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ABSTRACT

Recent self-supervised contrastive methods have been able to produce impres-
sive transferable visual representations by learning to be invariant to different data
augmentations. However, these methods implicitly assume a particular set of rep-
resentational invariances (e.g., invariance to color), and can perform poorly when
a downstream task violates this assumption (e.g., distinguishing red vs. yellow
cars). We introduce a contrastive learning framework which does not require prior
knowledge of specific, task-dependent invariances. Our model learns to capture
varying and invariant factors for visual representations by constructing separate
embedding spaces, each of which is invariant to all but one augmentation. We use
a multi-head network with a shared backbone which captures information across
each augmentation and alone outperforms all baselines on downstream tasks. We
further find that the concatenation of the invariant and varying spaces performs
best across all tasks we investigate, including coarse-grained, fine-grained, and
few-shot downstream classification tasks, and various data corruptions.

1 INTRODUCTION

Self-supervised learning, which uses raw image data and/or available pretext tasks as its own super-
vision, has become increasingly popular as the inability of supervised models to generalize beyond
their training data has become apparent. Different pretext tasks have been proposed with different
transformations, such as spatial patch prediction (Doersch et al., 2015; Noroozi & Favaro, 2016),
colorization (Zhang et al., 2016; Larsson et al., 2016; Zhang et al., 2017), rotation (Gidaris et al.,
2018). Whereas pretext tasks aim to recover the transformations between different “views” of the
same data, more recent contrastive learning methods (Wu et al., 2018; Tian et al., 2019; He et al.,
2020; Chen et al., 2020a) instead try to learn to be invariant to these transformations, while remain-
ing discriminative with respect to other data points. Here, the transformations are generated using
classic data augmentation techniques which correspond to common pretext tasks, e.g., randomizing
color, texture, orientation and cropping.

Yet, the inductive bias introduced through such augmentations is a double-edged sword, as each
augmentation encourages invariance to a transformation which can be beneficial in some cases and
harmful in others: e.g., adding rotation may help with view-independent aerial image recognition,
but significantly downgrade the capacity of a network to solve tasks such as detecting which way is
up in a photograph for a display application. Current self-supervised contrastive learning methods
assume implicit knowledge of downstream task invariances. In this work, we propose to learn visual
representations which capture individual factors of variation in a contrastive learning framework
without presuming prior knowledge of downstream invariances.

Instead of mapping an image into a single embedding space which is invariant to all the hand-
crafted augmentations, our model learns to construct separate embedding sub-spaces, each of which
is sensitive to a specific augmentation while invariant to other augmentations. We achieve this by
optimizing multiple augmentation-sensitive contrastive objectives using a multi-head architecture
with a shared backbone. Our model aims to preserve information with regard to each augmentation
in a unified representation, as well as learn invariances to them. The general representation trained
with these augmentations can then be applied to different downstream tasks, where each task is
free to selectively utilize different factors of variation in our representation. We consider transfer of
either the shared backbone representation, or the concatenation of all the task-specific heads; both
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Figure 1: Self-supervised contrastive learning relies on data augmentations as depicted in (a) to
learn visual representations. However, current methods introduce inductive bias by encouraging
neural networks to be less sensitive to information w.r.t. augmentation, which may help or may hurt.
As illustrated in (b), rotation invariant embeddings can help on certain flower categories, but may
hurt animal recognition performance; conversely color invariance generally seems to help coarse
grained animal classification, but can hurt many flower categories and bird categories. Our method,
shown in the following figure, overcomes this limitation.

Downstream Tasks

outperform all baselines; the former uses same embedding dimensions as typical baselines, while
the latter provides greatest overall performance in our experiments. In this paper, we experiment
with three types of augmentations: rotation, color jittering, and texture randomization, as visualized
in Figure 1. We evaluate our approach across a variety of diverse tasks including large-scale clas-
sification (Deng et al., 2009), fine-grained classification (Wah et al., 2011; Van Horn et al., 2018),
few-shot classification (Nilsback & Zisserman, 2008), and classification on corrupted data (Barbu
etal., 2019; Hendrycks & Dietterich, 2019). Our representation shows consistent performance gains
with increasing number of augmentations. Our method does not require hand-selection of data aug-
mentation strategies, and achieves better performance against state-of-the-art MoCo baseline (He
et al., 2020; Chen et al., 2020b), and demonstrates superior transferability, generalizability and ro-
bustness across tasks and categories. Specifically, we obtain around 10% improvement over MoCo
in classification when applied on the iNaturalist (Van Horn et al., 2018) dataset.

2 BACKGROUND: CONTRASTIVE LEARNING FRAMEWORK

Contrastive learning learns a representation by maximizing similarity and dissimilarity over data
samples which are organized into similar and dissimilar pairs, respectively. It can be formulated as
a dictionary look-up problem (He et al., 2020), where a given reference image 7 is augmented into
two views, query and key, and the query token ¢ should match its designated key kT over a set of
sampled negative keys {k~ } from other images. In general, the framework can be summarized as the
following components: (i) A data augmentation module 7 constituting n atomic augmentation oper-
ators, such as random cropping, color jittering, and random flipping. We denote a pre-defined atomic
augmentation as random variable X;. Each time the atomic augmentation is executed by sampling
a specific augmentation parameter from the random variable, i.e., ;~X;. One sampled data aug-
mentation module transforms image Z into a random view Z, denoted as Z = T [x1, xa, . . ., Zy| (T).
Positive pair (g, k™) is generated by applying two randomly sampled data augmentation on the same
reference image. (ii) An encoder network f which extracts the feature v of an image Z by mapping
it into a d-dimensional space R?. (iii) A projection head h which further maps extracted represen-
tations into a hyper-spherical (normalized) embedding space. This space is subsequently used for a
specific pretext task, i.e., contrastive loss objective for a batch of positive/negative pairs. A common
choice is InfoNCE (Oord et al., 2018):

exp (¢-h*/7)
exp (¢-k*/7) + >4 exp ¢k~ /7)
where 7 is a temperature hyper-parameter scaling the distribution of distances.

L, =—log (1)

As a key towards learning a good feature representation (Chen et al., 2020a), a strong augmentation
policy prevents the network from exploiting naive cues to match the given instances. However, in-
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Figure 2: Framework of the Leave-one-out Contrastive Learning approach, illustrated with two
types of augmentations, i.e., random rotation and color jittering. We generate multiple views with
leave-one-out strategy, then project their representations into separate embedding spaces with con-
trastive objective, where each embedding space is either invariant to all augmentations, or invariant
to all but one augmentation. The learnt representation can be the general embedding space V (blue
region), or the concatenation of embedding sub-spaces Z (grey region). Our results show that either
of our proposed representations are able to outperform baseline contrastive embeddings and do not
suffer from decreased performance when adding augmentations to which the task is not invariant
(i.e., the red X’s in Figure 1).

ductive bias is introduced through the selection of augmentations, along with their hyper-parameters
defining the strength of each augmentation, manifested in Equation 1 that any views by the stochas-
tic augmentation module 7 of the same instance are mapped onto the same point in the embedding
space. The property negatively affects the learnt representations: 1) Generalizability and transfer-
ability are harmed if they are applied to the tasks where the discarded information is essential, e.g.,
color plays an important role in fine-grained classification of birds; 2) Adding an extra augmentation
is complicated as the new operator may be helpful to certain classes while harmful to others, e.g., a
rotated flower could be very similar to the original one, whereas it does not hold for a rotated car;
3) The hyper-parameters which control the strength of augmentations need to be carefully tuned
for each augmentation to strike a delicate balance between leaving a short-cut open and completely
invalidate one source of information.

3 LoOC: LEAVE-ONE-OUT CONTRASTIVE LEARNING

We propose Leave-one-out Contrastive Learning (LooC), a framework for multi-augmentation con-
trastive learning. Our framework can selectively prevent information loss incurred by an augmen-
tation. Rather than projecting every view into a single embedding space which is invariant to all
augmentations, in our LooC method the representations of input images are projected into several
embedding spaces, each of which is not invariant to a certain augmentation while remaining invari-
ant to others, as illustrated in Figure 2. In this way, each embedding sub-space is specialized to a
single augmentation, and the shared layers will contain both augmentation-varying and invariant in-
formation. We learn a shared representation jointly with the several embedding spaces; we transfer
either the shared representation alone, or the concatenation of all spaces, to downstream tasks.

View Generation. Given a reference image and n atomic augmentations, we first augment the
reference image with two sets of independently sampled augmentation parameters into the query

view Z, and the first key view Zy,, i.e., Ty x,} = 'T[xiq’k“}, xéq’k‘)}, .. ,x;{lq’k‘)}] (Z). Additionally,

we generate n views from the reference image as extra key views, denoted as Zy,, Vi € {1,...,n}.
For the i*" additional key view, the parameter of i*" atomic augmentation is copied from it of the
k

query view, i.e., x;° = x?, Vi € {1,...,n}; whereas the parameter of other atomic augmentations
are still independently sampled, i.e., :chq ~ X;, Vj # . For instance, assume that we have a set
of two atomic augmentations {random_rotation, color_jitter}, 1, and 1y, are always
augmented by the same rotation angle but different color jittering; Z, and Zy,, are always augmented
by the same color jittering but different rotation angle; Z, and Zy,, are augmented independently, as
illustrated in the left part of Figure 2.
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Contrastive Embedding Space. The augmented views are encoded by a neural network encoder
f(-) into feature vectors v?,v*0 ... ¥ in a joint embedding space V € RY. Subsequently,
they are projected into n+1 normalized embedding spaces Zy, 21, , 2, € RY by projection
heads h : V — Z, among which Z is invariant to all types of augmentations, whereas Z;
(Vi € {1,2,---,n}) is dependent on the i*" type of augmentation but invariant to other types
of augmentations. In other words, in Z all features v should be mapped to a single point, whereas
in Z; (Vi € {1,2,---,n}) only v and v*: should be mapped to a single point while v*3 Vj # i

should be mapped to n—1 separate points, as only Z, and Zj,, share the same it" augmentation.

We perform contrastive learning in all normalized embedding spaces based on Equation 1, as shown
in the right part of Figure 2. For each query 29, denote 2*" as the keys from the same instance,
and z*  as the keys from other instances. Since all views should be mapped to the single point

.+
in Zy, the positive pair for the query z{ is zé“ , and the negative pairs are embeddings of other
. o . ky . . .
instances in this embedding space {z,° }; for embedding spaces 21, - - - , Z,, the positive pair for
. kf . . . . . . . .
the query 2/ is z; " , while the negative pairs are embeddings of other instances in this embedding

k; kP o . .
space {z," }, and {z,” | V¥j € {0,1,--- ,n} and j # i}, which are the embeddings of the same
instance with different 7** augmentation. The network then learns to be sensitive to one type of
augmentation while insensitive to other types of augmentations in one embedding space. Denote
{+,-}

El{j_} =exp (2] zf I /7). The overall training objective for g is:

L, =— 1 log Eoo + z”: log Ej’ 2)
! n+1 Ego+ > Edo > =0 Ej] + 2 B '

The network must preserve information w.r.t. all augmentations in the general embedding space V
in order to optimize the combined learning objectives of all normalized embedding spaces.

Learnt representations. The representation for downstream tasks can be from the general embed-
ding space V (Figure 2, blue region), or the concatenation of all embedding sub-spaces (Figure 2,
grey region). LooC method returns V; we term the implementation using the concatenation of all
embedding sub-spaces as LooC++.

4 EXPERIMENTS

Methods. We adopt Momentum Contrastive Learning (MoCo) (He et al., 2020) as the backbone of
our framework for its efficacy and efficiency, and incorporate the improved version from (Chen et al.,
2020b). We use three types of augmentations as pretext tasks for static image data, namely color
jittering (including random gray scale), random rotation (90°, 180°, or 270°), and texture random-
ization (Gatys et al., 2016; Geirhos et al., 2018) (details in the Appendix). We apply random-resized
cropping, horizontal flipping and Gaussian blur as augmentations without designated embedding
spaces. Note that random rotation and texture randomization are not utilized in state-of-the-art con-
trastive learning based methods (Chen et al., 2020a; He et al., 2020; Chen et al., 2020b) and for good
reason, as we will empirically show that naively taking these augmentations negatively affects the
performance on some specific benchmarks. For LooC++, we include Conv5 block into the projec-
tion head h, and use the concatenated features at the last layer of Conv5, instead of the last layer of
h, from each head. Note than for both LooC and LooC++ the augmented additional keys are only
fed into the key encoding network, which is not back-propagated, thus it does not much increase
computation or GPU memory consumption.

Datasets and evaluation metrics. We train our model on the 100-category ImageNet (IN-100)
dataset, a subset of the ImageNet (Deng et al., 2009) dataset, for fast ablation studies of the proposed
framework. We split the subset following (Tian et al., 2019). The subset contains ~125k images,
sufficiently large to conduct experiments of statistical significance. After training, we adopt linear
classification protocol by training a supervised linear classifier on frozen features of feature space V
for LooC, or concatenated feature spaces Z for LooC++. This allows us to directly verify the quality
of features from a variation of models, yielding more interpretable results. We test the models on
various downstream datasets (more information included in the Appendix): 1) IN-100 validation set;
2) The iNaturalist 2019 (iNat-1k) dataset (Van Horn et al., 2018), a large-scale classification dataset
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Table 1: Classification accuracy on 4-class rotation and IN-100 under linear evaluation protocol.
Adding rotation augmentation into baseline MoCo significantly reduces its capacity to classify rota-
tion angles while downgrades its performance on IN-100. In contrast, our method better leverages
the information gain of the new augmentation.

model Rotation IN-100
Acc. top-1 top-5
Supervised 72.3 83.7 95.7
MoCo 61.1 81.0 95.2
MoCo + Rotation 433 79.4 94.1
MoCo + Rotation (same for ¢ and k) 45.5 78.1 94.3
LooC + Rotation [ours] 65.2 80.2 95.5

Table 2: Evaluation on multiple downstream tasks. Our method demonstrates superior generaliz-
ability and transferability with increasing number of augmentations.

model Augmentatiqn iNat-1k CUB-200 Flowers-102 IN-100
Color Rotation | top-1 top-5 | top-1 top-5 5-shot 10-shot | top-1 top-5
MoCo v 362 62.0 | 36.7 64.7 |679(£0.5) 77.3(£0.1)| 81.0 952
LooC v 412 67.0 | 40.1 69.7 |68.2(£0.6) 77.6(£0.1)| 81.1 95.3
v 40.0 65.4 | 388 67.0|70.1(+£04) 793(£0.1)| 80.2 95.5
v v 440 69.3|39.6 69.2 |709(£0.3) 80.8(+£0.2)| 79.2 94.7
LooC++| Vv v 46.1 71.5 393 69.3 |68.1(£0.4) 78.8(£0.2)| 81.2 952

containing 1,010 species. Top-1 and top-5 accuracy on this dataset are reported; 3) The Caltech-
UCSD Birds 2011 (CUB-200) dataset (Wah et al., 2011), a fine-grained classification dataset of 200
bird species. Top-1 and top-5 classification accuracy are reported. 4) VGG Flowers (Flowers-102)
dataset (Nilsback & Zisserman, 2008), a consistent of 102 flower categories. We use the dataset
for few-shot classification and report 5-shot and 10-shot classification accuracy over 10 trials within
95% confidence interval. Unlike many few-shot classification methods which conduct evaluation on
a subset of categories, we use all 102 categories in our study; 5) ObjectNet dataset (Barbu et al.,
2019), a test set collected to intentionally show objects from new viewpoints on new backgrounds
with different rotations of real-world images. We only use the 13 categories which overlap with
IN-100, termed as ON-13; 6) ImageNet-C dataset (Hendrycks & Dietterich, 2019), a benchmark for
model robustness of image corruptions. We use the 100 categories as IN-100, termed as IN-C-100.
Note that ON and IN-C are test sets, so we do not train a supervised linear classifier exclusively
while directly benchmark the linear classifier trained on IN-100 instead.

Implementation details. We closely follow (Chen et al., 2020b) for most training hyper-
parameters. We use a ResNet-50 (He et al., 2016) as our feature extractor. We use a two-layer
MLP head with a 2048-d hidden layer and ReLU for each individual embedding space. We train
the network for 500 epochs, and decrease the learning rate at 300 and 400 epochs. We use separate
queues (He et al., 2020) for individual embedding space and set the queue size to 16,384. Linear
classification evaluation details can be found in the Appendix. The batch size during training of the
backbone and the linear layer is set to 256.

Study on augmentation inductive biases. We start by designing an experiment which allows us
to directly measure how much an augmentation affects a downstream task which is sensitive to the
augmentation. For example, consider two tasks which can be defined on IN-100: Task A is 4-
category classification of rotation degrees for an input image; Task B is 100-category classification
of ImageNet objects. We train a supervised linear classifier for task A with randomly rotated IN-100
images, and another classifier for task B with unrotated images. In Table 1 we compare the accuracy
of the original MoCo (w/o rotation augmentation), MoCo w/ rotation augmentation, and our model
w/ rotation augmentation. A priori, with no data labels to perform augmentation selection, we have
no way to know if rotation should be utilized or not. Adding rotation into the set of augmentations
for MoCo downgrades object classification accuracy on IN-100, and significantly reduces the ca-
pacity of the baseline model to distinguish the rotation of an input image. We further implement a
variation enforcing the random rotating angle of query and key always being the same. Although
it marginally increases rotation accuracy, IN-100 object classification accuracy further drops, which
is inline with our hypothesis that the inductive bias of discarding certain type of information intro-
duced by adopting an augmentation into contrastive learning objective is significant and cannot be
trivially resolved by tuning the distribution of input images. On the other hand, our method with
rotation augmentation not only sustains accuracy on IN-100, but also leverages the information gain
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Table 3: Evaluation on datasets of real-world corruptions. Rotation augmentation is beneficial
for ON-13, and texture augmentation if beneficial for IN-C-100.

model Aug. ON-13 IN-C-100 (top-1) IN-100
Rot. Tex. | top-1 top-5 | Noise Blur Weather Digital All d>3 |top-1 top-5
Supervised 309 548 | 284 47.1 44.9 585 472 36.5 83.7 95.7
MoCo 292 542 ] 379 385 477 60.1 482 372 | 81.0 952
LooC v 342 59.6 | 31.3 331 24 549 427 31.8 [ 80.2 955
30.1 54.1 | 424 396 540 619 513 419 | 81.0 94.7
v v 333 592 | 370 352 502 569 465 372 | 794 943
LooC++ v v 326 573 ] 383 376 520 600 4838 389 | 821 951
Table 4: Comparisons of LooC vs. MoCo trained with all augmentations.
Model IN-100 iNat-1k Flowers-102 IN-C-100
top-1 top-5 | top-1 top-5 5-shot 10-shot all-top-1

MoCo 779 9371395 65.1(72.1(£0.4) 81.1(£0.2) 474
LooC 785 94.0 | 41.7 675 |72.1(£0.7) 81.4(£0.2) 45.4
MoCo++| 80.8 94.6 | 43.4 68.5 [70.0 (£0.8) 80.5 (£ 0.3) 48.3
LooC++ | 822 953|459 714 |71.0(£0.7) 81.9(£0.3) 48.0

Table 5: Comparisons of concatenating features from different embedding spaces in LooC++
jointly trained on color, rotation and texture augmentations. Different downstream tasks show non-
identical preferences for augmentation-dependent or invariant representations.

Model Variance Head IN-100 iNat-1k ‘ Flowers-102 IN-C-100
Col. Rot. Tex. |top-1 top-5|top-1 top-5 5-shot 10-shot all-top-1
LooC++ 78.5 943 | 385 64.7 [68.6(£0.6) 77.6 (£0.1) 48.0
v 79.7 9441429 68.7 |69.1(£0.7) 79.5(£0.2) 47.1
v 81.5 949|414 67.4|70.5(£0.6) 80.0(£0.2) 52.6
v | 803 949 |43.0 68.6 |70.4(£0.5) 80.5(£0.2) 44.1
v v v | 822 953|459 714 |71.0(£0.7) 81.9(£0.3) 48.0

of the new augmentation. We can include all augmentations with our LooC multi-self-supervised
method and obtain improved performance across all condition without any downstream labels or a
prior knowledged invariance.

Fine-grained recognition results. A prominent application of unsupervised learning is to learn
features which are transferable and generalizable to a variety of downstream tasks. To fairly evalu-
ate this, we compare our method with original MoCo on a diverse set of downstream tasks. Table 2
lists the results on iNat-1k, CUB-200 and Flowers-102. Although demonstrating marginally supe-
rior performance on IN-100, the original MoCo trails our LooC counterpart on all other datasets by
a noticeable margin. Specifically, applying LooC on random color jiterring boosts the performance
of the baseline which adopts the same augmentation. The comparison shows that our method can
better preserve color information. Rotation augmentation also boosts the performance on iNat-1k
and Flowers-102, while yields smaller improvements on CUB-200, which supports the intuition
that some categories benefit from rotation-invariant representations while some do not. The perfor-
mance is further boosted by using LooC with both augmentations, demonstrating the effectiveness
in simultaneously learning the information w.r.t. multiple augmentations.

Interestingly, LooC++ brings back the slight performance drop on IN-100, and yields more gains on
iNat-1k, which indicates the benefits of explicit feature fusion without hand-crafting what should or
should not be contrastive in the training objective.

Robustness learning results. Table 3 compares our method with MoCo and supervised model on
ON-13 and IN-C-100, two testing sets for real-world data generalization under a variety of noise
conditions. The linear classifier is trained on standard IN-100, without access to the testing distribu-
tion. The fully supervised network is most sensitive to perturbations, albeit it has highest accuracy
on the source dataset IN-100. We also see that rotation augmentation is beneficial for ON-13, but
significantly downgrades the robustness to data corruptions in IN-C-100. Conversely, texture ran-
domization increases the robustness on IN-C-100 across all corruption types, particularly significant
on “Blur” and “Weather”, and on the severity level above or equal to 3, as the representations must
be insensitive to local noise to learn texture-invariant features, but its improvement on ON-13 is
marginal. Combining rotation and texture augmentation yields improvements on both datasets, and
LooC++ further improves its performance on IN-C-100.
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Figure 3: Top nearest-neighbor retrieval results of LooC vs. corresponding invariant MoCo base-
line with color (left) and rotation (right) augmentations on IN-100 and iNat-1k. The results show
that our model can better preserve information dependent on color and rotation despite being trained
with those augmentations.

Qualitative results. In Figure 3 we show nearest-neighbor retrieval results using features learnt
with LooC vs. corresponding MoCo baseline. The top retrieval results demonstrate that our model
can better preserve information which is not invariant to the transformations presented in the aug-
mentations used in contrastive learning.

Ablation: MoCo w/ all augmentations vs. LooC. We compare our method and MoCo trained
with all augmentations. We also add multiple Conv5 heads to MoCo, termed as MoCo++, for
a fair comparison with LooC++. The results are listed in Table 4. Using multiple heads boosts
the performance of baseline MoCo, nevertheless, our method achieves better or comparable results
compared with its baseline counterparts.

Note that the results in Table 2 to 5 should be interpreted in the broader context of Table 1. Table
1 illustrates the catastrophic consequences of not separating the varying and invariant factors of an
augmentation (in this case, rotation). It can be imagined that if we add “rotation classification” as
one downstream task in Table 4, MoCo++ will perform as poorly as in Table 1. The key of our work
is to avoid what has happened in Table 1 and simultaneously boosts performance.

Ablation: Augmentation-dependent embedding spaces vs. tasks. We train a LooC++ with all
types of augmentations, and subsequently train multiple linear classifiers with concatenated features
from different embedding spaces: all-invariant, color, rotation and texture. Any additional variance
features boost the performance on IN-100, iNat-1k and Flowers-102. Adding texture-dependent fea-
tures decreases the performance on IN-C-100: Textures are (overly) strong cues for ImageNet clas-
sification (Geirhos et al., 2018), thus the linear classifier is prone to use texture-dependent features,
loosing the gains of texture invariance. Adding rotation-dependent features increases the perfor-
mance on IN-C-100: Rotated objects of most classes in IN-100 are rare, thus the linear classifier is
prone to use rotation-dependent features, so that drops on IN-C-100 triggered by rotation-invariant
augmentation are re-gained. Using all types of features yields best performance on IN-100, iNat-
1k and Flowers-102; the performance on IN-C-100 with all augmentations remains comparable to
MoCo, which does not suffer from loss of robustness introduced by rotation invariance.

In Figure 4 we show the histogram of correct predictions (activations x weights of classifier) by
each augmentation-dependent head of a few instances from IN-100 and iNat-1k. The classifier
prefers texture-dependent information over other kinds on an overwhelmingly majority of sam-
ples from IN-100, even for classes where shape is supposed to be the dominant factor, such as
“pickup” and “mixing bow!l” ((a), top row). This is consistent with the findings from (Geirhos et al.,
2018) that ImageNet-trained CNNs are strongly biased towards texture-like representations. Inter-
estingly, when human or animal faces dominant an image ((a), bottom-left), LooC++ sharply prefers
rotation-dependent features, which also holds for face recognition of humans. In contrast, on iNat-
1k LooC++ prefers a more diverse set of features, such as color-dependent feature for a dragonfly
species, rotation and texture-dependent features for birds, as well as rotation-invariant features for
flowers. Averaged over the datasets, the distribution of classifier preferences is more balanced on
iNat-1k than IN-100, as can be seen from the entropy that the distribution on iNat-1k is close to 2
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Figure 4: Histograms of correct predictions (activationsxweights of classifier) by each
augmentation-dependent head from IN-100 and iNat-1k. The classifier on IN-100 heavily relies
on texture-dependent information, whereas it is much more balanced on iNat-1k. This is consistent
with the improvement gains observed when learning with multiple augmentations.

bits, whereas it is close to 1 bit on IN-100, as it is dominated by only two elements. It corroborates
the large improvements on iNat-1k gained from multi-dependent features learnt by our method.

5 RELATED WORK

Pretext Tasks. In computer vision, feature design and engineering used to be a central topic be-
fore the wide application of deep learning. Researchers have proposed to utilize cue combination
for image retrieval and recognition tasks (Martin et al., 2004; Frome et al., 2007a;b; Malisiewicz &
Efros, 2008; Rabinovich et al., 2006). For example, the local brightness, color, and texture features
are combined together to represent an image and a simple linear model can be trained to detect
boundaries (Martin et al., 2004). Interestingly, the recent development of unsupervised represen-
tation learning in deep learning is also progressed by designing different self-supervised pretext
tasks (Wang & Gupta, 2015; Doersch et al., 2015; Pathak et al., 2016; Noroozi & Favaro, 2016;
Zhang et al., 2016; Gidaris et al., 2018; Owens et al., 2016). For example, relative patch predic-
tion (Doersch et al., 2015) and rotation prediction (Gidaris et al., 2018) are designed to discover
the underlined structure of the objects; image colorization task (Zhang et al., 2016) is used to learn
representations capturing color information. The inductive bias introduced by each pretext task can
often be associated with a corresponding hand-crafted descriptor.

Multi-Task Self-Supervised Learning. Multi-task learning has been widely applied in image
recognition (Kokkinos, 2017; Teichmann et al., 2018; He et al., 2017). However, jointly optimizing
multiple tasks are not always beneficial. As shown in Kokkinos (2017), training with two tasks
can yield better performance than seven tasks together, as some tasks might be conflicted with each
other. This phenomenon becomes more obvious in multi-task self-supervised learning (Doersch &
Zisserman, 2017; Wang et al., 2017; Pinto & Gupta, 2017; Piergiovanni et al., 2020; Alwassel et al.,
2019) as the optimization goal for each task can be very different depending on the pretext task.
To solve this problem, different weights for different tasks are learned to optimize for the down-
stream tasks (Piergiovanni et al., 2020). However, searching the weights typically requires labels,
and is time-consuming and does not generalize to different tasks. To train general representations,
researchers have proposed to utilize sparse regularization to factorize the network representations to
encode different information from different tasks (Doersch & Zisserman, 2017; Misra et al., 2016).
In this paper, we also proposed to learn representation which can factorize and unify information
from different augmentations. Instead of using sparse regularization, we define different contrastive
learning objective in a multi-head architecture.

Contrastive Learning. Instead of designing different pretext tasks, recent work on contrastive learn-
ing (Wu et al., 2018; Oord et al., 2018; Tian et al., 2019; He et al., 2020; Misra & van der Maaten,
2020; Chen et al., 2020a) trained networks to be invariant to various corresponding augmentations.
Researchers (Chen et al., 2020a) elaborated different augmentations and pointed out which augmen-
tations are helpful or harmful for ImageNet classification. It is also investigated in Tian et al. (2019)
that different augmentations can be beneficial to different downstream tasks. Instead of enumerat-
ing all the possible selections of augmentations, we proposed a unified framework which captures
different factors of variation introduced by different augmentations.
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6 CONCLUSIONS

Current contrastive learning approaches rely on specific augmentation-derived transformation in-
variances to learn a visual representation, and may yield suboptimal performance on downstream
tasks if the wrong transformation invariances are presumed. We propose a new model which learns
both transformation dependent and invariant representations by constructing multiple embeddings,
each of which is not contrastive to a single type of transformation. Our framework outperforms base-
line contrastive method on coarse-grained, fine-grained, few-shot downstream classification tasks,
and demonstrates better robustness of real-world data corruptions.
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A  AUGMENTATION DETAILS

Following (Chen et al., 2020b), we set the probability of color jittering to 0.8, with (brightness,
contrast, saturation, hue)as (0.4, 0.4, 0.4, 0.1), and probability of random scale to 0.2. We
set the probability of random rotation and texture randomization as 0.5.

B DATASETS

iNat-1k, a large-scale classification dataset containing 1,010 species with a combined training and
validation set of 268,243 images. We randomly reallocate 10% of training images into the validation
set as the original validation set is relatively small.

CUB-200, which contains 5,994 training and 5,794 testing images of 200 bird species.
Flowers-102, which contains 102 flower categories consisting of between 40 and 258 images.

ObjectNet, a test set collected to intentionally show objects from new viewpoints on new back-
grounds with different rotations of real-world images. It originally has 313-category. We only use
the 13 categories which overlap with IN-100.

ImageNet-C, which consists of 15 diverse corruption types applied to validation images of Ima-
geNet.

C LINEAR CLASSIFICATION

We train the linear layer for 200 epochs for IN-100 and CUB-200, 100 epochs for iNat-1k, optimized
by momentum SGD with a learning rate of 30 decreased by 0.1 at 60% and 80% of training schedule;
for Flowers-102 we train the linear layer with Adam optimizer for 250 iterations with a learning rate
of 0.03.

D LEAVE-ONE-OUT VS. ADD-ONE AUGMENTATION

Table 6: Leave-one-out vs. add-one Augmentation. *: Default (none add-one) augmentation strat-
egy.

model Augmentation IN-100

Color Rotation| top-1 top-5

MoCo v 81.0 95.2
v v 79.4 94.1

MoCo + AddOne v 74.9 92.5
* v 79.3 94.4

LooC [ours] v 81.1 95.3
* v 80.2 95.5

A straight-forward alternative for our leave-one-out augmentation strategy is add-one augmentation.
Instead of applying all augmentations and augmenting two views in the same manner, add-one strat-
egy keeps the query image unaugmentated, while in each augmentation-specific view the designated
type of augmentation is applied. The results are shown in Table 6. Add-one strategy oversimplifies
the instance discrimination task, e.g., leaving color augmentation out of query view makes it very
easy for the network to spot the same instance out of a set of candidates. Our leave-one-out strategy
does not suffer such degeneration.
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E IMAGENET-1K EXPERIMENTS

Table 7: Results of models trained on 1000 category ImageNet and fine-tuned on iNat-1k following
linear classification protocol.

iNat-1k
model
top-1 top-5
MoCo 47.8 74.3
LooC++ [ours] 51.2 76.5

We conduct experiments on 1000 category full ImageNet dataset. The models are trained by self-
supervised learning on IN-1k, and fine-tuned on iNat-1k following linear classification protocol.
Our model is trained with all augmentations, i.e., color, rotation and texture. Results are reported in
Table 7.

F DISCUSSIONS

F.1 THE DIMENSIONS OF MoCo, LooC, LooC++

The representations of MoCo and LooC are of exactly the same dimension (2048); same for
MoCo++ and LooC++ (2048 * # augmentations). It is specifically designed for fair comparisons.

F.2 ARE THE HYPER-PARAMETERS TUNED SPECIFICALLY FOR OUR SUBSETS?

No, except that we increase the number of training epochs as the amount of data increases. We did
not specifically tune the baseline so that our method can outperform it most; on the contrary, we first
made baseline as strong as possible, then directly applied the same hyper-parameters to our method.
The subset of ImageNet100 behaviors similarly as ImageNetlk; our baseline already significantly
outperforms the best method on the same subset from previous literature (75.8% CMC vs. 81.0%
top1 [ours]), and since our method is derived from MoCo, they are directly comparable.
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