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Abstract
Summary: Effective collaboration between developers of Bayesian inference methods and users is key to advance our quantitative understand-
ing of biosystems. We here present hopsy, a versatile open-source platform designed to provide convenient access to powerful Markov chain 
Monte Carlo sampling algorithms tailored to models defined on convex polytopes (CP). Based on the high-performance Cþþ sampling library 
HOPS, hopsy inherits its strengths and extends its functionalities with the accessibility of the Python programming language. A versatile plugin- 
mechanism enables seamless integration with domain-specific models, providing method developers with a framework for testing, benchmark-
ing, and distributing CP samplers to approach real-world inference tasks. We showcase hopsy by solving common and newly composed 
domain-specific sampling problems, highlighting important design choices. By likening hopsy to a marketplace, we emphasize its role in 
bringing together users and developers, where users get access to state-of-the-art methods, and developers contribute their own innovative 
solutions for challenging domain-specific inference problems.
Availability and implementation: Sources, documentation and a continuously updated list of sampling algorithms are available at https://jugit. 
fz-juelich.de/IBG-1/ModSim/hopsy, with Linux, Windows and MacOS binaries at https://pypi.org/project/hopsy/.

1 Introduction
Models are central to systems biology, acting as gateways to 
generate insights, making predictions, or testing hypotheses. 
The types of models used are diverse, ranging from statistical 
to physics-based. For operating models as epistemological 
tools, two steps are essential: exploration of the models’ capac-
ities to represent data and estimation of model parameters 
from data. For both, recent years have witnessed a surge of in-
terest in Bayesian statistics, expressing the desired information 
in the form of probability density functions (PDFs), under the 
notion of uncertainty (Wilkinson 2006).

In many cases, the model definition spaces are (explicitly or 
implicitly) bounded by linear half-spaces making up a convex 
polytope (CP), for reasons as diverse as physiological limita-
tions, energetic or other resource constraints, or mass balances 
operated at steady-state (Liebermeister and Noor 2021). 
Premier examples are (bio)chemical reaction networks 
(Heinken et al. 2023), or ecosystem models (Gellner et al. 
2023). Actually, CP-constrained models also appear in a wide 
range of domains outside biology, such as gravitational lensing 
(Lubini et al. 2013), smart power grids (Theorell and Stelling 
2022), or transport planning (Airoldi and Blocker 2013).

CP-constrained PDFs, defined by real-world models, are 
high-dimensional and rarely analytically tractable. To 

approximate the PDFs, Markov chain Monte Carlo 
(MCMC) is a well-established sampling approach, with nu-
merous variants implemented in powerful probabilistic pro-
gramming tools (Carpenter et al. 2017, Abril-Pla et al. 2023). 
However, such general MCMC algorithms fail to solve CP- 
constrained sampling problems efficiently because neglecting 
the CP geometry results in high rejection rates or ineffective 
space exploration (Jadebeck et al. 2023, Supplementary 
Section S2).

Kannan et al. 1997, Kannan and Narayanan 2012). Here, 
propelled by the needs in the metabolic modeling domain, 
various open packages have become available (Heirendt et al. 
2019, Chalkis and Fisikopoulos 2021, Ciomek and 
Kadzi�nski 2021, Jadebeck et al. 2021). This commoditization 
of uniform CP-constrained sampling, along with theoretical 
advances (Laddha and Vempala 2021), has empowered meta-
bolic researchers to approach increasingly high-dimensional 
problems within the domain (Thiele et al. 2020, Jadebeck 
et al. 2023), and beyond (Gellner et al. 2023).

For nonuniform CP sampling the situation is, however, 
quite different. Here, despite much work on “standardized” 
Gaussian and log-concave PDFs exists (Kook et al. 2022, 
Chalkis, Fisikopoulos et al. 2023), the application as well as 
algorithmic landscapes for CP-constrained PDF sampling are 
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scattered. Stimulated by the successes in uniform CP sam-
pling, sampling of general nonuniform CP-constrained PDFs 
should be equally simple and accessible for domain experts. 
In turn, such a solution empowers MCMC developers to 
benchmark, improve and create new algorithms using real- 
world applications posed by domain experts.

Borrowing from the idea of a marketplace, we present the 
open-source Python package hopsy. hopsy is a flexible plat-
form for general CP-constrained PDF sampling that seam-
lessly connects domain-specific simulation software and 
modern MCMC algorithms, via minimal and expressive 
interfaces. Specifically, hopsy leverages Python to allow do-
main experts and MCMC researchers to quickly implement 
and share domain-specific MCMC sampling workflows, 
while offering high-performance state-of-the-art implementa-
tions and support for common and innovative applications.

2 Approach and implementation
By design, hopsy is a “batteries-included” platform to sup-
port convenient MCMC sampling of general CP-constrained 
PDFs, independent of the application domain. To facilitate 
flexibility at a low entry barrier, hopsy is implemented in 
Python and takes advantage of the Cþþ-library for highly 
optimized polytope sampling HOPS (Jadebeck et al. 2021). 
Performance critical code from HOPS is integrated via 
pybind11 (https://github.com/pybind/pybind11) while con-
venience functions are implemented in Python.

In the hopsy sampling workflow (Fig. 1), a model is speci-
fied by defining the PDF on a CP-constrained support. Then 
a suitable sampling algorithm is selected, configured and run. 
For a continuously updated listing of MCMC algorithms, we 
refer to https://modsim.github.io/hopsy/userguide/sampling. 
html#proposals. After the sampling step, convergence diag-
nostics and visualizations are provided by the widely used 
ArviZ package (Kumar et al. 2019).

The model specification consists of an explicit CP formula-
tion in half-space representation and a PDF (by convention 
expected as log-density): 

P ¼ fθ 2 Rn jA � θ ≤ bg; f : P ! R; θ 7! f ðθÞ (1) 

with unknown model parameters θ 2 Rn; A 2 Rn×m and 
b 2 Rm. To obtain an explicit CP formulation from an im-
plicit one, e.g. an underdetermined linear equation system, 
linear algebra recipes exist (Supplementary Section S3). The 
log-density f may be given as the logarithm of a closed-form 
PDF or, in the case of Bayesian inference, as a log-posterior 
provided by a simulation code. Note that the model specifica-
tion in Eq. (1) is well-posed only if the resulting density func-
tion is integrable. In cases where the gradient or the curvature 
of the log-density f is available, these can be utilized for pro-
posal construction, e.g. for Riemannian-type MCMC algo-
rithms (Gatmiry and Vempala 2022). Ready-to-use model 
specifications for standard polytopes (simplices, Birkhoff pol-
ytopes), and common log-densities are also available (see 
documentation at https://modsim.github.io/hopsy/).

The central entity that encapsulates the model specification 
Eq. (1) is the hopsy-class hopsy. Problem. The CP is 
passed in the form of domain-agnostic NumPy arrays (Harris 
et al. 2020) and the log-density is a Python object with a 
log_density-method, as well as optionally, log_ 
gradient and/or positive-definite log_curvature methods. 

hopsy’s open plugin-architecture for custom Python code 
makes the formulation of the model ingredients extremely flexi-
ble. Thereby, models are either directly specified in Python or 
by calling external ODE- or PDE-solvers, facilitating the con-
struction of composite models. The high flexibility for posing 
the log-density is achieved by a combination of interface classes 
and a trampoline (https://github.com/pybind/pybind11), which 
redirects calls from HOPS to custom log-densities defined in 
Python. Using the same trampoline-technique, hopsy supports 
custom proposal implementations in Python, which seamlessly 
integrate with model specifications. Similarly to the hopsy. 
Model, a proposal in hopsy needs to implement a minimal in-
terface consisting of a constructor expecting at least a hopsy. 
Model, an initial state, a propose method, which creates a 
new proposal based on the current state, and, for nonsymmetric 
proposal distributions, the log_acceptance_probability 
method to obtain the correct acceptance probability in the 
Metropolis filter. Importantly, this eliminates the need to write 
tedious “glue-code” to connect existing implementations for 
Eq. (1) to newly designed proposals. Examples of how easy it is 
to integrate and combine custom PDFs and tailor-made 
MCMC algorithms are given in the next section.

The model specification and user-selected sampling algo-
rithm are collected in the hopsy. MarkovChain class. The 
function hopsy.sample advances a set of Markov chains 
by the number of requested samples. hopsy generates ran-
dom numbers using statistically reliable 64 bit permuted con-
gruential generators (O’Neill 2014) with 128 bit states and 
periods of 2128, which is sufficient to prevent repeat of ran-
dom numbers in realistic settings. Because instances of 
hopsy. MarkovChain support the pickle functionality of 
Python, check-pointing sampling runs is simple. The hopsy. 
sample function stores samples either in-memory as NumPy- 
arrays or in (remote) databases (https://github.com/pymc- 
devs/mcbackend).

Further highlight features of hopsy are CP pre-processing 
by rounding using PolyRound (Theorell et al. 2021), feasi-
bility checks for CPs, MCMC acceptance-rate tuning 
(Roberts and Rosenthal 2001), parallel tempering (PT) 
(Geyer 1991, Hukushima and Nemoto 1995) for tackling 
multi-modal log-densities, and Reversible Jump MCMC 
(Green 1995, Theorell and N€oh 2019). Software quality is 
ensured by a continuous integration (CI) pipeline for auto-
matic testing, automatic code-style checks using pre-com-
mit, changelogs, documentation including example Jupyter 
notebooks, and semantic versioning.

3 Showcasing hopsy
To demonstrate the flexibility of hopsy, we selected the field 
of metabolic modeling, which stands out due to its high- 
dimensional inference tasks within a plethora of different in-
ference approaches.

Uniform CP sampling is a common approach for unbiased 
exploration of metabolic capabilities (Haraldsd�ottir et al. 
2017, Supplementary Section S3). Compared to the state-of- 
the-art Coordinate Hit-and-Run with Rounding and 
Thinning (CHRRT) algorithm implemented in HOPS 
(Jadebeck et al. 2023), we ponder on alternate proposals, spe-
cifically Over-relaxed Hit-and-Run (de Concini and de 
Martino 2015), and a recent adaptive sampling approach 
that uses iterative singular value decomposition (SVD) trans-
formations of the parameter space instead of polytope 
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rounding (Chalkis et al. 2023). Exploiting the flexibility of 
the open plugin-architecture, implementing the alternate pro-
posals took only few lines of Python code (30 for Over- 
relaxed Hit-and-Run and 49 for iterative SVD-based round-
ing). We benchmarked the three MCMC algorithms for a 
synthetic problem (16D Birkhoff polytope), and two 
Escherichia coli models. For the synthetic problem and one 
of the E. coli models the adaptive sampling approach were 
the most efficient, while for the other E. coli model CHRRT 
was found best (Supplementary Fig. S3). The result under-
lines the intricacy of CP sampling and, thus, the importance 
of proposal design and testing, even for similar models of the 
same organism. hopsy’s performance is competitive with 
packages specialized for uniform sampling on commodity 
computers (Chalkis et al. 2024), while also benefiting from 
supercomputer hardware for high-dimensional problems 
(Supplementary Fig. S5).

A key quantity in metabolic models are reaction rates 
(fluxes) that are inferred from isotopic labeling data, in a 
framework known as Bayesian 13C-MFA (Theorell et al. 
2017) (Supplementary Section S4). Here, the simulation of 
13C-labeled metabolites entertains a nonlinear mapping from 
the flux parameter space to the observation space. conse-
quently, the sum-of-squares residual between simulated and 
measured 13C-labeled metabolites gives rise to a nonuniform 
CP-constrained PDF. Since efficient simulation is key, the 
13C-model was called via the domain-specific high-perfor-
mance simulator 13CFLUX2 (Weitzel et al. 2012). The Hit- 
and-Run with Rounding algorithm was used without and 
with PT for sampling one of the above-mentioned E. coli 
models. Our results show that (i) PT led to improved mixing, 
as visible in the trace plots and Gelman-Rubin diagnostic 
(Supplementary Fig. S6), and (ii) compared to uniform sam-
pling, incorporating 13C data strongly reduced the flux 

Figure 1. Convex polytope-constrained sampling workflow with hopsy.
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parameter uncertainty (Supplementary Fig. S7), and predict 
likely measurement distributions for isotope labeling experi-
ments (Supplementary Fig. S8).

In a third application, we highlight the flexibility of hopsy 
by creating a composite model using the trampoline 
(Supplementary Section S5). Conventionally, extracellular 
rates are first estimated by means of so-called bioprocess 
models. Once estimated, they are incorporated into the 13C- 
model as external rate measurements together with their 
(symmetrized) standard deviations. From a statistical stand-
point, simultaneous estimation of bioprocess and 13C-model 
parameters promises a better understanding of parameter 
correlations. Therefore, in a rapid prototyping manner, we 
built a new composite model with which bioprocess and flux 
parameters are estimated simultaneously. Comparing the out-
come with the conventional modeling procedure in 
Supplementary Fig. S9 indeed shows an information gain. 
Thus, with hopsy it was simple to quickly test a new promis-
ing modeling idea in the field of 13C-MFA.

4 Conclusion
hopsy is a mature open-source Python toolbox for highly 
optimized polytope sampling. hopsy strips the polytope 
sampling problem down to its minimal formal requirements 
and provides a simple, extensible interface. This makes 
hopsy applicable to a broad range of polytope sampling 
problems, such as exploring polytopic parameter spaces by 
uniform sampling, testing MCMC approaches, and efficiently 
tackling challenging Bayesian inference problems. 
Furthermore, we demonstrate that it is easy with hopsy to 
implement novel (composite) modeling approaches. Our 
showcases, despite being from the field of metabolic model-
ing, are inspirations for other scientific fields, such as ecologi-
cal modeling (Gellner et al. 2023), optimization of 
chromatography pipelines (Schm€older and Kaspereit 2020), 
or single-cell analysis (Paul et al. 2024), unlocking a broad 
portfolio of applications for method developers. hopsy thus 
fertilizes collaboration between domain experts and MCMC 
developers by facilitating easy sharing of new problems and 
MCMC approaches, allowing both communities to bring 
their fruits into practice quicker.
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