experi-
mental setup and results; and finally Section 6 concludes the paper with future research directions.
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Figure 1: Visualization of attention dynamics on a tumor WSI for TransMIL (Shao et al., 2021) vs.
ASMIL (our method). The green contours in the figures indicate the annotated tumor regions. Top:
TransMIL attention distribution at selected training iterations. Middle: Jensen-Shannon divergence
(JSD) between attention distributions at successive steps and the cross entropy loss (CE), comparing
TransMIL (blue) and ASMIL (red). Bottom: Attention distribution from ASMIL over different
training iterations. Due to the weakly supervised nature of WSI subtyping datasets, TransMIL’s
attention patterns never converge during training, further, it focuses on only a subset of cancerous
regions. In contrast, our method (i) produces stable attention distributions throughout training and
(ii) consistently highlights cancerous regions.

2 RELATED WORK

Early weakly supervised approaches in computational pathology leveraged multi-view convolutional
neural network ensembles and basic MIL pooling to transition from patch-level labels to slide-level
predictions (Das et al., 2017; 2018). As datasets scaled and slide-level supervision became the
norm, methods shifted from fixed pooling to attention mechanisms that make aggregation learnable.
Building on this trend, attention-based MIL (Ilse et al., 2018) introduced learnable instance weights
and generated heatmaps from slide-level labels, achieving breast and colon cancer classification
on par with fully supervised methods at scale. Complementary to weighting instances, subsequent
work reduced morphological redundancy in tile representations, Song et al. (2024) used a Gaussian
mixture model, and sped up inference by skipping irrelevant patches (Dong et al., 2025). Li et al.
(2021b) propose DSMIL, a dual-stream MIL framework that selects a critical instance via max-
pooling and then applies a trainable non-local, distance-based attention from this instance to all
others to form bag embeddings for WSI classification. Subsequent works extend this line of research
by leveraging multi-scale fusion to aggregate information across resolutions (Zhang et al., 2021; Guo
et al., 2023; Tran et al., 2025; Buzzard et al., 2024; Li et al., 2019).

Several works further refine training strategies for attention-based MIL. To prevent the attention
distribution from collapsing onto a few input patches and to obtain more faithful attention maps,
Zhang et al. (2024) stochastically masks the top-K instances, while Zhang et al. (2025) adds an
entropy regularization term that explicitly flattens the attention distribution. In a complementary
direction, Fourkioti et al. (2024) introduces neighbor-constrained attention to suppress noise in the
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feature maps. Because WSI datasets usually contain only a few hundred training samples, many
methods focus on mitigating overfitting, for example, by introducing bag splitting to create pseudo-
bags (Zhang et al., 2022), designing efficient instance-based classifiers (Qu et al., 2024), and per-
forming hard-negative mining with EMA teachers (Tang et al., 2023b). Lu et al. (2021) introduce
clustering-constrained attention multiple-instance learning (CLAM), which replaces max-pooling
with class-specific attention pooling and adds instance-level clustering supervision so that weakly
supervised slide-level MIL can be both data-efficient and interpretable on WSIs, or using contrastive
critical-instance branches (Li et al., 2021a). Recently, Zhu et al. (2025; 2023) systematically studied
the effect of random dropping in MIL and proposed to randomly remove the top-K instances with
the highest attention weights together with G × k similar tokens during training, which mitigates
overfitting and encourages convergence to flatter regions of the loss landscape, thereby improving
generalization. Since our anchor leverages an EMA update, we relate it to EMA/teacher models and
provide additional details in Appendix A.

3 PRELIMINARIES AND MOTIVATION

3.1 NOTATION

Scalars are denoted by non-bold letters (e.g., a, β), vectors by bold lowercase letters (e.g., a), and
matrices by bold uppercase letters (e.g., A). The i-th entry of a vector a is written as ai. A
C-dimensional probability simplex is denoted by ∆C . For two distributions P1, P2 ∈ ∆C , the
Kullback–Leibler divergence (KL divergence) is defined as KL(P1∥P2) =

∑C
c=1 P1[c] log

P1[c]
P2[c]

.

3.2 MULTIPLE INSTANCE LEARNING WITH ATTENTION

In MIL, supervision is provided only at the bag level. A slide is represented as a bag X = {xi}Ni=1

with unknown instance labels. After a pretrained encoder, we obtain instance embeddings {hi}Ni=1.

Attention-based MIL assigns a scalar attention score to each embedding via a learnable scorer fθ:

zi = fθ(hi), z = (z1, . . . , zN ) ∈ RN . (1)

Scores are normalized into an attention distribution on the probability simplex ∆N using a softmax:

αi =
exp(zi)∑N
j=1 exp(zj)

,

N∑
i=1

αi = 1, α = (α1, . . . , αN ) ∈ ∆N . (2)

The slide-level representation, hbag =
∑N

i=1 αi hi, is a convex combination of instance features
weighted by the attention distribution and is passed to a classifier to produce the bag-level prediction.

3.3 MOTIVATION

MIL is effective for WSI analysis, but its weak supervision and small WSI dataset sizes introduce
three failure modes: unstable attention dynamics, over-concentrated attention, and overfitting.

• (PI) Unstable attention dynamics. Under bag-level supervision, we empirically observe that
attention distribution oscillates across epochs rather than converging to a consistent pattern. To the
best of our knowledge, this phenomenon has not been previously identified or explicitly addressed
in the literature. To quantify stability, we measure the Jensen-Shannon divergence (JSD) between
consecutive attention distributions for the same WSI. Let αt ∈ ∆N denote the attention overN tiles
at epoch t. With KL(·∥·) denoting the KL divergence and ᾱ = 1

2 (αt +αt+1), we define

JSD(αt∥αt+1) =
1
2KL(αt∥ᾱ) + 1

2KL(αt+1∥ᾱ). (3)

As shown in Figure 1, TransMIL (Shao et al., 2021) exhibits large JSD fluctuations, indicating a lack
of stable convergence. Similar behavior appears in other attention-based MIL models; additional
results are provided in Appendix P.

• (PII) Over-concentration of attention. Complementary to instability, prior works report that
ABMIL often assigns most mass to a few tiles, which harms generalization and interpretability

4
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(Zhang et al., 2024; 2025). Distinct from previous approaches, we attribute these over-concentrated
attention distributions to the exponential nature of the softmax function.

• (PIII) Overfitting. WSI datasets typically contain only a few slides per class and highly redundant
tiles (Zhang et al., 2022). High-capacity neural-network-based MIL models can memorize spurious
tile-level patterns, leading to poor out-of-distribution performance. To alleviate this, we introduce a
random token drop mechanism specialized for our method.

In the next section, we present our proposed methodology, which simultaneously addresses the three
problems (PI), (PII), and (PIII).

4 METHODOLOGY

To address the limitations of attention-based MIL, we propose a framework illustrated in Figure 2.
Our methodology addresses (PI) by stabilizing attention through an anchor model, tackles (PII) by
replacing softmax with an NSF in the anchor, and mitigates (PIII) by token random dropping to
regularize training. The next subsections detail each component and the overall objective.

4.1 STABILIZING ATTENTION DISTRIBUTIONS VIA AN ANCHOR MODEL

Softmax

NSF

KL-Div

Transformer
Encoder

rd

Classifier
Loss

sg

Layer Norm

Multi-Head
Attention

Layer Norm

MLP

Attention
Score

Output tokens

Transformer Encoder

Input
tiles

Attention
Score 

Attention 
Score

Input tokens

Frozen

Learnable

Feature extractor

Feature tokens

Learnable tokens

<FEAT>

<CLS>

Transformer
Encoder

Anchor
Model

Transformer
Encoder

EMA

Online
Model

Figure 2: Overview of ASMIL. Each WSI is divided into tiles
and embedded into vision tokens using a pretrained encoder.
These tokens, along with trainable FEAT tokens, feed into
both online and anchor encoders. The anchor encoder’s atten-
tion scores over the FEAT tokens are transformed into a prob-
ability vector using an NSF, while the online encoder applies a
softmax. To stabilize training and prevent the online model’s
attention from becoming overly concentrated, we compute the
KL divergence between the two distributions. Gradients are
blocked to the anchor encoder using a stop-gradient (sg) oper-
ator, and its parameters are updated via EMA from the online
encoder. During training, we randomly drop (rd) N FEAT to-
kens, feed the remaining tokens into a second transformer with
a trainable [CLS] token, and train a classifier on its output.
and indicate learnable and frozen components, respectively.

As discussed in Section 3.3, weak
supervision in MIL often leads to
unstable attention distributions that
fluctuate across epochs, prevent-
ing convergence. To mitigate this,
we introduce an anchor model that
mirrors the attention block of the
online model. The anchor serves
as a stable reference by being up-
dated through an EMA of the on-
line model’s parameters. Specifi-
cally, at training step t, the anchor
parameters θ′

t are updated as

θ′
t ← mθ′

t−1 + (1−m)θt, (4)

where θt are the online model’s pa-
rameters and m ∈ [0, 1) is the
EMA factor. Both the anchor and
online models receive the same in-
puts, but only the online model
is updated by backpropagation, the
anchor is updated via EMA. The
goal is to align the online atten-
tion distribution to the anchor dis-
tribution, which yields a stabiliza-
tion loss.

In Appendix C, we show that stan-
dard attention-based MIL yields
poorly separated bag-level feature
clusters during training because at-
tention distributions do not con-
verge reliably. Introducing the an-
chor model stabilizes attention, im-
proves convergence, and produces clearly separated bag-level clusters.
Remark 1. Why an anchor model instead of a single regularizer. Scalar penalties on attention,
such as entropy, ℓ2, or temperature, are content-agnostic and act only on the current batch. They
cannot encode relational structure among instances. An EMA anchor model yields a data-dependent
attention distribution conditioned on the bag. Encouraging the online attention to stay close to
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this target performs functional regularization that captures inter-instance relations and stabilizes
training, which a scalar regularizer cannot do.

The anchor is discarded at inference, adding no extra FLOPs or latency. In the next subsection,
we describe how we further improve the anchor’s attention using an NSF, which alleviates over-
concentration before applying this stabilization loss.

4.2 PREVENTING ATTENTION CONCENTRATION WITH NSF IN THE ANCHOR MODEL

In conventional transformer architectures, the softmax function maps self-attention scores z ∈ RN

to a probability vector. However, softmax often produces over-concentrated attention, in which a
few tokens dominate while the weights of the remaining tokens vanish. Temperature scaling is an
incomplete remedy: small temperatures preserve concentration, while large temperatures flatten the
distribution so aggressively that weak tokens receive undue weight. We therefore seek a mechanism
that equalizes attention among genuinely informative tokens while suppressing weak ones.

We compare softmax with normalized sigmoid function (NSF).1 For z = (z1, . . . , zN ), define

αsmx
i (z;T ) =

ezi/T∑N
j=1 e

zj/T
, αnsf

i (z) =
σ(zi)∑N
j=1 σ(zj)

, σ(t) =
1

1 + e−t
. (5)

For thresholds τ > 0 and bandwidth γ ≥ 0, let S(τ, γ,H,L) be the set of score vectors with
“high” indices H satisfying zi ∈ [τ, τ + γ] for i ∈ H and “low” indices L satisfying zj ≤ −τ
for j ∈ L. Denote h ≜ |H| and ℓ ≜ |L|. The following theorem (proof deferred to Appendix E)
formalizes the selective flattening property of NSF and shows that softmax cannot match it with a
single temperature.

Theorem 1 (NSF achieves selective flattening; softmax cannot with a single T ). Fix τ > 0, γ ≥ 0,
and index setsH,L with h ≥ 1, ℓ ≥ 1. For any z ∈ S(τ, γ,H,L):
(A) NSF bounds. For any i, h′ ∈ H and any j ∈ L,

αnsf
i (z)

αnsf
h′ (z)

=
σ(zi)

σ(zh′)
≤ σ(τ + γ)

σ(τ)
=

1 + e−τ

1 + e−(τ+γ)
≤ 1 + e−τ , αnsf

j (z) ≤ σ(−τ)
hσ(τ)

=
e−τ

h
.

(6)

Hence, NSF equalizes the high tokens up to a factor 1+ e−τ and suppresses lows to at most e−τ/h.
As τ →∞ with fixed γ, ratios among high tokens approach 1 and low-token weights vanish.

(B) Softmax incompatibility with one temperature. Suppose we desire suppression and equalization
targets (ε, κ) on S(τ, γ,H,L):

(Suppression) αsmx
j (z;T ) ≤ ε ∀j ∈ L, (Equalization)

maxi∈H αsmx
i (z;T )

minh′∈H αsmx
h′ (z;T )

≤ κ.

Then T must satisfy T ≤ 2τ

log
(
h
ε

) and T ≥ γ

log κ
simultaneously, which is impossible whenever

γ

log κ
>

2τ

log
(
h
ε

) . Thus, no single temperature achieves both targets for all z ∈ S(τ, γ,H,L).

We further illustrate this effect in Figure 3 by comparing attention maps with softmax and NSF using
ABMIL (Ilse et al., 2018) on a cancer slide from the CAMELYON-16 dataset (Ehteshami Bejnordi
et al., 2017). Softmax yields a highly concentrated map that obscures broader context, whereas NSF
produces a less concentrated attention map that highlights most cancerous regions.

A naive option is to apply NSF directly in the online model. In practice, this induces vanish-
ing gradients and degrades performance; see Appendix G. We therefore place NSF in the an-
chor model as a stable prior, guiding the online model without hindering its learning dynamics.

1We discuss alternatives to NSF, including entmax and softmax with temperature scaling in Appendix F.
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Figure 3: (a) Distribution of attention scores in ABMIL,
which exhibits a long-tailed pattern. (b) Attention distri-
bution obtained with the softmax function and (c) with the
NSF. Unlike softmax, the normalized sigmoid suppresses
large values in the long tail, yielding a less sparse and more
interpretable attention distribution.

As attention distributions lie on the
probability simplex, we use the KL
divergence to align the online atten-
tion distribution with the NSF-based
anchor distribution:

LAS = KL
(
αnsf ∥α

)
, (7)

where α is the online attention (soft-
max over z) and αnsf is the an-
chor attention (NSF over the anchor
scores). Using ∂αj

∂zi
= αj(δij − αi)

and treating αnsf as fixed, the gradi-
ent with respect to the online atten-
tion score zi is

∂KL(αnsf ∥α)

∂zi
=

N∑
j=1

αnsf
j (δij − αi)

= αi − αnsf
i . (8)

Thus, gradient descent moves the online attention toward the anchor distribution, promoting stability
and discouraging over-concentration.
Remark 2. The anchor in ASMIL superficially resembles the teacher in MHIM-MIL (Tang et al.,
2023b): both are EMA-updated copies of the online model. Their roles, however, differ in two
important ways. (i) MHIM-MIL uses the teacher to mine hard instances, whereas ASMIL uses
the anchor to stabilize attention and prevent over-concentration. (ii) MHIM-MIL matches softmax
bag-level features, while ASMIL directly matches attention distributions. Appendix I discusses why
softmax bag-level matching fails to stabilize attention maps.

4.3 MITIGATING OVERFITTING WITH TOKEN RANDOM DROPPING

To reduce overfitting, we designed a token-level regularizer, specialized for ASMIL, that operates
on the trainable tokens used by the online model. Let a WSI x be partitioned into M tiles and
embedded by a pretrained encoder into tile tokens T = {t1, . . . , tM}. We augment these with N
trainable FEAT tokensP = {p1, . . . ,pN} and feed the concatenation [T ;P] into the online encoder.
After the online encoder, only the FEAT tokens are retained. Since the number of FEAT tokens is
much smaller than the tile tokens (i.e., N ≪ M ), this design acts as information aggregation via
token reduction.

During training, we sample an independent Bernoulli mask over FEAT tokens and drop a fraction
B ∈ [0, 1) of them. Denote the kept set by Pkeep with |Pkeep| = Ñ ∼ Binomial(N, 1 − B) and
E[Ñ ] = (1 − B)N . The remaining tokens, together with a trainable [CLS] token, are passed to a
second transformer to produce a bag representation hbag, which is then classified to obtain ŷ. At
inference time, no tokens are dropped (B = 0). Since ASMIL stabilize the attention via aligning
the anchor model, which assumes a one-to-one correspondence, as thus general instance dropout
method, such as MIL-Dropout Zhu et al. (2025), could not be integrated easily.

This stochastic removal prevents co-adaptation among FEAT tokens and discourages the model from
over-relying on a subset of tokens, while preserving image content by keeping all FEAT tokens at
inference. Empirically, this acts as an effective regularizer that improves generalization. In Ap-
pendix K.4 we study the effect of B and observe a consistent peak in performance around B ≈ 0.5.

4.4 OVERALL TRAINING OBJECTIVE

Based on the discussion thus far, we train with a joint objective that couples standard bag-level
classification with attention stabilization:

L = LCE + β LAS, (9)

where the coefficient β > 0 balances the stabilization and classification objectives. In practice, to
calculate LAS, α is computed by a softmax over the online scores, αnsf is computed by applying the
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Table 1: The F1 score and AUC of different MIL approaches across three WSI datasets. Bold and
underlined values denote the best and second-best results, respectively.

Dataset CAMELYON-16 CAMELYON-17 BRACS
backbone Method F1 score ↑ AUC ↑ F1 score ↑ AUC ↑ F1 score ↑ AUC ↑

R
es

N
et

-1
8

Im
ag

eN
et

Pr
et

ra
in

ed
ABMIL ICML 2018 0.757±0.020 0.790±0.027 0.508±0.032 0.779±0.021 0.523±0.028 0.723±0.035

Clam-SB Nature 2021 0.742±0.024 0.763±0.049 0.504±0.012 0.778±0.024 0.521±0.046 0.750±0.039

TransMIL NeurIPS 2021 0.643±0.088 0.706±0.076 0.499±0.082 0.794±0.053 0.444±0.040 0.732±0.043

DSMIL CVPR 2021b 0.736±0.025 0.773±0.034 0.473±0.052 0.705±0.022 0.511±0.052 0.751±0.028

DTFD-MIL CVPR 2022 0.758±0.051 0.815±0.063 0.546±0.010 0.735±0.011 0.469±0.016 0.717±0.032

IBMIL CVPR 2023 0.777±0.009 0.799±0.050 0.533±0.015 0.813±0.092 0.510±0.043 0.726±0.034

MHIM-MIL ICCV 2023b 0.752±0.034 0.772±0.026 0.56±0.029 0.815±0.019 0.511±0.022 0.775±0.021

ACMIL ECCV 2024 0.798±0.029 0.841±0.030 0.528±0.053 0.789±0.046 0.552±0.048 0.754±0.008

CAMIL ICLR 2024 0.778±0.011 0.812±0.017 0.503±0.007 0.806±0.006 0.569±0.007 0.787±0.011

AEM MICCAI 2025 0.804±0.022 0.859±0.031 0.525±0.043 0.828±0.054 0.554±0.004 0.764±0.008

HDMIL CVPR 2025 0.790±0.023 0.856±0.027 0.557±0.007 0.853±0.013 0.578±0.012 0.761±0.011

ASMIL (Ours) 0.814±0.052 0.870±0.064 0.564±0.020 0.851±0.061 0.601±0.072 0.810±0.054

V
IT

-S
SS

L
pr

et
ra

in
ed

ABMIL ICML 2018 0.914±0.031 0.945±0.027 0.522±0.050 0.853±0.016 0.680±0.051 0.866±0.029

Clam-SB Nature 2021 0.925±0.085 0.969±0.024 0.523±0.020 0.846±0.020 0.631±0.034 0.863±0.005

TransMIL NeurIPS 2021 0.922±0.019 0.943±0.009 0.554±0.048 0.792±0.029 0.631±0.030 0.841±0.006

DSMIL CVPR 2021b 0.943±0.007 0.966±0.009 0.532±0.064 0.804±0.032 0.577±0.028 0.816±0.028

DTFD-MIL CVPR 2022 0.948±0.007 0.980±0.011 0.627±0.015 0.866±0.012 0.612±0.080 0.870±0.022

IBMIL CVPR 2023 0.912±0.034 0.954±0.022 0.557±0.064 0.850±0.024 0.645±0.041 0.871±0.014

MHIM-MIL ICCV 2023b 0.932±0.024 0.970±0.037 0.541±0.022 0.845±0.026 0.625±0.060 0.865±0.017

ACMIL ECCV 2024 0.954±0.012 0.974±0.012 0.562±0.050 0.863±0.004 0.722±0.030 0.888±0.010

CAMIL ICLR 2024 0.930±0.009 0.963±0.011 0.633±0.022 0.886±0.034 0.709±0.011 0.836±0.014

AEM MICCAI 2025 0.947±0.003 0.974±0.007 0.647±0.007 0.887±0.013 0.742±0.030 0.905±0.010

HDMIL CVPR 2025 0.958±0.013 0.976±0.017 0.571±0.012 0.796±0.022 0.717±0.033 0.874±0.010

ASMIL (Ours) 0.965±0.020 0.985±0.017 0.689±0.005 0.898±0.010 0.781±0.042 0.914±0.014

NSF to the anchor scores, and the anchor model is treated as stop-gradient while its parameters are
updated via EMA. The KL divergence is taken over the attention distributions on the FEAT token set
used for aggregation. This objective discourages attention concentration through LAS and preserves
task performance through LCE. ASMIL can be easily applied to other tasks, including survival pre-
diction by replacing the objective function and the classification head accordingly. During training,
the online model is updated by gradient descent

θt+1 = θt − η∇θL, (10)

where η is the learning rate. L is computed as in Equation (9). The anchor model is then updated
according to Equation (4). The gradient is only used to update the online model, while the anchor
model influences learning through Equation (7). At inference time, ASMIL uses only the online
model and discards the anchor model; therefore, the anchor does not increase the computational
budget at inference.

5 EXPERIMENTS

To demonstrate the effectiveness of ASMIL, we evaluate it on three well-known public WSI subtyp-
ing datasets: (i) CAMELYON-16 (Ehteshami Bejnordi et al., 2017), (ii) CAMELYON-17 (Bándi
et al., 2019), and (iii) BRACS (Brancati et al., 2022). Details of the data splits, preprocessing, train-
ing setup, and baselines are provided in the Appendix B. We further evaluate ASMIL on survival
prediction and non-WSI datasets in Appendix N and Appendix O, respectively.

5.1 SUBTYPING PERFORMANCE

We compare ASMIL against eleven attention-based MIL baselines that are designed for WSIs:
CLAM-SB (Lu et al., 2021), TransMIL (Shao et al., 2021), DSMIL (Li et al., 2021b), DTFD-MIL
(Zhang et al., 2022), IBMIL (Lin et al., 2023), MHIM-MIL (Tang et al., 2023b), ABMIL (Ilse et al.,
2018), ACMIL (Zhang et al., 2024), CAMIL (Fourkioti et al., 2024), AEM (Zhang et al., 2025) and
HDMIL (Dong et al., 2025). Because WSI datasets are class-imbalanced, we report the F1 score
and area under the ROC curve (AUC) for each dataset in Table 12.

Overall, ASMIL demonstrates superior performance, achieving state-of-the-art performance on all
datasets when paired with an in-domain ViT-SSL backbone, and remains competitive with the best

2See Appendix D for details on metric computation and interpretation.
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Table 2: Applying anchor model and NSF to other attention-based MIL methods.
Dataset CAMELYON-16 CAMELYON-17 BRACS
Method Anchor NSF F1 score ↑ AUC ↑ F1 score ↑ AUC ↑ F1 score ↑ AUC ↑

ABMIL ICML 2018

✗ ✗ 0.914±0.031 0.945±0.027 0.522±0.050 0.853±0.016 0.680±0.051 0.866±0.029

✓ ✗ 0.951±0.015 0.963±0.008 0.573±0.011 0.871±0.010 0.751±0.013 0.877±0.007

+0.037 +0.018 +0.051 +0.018 +0.071 +0.011

✓ ✓ 0.953±0.009 0.967±0.006 0.574±0.010 0.883±0.014 0.753±0.009 0.887±0.014

+0.039 +0.022 +0.052 +0.030 +0.073 +0.021

CLAM-SB Nature 2021

✗ ✗ 0.925±0.085 0.969±0.024 0.523±0.020 0.846±0.020 0.631±0.034 0.863±0.005

✓ ✗ 0.937±0.004 0.979±0.015 0.547±0.006 0.887±0.0014 0.678±0.018 0.866±0.007

+0.012 +0.010 +0.024 +0.041 +0.047 +0.003

✓ ✓ 0.948±0.014 0.981±0.021 0.550±0.006 0.886±0.0015 0.679±0.013 0.887±0.002

+0.023 +0.012 +0.027 +0.040 +0.048 +0.024

TransMIL NeurIPS 2021

✗ ✗ 0.922±0.019 0.943±0.009 0.554±0.048 0.792±0.029 0.631±0.030 0.841±0.006

✓ ✗ 0.931±0.001 0.947±0.008 0.577±0.006 0.824±0.012 0.647±0.024 0.853±0.021

+0.009 +0.004 +0.023 +0.032 +0.016 +0.012

✓ ✓ 0.933±0.023 0.954±0.021 0.580±0.008 0.829±0.010 0.672±0.024 0.883±0.041

+0.011 +0.011 +0.026 +0.037 +0.041 +0.045

DSMIL CVPR 2021b

✗ ✗ 0.943±0.007 0.966±0.009 0.532±0.064 0.804±0.032 0.577±0.028 0.816±0.028

✓ ✗ 0.943±0.001 0.974±0.007 0.544±0.038 0.819±0.031 0.609±0.012 0.837±0.013

±0.000 +0.008 +0.012 +0.015 +0.032 +0.021

✓ ✓ 0.942±0.026 0.985±0.022 0.559±0.028 0.823±0.019 0.612±0.031 0.849±0.042

−0.001 +0.019 +0.027 +0.019 +0.035 +0.033

baseline on ImageNet-pretrained ResNet-18 features. On the BRACS dataset, our method attains
an F1 score of 0.781 and an AUC of 0.914, exceeding the previous best results by 3.9 and 0.9
percentage points, respectively. This shows its effectiveness in capturing subtle histopathological
features in heterogeneous subtyping tasks.

For CAMELYON-16 and CAMELYON-17 datasets with sparse tumor regions, where malignant
tissue may occupy as little as 5% of a slide (Cheng et al., 2021),the advantages are even more
pronounced. on CAMELYON-16, we observe a 3.3% increase in F1 score and a 1.6% uplift in
AUC compared to the strongest baseline; similarly, on CAMELYON-17, ASMIL improves the F1
score by 6.49%, which highlights ASMIL’s efficacy under an ill-posed, weakly supervised task. We
compare the computational cost of ASMIL with that of other benchmarks in Appendix M.1.

5.2 INTEGRATING THE ANCHOR MODEL AND NSF WITH OTHER MIL METHODS

We regard the anchor model as a general plug-in module for attention-based MIL in WSI analy-
sis. Accordingly, for each baseline we evaluate two variants while keeping all other components
and hyperparameters fixed: (i) +Anchor (EMA-updated anchor with attention matching), and (ii)
+Anchor+NSF (anchor updated by EMA and using NSF). The results are summarized in Table 2.
As shown, adding the anchor model and the NSF consistently improves performance, with F1 score
gains up to 10.73% (for ABMIL on BRACS), except when adding the anchor to DSMIL on the
CAMELYON-16 dataset, where the F1 score decreases by 0.001 relative to the original model. The
additional computational cost introduced by the anchor model is reported in Appendix M.2.

5.3 LOCALIZATION
Table 3: Component-wise ablation of AS-
MIL on BRACS. We evaluate the contri-
bution of the anchor model, NSF, and ran-
dom drop (rd).

Anchor NSF rd F1 score ↑ AUC ↑
✓ ✓ ✓ 0.781±0.042 0.914±0.014

✓ ✓ ✗ 0.765±0.030 0.903±0.018

✓ ✗ ✓ 0.759±0.028 0.895±0.012

✓ ✗ ✗ 0.747±0.026 0.887±0.015

✗ ✗ ✓ 0.728±0.019 0.868±0.010

✗ ✗ ✗ 0.712±0.020 0.860±0.012

We evaluate tumor localization on CAMELYON-
16 both qualitatively and quantitatively. Qualitative
heatmaps are shown in Figure 4. Compared with base-
line methods, ASMIL consistently highlights all can-
cerous regions. We attribute these gains to reduced
over-concentration by the NSF in the anchor model,
which yields more faithful attention distributions.

Following the official CAMELYON-16 and Fourkioti et al. (2024), we report lesion-level Free-
Response ROC (FROC) (Miller, 1969; Bunch, 1978) the Dice coefficient on cancerous slides, and
tile-level specificity on normal slides. To obtain the predicted masks, we use scaled attention dis-
tributions for CLAM (Lu et al., 2021), TransMIL (Shao et al., 2021), DSMIL (Li et al., 2021b),
and CAMIL (Fourkioti et al., 2024); tile-level logits for DTFD-MIL (Zhang et al., 2022); and for
ASMIL, the per-tile average of FEAT-token attentions. Quantitative results for FROC, Dice, and
specificity, as well as additional attention-map visualizations, are provided in Appendix L.
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Annota ted WSI ASMIL CAMIL TransMILDTFD-MIL

Annotated WSI  ASMIL   DTFD-MIL   CAMIL   TransMIL 

Figure 4: Visual comparison of attention maps on the CAMELYON-16 dataset. The left column
shows the original WSI with ground-truth tumor annotations outlined in red; the remaining columns
present attention maps for ASMIL (ours), DTFD-MIL, CAMIL, and TransMIL (left to right).
5.4 ABLATION STUDY

Lastly, we evaluate the effect of the anchor model, NSF, and random drop (rd) by enabling or dis-
abling them in all combinations. As shown in Table 3, the full model (all three enabled) achieves the
best F1 score and AUC. Removing any component degrades performance, with the anchor model
having the largest impact. Without all three, the model drops to the lowest scores, confirming that
each component contributes to the overall effectiveness of ASMIL. Additional ablations on the loss
weight β, the number of trainable FEAT tokens, the EMA factor m, the anchor update frequency,
and the random drop rate are reported in Appendix K.

6 CONCLUSION

In this work, we identified a previously overlooked failure mode in attention-based MIL for WSI: un-
stable attention dynamics that hinder convergence. We proposed ASMIL, which stabilizes training
via an anchor model, prevents over-concentration by using a normalized sigmoid in the anchor, and
mitigates overfitting with token dropout. Across multiple WSI benchmarks, ASMIL improves clas-
sification performance and state-of-the-art localization performance. These results underscore the
importance of jointly controlling attention stability, concentration, and overfitting in weakly super-
vised WSI analysis. We anticipate that the proposed anchor model and normalized sigmoid function
will serve as building blocks for future MIL-based WSI analysis algorithms, ultimately facilitating
more accurate and interpretable analysis of gigapixel pathology images. Due to space constraints,
we defer the discussion of future work and limitations to Appendix Q.

ETHICS STATEMENT

All WSI datasets used in this work are publicly available and were obtained from open-access web-
sites. The usage of these datasets strictly follows the terms and conditions set by the dataset providers
and adheres to established academic and research community standards. No personally identifiable
information or sensitive patient data is involved.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure our results are reproducible. All model and algorithmic details, train-
ing procedures, hyperparameters, evaluation protocols, and metrics are specified in the main text.
The appendix provides complete proofs, implementation notes, ablations, and additional qualita-
tive results. An anonymized GitHub repository contains the source code and configuration files,
and pre-trained checkpoints. All datasets used in our experiments are publicly available; download
links, data splits, and preprocessing steps are documented in the repository and referenced in the
appendix.
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A RELATED WORK ON EMA MODELS AND ANCHORING STRATEGIES

EMA-based target networks are central in self-supervised representation learning. Mean Teacher
Tarvainen & Valpola (2017) maintains an EMA of student parameters and enforces prediction con-
sistency with this temporal ensemble under limited supervision. BYOL (Grill et al., 2020; Chen
& He, 2020) uses an EMA-updated target network to provide representation targets for an online
network with an additional predictor, and avoids collapse through architectural asymmetry and the
EMA update instead of negatives. DINO-style methods (Caron et al., 2021; Oquab et al., 2023)
adapt EMA self-distillation to Vision Transformers, where an EMA teacher produces soft proba-
bility targets on multi-crop views; centering, sharpening, and a momentum schedule control the
stability–adaptation trade-off of these targets.
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DINOv3 (Siméoni et al., 2025) revisits EMA teachers for dense prediction and studies how dense
features drift or collapse under long training. It introduces Gram anchoring, which aligns Gram
matrices of patch–patch similarities between a student and its EMA teacher so that dense features
remain close to a temporally smoothed reference. The EMA momentum and the strength of this
anchoring loss jointly determine how strongly dense features are tied to the teacher versus how
quickly they adapt.

ASMIL also maintains an EMA-updated copy of the model, but uses it in a different regime and
on a different target. Training is fully supervised at the bag level, and the EMA branch does not
supply pseudo-labels or representation targets. Instead, it defines a temporally smoothed attention
distribution over tiles, and the anchor enters the loss only through the KL term in Eq. equation 7,
while the bag-level cross-entropy in Eq. equation 9 provides all semantic supervision. The shared
encoder and classifier parameters are optimized by standard backpropagation; the EMA update acts
purely as a temporal regularizer on attention, in contrast to BYOL/DINO, which anchors global
embeddings, and DINOv3, which anchors patch–patch similarity structure.

The same EMA hyperparameters induce an analogous stability–adaptation trade-off but at the level
of attention rather than features. The EMA momentum in ASMIL sets how rapidly the anchor fol-
lows the online model, and the weight β on the KL term controls how strongly attention is pulled
toward the temporally smoothed reference. Unlike BYOL and DINO/DINOv3, where EMA model
is designed to avoid global representation collapse, ASMIL uses EMA anchoring to reduce unsta-
ble and over-concentrated attention patterns observed under purely online MIL training, while the
supervised objective already discourages trivial constant-attention solutions.

B EXPERIMENTAL DETAILS

We train all models for 50 epochs with a batch size of 1, using Adam (weight decay 10−4) and a
cosine learning rate schedule with an initial learning rate of 10−4. All reported results are averaged
over five random seeds.

B.1 WSI PRE-PROCESSING

For all datasets, we used the publicly available CLAM WSI preprocessing toolbox (Lu et al., 2021)
to segment tissue regions and divide each slide into non-overlapping 256×256 patches at 20×mag-
nification. Tissue segmentation was performed automatically using Otsu’s thresholding. To reduce
computational overhead and leverage previously learned representations, we adopted a ResNet-18
model (He et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015) and an open-source self-
supervised ViT-small model (Kang et al., 2023) as feature extractors3. The ViT-small model was
pretrained on 36,666 whole slide images from The Cancer Genome Atlas (TCGA) and the inter-
nally collected TULIP dataset. For consistency and fairness in the subtyping task, we used the same
feature extractors across all baseline methods.

For the localization experiments, following Tourniaire et al. (2023), we used a ResNet-18 backbone
pretrained with SimCLR (Chen et al., 2020)4. This feature extractor maps each tile to a 1024-
dimensional feature vector.

B.2 DATASETS

CAMELYON-16 (Ehteshami Bejnordi et al., 2017) is a widely used publicly available WSI dataset
designed for lymph node metastasis detection. It contains 270 training and 129 test slides collected
from two medical centers, with detailed pixel-level annotations provided by expert pathologists.
Notably, some slides include only partial annotations, making the dataset particularly challenging
due to the presence of small or sparse metastatic regions. CAMELYON-16 has become a stan-
dard benchmark for evaluating weakly supervised and fully supervised algorithms in computational
pathology.

3The checkpoint is available at https://github.com/lunit-io/
benchmark-ssl-pathology.

4The checkpoint is available at https://github.com/binli123/dsmil-wsi.
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CAMELYON-17 (Bándi et al., 2019) extends the scope of CAMELYON-16 by including a total of
1,000 WSIs from five medical centers, making it a more diverse and clinically representative dataset.
Among these, 500 slides are publicly available and come with slide-level labels, while the remaining
500 are held out for challenge-based evaluations. The inclusion of data from multiple institutions
introduces significant variability in staining and scanning conditions, making CAMELYON-17 a
suitable benchmark for testing the generalization performance of WSI-based models.

The BRACS dataset (Brancati et al., 2022) is a large-scale WSI dataset curated for the task of breast
cancer subtype classification. It comprises 547 WSIs collected from several medical institutions and
annotated by expert pathologists into clinically relevant categories: benign tumors, atypical tumors,
and malignant tumors. These labels reflect the progression of breast lesions and are critical for
diagnostic decision-making and treatment planning. BRACS captures a wide range of histological
appearances and staining variations, making it a valuable resource for developing and benchmarking
MIL and weakly supervised classification models in real-world clinical settings.

B.3 DATA SPLITS

Following Zhang et al. (2025; 2024), we partition the datasets as follows. For CAMELYON-16, the
WSIs are divided into training, validation, and test sets. The 270 WSIs from Hospital 1 are split, five
times, into training (90%) and validation (10%) subsets; the 130 WSIs from Hospital 2 are used as a
test set. The official test set of 129 WSIs is used for final evaluation. For CAMELYON-17, we use
500 WSIs in total: 300 WSIs from three hospitals for training/validation (90%, 10%) and 200 WSIs
from two other hospitals for testing to assess out-of-distribution (OOD) performance. For BRACS,
we follow the official split: 395 slides for training, 65 for validation, and 87 for testing. The task is a
three-class WSI classification—benign tumor, atypical tumor, and malignant tumor. All results are
averaged over five random seeds, and we report the mean performance on the official competition
test set.

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Figure 5: T-SNE embeddings of ASMIL bag-level features on the BRACS training set across train-
ing epochs. Top: with the anchor model; Bottom: without the anchor model.

C T-SNE VISUALIZATION OF BAG-LEVEL FEATURES

To assess how the anchor model stabilizes attention during training, we visualize the bag-level rep-
resentations learned by ASMIL using t-SNE Maaten & Hinton (2008); see Figure 5. Compared
to ASMIL without the anchor, the model with an anchor forms more distinct clusters and exhibits
clearer inter-class boundaries across training epochs, indicating faster convergence and more dis-
criminative features. We observe a similar trend for TransMIL in Figure 6.

D MACRO AUC AND MACRO F1 SCORE UNDER CLASS IMBALANCE

Since all datasets considered in this work are class-imbalanced, we report macro-averaged vari-
ants of the area under the ROC curve (AUC) and the F1 score as our primary summary metrics.
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Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

Figure 6: T-SNE embeddings of TransMIL bag-level features on the BRACS training set across
training epochs. Top: with the anchor model; Bottom: without the anchor model.

Macro-averaging assigns equal weight to each class and therefore prevents majority classes from
dominating the overall score.

Setup. Let Y = {1, . . . ,K} denote the set of classes. For a sample x with true label y ∈ Y , let
sk(x) ∈ R be the model score for class k. Define one-vs-rest binary indicators yk = ⊮[y = k] for
each class k, and the corresponding confusion-matrix counts (TPk,FPk,FNk,TNk) computed by
treating class k as “positive” and all others as “negative”.

D.1 MACRO-F1

For class k, precision and recall are

Precisionk =
TPk

TPk + FPk
, Recallk =

TPk

TPk + FNk
. (11)

The per-class F1 is the harmonic mean of precision and recall:

F1k =
2Precisionk Recallk
Precisionk +Recallk

. (12)

The macro-F1 averages the per-class values uniformly:

Macro-F1 =
1

K

K∑
k=1

F1,k. (13)

As a thresholded, decision-level metric, F1k (and thus macro-F1) depends on the classification
threshold applied to scores sk(x). We use a threshold of 0.5 for all experiments. The same definition
applies to multilabel settings by averaging over labels.

D.2 MACRO-AUC (ROC)

For class k, the ROC curve plots the true positive rate against the false positive rate as the threshold
on sk(x) varies:

TPRk =
TPk

TPk + FNk
, FPRk =

FPk

FPk +TNk
. (14)

The per-class AUC, AUCk ∈ [0, 1], is the area under this curve; equivalently, it is the probability
that a randomly chosen positive example (for class k) receives a higher score than a randomly chosen
negative example. The macro-AUC is the uniform average across classes:

Macro-AUC =
1

K

K∑
k=1

AUCk. (15)

Unlike F1, AUC is threshold-agnostic and measures the ranking quality of scores.
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E PROOF OF THEOREM 1

Proof. We proceed in two parts.

Part A: NSF bounds. Let si = σ(zi) and S =
∑N

j=1 σ(zj), so αnsf
i = si/S.

Equalization among highs. For i, h′ ∈ H,

αnsf
i

αnsf
h′

=
si
sh′

=
σ(zi)

σ(zh′)
. (16)

Since σ is strictly increasing and zi, zh′ ∈ [τ, τ + γ],

σ(zi)

σ(zh′)
≤ σ(τ + γ)

σ(τ)
=

1 + e−τ

1 + e−(τ+γ)
≤ 1 + e−τ . (17)

Suppression of lows. For any j ∈ L we have zj ≤ −τ . Using monotonicity and the identity

σ(−t) = e−t σ(t) for all t ∈ R, (18)

we get σ(zj) ≤ σ(−τ) = e−τσ(τ). Meanwhile

S =

N∑
i=1

σ(zi) ≥
∑
i∈H

σ(zi) ≥ hσ(τ), (19)

since zi ≥ τ for i ∈ H. Hence

αnsf
j =

σ(zj)

S
≤ e−τσ(τ)

hσ(τ)
=

e−τ

h
. (20)

For completeness, equation 18 follows from σ(−t) = 1
1+et = e−t

1+e−t = e−tσ(t).

Part B: Softmax temperature constraints. Fix T > 0 and z ∈ S(τ, γ,H,L).
Equalization among highs. For any i, h′ ∈ H,

αsmx
i

αsmx
h′

=
ezi/T

ezh′/T
= e(zi−zh′ )/T . (21)

Over S(τ, γ,H,L), the worst high to high ratio occurs at zi = τ + γ and zh′ = τ , so

maxi∈H αsmx
i

minh′∈H αsmx
h′

≥ eγ/T . (22)

Therefore, the uniform bound maxi∈H αsmx
i

minh′∈H αsmx
h′
≤ κ for all z ∈ S(τ, γ,H,L) implies

T ≥ γ

log κ
. (23)

Suppression of lows. Fix j ∈ L. For a given T , the quantity αsmx
j (z;T ) is maximized over

S(τ, γ,H,L) by taking zj = −τ, zi = τ ∀i ∈ H, zk → −∞ for k /∈ H ∪ {j}, which mini-
mizes the denominator subject to the constraints. Thus

sup
z∈S(τ,γ,H,L)

αsmx
j (z;T ) =

e−τ/T

h eτ/T + e−τ/T
=

1

h e2τ/T + 1
. (24)

Consequently, the uniform suppression requirement αsmx
j (z;T ) ≤ ε for all z ∈ S(τ, γ,H,L) forces

1

h e2τ/T + 1
≤ ε ⇐⇒ h e2τ/T ≥ 1

ε
− 1 ⇐⇒ T ≤ 2τ

log
(
1
ε − 1

)
− log h

. (25)

Combining equation 23 and equation 25 yields the simultaneous constraints T ≤
2τ

log
(
1
ε−1

)
−log h

, T ≥ γ
log κ . If

γ

log κ
>

2τ

log
(
1
ε − 1

)
− log h

, (26)
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no T can satisfy both.

Instantiating NSF targets. Set ε = εnsf = e−τ/h and κ = κnsf =
1+e−τ

1+e−(τ+γ) . Then

log
(

1
εnsf
− 1

)
− log h = log

( 1

e−τ/h
− 1

)
− log h = log

(
heτ − 1

)
− log h = log

(
eτ − h−1

)
,

(27)

so the right side of the incompatibility condition equals
2τ

log
(
eτ − h−1

) −−−−→
τ→∞

2. (28)

Meanwhile,

log κnsf = log(1 + e−τ )− log
(
1 + e−(τ+γ)

)
(29)

= log
(
1 +

e−τ (1− e−γ)

1 + e−(τ+γ)

)
∼ e−τ (1− e−γ) (τ →∞), (30)

hence
γ

log κnsf
−−−−→
τ→∞

∞. (31)

Therefore, for any fixed γ > 0, the incompatibility condition holds for all sufficiently large τ , so no
single softmax temperature can match NSF uniformly on S(τ, γ,H,L).

Remark 3 (Middle scores). Allowing additional scores in (−τ, τ) only strengthens the NSF sup-
pression bound because the denominator S increases, and it does not weaken the softmax lower
bound equation 23 on the high to high ratio since that ratio is independent of other coordinates. The
softmax low suppression supremum equation 24 is still attained by driving all non-high and non-j
scores to −∞, so the temperature constraints remain necessary.

(a) (b) (c) (d)
0

1

Figure 7: Ablation study of applying the softmax function with temperature scaling to the attention
scores: (a) attention distribution of the proposed ASMIL, (b) softmax with T = 2 applied to the
anchor model, (c) softmax with T = 4 applied to the anchor model, (d) softmax with T = 8 applied
to the anchor model.

F ALTERNATIVE TO NSF IN ANCHOR MODEL

F.1 SOFTMAX WITH TEMPERATURE SCALING

A straightforward approach to mitigating over-concentration is to apply softmax with temperature
scaling (Hinton et al., 2015). This can indeed yield less concentrated attention distribution; however,
as we observe in this section, a large temperature produces an overly smooth distribution, approach-
ing a uniform distribution. This makes all tiles nearly indistinguishable, effectively reducing the
operation to mean pooling and compromising interpretability. To illustrate this, we conduct experi-
ments on the BRACS dataset using the same training protocol as in Section 5, summarize the results
in Table 4, and visualize the attention maps in Figure 7.

Furthermore, to clarify the differences between the NSF and softmax, we plot the histograms of
the attention scores—(a) outputs from the NSF and softmax with various temperature scalings—in
Figure 8. As shown, the saturation property of the NSF suppresses excessively large values.
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(a) (b) (c)

(d) (e) (f)
Figure 8: Histograms of (a) raw attention scores, (b) attention distribution obtained by the softmax
function with temperature T = 1, (c) T = 2, (d) T = 4, (e) T = 8, and (f) attention distribution
computed using an NSF. The Y-axis is displayed on a logarithmic scale for better visualization.

Table 4: Subtyping performance on BRACS, when we apply softmax with temperature scaling to
the anchor model.

BRACS
Normalized

Sigmoid
Softmax

T=2
Softmax

T=4
Softmax

T=8
F1 score ↑ AUC ↑ F1 score ↑ AUC ↑ F1 score ↑ AUC ↑ F1 score ↑ AUC ↑
0.781±0.042 0.914±0.014 0.667±0.049 0.860±0.027 0.712±0.029 0.876±0.012 0.688±0.037 0.858±0.031

F.2 ENTMAX

Entmax is a family of mappings that convert a score vector z ∈ Rd into a probability vector p ∈ ∆d

by maximizing a linear score plus Tsallis-α entropy Tsallis (1988) HT
α :

entmaxα(z) = argmaxp∈∆dzT p+HT
α (p), (32)

The solution admits a closed form

αi =
[α− 1

α
(zi − τ)

] 1
α−1

+
,with

∑
i

αi = 1, (33)

where τ is a threshold chosen so that the probabilities sum to one. As limiting cases, α→ 1, yields
softmax, and while α = 2 yields sparsemax (Martins & Astudillo, 2016).

While entmax offers controllable sparsity, two drawbacks are pertinent to MIL-based WSI analysis:
(i) Lack of selective flattening, entmax is monotone in z on its active support and does not explicitly
equalize top-probability entries. (ii) Higher computational cost. Computing τ in Equation (33)
requires the bisection method, which adds non-trivial overhead vs. NSF’s fully closed-form nor-
malization. These differences matter for MIL on WSIs, where multiple correlated tumor foci can
be present: we prefer mechanisms that both discourage over-peaky attention and keep computation
predictable. We replaced NSF with entmaxα inside ASMIL and swept α ∈ {2, 1.75, 1.5, 1.25, 1}.
For α = 1, we used PyTorch softmax; for α > 1, we solved for τ via bisection. The implementation
follows the reference code from DeepSPIN5. All other hyperparameters, model, and data pipeline
were kept fixed. We report results on CAMELYON-16 in Table 5. As seen, across α, entmax
underperforms NSF on both F1 and AUC and incurs a 33.5% increase in epoch time vs. NSF.

5https://github.com/deep-spin/entmax
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Table 5: ASMIL performance when replacing NSF with entmax on CAMELYON-16.
CAMELYON-16

Metric NSF entmaxα=2 (sparsemax) entmaxα=1.75 entmaxα=1.5 (entmax-15) entmaxα=1.25 entmaxα=1 (softmax)
F1 score ↑ 0.965±0.020 0.938±0.031 0.927±0.034 0.937±0.014 0.910±0.026 0.942±0.0147

AUC ↑ 0.985±0.017 0.964±0.012 0.959±0.017 0.960±0.017 0.925±0.031 0.963±0.020

Time per epoch ↓ 6.340s 8.451s 8.452s 8.451s 8.450s 6.336s

Table 6: Ablation study on the impact of applying the normalized sigmoid (NS) function to both
the online and anchor models. ✓ indicates that NSF is applied to both models, while ✗ denotes the
default setting where NSF is applied only to the anchor model. Subtyping performance is evaluated
on the CAMELYON-16 and BRACS datasets using F1 score and AUC. A significant performance
drop is observed on CAMELYON-16 when NSF is applied to both models.

Dataset CAMELYON-16
Online NSF F1 score ↑ AUC ↑

✓ 0.920±0.020 0.936±0.021

✗ 0.965±0.020 0.985±0.017

Dataset BRACS
Online NSF F1 score ↑ AUC ↑

✓ 0.726±0.014 0.865±0.017

✗ 0.781±0.042 0.914±0.014

G APPLYING NORMALIZED SIGMOID TO THE ONLINE MODEL

One might question the rationale behind applying the NSF to the anchor model while using the soft-
max function for the online model during training. To investigate this design choice, we experiment
with applying the NSF to both the online and anchor models and evaluate the model’s subtyping per-
formance on the CAMELYON-16 and BRACS datasets. The results, presented in Table 6, reveal a
F1 score drop of over 6% on the BRACS dataset. We attribute this degradation to the inherent char-
acteristics of the sigmoid function: when it saturates, its gradients diminish, leading to vanishing
gradients in the attention mechanism and thereby impairing the learning process.

To further investigate the potential of applying NSF in the online model, we consider the following
mixed attention variant:

α′
i(z) = ζ αSMX

i (z) + (1− ζ)αNSF
i (z), (34)

where ζ = σ(ξ) and ξ is a trainable scalar that balances the contributions of the softmax and NSF
mappings, initialized with ξ = 0. We evaluate this variant on CAMELYON-16, CAMELYON-17,
and BRACS, and report the results in Table 7. The mixed mapping does not outperform the default
softmax, and the learned ζ consistently converges to values close to one, indicating that the online
model prefers softmax, which does not suffer from gradient-vanishing issues.

Table 7: Comparison between ASMIL trained with the standard softmax function in the online
model (ASMIL w. Softmax) and with the mixed attention function defined in Equation (34) (ASMIL
w. Mixture). The more flexible trainable mapping does not yield improvements over the simpler
softmax baseline.

Dataset CAMELYON-16 CAMELYON-17 BRACS

Mertic F1 score AUC F1 score AUC F1 score AUC
ASMIL W. SoftMax 0.965±0.020 0.985±0.017 0.689±0.005 0.898±0.010 0.781±0.042 0.914±0.014

ASMIL W. Mixture 0.953±0.023 0.972±0.030 0.686±0.012 0.889±0.009 0.774±0.054 0.910±0.067

ζ in Equation (34) 0.9952 0.9894 0.9963
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H ALTERNATIVE STABILIZATION METHODS AND WHY THE ANCHOR IS
PREFERABLE

Let αt(x) ∈ ∆N denote the attention distribution for slide x at epoch t, obtained from scores
zt(x) ∈ RN . We diagnose instability by the Jensen-Shannon divergence

JSDt(x) = JSD
(
αt(x)∥αt−1(x)

)
, (35)

which we empirically find remains high when training attention-based MIL with only bag-level
labels. We present a natural alternative that targets this instability and explain why the anchor model
is preferred.

H.1 ALTERNATIVE: PER-SLIDE TEMPORAL ENSEMBLING OF ATTENTION

Maintain a per slide exponential moving average (EMA) of past attentions and penalize deviation
from it:

α̃t(x) = ρ α̃t−1(x) + (1− ρ)αt(x), ρ ∈ (0, 1); LAS(x) = KL
(
αt(x)∥sg

(
α̃t(x)

))
.

(36)

The EMA target changes slowly when ρ is close to one, which directly shrinks epoch-to-epoch drift
of αt and reduces JSD(αt∥αt−1). However,

(i) It has to maintain a length-N vector per slide. For S slides and average N̄ tiles, memory is
O(SN̄) floats, which can be substantial for gigapixel WSIs and prevent scaling to larger datasets.
(ii) The EMA target still uses softmax normalization, which cannot achieve selective flattening
across informative tokens; see Theorem 1.

H.2 WHY ASMIL’S ANCHOR IS PREFERABLE

We highlight two main reasons for using an anchor model to stabilize the attention distribution rather
than relying on temporal ensembling.

NSF provides selective flattening that softmax cannot match.

Replacing softmax with the normalized sigmoid function (NSF) in the anchor yields αnsf(x), which
equalizes probabilities among truly high-score tiles while suppressing low-score ones. By The-
orem 1, no single softmax temperature can realize both behaviors across a broad class of score
vectors. Consequently, methods that retain softmax-based targets inherit these limitations.

Memory and implementation simplicity.

The anchor-based approach adds only one extra forward pass and maintains an exponential mov-
ing average (EMA) of the anchor parameters during training. It does not require storing per-slide
attention distributions, making the approach scalable to large WSI datasets.

Thus, an anchor model is preferable for scalable training on large MIL datasets and for preventing
attention over-concentration.

I WHY MATCHING THE TEACHER (ANCHOR) MODEL’S SOFTMAX FEATURE
VECTOR CANNOT STABILIZE THE ATTENTION DISTRIBUTION

Table 8: Ratio of affinely dependent feature bags in the CAMELYON-16, CAMELYON-17, and
BRACS datasets; most bags are affinely dependent.

Dataset CAMELYON-16 CAMELYON-17 BRACS
The ratio of affine

dependent feature bags 99.24% 99.80% 96.08%

In this section, we show why matching the softmax of the bag-level feature is a suboptimal strategy
for stabilizing attention distributions. To this end, we prove that recovering the attention vector
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Table 9: The F1 score and AUC of different MIL approaches on two WSI subtyping datasets.
PathGen-Clip-VIT-L

Dataset CAMELYON-16 CAMELYON-17
Method F1 score ↑ AUC ↑ F1 score ↑ AUC ↑

Clam-SB 0.941±0.014 0.960±0.015 0.622±0.031 0.899±0.012

TransMIL 0.951±0.024 0.968±0.028 0.656±0.021 0.892±0.014

DSMIL 0.895±0.038 0.949±0.017 0.582±0.062 0.887±0.013

IBMIL 0.935±0.014 0.953±0.009 0.629±0.027 0.884±0.016

MHIM-MIL 0.946±0.33 0.984±0.016 0.594±0.090 0.912±0.009

ABMIL 0.953±0.018 0.972±0.010 0.610±0.025 0.864±0.017

AEM 0.967±0.025 0.988±0.013 0.688±0.016 0.905±0.005

ASMIL 0.974±0.021 0.990±0.014 0.699±0.020 0.929±0.016

UNI-VIT-L
Method F1 score ↑ AUC ↑ F1 score ↑ AUC ↑
ABMIL 0.968±0.011 0.996±0.003 0.605±0.047 0.885±0.015

AEM 0.975±0.003 0.998±0.003 0.633±0.024 0.863±0.017

ASMIL 0.980±0.004 0.998±0.002 0.672±0.035 0.866±0.014

α by matching softmax(αTX) is, in general, ill-posed: the map f : ∆K → ∆d, defined by
f(α) = softmax(αTX) with X ∈ RK×d, fails to be injective when the feature matrix X is affinely
dependent.

Proof. Assume the rows x1, . . . , xK ∈ Rd of X are affinely dependent. By definition there exists a
nonzero vector ψ ∈ RK such that

K∑
i=1

ψi = 0 and
K∑
i=1

ψixi = 0.

Let α ∈ ∆K be any probability vector and choose ϵ > 0 small enough that α′ = α + ϵψ satisfies
α′
i ≥ 0 for every i. Note

∑
i α

′
i =

∑
i αi + ϵ

∑
i ψi = 1, so α′ ∈ ∆K . Since

∑K
i=1 ψixi = 0 we

have

(α′)TX = αTX + ϵψTX = αTX.

Therefore

f(α′) = softmax((α′)TX) = softmax(αTX) = f(α).

Because ψ ̸= 0 and ϵ ̸= 0 we have α′ ̸= α, hence f is not injective.

Thus, matching the softmax of the bag feature cannot reliably recover or stabilize the attention
distributions when the feature bag is affinely dependent. Table 8 confirms that most feature bags
extracted by VIT-S (Kang et al., 2023) from WSI datasets are indeed affinely dependent.

J APPLYING ASMIL TO FEATURES EXTRACTED BY A WSI FOUNDATION
MODEL

In recent years, foundation models have enabled strong open-source feature extractors that markedly
improve the performance of computational-pathology systems. To assess the generalizability of our
approach, we apply ASMIL to features produced by two such extractors, UNI Chen et al. (2024) and
PATHGEN-clip Sun et al. (2025), for the subtyping task on the CAMELYON-16 and CAMELYON-
17 datasets. As reported in Table 9, ASMIL consistently outperforms all baseline methods when
used with features extracted by foundation models, yielding the best F1 and AUC.
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Table 10: Ablation results on the number of tokens on different WSI datasets.
CAMELYON-16

# FEAT tokens 2 4 8 16
F1 score ↑ 0.930±0.012 0.946±0.009 0.965±0.012 0.960±0.006

AUC ↑ 0.932±0.017 0.973±0.011 0.985±0.013 0.981±0.009

CAMELYON-17
F1 score ↑ 0.556±0.012 0.610±0.009 0.674±0.016 0.689±0.005

AUC ↑ 0.784±0.019 0.833±0.011 0.879±0.024 0.898±0.010

BRACS
F1 score ↑ 0.721±0.009 0.766±0.012 0.781±0.004 0.782±0.004

AUC ↑ 0.871±0.004 0.903±0.014 0.914±0.004 0.912±0.026

K ABLATION STUDY

K.1 ABLATION OF THE COEFFICIENT β

The coefficient β > 0 in Equation (9) balances the stabilization and classification objectives. To
assess its impact on final performance, we sweep β ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 4, 5}
on the CAMELYON-16 and BRACS datasets. Except for β, all experimental settings are identical
to those in Section 5.1. We report F1 score and AUC in Figures 9 and 10; results are averaged over
five random seeds. Overall, model performance is relatively insensitive to the choice of β: both

A
U
C

F-
1

AU
C

F1

Figure 9: Ablation study on the coefficient β, on CAMELYON-16 dataset.

F-1F-
1

A
U
C

AU
C

F1

F1

Figure 10: Ablation study on the coefficient β, on BRACS dataset.

F1 score and AUC plateau for β ∈ [0.5, 1.5]. Accordingly, we set β = 1 as the default for all
experiments.

K.2 ABLATION STUDY ON NUMBER OF TRAINABLE FEAT TOKENS

In this section, we investigate how varying the number of trainable tokens influences model perfor-
mance. To this end, we sweep a number of trainable tokens in the range of [2, 4, 8, 16], and report
the corresponding accuracy on CAMELYON-16, CAMELYON-17, and BRACS in Table 10 In the
experiment, we apply 8 trainable tokens for CAMELYON-16 and BRACS, and 16 trainable tokens
on the CAMELYON-17 dataset.
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Table 11: Ablation study on the EMA factor m for anchor model updating. Performance is reported
as F1 score and AUC with token drop probability fixed at 0.5. EMA factor of 0.999 achieves the
highest performance on both metrics.

Dataset EMA factor (m) 0.0 0.5 0.9 0.99 0.999 0.9999 1.0

BRACS F1 score ↑ 0.636±0.003 0.674±0.009 0.645±0.037 0.744±0.024 0.781±0.042 0.768±0.025 0.705±0.015

AUC ↑ 0.8489±0.011 0.843±0.008 0.828±0.024 0.871±0.018 0.914±0.014 0.884±0.019 0.826±0.005

CAMELYON-16 F1 score ↑ 0.899±0.044 0.933±0.004 0.911±0.021 0.943±0.004 0.965±0.020 0.954±0.022 0.891±0.035

AUC ↑ 0.941±0.033 0.955±0.024 0.930±0.023 0.971±0.003 0.985±0.017 0.982±0.003 0.934±0.008

K.3 ABLATION ON ANCHOR MODEL UPDATE

K.3.1 IMPACT OF EMA FACTOR m

We evaluate the impact of the EMA factor m in Equation (4) on anchor model updates while fixing
the token drop probability at 0.5. As shown in Table 11, performance exhibits a clear non-linear
trend. Low EMA factors (e.g., 0.0 and 0.5) lead to moderate results, suggesting that rapid synchro-
nization with the online model leads to unstable anchor attention distribution. While high EMA
factors (e.g., 0.9999 and 1.0) also degrade performance, as the anchor model updates lag too much
from the online model. The best results are achieved at an EMA factor of 0.999, indicating that a
slow update schedule strikes the optimal balance between stability and adaptability. To further eluci-
date the effect of m on the dynamics of the anchor’s attention distribution, we plot JSD between the
anchor attentions at consecutive epochs for different values ofm in Figure 11. As seen, for smallm,
the JSD remains fluctuating in the learning, indicating that the anchor attention distribution remains
unstable during training. At m = 0.999, the JSD becomes much smoother, reflecting a stable yet
adaptive anchor. Form = 0.9999, the JSD is almost flat, showing that the anchor changes too slowly
and lags behind the online model. This observation further supports our choice for m = 0.999 as a
good compromise between stability and adaptation.

0 10 20 30 40 50
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0.15 m = 0.0
m = 0.5
m = 0.99
m = 0.999
m = 0.9999

0 10 20 30 40 50
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0.100
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m = 0.99
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m = 0.9999

Figure 11: Effect of EMA momentum m on the stability of the anchor attention. We plot the
Jensen–Shannon divergence between anchor attention distributions at consecutive epochs for differ-
ent m on BRACS (left) and CAMELYON-16 (right).

K.3.2 EFFECT OF ANCHOR MODEL UPDATE FREQUENCY

To assess the impact of anchor update frequency, we compare epoch-wise and batch-wise update
strategies on BRACS and CAMELYON-16 (Table 12). The results show that batch-wise updates
consistently deliver superior performance. On BRACS, batch-wise updates improve the F1 score by
3.9% and the AUC by 4.9%. On CAMELYON-16, the improvement is even more substantial, with
the F1 score increasing by 4.9% and the AUC by 5.1%. These gains confirm that frequent updates
enable the anchor model to provide a stable and closely aligned attention reference for the online
model, leading to better performance.
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Table 12: Ablation study on anchor model update frequency, where batch-wise updates consistently
outperform epoch-wise updates in both F1 score and AUC on BRACS and CAMELYON-16.

Dataset BRACS
Update F1 score ↑ AUC ↑
Epoch 0.742±0.015 0.871±0.003

Batch 0.781±0.042 0.914±0.014

Dataset CAMELYON-16
Update F1 score ↑ AUC ↑
Epoch 0.920±0.020 0.936±0.021

Batch 0.965±0.020 0.984±0.017

Table 13: ASMIL trained with a 5-epoch anchor-loss warmup (W. Warmup) achieves compara-
ble F1 and AUC to the default training without warmup (W.O. Warmup) on CAMELYON-16,
CAMELYON-17, and BRACS, indicating that warmup does not materially affect performance.

Dataset CAMELYON-16 CAMELYON-17 BRACS
Mertic F1 score AUC F1 score AUC F1 score AUC

ASMIL W. Warmup 0.962±0.013 0.987±0.035 0.683±0.003 0.895±0.006 0.785±0.023 0.912±0.036

ASMIL W.O. Warmup 0.965±0.020 0.985±0.017 0.689±0.005 0.898±0.010 0.781±0.042 0.914±0.014

K.3.3 IMPACT OF β WARMUP SCHEDULE

Since both the anchor model and the online model are randomly initialized, during the first few steps,
the anchor model may not yet produce meaningful attention patterns, and enforcing consistency with
such an immature anchor might be harmful. To address this concern, we design a study that gradually
introduces the anchor loss early in training.

We apply a linear schedule on β in Equation (9) over the first 5 epochs: starting from β = 0 at epoch
0 and increasing linearly to its default value by epoch 5. This schedule reduces the influence of the
anchor during the early, noisier phase of optimization and approximates the behavior of activating
EMA-based guidance only after the online model has partially converged.

We train ASMIL with and without this anchor-loss warmup on CAMELYON-16, CAMELYON-17,
and BRACS, using the same architecture, optimizer, data augmentation, and hyperparameters as in
the main experiments. The corresponding slide-level metrics (AUC and F1) are reported in Table 13.
Across all three datasets, we observe no consistent performance difference between the warmup and
non-warmup settings. These results indicate that enforcing the anchor loss from the beginning of
training does not degrade performance in practice. Because the anchor parameters are updated as
an exponential moving average of the online parameters, the influence of the initial random state is
quickly removed. Based on these results, we retain the simpler default training scheme with a fixed
β.

K.4 IMPACT OF THE RANDOM DROP RATE

We evaluated the effect of random token dropping on model performance using CAMELYON-16
and BRACS, measuring both F1 and AUC across several trainable-token budgets. Results in Fig-
ure 12 show a consistent trend: performance rises from lowB, peaks aroundB = 0.5, then degrades
for larger values. This pattern holds across datasets and capacities, indicating a stable trade-off be-
tween regularization and information loss.

Mechanistically, moderate token dropping (0.4–0.7) provides useful regularization, encouraging ro-
bustness to missing context and reducing overfitting to redundant or spurious tiles, while excessive
dropping increases the chance of discarding diagnostically critical patches and thus harms recall and
ranking. We therefore recommend tuning B in the range of 0.4 − 0.6. In Appendix K.5 we plot
test F1 score and AUC across training epochs to demonstrate that random token dropping mitigates
overfitting.
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(a) (b) (c)F1 AUC F1 F1AUC AUC

F1 AUC F1 F1AUC AUC

Figure 12: Ablation study of random drop probability (B) vs. model F1 score and AUC on
CAMELYON-16 (top row) and BRACS (bottom row). Across both datasets and trainable-token
settings (a) 4 tokens, (b) 8 tokens, and (c) 16 tokens, the test F1 score and AUC consistently peak
around B = 0.5.

Figure 13: Performance comparison between ABMIL (Ilse et al., 2018), ASMIL with random drop
(ASMIL W. rd), and ASMIL without random drop (ASMIL w/o rd). Both ABMIL and ASMIL w/o
rd show signs of overfitting, as their F1 score and AUC peak and then decline. In contrast, ASMIL
with random drop maintains stable performance across training, demonstrating that random drop
effectively mitigates overfitting.

K.5 RANDOM DROP MITIGATES OVERFITTING

To verify that random drop is an efficient regularizer for attention-based MIL on WSIs, we trained
three variants on CAMELYON-16: (i) ABMIL, (ii) ASMIL without random drop, and (iii) AS-
MIL with random drop (ours) withB = 0.5. The figure reports validation F1 and AUC over training
epochs.

As shown in the Figure 13, both ABMIL and ASMIL without random drop exhibit overfitting: F1
score and AUC rise early, peak, and then decline with continued training. In contrast, ASMIL with
random drop maintains high and stable F1/AUC throughout later epochs, with noticeably reduced
run-to-run variability (shaded regions). These trajectories empirically validate that random drop
curbs the late-epoch degradation that accompanies weak supervision on CAMELYON-16. This
observation aligns with our analysis that overfitting is a recurring failure mode for attention-based
MIL on WSI datasets.

K.6 SIGNIFICANCE TEST ON THE EFFECT OF ONLINE MODEL

To assess whether the performance gains from the anchor model are statistically meaningful, we
perform paired significance tests between ASMIL with and without the anchor over multiple 10
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Table 14: Statistical comparison of ASMIL with and without the anchor model. We report the mean
performance over 10 random seeds along with p-values from DeLong tests for AUC and permutation
tests for F1.

Dataset Model AUC F1 pAUC pF1

CAMELYON-16 w/o anchor 0.942 0.979 0.013 0.024w/ anchor 0.967 0.983

CAMELYON-17 w/o anchor 0.642 0.879 0.024 0.035w/ anchor 0.693 0.899

BRACS w/o anchor 0.729 0.866 0.012 0.009w/ anchor 0.784 0.916

Table 15: Localization results on CAMELYON-16.
Method Dice ↑ Specificity ↑ FROC ↑

CLAM-SB 0.459 0.987 0.4257
TransMIL 0.103 0.999 0.0866

DTFD-MIL 0.525 0.999 0.4712
DSMIL 0.259 0.863 0.4506
CAMIL 0.515 0.980 0.4612
ASMIL 0.586 0.999 0.4941

seeds. For AUC, we apply DeLong’s test, and for F1, we use a non-parametric permutation test.
Across CAMELYON-16, CAMELYON-17, and BRACS, the anchor-augmented ASMIL consis-
tently achieves higher AUC and F1 than its non-anchor counterpart, and these improvements are
statistically significant (p < 0.05) for both metrics on each dataset (see Table 14).

L QUANTITATIVE LOCALIZATION RESULTS AND ADDITIONAL
VISUALIZATION

Predicted masks are generated as follows. For attention-based methods (CLAM (Lu et al., 2021),
TransMIL (Shao et al., 2021), DTFD-MIL (Zhang et al., 2022), DSMIL (Li et al., 2021b) and
CAMIL Fourkioti et al. (2024)), we use the tile-level attention distribution. For ASMIL, the per-
tile attention distribution is computed by averaging the attention distributions from all FEAT tokens
to that tile. Unless otherwise noted, we rescale all per-tile scores to [0, 1] and threshold at 0.5 to
produce binary masks across all methods.

For tumor localization on CAMELYON-16, we follow the official challenge protocol and report the
lesion-level Free-Response ROC (FROC) (Miller, 1969; Bunch, 1978). Concretely, model outputs
are converted to point detections; a detection is counted as a true positive if it lies within 75 µm of
any ground-truth tumor region (implemented in the official script via a distance-transform “evalu-
ation mask”), otherwise it is a false positive. We then sweep the detection score threshold to trace
sensitivity versus the average number of false positives per normal WSI, and compute the standard
CAMELYON-16 FROC score as the mean sensitivity at 0.25, 0.5, 1, 2, 4, 8 FP/WSI.

Quantitative results for FROC, Dice, and specificity are reported in Table 15, ASMIL achieves the
best FROC and Dice on cancerous slides and higher specificity on normal slides, yielding fewer
false positives and more contiguous lesion maps compared to baselines.

Figure 14 presents additional visualizations on the CAMELYON-16 dataset. It shows ASMIL atten-
tion maps for tumor slides containing both small and large cancerous regions; rows 1 and 3 provide
the ground-truth annotations, and rows 2 and 4 show the corresponding attention maps.
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Figure 14: Additional qualitative examples of tumor regions and ASMIL attention maps. Rows 1
and 3 show the ground-truth tumor annotations (cancerous regions outlined in red), and rows 2 and
4 show the corresponding ASMIL attention maps.

Table 16: Computational cost on BRACS (lower is better). We report training time and peak memory
per epoch, and inference FLOPs, latency, and memory. ASMIL (ours) delivers efficient inference,
cutting compute by 30.6%, latency by 29.2%, and memory by 20.3% compared with TransMIL,
while requiring 4× less training memory than MHIM-MIL.

BRACS Training
Method CLAM-SB ABMIL TransMIL MHIM-MIL ASMIL

Time 2.26s 0.95s 5.99s 19.4s 7.49s
Memory 94MB 90MB 340MB 2178MB 570MB
BRACS Inference
FLOPs 162M 164M 781M 345M 542M
Time 0.45s 0.37s 0.74s 0.40s 0.52s

Memory 69MB 39MB 246MB 61MB 196MB

M COMPUTATIONAL COST

This section reports the computational cost of ASMIL, as well as the additional cost incurred when
integrating the anchor model into the baseline methods.
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Table 17: Inference FLOPs, training time per epoch (Time), and memory usage (Memory) for four
well-known methods, CLAM-SB, TransMIL, DSMIL, and ABMIL, with and without the anchor
model. The anchor model incurs only minor computational overhead. FLOPs are measured using a
fixed bag size of 2000 instances.

BRACS Training Inference
Method Time Memory FLOPs Time Memory

CLAM-SB w/o anchor 2.26s 94MB 162M 0.45s 69MB
CLAM-SB W. anchor 2.69s 120MB 162M 0.45s 69MB

TransMIL w/o anchor 5.99s 340MB 781M 0.74s 246MB
TransMIL W. anchor 7.27s 443MB 781M 0.74s 246MB
DSMIL w/o anchor 0.57s 60 MB 103M 1.09s 113 MB

DSMIL W. anchor 0.58s 145MB 103M 1.09s 113 MB
ABMIL w/o anchor 0.95s 90MB 164M 0.37s 39MB

ABMIL W. anchor 1.17s 162MB 164M 0.37s 39MB

M.1 COMPARISON OF THE COMPUTATIONAL COST BETWEEN ASMIL AND BASELINE
METHODS

We conducted a detailed evaluation of the computational overhead introduced by our proposed AS-
MIL framework, focusing on three primary metrics: floating-point operations (FLOPs), training time
per epoch, and peak memory consumption. All experiments were executed under uniform hardware
conditions, specifically a single NVIDIA RTX 5000 GPU coupled with an Intel Xeon W-2265 CPU
and 64 GB of RAM, ensuring a fair comparison across methods.

During training, ASMIL demonstrates a competitive balance between efficiency and computational
demand. On average, ASMIL requires 542M FLOPs per batch, which is lower than MHIM-MIL.
The training time per epoch for ASMIL is 7.49s, substantially faster than MHIM-MIL (19.4s) and
comparable to TransMIL (5.99s), while remaining higher than ABMIL and CLAM-SB. In terms
of peak memory usage, ASMIL consumes 570 MB, markedly lower than MHIM-MIL (2178 MB).
These results indicate that ASMIL maintains a favorable computational profile, offering a scalable
alternative to more resource-intensive methods.

In inference, ASMIL continues to show strong efficiency. It requires 542M FLOPs, substantially
fewer than TransMIL and comparable to MHIM-MIL. Inference time for ASMIL is 0.52s per epoch,
slightly slower than CLAM-SB (0.45s) but faster than TransMIL. Peak memory usage during infer-
ence is 196 MB, markedly lower than TransMIL, highlighting ASMIL’s efficient memory footprint
relative to its computational performance. Overall, ASMIL delivers high-performance multiple-
instance learning while keeping computational cost affordable.

M.2 ADDITIONAL COMPUTATIONAL COST INTRODUCED BY ANCHOR MODEL

We conducted a detailed evaluation of the computational overhead introduced by integrating the
anchor model into four widely used MIL methods, namely CLAM-SB, TransMIL, DSMIL, and
ABMIL, all measured on the BRACS dataset. The results are summarized in Table 17.

Because no gradients are computed through the anchor model, and only the attention layer is up-
dated during training, the computational overhead is small. As shown in Table 17, integrating the
anchor model into CLAM-SB, TransMIL, DSMIL, and ABMIL introduces only a modest increase
in training time and memory usage, while the FLOPs remain unchanged. For example, training
time for CLAM-SB increases from 2.26s to 2.69s and memory usage from 94 MB to 120 MB, with
larger models like TransMIL showing slightly higher overhead. Importantly, during inference, the
anchor model is discarded, resulting in identical FLOPs, execution time, and memory consumption
compared to the baseline methods. These results demonstrate that the anchor model provides per-
formance benefits during training with minimal computational cost and does not affect deployment
efficiency, making it an effective and practical addition to existing MIL frameworks.
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Table 18: C-index for WSI-based survival prediction using vision-only MIL models.
Method BLCA BRCA GBMLGG LUAD UCEC

ABMIL ICML 2018 0.5581±0.031 0.5825±0.035 0.7935±0.032 0.6121±0.050 0.6667±0.033

TransMIL NeurIPS 2021 0.5885±0.055 0.6140±0.060 0.7956±0.015 0.5708±0.050 0.6380±0.067

ILRA ICLR 2023 0.5549±0.053 0.5705±0.067 0.7742±0.014 0.5179±0.081 0.6503±0.064

R2T-MIL CVPR 2024 0.5775±0.024 0.5476±0.095 0.7757±0.024 0.5711±0.076 0.6510±0.087

DeepAttnMISL MIA 2020 0.5646±0.035 0.5346±0.036 0.6750±0.048 0.4678±0.039 0.6259±0.086

Patch-GCN MICCAI 2021 0.6124±0.031 0.6375±0.033 0.7999±0.021 0.5922±0.053 0.7212±0.025

ASMIL (Ours) 0.6133±0.047 0.6396±0.044 0.8036±0.018 0.6001±0.093 0.7243±0.0488

N SURVIVAL PREDICTION

To assess whether ASMIL is also beneficial for prognosis, we extend ASMIL from slide-level clas-
sification to discrete-time overall survival prediction on histopathology WSIs. Following (Liu et al.,
2025), we apply an incidence-based discrete survival formulation, i.e., the survival times are mapped
to C non-overlapping time intervals, and the model outputs a discrete distribution over first-event
times.

We follow the experimental setup of (Liu et al., 2025), and evaluate on five TCGA datasets, namely
BLCA, BRCA, LUAD, and UCEC. We use the concordance index (C-index) to evaluate the model’s
performance; specifically, it measures how often the model assigns a higher risk score to a patient
who experiences the event earlier. Formally, with a little abuse of notations, let ti, δi, R̂i denote the
observed time, event indicator, and predicted risk for patient i, the C-index is defined as

CI =

∑
i,j 1[ti < tj ]1[R̂i > R̂j ]δi∑

i,j 1[ti < tj ]δi
, (37)

where 1[·] is the indicator function. A value of CI = 0.5 corresponds to a random ranking, and larger
values indicate better risk discrimination. Following Liu et al. (2025), we compare ASMIL against
six vision-only WSI survival prediction methods, namely ABMIL (Ilse et al., 2018), TransMIL
(Shao et al., 2021), ILRA Xiang & Zhang (2023), R2T-MIL (Tang et al., 2024), DeepAttnMISL
(Yao et al., 2020), and Patch-GCN (Chen et al., 2021), all implemented on top of the same CONCH-
derived patch features (Lu et al., 2023).

Table 18 reports the C-index on each TCGA dataset. ASMIL achieves the highest mean C-index
among all vision-only baselines. These results indicate that stabilizing slide-level attention not only
improves weakly supervised classification but also yields stronger prognostic discrimination in sur-
vival analysis.

O EVALUATE ASMIL OVER NON-WSI DATASET

Table 19: MIL dataset statistics.
Dataset Domain Bags (pos/neg) Total instances Dim./inst.

MUSK1 Drug activity 92 (47/45) 476 166
MUSK2 Drug activity 102 (39/63) 6598 166
TIGER Images (Blobworld segments) 200 (100/100) 1220 230
FOX Images (Blobworld segments) 200 (100/100) 1320 230
ELEPHANT Images (Blobworld segments) 200 (100/100) 1391 230

To demonstrate ASMIL’s applicability beyond WSI, we evaluate it on five classic multiple-instance
learning (MIL) benchmarks: MUSK1 Chapman & Jain (1994a) and MUSK2 Chapman & Jain
(1994b), where each bag is a molecule and instances are its low-energy 3D conformations described
by 166 attributes (a bag is positive if at least one conformation is active); and the image MIL datasets
TIGER, FOX, and ELEPHANT Andrews et al. (2002), where each bag is a Corel image segmented
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into “Blobworld” regions (instances) with 230-D color/texture/shape features (a bag is positive if at
least one segment contains the named animal). Standard size statistics are reported in Table 19.

Table 20: Results on the small MIL benchmark datasets.
Methods MUSK1 MUSK2 FOX TIGER ELEPHANT

ABMIL ICML 2018 0.916±0.118 0.928±0.109 0.952±0.051 0.953±0.042 0.969±0.036

DSMIL CVPR 2021b 0.959±0.053 0.952±0.066 0.939±0.060 0.951±0.053 0.989±0.023

TransMIL NeurIPS 2021 0.927±0.093 0.877±0.127 0.944±0.050 0.963±0.042 0.979±0.030

DEMIL NeurIPS 2023a 0.963±0.073 0.961±0.057 0.941±0.047 0.965±0.035 0.969±0.034

RGMIL Neurips2023 0.968±0.060 0.963±0.048 0.954±0.048 0.949±0.047 0.965±0.032

PSMIL ICLR2025 0.968±0.053 0.968±0.052 0.942±0.054 0.947±0.047 0.985±0.030

ASMIL (Ours) 0.971±0.060 0.968±0.058 0.961±0.025 0.969±0.037 0.985±0.025

Since these datasets are relatively balanced, following Du et al. (2025), we report accuracy as the
primary metric. We train for 40 epochs with the Adam optimizer (Kingma & Ba, 2014) and a
learning rate of 0.0005.

We compare ASMIL against six MIL methods—ABMIL (Ilse et al., 2018), DSMIL (Li et al.,
2021b), TransMIL (Shao et al., 2021), DEMIL (Tang et al., 2023a), RGMIL (Du et al., 2023),
and PSMIL (Du et al., 2025)—and report accuracies in Table 20. As shown, ASMIL outperforms
all baselines on 4 of 5 datasets, demonstrating strong performance on non-WSI benchmarks.

P ATTENTION DYNAMICS OF DIFFERENT MIL METHODS ON VARIOUS
DATASETS

In this section, we illustrate that the issue of attention convergence on the WSI dataset is not unique
to the ABMIL and CAMELYON-16 datasets. To this end, similar to the method we describe in
Figure 1, we plot the JSD of two attention distributions between two consecutive epochs.
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P.1 CAMELYON-16 DATASET
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Figure 15: Visualization of attention dynamics on a normal WSI for ABMIL vs. ABMIL + anchor
+ NSF.
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Figure 16: Visualization of attention dynamics on a tumor WSI for ABMIL vs. ABMIL + anchor +
NSF.
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Figure 17: Visualization of attention dynamics on a normal WSI for TransMIL vs. TransMIL +
anchor + NSF.
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Figure 18: Visualization of attention dynamics on a tumor WSI for TransMIL vs. TransMIL +
anchor + NSF.
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Figure 19: Visualization of attention dynamics on a normal WSI for DSMIL vs. DSMIL + anchor
+ NSF.
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Figure 20: Visualization of attention dynamics on a tumor WSI for DSMIL vs. DSMIL + anchor +
NSF.
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P.2 BRACS DATASET
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Figure 21: Visualization of attention dynamics on a normal WSI for ABMIL vs. ABMIL + anchor
+ NSF.
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Figure 22: Visualization of attention dynamics on a tumor WSI for ABMIL vs. ABMIL + anchor
+ NSF.
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Figure 23: Visualization of attention dynamics on a tumor WSI for TransMIL vs. TransMIL +
anchor + NSF.
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Figure 24: Visualization of attention dynamics on a tumor WSI for TransMIL vs. TransMIL +
anchor + NSF.
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Figure 25: Visualization of attention dynamics on a tumor WSI for DSMIL vs. DSMIL + anchor +
NSF.
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Figure 26: Visualization of attention dynamics on a tumor WSI for DSMIL vs. DSMIL + anchor +
NSF.
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Table 21: Rate of cancerous WSIs without missed regions on the CAMELYON-16 dataset.
Method Clam TransMIL DTFD-MIL DSMIL CAMIL ASMIL

Rate 46.93% 3.246% 50.34% 48.22% 49.78% 54.63%

Q LIMITATIONS AND FUTURE WORK

Figure 27: Left: annotated WSI. Right: at-
tention map generated by ASMIL, which
fails to assign high attention to all tumor re-
gions, as highlighted by the green arrow.

Despite these advances, several avenues remain open
for future investigation:

ASMIL employs an EMA-updated anchor model to
stabilize attention dynamics, but this introduces ad-
ditional computational overhead. An important di-
rection is the development of intrinsic training strate-
gies, such as regularization, that achieve comparable
stability without auxiliary modules, thereby improv-
ing efficiency in large-scale WSI applications.

Meanwhile, as more advanced regularization tech-
niques such as MIL-dropout (Zhu et al., 2025) con-
tinue to emerge, integrating them into the ASMIL
framework represents a highly promising direction
for future work. Such enhancements could fur-
ther improve the model’s generalization ability while
yielding more faithful and stable attention distribu-
tions.

Furthermore, a limitation of our approach is that AS-
MIL can fail by assigning low attention to tiny foci
and small tumor regions (see Figure 27), particu-
larly when large and small cancerous regions coexist
within a single WSI. We fix the attention threshold
at 0.5 and count a cancerous WSI as successfully lo-
calized if all regions inside the tumor annotation ex-
ceed this threshold; the success rates are reported in
Table 21. ASMIL achieves the highest success rate,
which we attribute to the NSF in the anchor model that mitigates over-concentrated attention. This
indicates room for improvement. Nevertheless, compared with published baselines, ASMIL’s at-
tention maps consistently achieve higher Dice and FROC scores. We believe this limitation stems
from the weakly supervised nature of WSI datasets, i.e., only a single slide-level label is available
for thousands of patches from each slide. Consequently, applying different parameters or additional
regularization to explicitly cancerous regions is not feasible, because this would require pixel-level
annotations. Given the ultra-high resolution of WSIs and the need for expert annotators, curating
a large-scale, pixel-level annotated WSI dataset is both expensive and challenging. One avenue to
further enhance localization performance is to bootstrap training with a mixture of synthetic data
and real WSI data. Further, combining WSI with additional modalities (e.g., clinical variables or
genomic profiles) offers richer information for diagnosis and prognosis. In the current work, we de-
liberately restricted our experiments to WSI-based MIL to isolate and analyze the effect of attention
stabilization. The design of multimodal encoders and fusion strategies is an orthogonal direction.
We therefore revise the Future Work section to explicitly highlight multimodal ASMIL as a pri-
mary extension of this framework. These directions are beyond the scope of this work and will be
investigated in future research.

R LLM USAGE STATEMENT

LLM used only for grammar and wording edits; no generation of ideas, methods, analyses, results,
or citations. The authors reviewed all edits and accept full responsibility.
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