
StateFlow: Enhancing LLM Task-Solving through
State-Driven Workflows

Yiran Wu
Pennsylvania State University

yiran.wu@psu.edu

Tianwei Yue
MathGPTPro

tianwei.yue@mathgptpro.com

Shaokun Zhang
Pennsylvania State University
shaokun.zhang@psu.edu

Chi Wang
Microsoft Research Redmond
wang.chi@microsoft.com

Qingyun Wu
Pennsylvania State University

qingyun.wu@psu.edu

Abstract

It is a notable trend to use Large Language Models (LLMs) to tackle complex open-
world tasks, e.g., tasks that require a sequence of actions and dynamic interaction
with tools and external environments. In this paper, we propose StateFlow, a
novel LLM-based task-solving paradigm that conceptualizes complex task-solving
processes as state machines. We distinguish between “process grounding” (via
state and state transitions) and “sub-task solving” (through actions within a state),
enhancing control and interpretability of the task-solving procedure. A state repre-
sents the status of a running process. The transitions between states are controlled
by heuristic rules or decisions made by the LLM, allowing for a dynamic and
adaptive progression. Upon entering a state, a series of actions is executed, involv-
ing not only calling LLMs guided by different prompts, but also the utilization of
external tools as needed. Our results show that StateFlow significantly enhances
LLMs’ efficiency. For instance, StateFlow achieves 13% and 28% higher success
rates compared to ReAct in InterCode SQL and ALFWorld benchmark, with 5×
and 3× less cost respectively. We also show that StateFlow can be combined
with iterative refining methods like Reflexion to further improve performance.

1 Introduction
LLMs have increasingly been employed to solve complex, multi-step tasks. Specifically, they have
been applied to tasks that require interactions with environments [Yang et al., 2023a, Yao et al., 2022a,
Shridhar et al., 2020, Zelikman et al., 2022] and those tasks that can benefit from utilizing tools such
as web search and code execution [Mialon et al., 2023, Wu et al., 2023b, Wang et al., 2023b]. In
approaching these tasks, there is typically a desired workflow, or plan of actions based on heuristics
that could improve the efficiency of task solving [Kim et al., 2023, Wu et al., 2023a]. A common
practice in the context of LLMs, such as ReAct [Yao et al., 2022b] and the vast customization of
GPTs, is to write a single prompt that instructs the models to follow a desired procedure to solve
the task [Dohan et al., 2022]. The LLM is called iteratively with the same instruction, along with
previous actions and feedback from tools/environments. This relies on LLMs’ innate capability to
determine the current task-solving status and perform subsequent actions autonomously. Despite
the impressive abilities of LLMs, it is still unrealistic to expect LLMs to always judge the status of
current progress correctly. It is also almost impossible to reliably track these judgments and their
decisions of subsequent action trajectory. Given these considerations, we pose the research question:
how can we exert more precise control and guidance over LLMs?

In this paper, we propose StateFlow, a new framework that models LLM workflows as state
machines. Finite State Machines (FSMs) [Mealy, 1955, Moore et al., 1956] are used as control

Preprint.

Init
P E

Observe
M1 E

Select
M2 E

SELECT

DESC

Verify
M3 E

End
Exit

Submit

D
ES

C

Error
M4 E

SELECT

SQL Task

Bash Task

Error
M3 E

Init Solve
M1 E

Verify
M2 E

End
Exit

Submit

E : Execution
P : Prompter

Mi : LM with instruction Ti

Figure 1: The StateFlow models for the SQL and Bash task. Init and End state are basic
components of state machines, and states like Observe, Solve, Verify, Error can be adaptable
across various tasks. When reaching a state, a sequence of output functions defined is executed (e.g.,
Mi → E means to first call the model and then call the SQL/Bash execution). Execution outcomes
are indicated by red arrows for failures and green for successes. Transition to different states is based
on specific rules. For example, at a success ‘Submit’ command, the model transits to End state.

systems to monitor practical applications, such as traffic light control [Wagner et al., 2006]. A defined
state machine is a model of behavior that decides what to do based on current status. A state represents
one situation that the FSM might be in. Drawing from this concept, we want to use FSMs to model
the task-solving process of LLMs. When using LLMs to solve a task with multiple steps, each step of
the task-solving process can be mapped to a state. For example, to solve the InterCode [Yang et al.,
2023a] SQL task, a desired procedure is to first gather information about the tables and columns
in the database, then construct a query to retrieve required information, and finally verify the task
is solved and end the process. We can convert this workflow to a set of states (See upper left of
Figure 1). Within each state, we define a sequence of output functions, which will be called upon
entering the state. The output functions would take in the context history and output a new context to
be appended to the history, which can be a tool, an LLM with a specific instruction, or a prompter.
Based on the current state and context history, the StateFlow model would determine the next state
to transit to. The task-solving process progresses by transitioning through different states and calls to
corresponding output functions, and ends until a final state is reached. Thus, StateFlow enhances
control over the task-solving process and seamlessly integrates external tools and environments.

We evaluate StateFlow on the SQL task and Bash task from the InterCode [Yang et al., 2023a]
benchmark and the ALFWorld Benchmark [Shridhar et al., 2020]. The results demonstrate the
advantages of StateFlow over existing methods in terms of both effectiveness and efficiency. With
GPT-3.5, StateFlow outperforms ReAct by 13% on InterCode SQL task and 28% on ALFWorld,
with 5× and 3× less LLM inference cost respectively. StateFlow is orthogonal to methods that
iteratively improve future attempts using feedback based on previous trials [Shinn et al., 2023, Madaan
et al., 2024, Prasad et al., 2023]. We show that StateFlow can be combined with Reflexion [Shinn
et al., 2023], improving the success rate on ALFWorld from 84.3% to 94.8% after 6 iterations.

Our main contributions: (1) We introduce StateFlow, a new paradigm that models LLM workflows
as state machines, allowing better control and efficiency in LLM-driven task solving. We provide
guidelines and a case study on how to build with the framework. (2) We use three different open-world
tasks to illustrate the effectiveness and efficiency of StateFlow, with improvement in performance
and a 3-5× cost reduction. We also perform an ablation study to provide deeper insights into how
different states contribute to the performance of StateFlow. (3) We show that StateFlow can be
combined with iterative refining methods to further improve performance.

2 Background
Finite-state Machines We first introduce state machines, which we will use to formulate our
framework. A finite state machine (automaton) is a mathematical model of a machine that accepts a
set of words or string over an input alphabet Σ [Hopcroft et al., 2001, Carroll and Long, 1989], where
read of symbols would lead to state transitions. The automaton would determine whether the input is

2

accepted or rejected. In this work, we base our model on a transducer finite-state machine, which
is a sextuple ⟨Σ,Γ,S, s0, δ, ω⟩ [Rich et al., 2008], where Σ abd Γ are the input and output alphabet
(finite non-empty set of symbols), S is a finite non-empty set of states, ω is the output function, s0 is
the initial state, δ is the state transition function (δ : S × Σ→ S), and F is the set of final states.

3 Methodology
3.1 StateFlow
In a finite state machine, a state carries information about the machine’s history, tracking how the
state machine has reached the present situation [Wagner et al., 2006]. It is feasible to conceptualize
the task-solving process with LLMs as a state machine. Different from traditional FSMs, StateFlow
doesn’t have the concept of input tape but solely depends on the context history, which is a cumulative
record of all past interactions. StateFlow employs a set of instructions T = T1, T2, ..Ti to guide the
language model generation at different states. This is equivalent to constructing a set of LLM agents
pTi

θ with a specific instruction Ti. This dynamic prompting approach ensures that the language model
receives the most relevant guidance at each state, improving its ability to focus on a specific step.
Following the definition of finite state machines, we formulate a StateFlow model to be a sextuple
⟨S, s0,F, δ,Γ,Ω⟩ and explain each of the components under the LLM scenario:

States S A state encapsulates the current status of a running process, essentially an abstraction of the
context history. Upon entering a state, a predefined set of actions is executed. For example, entering
an error state implies the process encounters an issue, triggering the execution of predetermined
error-handling actions.

Initial state s0 The process begins at the initial state when receiving the input task/question.

Algorithm 1 StateFlow

Require: task Q, max transitions M, model
⟨S, s0,F, δ,Γ,Ω⟩, we define s.outputs to be
list of functions [ω1, . . . , ωi], ωi ∈ Ω for each
s ∈ S

1: Γ∗ ← Q
2: Counter← 0
3: s← s0
4: while s ̸∈ F do
5: for ω in s.outputs do
6: do Γ∗ ← Γ∗ + ω(Γ∗)
7: end for
8: s← δ(s,Γ∗)
9: return s,Γ∗ if Counter ≥M

10: end while
11: return s,Γ∗

Final States F A set of final states when the
process is terminated, which is a subset of S.

Output Γ We define Γ to be an infinite set of
messages (unit of text) consisting of prompts P ,
language model responses C, and feedback from
tool/environment O: Γ = {P,C,O}, which rep-
resents all possible messages that can be gener-
ated within StateFlow. We further define con-
text history to be Γ∗, which is a list of messages
that have been generated. S × Γ∗ could be view
as a snapshot of a running StateFlow [Rich
et al., 2008]. Here we distinguish static prompts
P that will added to the context directly from
instructions T that are used upon calling an LM.

State transition δ Based on the current state
and context history, the transition function
would determine which state to go to (δ : S ×
Γ∗ → S). This could mean string matching of the last input, for example, checking if ‘Error’ is in
the message from code execution. We can also explicitly employ an LLM to check for conditions and
determine what is the next state.

Output Functions Ω Here we define Ω to be a set of output functions, where a function ω takes the
whole context history and generates an output (ω : Γ∗ → Γ). The output function can be an LLM,
a tool call, or a prompter function that returns a static prompt (e.g., P, E and Mi in Figure 1). The
generated response will then be added to the context history.

The process starts at s0 when task Q is appended to the context history Γ∗ and ends when reaching
one of the final states (See Algorithm 1). We also use a counter that defines maximum turns of
transitions to prevent infinite loops. The process returns the exit state and the whole context history
in the end.

3.2 Deployment Guideline
In this section, we provide concise guidelines for deploying StateFlow, referencing the case study
in Section 3.3. StateFlow is ideal for tasks requiring a structured process, effectively transforming
abstract reasoning into a formal logical model grounded in a thorough understanding of the task. We

3

refer to Appendix A for details. 1. Defining States: We begin by mapping out the ideal workflow
of the task. Each state should represent a distinct phase or step, detailed enough to capture key
milestones and decision points. Anticipate possible scenarios, especially failure handling, commonly
addressed with an Error state. 2. Defining Output Functions: Within each state, specify the outputs
by identifying the tools to be used and crafting the instructions to send to the LLM. For instance, in
the Solve state for a bash task, you would instruct the LLM to generate a bash command, invoke
the model, and then execute the command. This exemplifies the typical sequence of interacting with
LLMs and utilizing tools. 3. Defining Transitions: State transitions can be determined in two ways:
1) Static string matching with LLM responses or tool outputs—for example, detecting an "execution
failed" message to trigger a transition. It’s common to have the LLM output follow a template to
facilitate this. 2) Using the LLM to evaluate the current status when static matching isn’t feasible,
such as sending the context history to the model to assess if the problem has been solved.

3.3 A Case Study of StateFlow Design on SQL

Question: What are the names and grades for each high schooler?

Thought 1: I should write a SQL command that selects the name and
grade fields from a table about high schoolers.

Action 1: execute[SELECT name, grade FROM high_schoolers]

Observation 1: Error: Table 'network_1.high_schoolers' doesn't exist

Thought 2: The high_schoolers table doesn't exist, I need to

check what tables are available to use.

Action 2: execute[SHOW TABLES]

Observation 2: [('friend',), ('highschooler',), (‘likes',)]

Thought 3: There is a table called `highschoolers`. I should check what
information this table contains.

Action 3: execute[DESC highschooler]

Observation 3: [('ID', …), ('name', …), (‘grade', …)]

Thought 4: I can now write a SQL command that answers the question.

Action 4: execute[SELECT name, grade FROM highschooler]

Observation 4: [('John', 12), ('Haley', 10), …]

Thought 5: The output contains the name and grade, answering the
question. I can submit this as the answer.

Action 5: submit

Figure 2: A ReAct few-shot example for the SQL
task. From the example, we can abstract a general
workflow to solve the problem.

We use the SQL task from the InterCode [Yang
et al., 2023a] benchmark to illustrate how
to identify a workflow and convert it to a
StateFlow model. The benchmark is evalu-
ated with ReAct [Yao et al., 2022b], a few-shot
prompting that requires annotations of example
trajectories of actions, thoughts, and observa-
tions. These trajectories are human-crafted, and
they reflect how one thinks is a good process to
solve the problem. See Figure 2 for one ReAct
trajectory for the SQL task: (1) the process starts
with a ‘SELECT’ query and results in an error.
(2) At an error, the next thought is to explore
the tables, so the SHOW TABLES command is
executed to retrieve all tables. (3) After getting
the tables, the next step is to explore the ‘high-
schoolers’ table with the ‘DESC’ command. (4)
With knowing what the table contains, the next
thought is to use the select query to solve the
question. (5) Finally, it confirms the output con-
tains relevant info, and submits. The trajectory demonstrates what to do based on previous history,
which is similar to state transitions in StateFlow. While the trajectory starts with a ‘SELECT’ query
but results in an error, we believe a better workflow would be to first explore the tables and use the
‘SELECT’ command. Based on this, we construct the states to be: Init -> Observe -> Solve
-> Verify -> End (See Figure 1). In each state, the model is instructed to perform a specific action.
For example, we ask the model to submit if the task is verified in state Verify and explore tables at
an error in state error.

4 Experiments
4.1 InterCode Benchmark
We experiment with 2 tasks from the InterCode benchmark [Yang et al., 2023a]: (1) SQL: The
InterCode-SQL adapts the Spider dataset for MySQL, containing 1034 task instances. For each
task, a MySQL interpreter is set up with all relevant tables within a docker container. (2) Bash:
The InterCode-Bash dataset has 200 task instances curated from the NL2Bash dataset. We use the
same hyperparameters Zhang et al. [2023a,b, 2024b], Zheng et al. [2023] for both two benchmarks.
We allow a max of 10 rounds of interaction with the environment. We evaluate with OpenAI
GPT-3.5-Turbo and GPT-4-Turbo (both with the 1106 version) and the temperature is set to 0.

Baselines. We compare StateFlow with two prompting strategies used in the InterCode benchmark.
(1) Plan & Solve [Wang et al., 2023a]: A two-step prompting strategy to first ask the model to propose
a plan and then execute it. (2) ReAct [Yao et al., 2022b]: a few-shot prompting method that prompts
the model to generate thoughts and actions. Additionally, since we observed an ideal workflow for
the SQL task in Section 3.3, we edit the ReAct prompt used in the benchmark accordingly to see
if it already improves performance, named ReAct_Refined, and evaluate it on the SQL task (See
Table 20 and 21 for details).

4

Question: What is the money rank of the tallest poker player?

Init
Prompter: Thought: I should find out what tables are available.

Action: execute[SHOW TABLES]
Execution: [('people',), ('poker_player',)]

State transition: ①② Always Observe

Observe
Model: Instruction (T1): Use the DESCRIBE [table_name] or DESC [table_name]

command to understand the structure of the relevant tables …
Thought: I need to understand the structure of the

"poker_player" table to see...
Action: execute[DESC poker_player]

Execution: [(‘Poker_Player_ID', ...), ('People_ID',...), ...]"

State transition: ② Last action is DESC Solve

Solve
Model: Instruction (T2): Based on the understanding of the tables and the

problem, formulate a SQL query with SELECT that answers the
question EXACTLY...
Thought: I should write a SQL command that selects the

money rank of the...
Action: execute[SELECT Money_Rank FROM

poker_player ORDER BY Earnings DESC LIMIT 1]"
Execution: [(58.0,)]

State transition: ③ Last action is SELECT Verify

Verify
Model: Instruction (T3): Carefully check if the output answers the question.

Make sure the output only display fields that the problem asks for...

Thought: The output does not specifically address the
tallest poker player... I need to modify...

Action: execute[SELECT Money_Rank FROM
poker_player ORDER BY Earnings DESC, Height
DESC LIMIT 1]

SQL: Observation: Error executing query: Unknown column
'Height' in 'order clause'

State transition: ④ Last Execution Fails Error

Error
Model: Instruction (T4): Please carefully read the error message to understand

what went wrong...

Thought: The error message indicates that the \"Height\"
column is not...

Action: execute[DESC people]
SQL: Observation: [('People_ID', 'int', ...), ('Nationality', ...), ...]

State transition: ⑤ Last action is DESC Solve

Solve
Model: Instruction (T2): Based on the understanding of the tables and the

problem, formulate a SQL query with SELECT that answers the
question EXACTLY...
Thought: I should write a SQL command that selects the

money rank of the...
Action: execute[SELECT p.Money_Rank FROM

poker_player p JOIN people pe ON ...]
SQL: Observation: [(68.0,)]

State transition: ⑥ Last action is SELECT Verify

Verify
Model: Instruction (T3): Carefully check if the output answers the question.

Make sure the output only display fields that the problem asks for...

Thought: The output displays the money rank of the
tallest poker player...

Action: submit
SQL: Observation: [(68.0,)]

State transition: ⑦ Last action is submit End

End
Exit

Init Observe Solve Verify End① ②

⑤ ④
⑥

⑦

Error

③

Figure 3: An example of the StateFlow execution for the SQL task. In this example, StateFlow
runs through all states to reach a final answer.

GPT-3.5 GPT-4
SR↑ Turns↓ Error↓ Cost↓ SR↑ Turns ↓ Error↓ Cost ↓

Plan & Solve 47.68 4.31 12.5 2.38 56.19 5.39 1.79 44.7
ReAct 50.68 5.58 16.3 17.7 60.16 5.26 3.87 147
ReAct_Refine 57.74 5.47 3.82 18.1 57.93 5.01 2.49 141
StateFlow 63.73 5.67 6.82 3.82 69.34 5.11 1.89 36.0

Table 1: Evaluation of the Intercode SQL dataset with GPT-3.5 and GPT-4. Best metrics of each
model is in Bold. Second-best is Underlined.

Metrics. We present metrics provided by the benchmark and we also report the LLM usage of
each method. Success Rate (SR): a task is considered a success only if the reward is 1. Error Rate:
percentage of commands that fails. Turns: number of interactions with the environment. Cost: the
cost of calling an LLM API in US dollars.

StateFlow Setup. For both tasks, we prompt the model to generate thought and action at each
turn. Each prompt consists of 3 components: (1) instruction: details of what the LLM should
perform at the current state; (2) examples: partial thought or action steps from the ReAct examples as
demonstrations; (3) response format: explain the thought-action template. These prompts are put in
the system message of each LLM agent. SQL: We construct 6 states for the SQL task (See Figure 1).
In Init, we always execute the ‘SHOW TABLES’ command. In state Observe, Solve, Verify,
Error, when the execution output is an error string, we will transit to state Error. In any of states
Solve, Verify, Error, a successful ‘DESC’ will transit to Solve; a successful ‘SELECT’ will
transit to Verify. In Verify, we use LLM to self-evaluate, which is proven useful by Weng et al.

5

GPT-3.5 GPT-4
SR↑ Turns↓ Error↓ Cost↓ SR↑ Turns ↓ Error↓ Cost ↓

Plan & Solve 23.5 4.98 25.8 0.74 20.5 5.15 21.0 9.59
ReAct 32.5 5.52 13.2 3.28 31.5 3.86 9.90 20.40
StateFlow 36.0 3.90 8.74 0.63 39.0 2.95 7.85 5.02

Table 3: Evaluation of the InterCode Bash dataset with GPT-3.5 and GPT-4. Best metrics of each
model is in Bold. Second-best is Underlined.

[2022], Xie et al. [2023]. Bash: For the bash task, we define a StateFlow model consists of 5
states Init, Solve, Verify, End, Error. The states are similar to SQL, and the transition only
depends on whether the execution is successful or not (Figure 1). See details in Appendix B.1

Results and Analysis on SQL On GPT-3.5, our refined ReAct version improves the success
rate by 7% over the original ReAct prompt. StateFlow further boosts this by 6%, with 5× less
cost. The cost difference mainly stems from prompt token usage: ReAct uses 2043 tokens with 4
example trajectories, while StateFlow ’s longest instruction is only 400 tokens. Since the LLM
processes the entire prompt iteratively, the cost accumulates. Compared to Plan & Solve, StateFlow
uses 1.6× more cost but increases the success rate by 17%. Both ReAct_Refined and StateFlow
follow a similar workflow with low error rates. On GPT-4-Turbo, StateFlow improves success by
10% over ReAct while reducing cost by 3×. For harder tasks, the success rate drops significantly
(see Appendix B.2). However, StateFlow shows greater gains on harder tasks, particularly those
involving complex joins. The state Error in StateFlow is critical, encountered in 20% of extra hard
tasks versus 9% in easy ones, underscoring its importance for difficult queries.

Result and analysis on Bash. On the bash task, StateFlow outperforms other methods while
efficiently interacting with the environment. Switching to GPT-4-Turbo has little effect on the
methods, where the two baselines even suffer from a decrement in accuracy. While the success rate is
low, the average reward is high as 0.8 (See Table 7 in Appendix). Our investigation shows that 58.5%
of the bash tasks have a positive reward greater than 0.5, while only 0.5% of the failed tasks have a
positive reward greater than 0 in the SQL task. This is because a bash task sometimes consists of two
requests (retrieve information or configure a file), making it harder to completely solve a task. Please
see more details and results in Appendix B.2 and B.3.

SR Turns Error Cost
% ↑ ↓ %↓ $↓

StateFlow 63.73 5.67 6.82 3.82
No_Verify 62.28 5.18 5.96 3.68
No_Error 58.80 5.72 11.6 4.05

No_Obsrve 57.83 6.00 17.0 4.64

Table 2: Ablation of states on the InterCode SQL
dataset with GPT-3.5-Turbo. Best metrics in Bold.
Second-best is Underlined.

Ablation of States. To understand how different
states contribute to the accuracy in StateFlow,
we perform additional ablations and analysis
with the SQL task (See Table 2). (1) We re-
move the Observe state. Note that in the origi-
nal prompt for state Solve, we also instruct the
model to call ‘DESC’ if necessary, so the model
can still explore tables, but not with an explicit
state and instruction to perform this action. (2)
We remove the error state and rely on the verify
state to correct mistakes. (3) We remove the ver-
ify state and add a sentence in Solve to prompt
the model to submit when finished. The table
shows that removing any of the states results in a drop in performance. When Verify state is
removed, StateFlow has the lowest cost and error rate, matching the idea that more corrections to
the results will be performed with an explicit Verify state. Removal of the Error state leads to a
drop of 5% in SR, and an increase in turns, error rate, and cost, showing that the Error state plays an
important role in the workflow. Removal of the Observe results in the lowest SR and highest cost,
showing that ‘Observe‘ is the most important state.

4.2 ALFWorld
ALFWorld [Shridhar et al., 2020] is a synthetic text-based game implemented in the TextWorld
environments [Côté et al., 2019]. It contains 134 tasks across 6 distinct task types: move one or
two objects (e.g., put one/two cellphone in sofa), clean/cool/heat an object (e.g., clean/cool/heat
some apple and put it in sidetable) and examine an object with lamp (e.g., look at bowl under the

6

Error

“Pick/Pick 2”

“Pick 2”

“Look”

Processed
“H

eat/C
ool/C

lean”

Init Plan Pick Done

Done

FoundFindLamp UseLamp

Process

Put End

W
rong

 P
ick

Plan
Mi

Pick
Mi E

Error
Mi E

FindLamp
Mi E

UseLamp
Mi E

Process
Mi E

Put
Mi E

End
Exit

E : Environment

Mi : LM with instruction Ti

Figure 4: The StateFlow model for ALFWorld. For Plan, we call the LLM directly. For other
states (except Init and End), we first call LLM with an instruction and then call the environment to
get feedback. In state Pick, when the correct object is picked, we transit to different states based on
task type. For states Pick, Process, FindLamp, UseLamp, Put, we stay in the current state if
the corresponding task is not completed, represented by gray semi-circle arrows.

Pick Clean Heat Cool Look Pick 2 All↑ Cost $ ↓
ReAct 83.3 36.6 53.6 58.7 63 41.2 55.5 6.6

ALFChat (2 agents) 87.5 60.2 44.9 65.1 38.9 43.1 58.2 6.9
ALFChat (3 agents) 84.7 60.2 69.6 77.8 68.5 41.2 67.7 6.1

StateFlow 91.7 83.9 85.5 79.4 92.6 62.7 83.3 2.6

Table 4: Performance and cost of StateFlow and other methods on ALFWorld benchmark with
GPT-3.5-Turbo. We report average success rate of 3 attempts.

desklamp). The agent is required to navigate around a household setting and manipulate objects
through text actions (e.g., go to desk 1, take soapbar from toilet 1), and the environment will give
textual feedback after each action. We experiment with GPT-3.5-Turbo (1106). For all experiments,
we follow AutoGen [Wu et al., 2023a] to use the BLEU metric to map output to the valid action
with the highest similarity. Our implementation is also based on AutoGen1. More details are in
Appendix C.1.

Baselines. We evaluate with: 1. ReAct [Yao et al., 2022b]: We use the two-shot prompt from the
ReAct. Note there is a specific prompt for each type of task. 2. ALFChat (2 agents) [Wu et al.,
2023a]: A two-agent system setting from AutoGen consisting of an assistant agent and an executor
agent. ALFChat is based on ReAct, which modifies the ReAct prompt to follow a conversational
manner. 3. ALFChat (3 agents): Based on the 2-agent system, it introduces a grounding agent to
provide commonsense facts whenever the assistant outputs the same action three times in a row.

StateFlow Setup. The StateFlow model is shown in Figure 4. The process starts at Plan, where a
plan to solve the task is generated. We note a similar planning is also used in the ReAct prompting.
Then, we transit to Pick to instruct the model to search for the target object and take it. We stay in
Pick until the target object is picked. We identify the target object by calling an LLM at the beginning
and use it as ground truth. If a wrong object is picked, we go to the Pick_Error state, where the
wrong object is put down. If the correct object is picked, we transit to the next state (Process, Put
or FindLamp) based on the task type. We follow the ReAct template to prompt the model to generate
thought and action each time. Also, we use task-specific planning examples and instructions in Plan
and Process. See details in Appendix C.1.

Results and analysis. Table 4 shows the results for the ALFWorld benchmark. We record the
accuracy for each type of task and also the cost for LLM inference. We can see that StateFlow
achieves the best performance on all 6 tasks, and significantly outperforms all baseline methods on
the whole dataset. It improves over ReAct by 28% and ALFChat (3 agents) by 15%. At the same
time, StateFlow uses 2.5x less cost. With StateFlow, we decompose a long prompt into shorter

1We use AutoGen v0.2.17.

7

but more concise prompts to be used when entering a state. Thus, we reduce the prompt tokens used
while making the model focus on a sub-task for better responses. We refer to Appendix C.2 for more
analysis of the results.

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s

R
at

e

0 1 2 3 4 5 6

Interations

5

10

15

20

25

C
um

ul
at

iv
e

C
os

t $

StateFlow + Reflexion
ReAct + Reflexion

Figure 5: StateFlow and ReAct inte-
grated with Reflexion. StateFlow can
further be improved with Reflexion, with
much less cost incurred than ReAct.

Integration with Reflexion. We incorporate
StateFlow with Reflexion [Shinn et al., 2023], show-
ing that StateFlow can be combined with iterative
refining methods to improve its performance. Reflex-
ion reflects from unsuccessful trials and stores the
feedback in memory for subsequent trials. We can
either use ReAct or StateFlow as the basic executor.
We run StateFlow +Reflexion and ReAct+Reflexion
for 6 iterations, until both ReAct and StateFlow stop
performance improvement. In Figure 5, StateFlow
+Reflexion improves from 84% to 94.8%, with the
total cost increased from $2.9 to $8.6. While Re-
Act+Reflexion improves from 55.2% to 74.6%, the
total cost for it increased from $7.1 to $27.9.

5 Related work
Different prompting frameworks have been proposed
to enhance LLM reasoning processes [Zhang et al.,
2023d, Wu et al., 2022, Sel et al., 2023, Ning et al.,
2023, Zhou et al., 2022, Zhang et al., 2023c]. Tree
of thoughts (ToTs) [Yao et al., 2023] models the
reasoning process as a tree and employs DFS or
BFS search to explore sequential thoughts. Tree-of-
Thought by [Long, 2023] models the thoughts as trees but relies on a rule-based verifier to deter-
mine if a thought is valid and performs refining or backtracking based on a controller. Graph of
Thoughts [Besta et al., 2023] models the process as a directed graph and defines 3 types of transforma-
tions at a node in the graph: aggregation, refining, and generation. These frameworks allow control
over LLM’s intermediate steps, but they are not well-designed for LLM workflows with external
tools and environments. StateFlow considers external feedback and also allows the design of
complex patterns for more difficult tasks, where any state can be connected with the definition of state
transitions. The step-wise search from ToTs [Yao et al., 2023] can easily be applied to StateFlow.
When we call LLM in a state, we can generate several responses and employ an evaluator to select
the best one.

LLMs interacting with environments [Deng et al., 2023, Yao et al., 2022a, Shridhar et al., 2020]
and tools [Paranjape et al., 2023, Gou et al., 2023, Schick et al., 2023, Gao et al., 2023, Yang et al.,
2023b, Zhang et al., 2024a, Zou et al., 2024] have been explored. ReAct [Yao et al., 2022b] uses
few-shot prompting for action generation, with iterative refining [Sun et al., 2024, Prasad et al., 2023],
reflection [Shinn et al., 2023, Madaan et al., 2023], and state machine adaptation [Liu and Shuai,
2023] improving performance. Extending ToTs and RAP [Hao et al., 2023], [Zhou et al., 2023]
proposes an LLM-based tree search incorporating reflection and feedback. These methods add costs
from interaction or search processes, while StateFlow is complementary and can integrate with
these techniques for further performance enhancement.

6 Conclusion
In this paper, we propose StateFlow, a novel problem-solving framework to use LLMs for complex,
open-world tasks with enhanced efficiency and control. StateFlow grounds the progress of task-
solving with states and transitions, ensuring clear tracking and management of LLMs’ responses
and external tools and environment feedback. We can define a sequence of actions within each state
to solve a sub-task. StateFlow requires humans to have a good understanding of a given task and
build the model and prompts. An intriguing avenue for further research lies in the automation of
StateFlow model construction and prompting writing, leveraging LLMs to dynamically generate
and refine workflows. Further, the idea of employing active learning strategies to iteratively adjust or
"train" a StateFlow, adding or removing states automatically based on task performance, presents a
promising path toward maximizing efficiency and adaptability in complex task solving.

8

Acknowledgements

We would like to thank Hanjun Dai and Eric Zelikman for their reviews and helpful feedback. We
also thank Yu Tong (Tiffany) Ling from MathGPTPro for her help in creating demonstration figures.

References
Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna

Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

John Carroll and Darrell Long. Theory of finite automata with an introduction to formal languages.
1989.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Computer Games: 7th Workshop, CGW 2018, Held
in Conjunction with the 27th International Conference on Artificial Intelligence, IJCAI 2018,
Stockholm, Sweden, July 13, 2018, Revised Selected Papers 7, pages 41–75. Springer, 2019.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070, 2023.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. Language model
cascades. arXiv preprint arXiv:2207.10342, 2022.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
Critic: Large language models can self-correct with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738, 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages,
and computation. Acm Sigact News, 32(1):60–65, 2001.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Jia Liu and Jie Shuai. Smot: Think in state machine. arXiv preprint arXiv:2312.17445, 2023.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

George H Mealy. A method for synthesizing sequential circuits. The Bell System Technical Journal,
34(5):1045–1079, 1955.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented
language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

9

Edward F Moore et al. Gedanken-experiments on sequential machines. Automata studies, 34:
129–153, 1956.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
language models can do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal,
and Tushar Khot. Adapt: As-needed decomposition and planning with language models. arXiv
preprint arXiv:2311.05772, 2023.

Elaine Rich et al. Automata, computability and complexity: theory and applications. Pearson
Prentice Hall Upper Saddle River, 2008.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Lu Wang, Ruoxi Jia, and Ming Jin. Algo-
rithm of thoughts: Enhancing exploration of ideas in large language models. arXiv preprint
arXiv:2308.10379, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in Neural Information Processing
Systems, 36, 2024.

Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wolstenholme. Modeling software
with finite state machines: a practical approach. CRC Press, 2006.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023a.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023b.

Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language models are reasoners
with self-verification. arXiv preprint arXiv:2212.09561, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023a.

Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina, Michael Terry, and
Carrie J Cai. Promptchainer: Chaining large language model prompts through visual programming.
In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–10,
2022.

Yiran Wu, Feiran Jia, Shaokun Zhang, Qingyun Wu, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat
Lee, Richard Peng, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4. arXiv preprint arXiv:2306.01337, 2023b.

10

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. arXiv preprint arXiv:2306.14898,
2023a.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. arXiv preprint arXiv:2306.15626, 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. Advances in Neural Information Processing
Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Shaokun Zhang, Feiran Jia, Chi Wang, and Qingyun Wu. Targeted hyperparameter optimization with
lexicographic preferences over multiple objectives. In The Eleventh international conference on
learning representations, 2023a.

Shaokun Zhang, Yiran Wu, Zhonghua Zheng, Qingyun Wu, and Chi Wang. Hypertime: Hyperpa-
rameter optimization for combating temporal distribution shifts. arXiv preprint arXiv:2305.18421,
2023b.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. Ideal: Influence-driven selective annotations empower in-context learners in large language
models. arXiv preprint arXiv:2310.10873, 2023c.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun
Wu. Training language model agents without modifying language models. arXiv preprint
arXiv:2402.11359, 2024a.

Shaokun Zhang, Xiawu Zheng, Guilin Li, Chenyi Yang, Yuchao Li, Yan Wang, Fei Chao, Mengdi
Wang, Shen Li, and Rongrong Ji. You only compress once: Towards effective and elastic bert
compression via exploit-explore stochastic nature gradient. Neurocomputing, page 128140, 2024b.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with large
language models. arXiv preprint arXiv:2308.04371, 2023d.

Xiawu Zheng, Chenyi Yang, Shaokun Zhang, Yan Wang, Baochang Zhang, Yongjian Wu, Yunsheng
Wu, Ling Shao, and Rongrong Ji. Ddpnas: Efficient neural architecture search via dynamic
distribution pruning. International Journal of Computer Vision, 131(5):1234–1249, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625, 2022.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan Jia. Poisonedrag: Knowledge poisoning attacks
to retrieval-augmented generation of large language models. arXiv preprint arXiv:2402.07867,
2024.

11

A Deployment Guide

We provide guidelines for deploying StateFlow, with reference to the case study in Section 3.3.
In general, StateFlow is designed for tasks that require a designated process to solve. Essentially,
creating a state machine involves transforming abstract control flow or human reasoning into a
formalized logical model, grounded in a comprehensive understanding of the task at hand.

Defining States To define the states, we start with identifying an ideal workflow of a given task.
A state should represent a distinct phase or step in the process, defined with enough granularity to
capture key milestones and decision points. With the basic workflow in mind, we need to think about
possible situations during the process. Specifically, handling failures is an important part of the state
machine, where a Error state is commonly used to handle failures. A set of fine-grained states might
lead to better control over a problem-solving process. For example, it is possible to identify different
types of errors and use different ways to handle them, but this adds complexity in defining the model
as a trade-off.

Defining output functions Within each state, we need to define a set of outputs. In practice, we
need to identify the set of tools we will use, and what instructions we should send to the LLM. For
example, in the Solve state defined for the bash task, we first send an instruction that asks for a bash
command, call the model, and then execute the bash command. This is a typical sequence of sending
instructions to LLMs and then utilizing tools.

Defining Transitions We identify two possible state transitions: 1. A static string matching with
the LLM responses or tool executions. For example, the tool execution might return a specific string
like "execution failed", which can be used to determine the transition. Also, it is common to instruct
LLMs to follow a certain template to generate outputs, so we can extract strings from the response. 2.
Use LLM for an explicit checking of the current status when previous context is too random to be
used for string matching. For example, we can send the context history to a model to ask whether a
given problem is solved.

B InterCode

B.1 Experiment Details

For ReAct and Plan & Solve, we use the code from InterCode repository2. The StateFlow models
for the ablation study on the InterCode SQL task are in Figure 8 and the full metrics for the ablation
study are shown in Table 8. See Figure 9 for a bash example with StateFlow. We include also two
examples of ReAct and ReAct_Refined in Table 20 and 21 for comparison.

For the InterCode benchmark, we recorded different metrics provided by the benchmark and we also
recorded the LLM usage of each method. Additional metrics: (1) Reward: For SQL, the reward
is calculated by Intersection over Union (IoU) of the latest execution output generated against the
gold output. For Bash, a customized function is used to evaluate the performance against file system
modifications and the latest execution output. (2) Token Count: We also recorded the prompt tokens
(input), and completion tokens (output) used by each method. See Table 6 and Table 7 for detailed
comparisons.

See Table 16 and 17 for the instructions used for SQL StateFlow model and Table 18 and 19 for
instructions used for Bash. A uniform prompt that introduces the overall environment is put in the
system message, and a specific prompt is put in the head of the user message.

Code is available at https://github.com/kaebvcidn/StateFlow.

B.2 Additional Analysis

The additional analysis below is based on results with the GPT-3.5-Turbo model.

SQL. The SQL dataset consists of different levels of difficulties (See Table 5). The success rate
drops with harder tasks, and the difference in SR between easy and extra hard tasks is as great as 50%
with StateFlow. Harder queries usually pose several constraints on the data and require looking

2https://github.com/princeton-nlp/intercode

12

across tables and joining information from them (Extra hard example: “Which distinctive models are
produced by maker with the full name General Motors or weighing more than 3500?". Easy example:
“Give the city and country of the Alton airport."). However, StateFlow greatly improves over other
baselines on hard and extra tasks, leading to 20% improvement compared to ReAct. Since harder
tasks require information across tables, they are more likely to result in errors. We collected the states
traversed for tasks that are solved successfully, and found that only 9% of the easy tasks go over
state Error, while 20% of the extra hard tasks have state Error visited. This indicates that the state
Error in StateFlow plays an important role in the performance gain in hard tasks.

Easy Medium Hard Extra All
Plan & Solve 80.6 49.1 29.1 13.2 47.7

ReAct 72.2 57.6 35.6 15.7 50.7
ReAct_Refined 77.0 66.1 44.8 19.9 57.7

StateFlow 87.9 62.9 59.8 36.7 63.7
Table 5: Success Rate of different level of difficulties on InterCode SQL with GPT-3.5-Turbo.

Bash A Bash task consists of one or both of the following two requests: 1. retrieving information
that can be acquired through output (e.g, “find files in /workspace directory which are modified 30
days ago") and 2. changing configuration of a file/folder (e.g., “change permissions for all PHP
files under the /testbed directory tree to 755") [Yang et al., 2023a]. To complete a Bash task, all
required commands need to be correct, making it difficult to achieve a reward of 1. We collect the
rewards from the failed bash tasks of StateFlow and find that 58.5% of the bash tasks have a positive
reward greater than 0.5. For SQL, only 0.5% of the failed tasks have a positive reward greater than
0. This shows that many of the tasks are partly solved. In Section B.3, the results of “Try Again"
show that signals from the environment are very useful and help the model understand how much
process it has made to solve the task. Currently, our StateFlow model designed for bash follows a
simple workflow of solve→verify. However, since the bash task consists of two distinct requests as
mentioned, we believe it is possible to improve the performance with a more complex StateFlow
model, with different states constructed for each request.

B.3 Additional Results

SF_Chat We present the results of SF_Chat, an alternative version of StateFlow, in Table 6
and 7. Instead of creating individual LLM agents with specific instructions, we directly append
that instruction to context history, imitating a user’s reply in a conversation. For this alternative,
we construct the context history in a conversational manner. The observations and instructions are
appended as user messages, and replies from models are appended as assistant messages. We can
see that SF_Chat has a similar performance to StateFlow. By directly appending the instructions,
SF_Chat takes fewer turns to finish the task and has a lower error rate than StateFlow. In trade-off,
the cost of SF_Chat is higher. We note that SF_Chat might not be suitable for tasks that require
many turns of interactions (e.g., ALFWorld), because the cost would be high with the instruction
prompts accumulated in the context history.

Try Again We also include results of another baseline “Try Again" from InterCode Benchmark with
GPT-3.5-Turbo. Try Again is an iterative feedback setup from InterCode to mimic human software
development [Yang et al., 2023a]. In this setup, the model can receive a ground-truth reward from
the environment at each execution of the command and stops when the task is solved correctly or
reaches max turns. Then the max reward from all the executions is retrieved. We note that this is
an oracle setting not used in StateFlow and other baselines. In our setting, we use the model to
determine when to stop and submit the answer, and only the result before submission is evaluated.
From Table 6, we can see that Try Again doesn’t work well in the SQL task, and that the performance
is slightly worse than our refined version of ReAct. It also has a high error rate of 34.73%. However,
with the bash task, Try Again significantly outperforms other methods. This discrepancy indicates the
difference in the nature of the two tasks. In the SQL task, the reward is mostly 0 or 1. The observation
commands such as "DESC" and a wrong "SELECT" command receive 0, and there are only a few
cases where the "SELECT" command is partially correct to receive a partial reward. In this case, the
reward signal is not very useful. However, the bash tasks from InterCode are explicitly selected with
utilities ≥ 4 (require several commands), and each correct command can receive a partial reward.

13

SR Reward Turns Error Cost Average Average
% ↑ ↑ ↓ % ↓ $ ↓ p-token ↓ c-token ↓

G
PT

-3
.5

Plan & Solve 47.68 0.4893 4.31 12.46 2.38 1998 154
ReAct 50.68 0.5257 5.58 16.33 17.73 16456 348

ReAct_Refined 57.74 0.5928 5.47 3.82 18.05 16782 340
Try Again∗ 56.38 0.5762 7.62 34.73 6.61 6098 145
StateFlow 63.73 0.6637 5.67 6.82 3.82 3128 281
SF_Chat 60.83 0.6356 5.38 5.01 5.59 4965 220

G
PT

-4

Plan & Solve 56.19 0.5793 5.39 1.79 44.7 3065 416
ReAct 60.16 0.6277 5.26 3.87 147 12951 419

ReAct_Refined 57.93 0.6104 5.01 2.49 141 12377 421
StateFlow 69.34 0.7223 5.11 1.89 36.0 2700 261
SF_Chat 70.41 0.7329 4.84 1.20 49.2 3907 283

Table 6: Results of the Intercode SQL with GPT-3.5 and GPT-4 with all metrics. We also include
SF_Chat, an alternative of StateFlow, and another baseline Try Again with an oracle setting(∗).
Best metrics of each model is in Bold. Second-best is Underlined.

SR Reward Turns Error Cost Average Average
%↑ ↑ ↓ %↓ $↓ p-token ↓ c-token ↓

G
PT

-3
.5

ReAct 32.5 0.7674 5.52 13.23 3.28 15529 442
Plan & Solve 23.5 0.7472 4.98 25.78 0.74 3232 225

Try Again∗ 49.5 0.8453 6.88 19.54 0.83 3833 159
StateFlow 36.0 0.8033 3.90 8.74 0.63 2667 232
SF_Chat 37.0 0.8011 3.04 9.95 0.79 3658 148

G
PT

-4

ReAct 31.5 0.7724 3.86 9.90 20.40 9027 392
Plan & Solve 20.5 0.7280 5.15 21.03 9.59 3460 444

StateFlow 39.0 0.8059 2.95 7.85 5.02 1835 225
SF_Chat 37.5 0.8015 2.86 7.27 7.04 3113 135

Table 7: Results of the Intercode Bash with GPT-3.5 and GPT-4 with all metrics. We also include
SF_Chat, an alternative of StateFlow, and another baseline Try Again with an oracle setting(∗).

SR % Reward Turns Error % Cost $ Average Average
↑ ↑ ↓ ↓ ↓ p-token ↓ c-token ↓

StateFlow 63.73 0.6637 5.67 6.82 3.82 3128 281
No_Verify 62.28 0.6473 5.18 5.96 3.68 3070 244
No_Error 58.80 0.6091 5.72 11.58 4.05 3280 318

No_Observe 57.83 0.6041 6.00 16.95 4.64 3816 337

Table 8: Ablation of states on the SQL dataset with GPT3.5-Turbo with all metrics. Best metrics in
Bold. Second-best is Underlined.

Thus, the reward signal can help the model understand how much progress it has made and provide
guidance, leading to a significant improvement in performance.

C ALFWorld

C.1 Experiment Details

For ALFWorld, we use ReAct from Reflexion3, which has the same implementation as the original
ReAct repository. For ALFChat, we used the code from AutoGen Evaluation4. We allow a maximum

3https://github.com/noahshinn/reflexion
4https://github.com/qingyun-wu/autogen-eval

14

of 50 rounds of interactions with the environment. For ReAct and StateFlow, we follow a text
completion manner to use the chat-based model GPT-3.5-Turbo. In this experiment, we follow
Reflexion to put all instructions and interaction history in one user message when querying the model.
The ALFChat is essentially a chat version of ReAct, where the examples are converted into a history
conversation between the ‘user’ and ‘assistant’.

Details on StateFlow Setup We refer to Table 13, 14, 15 for the prompts we used. The type of
input task, as a prior knowledge, is used in all methods. ReAct and ALFChat use different few-shot
examples for different types of tasks. Similarly, we have different planning examples for different
tasks, as shown in Table 13. In Process, we also have three different prompts corresponding to heat,
cool, and clean. In Figure 7, we illustrate activated states for different tasks. As discussed in the main
paper, we identify the object of interest by calling the same LLM at the beginning of the task. In Pick,
only when we detect a string match of “You pick up A" (A is the object needed), we would transit the
next state. Similarly, in FindLamp, we transit to UseLamp only if a string “desklamp” is matched. In
Process, we match the pattern “You heat/cool/clean" to proceed. Note that this feedback is from the
environment. Finally at state Put and UseLamp, we transit to End only if the task succeeds or fails. A
task is considered success if we receive “Done=True" from environment, and considered fail if the
same response is generated by the LLM for three consecutive rounds (following AutoGen). In this
experiment, the environment feedback “Done" is available to all methods to terminate the process
upon success. Please see Figure 10 for an example.

C.2 Additional Analysis

To understand the failure reasons of StateFlow, we manually went through the 23 failed tasks of
one attempt and classified them based on the ending state (See Table 9). Ending in different states
can show how much progress has been made on a task. For example, a task ending in Cool implies
that the correct object is being picked, but not cooled correctly. From the table, we can see that 15/21
tasks end in Pick. This suggests that the most difficult part is to go around the household to find the
correct object. For the failed tasks that ended in Pick, we summarize three failure reasons: 1. The
LLM hallucinates about taking the target object from locations where it does not exist. 2. The LLM
takes the wrong object. 3. The LLM gets stuck in loops between two locations.

Ending State Pick/Find Put Cool Heat FindLamp Error All

StateFlow (7-state) 15 2 2 1 1 0 21
StateFlow (10-state) 8 3 0 0 0 2 13

Table 9: Count of failed ALFWorld tasks that end in different states. We also include the StateFlow
model with 10 states for comparison.

C.3 Additional Experiments

Adding more states to StateFlow In the states defined for ALFWorld, we allow different types
of actions to be performed. For example, in Pick, the model is instructed to either go around the
household with the ‘go to {recept}’ command, open receptacles with ‘open’, and take an object with
‘take {obj} from {recept}’ command (the format annotation is adopted from Prasad et al. [2023]).
We further divide these actions and add 3 more states and test its performance (See Figure 6). In
Figure 10, we show the results of StateFlow, and StateFlow with 3 more states. The overall
performance increases from 83.3% to 88.8%, with 15% less cost. Table 9 indicates that the primary
contribution to performance improvement comes from dividing the Pick action into Find and Take.

Additional results with GPT-3.5-Instruct. In our experiments, we use the latest chat models
(e.g., GPT-3.5-Turbo) because they are more powerful and have been studied extensively lately.
Original ReAct was tested on completion model text-davicin-002, which has been depreciated. The
recommended replacement is GPT-3.5-instruct5. We also tested ReAct and StateFlow on GPT-3.5-
turbo-instruct, and find that the performance drops for both methods (see Figure 12). Compared to
results on GPT-3.5-Turbo, ReAct has a drop of 4% and StateFlow has a drop of 9%.

5https://platform.openai.com/docs/deprecations

15

Pick Clean Heat Cool Look Pick 2 All Cost $

StateFlow (7-state) 91.7 83.9 85.5 79.4 92.6 62.7 83.3 2.6
StateFlow (10-state) 100 92.5 94.2 87.3 90.7 58.8 88.8 2.2

Table 10: Performance and cost of StateFlow and StateFlow with 3 more states. We report an
average success rate of 3 attempts. More states and division of tasks can further improve performance
at even a lower cost.

ALFChat (3 agents) StateFlow
Acc (%) Cost ($) Acc (%) Cost ($)

Mistral-7b 1.5 0.708 6 2.03
Llama3-8b 50.7 0.52 62.7 0.38
Llama3-70b 83.6 2.53 94 1.83

Table 11: Accuracy and cost comparison on ALFWorld with different open-source models. For this
experiment, we compare with the strongest baseline and run the test one time.

Pick Clean Heat Cool Look Pick 2 All Cost $

ReAct 62.5 41.9 78.3 57.1 38.9 23.5 51.5 10
StateFlow 87.5 66.7 87 57.1 77.8 64.7 73.9 5.0

Table 12: Performance and cost on ALFWorld with GPT-3.5-instruct. Here we report success rate of
only one attempt. The performances of both methods drop compared to result with GPT-3.5-Turbo,
on which ReAct achieves 55.5% and StateFlow achieves 83.3% in overall success rate.

Addition results with open-source models We further test StateFlow and ALFChat with 3 agents
on 3 open-source models: Mistral-7b, Llama-8b and Llama3-70b. We observe that StateFlow
outperforms 3-agent ALFChat with 3 agents across the open-source models. It is worth noting that
Mistral-7b struggles to complete the task using both methods, suggesting the model itself is not
equipped to handle tasks within ALFWorld. However, Llama3-70b with StateFlow can hit a 94%
accuracy, surpassing the performance of GPT-3.5 Turbo.

Error

“Pick/Pick 2”

“Pick 2”

“Look”

Processed

“H
eat/C

ool/C
lean”

Init Plan Find Take

D
one

DoneFoundFindLamp UseLamp

ProcessGoBefore
Act

GoTo

Found

End

W
rong

 P
ick

Put

Figure 6: StateFlow model for ALFWorld with 3 addition states. The additional states are marked
blue. In states Pick, Process and Put of the original model, there are actually two actions to be
performed: 1. go to some receptacle. 2. take/process/put an object. Here, we further split it, using
one state for one action.

16

Error

Processed

Init Plan Pick Done

Process

Put End

W
rong

 P
ick

Error

“Pick 2”
Init Plan Pick DonePut End

W
rong

 P
ick

Error

Init Plan Pick

Found

Done

FindLamp UseLamp

End

W
rong

 P
ick

Task is Heat, Cool or Clean

Task is Pick or Pick 2

Task is Look

Figure 7: Active states for different type of tasks in ALFWorld. Only 4-6 states are active for a single
task. States Plan, Pick, Error and Put are sharable across tasks.

17

No Error State

Init Observe Solve
SELECT

DESC

Verify End

SELECT

Always DESC Submit

Er
ro

r
SE

LE
C

TError

Init Solve
SELECT

DESC

Verify End

D
ESC

Error

Error

SELECT

Always

No Observe State

Submit

No Verify State

Init Observe Solve End

Error

S
U

C
C

ES
S

Error

Error

Always DESC Submit

Figure 8: StateFlow model for the ablation study with InterCode SQL task.

Question: Convert the first 16 characters in "/testbed/
textfile7.txt" to a single hexadecimal value.

Init

State transition: ① ALWAYS Solve

Solve
Model: Instruction: Given the question, please give a BASH command to

solve it…

Action: execute[head -c 16 /testbed/textfile7.txt |
xxd -p -c 16]

Thought: I can use the `head` command to extract
the first 16 characters of the file and then
use `xxd` to convert it to a single
hexadecimal value.

SQL: Observation: /bin/bash: line 1: xxd: command not found

State transition: Execution Error Error

Error
Model: Instruction: Please carefully check your last command

and output to understand what went wrong...
Thought: It seems that the `xxd` command is not

available. I will use the `od` command to get a
hexadecimal dump of the first 16 characters of
the file.

Action: execute[od -A n -t x1 -N 16 /testbed/textfile7.txt
| awk '{$1=$1;print}' | tr -d ' ']

SQL: Observation: 546578742066696c6520372077697468

State transition: Execution Success Verify

Verify
Model: Instruction: Carefully check if the question is answered.

Please check if the desired tasks have been performed…
Thought: The first 16 characters in \"/testbed/

textfile7.txt\" have been successfully converted
to a single hexadecimal value.

Action: submit
SQL: 546578742066696c6520372077697468

State transition: Last action is submit End

End
Exit

Init Solve Verify End①

②

④

Error
③

Figure 9: Example of StateFlow on Bash task.

18

Household setting: You are in the middle of a room.
Looking quickly around you, you see a cabinet 6, a cabinet
5, a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 3, a countertop 2, a
countertop 1, a drawer 3, a drawer 2, a drawer 1, a fridge 1,
a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a shelf
1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a
stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: heat some apple and put it in garbagecan.

Init

State transition: Always Plan

Plan
Model: Instruction: You are given a household setting and a task to

accomplish. Please make a plan to complete the task ...
Plan: I need to 1. search around for an apple and

take it, 2. go to microwave and heat it, 3. go
to garbagecan and put it down. An apple is
more likely to appear in fridge (1), countertop
(1-3), diningtable (1), drawer (1), cabinet (1-6),
garbagecan (1). I can check one by one,
starting with fridge 1.

State transition: ① Always Pick

Pick
Model: Instruction: Please follow the plan to check receptacles in the

household one by one to find the object of interest....

Action: go to fridge 1
ALFWorld: Observation: The fridge 1 is closed.

State transition: ② No Pick Pick

Pick
Model: Instruction: Please follow the plan to check receptacles in the

household one by one to find the object of interest....

Action: open fridge 1
ALFWorld: Observation: You open the fridge 1. The fridge 1 is

open. In it, you see a bowl 1, a pan 1, a plate 1, and a
tomato 1.

State transition: ③ No Pick Pick

Pick
Model: Instruction: Please follow the plan to check receptacles in the

household one by one to find the object of interest....
Thought: I didn't find the apple in the fridge. I should

check the next possible location.
Action: go to countertop 1

ALFworld: Observation: On countertop 1, you see a apple 1, a egg

1, a mug 2, a soapbottle 2, a spoon 3, and a vase 2.

State transition: ④ No Pick Pick

Pick
Model: Instruction: Please follow the plan to check receptacles in the

household one by one to find the object of interest....
Thought: Thought: I found the apple (1) on the

countertop. I need to take it.
Action: take apple 1 from countertop 1

ALFWorld: Observation: You pick up apple 1 from countertop 1.

State transition: ⑤ Correct object picked Solve

Heat
Model: Instruction: You now take the object of interest with you. Now, please

go to the microwave to heat the object...

Action: go to microwave 1
ALFWorld: Observation: The microwave 1 is closed.

State transition: ⑥ Object Not heated Heat

Heat
Model: Instruction: You now take the object of interest with you. Now, please

go to the microwave to heat the object...

Action: open microwave 1
ALFWorld: Observation: You open the microwave 1. The

microwave 1 is open. In it, you see nothing.

State transition: ⑦ Object Not heated Heat

Heat
Model: Instruction: You now take the object of interest with you. Now, please

go to the microwave to heat the object...

Action: heat apple 1 with microwave 1
ALFWorld: Observation: You heat the apple 1 using the

microwave 1.

State transition: ⑧ Object heated Put

Put
Model: Instruction: You now take the object of interest with you. Now, please

go to the required place to put down the object.

Action: go to garbagecan 1
ALFWorld: Observation: On the garbagecan 1, you see a

papertowelroll 1, and a potato 1.

State transition: ⑨ Task not done Put

Put
Model: Instruction: You now take the object of interest with you. Now, please

go to the required place to put down the object.

Action: put apple 1 in garbagecan 1

ALFWorld: Task success

State transition: ⑩ Task success End

End
Exit

Figure 10: Example of StateFlow on ALFWorld.

19

pick_and_place ## Examples
Your task is to: put some spraybottle on toilet.
Plan: I need to 1. search around for spraybottle and take it. 2. go to toilet and put it down. A spraybottle is more
likely to appear in cabinet (1-4), countertop (1), toilet (1), sinkbasin (1-2), garbagecan (1). I can check one by
one, starting with cabinet 1.
Your task is to: find some apple and put it in sidetable.
Plan: I need to 1. search around for an apple and take it. 2. go to sidetable and put it down. An apple is more
likely to appear in fridges (1), diningtables (1-3), sidetables (1), countertops (1), sinkbasins (1), garbagecan (1).
I can check one by one, starting with fridge 1.

pick_clean_then_place
You must use the sinkbasin to clean the object.
Examples
Your task is to: put a clean lettuce in diningtable.
Plan: I need to 1. search around for some lettuce and take it, 2. go to a sinkbasin and clean it, 3. go to diningtable
and put it down. First I need to find a lettuce. A lettuce is more likely to appear in fridge (1), diningtable (1),
sinkbasin (1), stoveburner (1-3), cabinet (1-13). I can check one by one, starting with fridge 1.
Your task is to: clean some apple and put it in sidetable.
Plan: I need to 1. search around for some apple and take it, 2. go to a sinkbasin and clean it, 3. go to sidetable
and put it down. First I need to find an apple. An apple is more likely to appear in fridges (1), diningtable (1-3),
sidetable (1), countertop (1), sinkbasin (1), garbagecan (1). I can check one by one, starting with fridge 1.

pick_heat_then_place ## Examples
Your task is to: heat some egg and put it in diningtable.
Plan: I need to 1. search around for an egg and take it, 2. go to microwave and heat it, 3. go to diningtable and
put it down. An egg is more likely to appear in fridge (1), countertop (1-3), diningtable (1), stoveburner (1-4),
toaster (1), garbagecan (1), cabinet (1-10). I can check one by one, starting with fridge 1.
Your task is to: put a hot apple in fridge.
Plan: I need to 1. search around for an apple and take it, 2. go to microwave and heat it, 3. go to fridge and put it
down. An apple is more likely to appear in fridge (1), diningtable (1), coffeetable (1), drawer (1), cabinet (1-13),
garbagecan (1). I can check one by one, starting with fridge 1.

pick_cool_then_place ## Examples
Your task is to: cool some pan and put it in stoveburner.
Plan: I need to 1. search around for a pan and take it, 2. go to fridge and cool it, 3. go to stoveburner and put
it down. An pan is more likely to appear in stoveburner (1-4), sinkbasin (1), diningtable (1), countertop (1-2),
cabinet (1-16), drawer (1-5). I can check one by one, starting with stoveburner 1.
Your task is to: put a cool mug in shelf.
Plan: I need to 1. search around for a mug and take it, 2. go to fridge and cool it, 3. go to shelf and put it down.
A mug is more likely to appear in countertop (1-3), coffeemachine (1), cabinet (1-9), shelf (1-3), drawer (1-9). I
can check one by one, starting with countertop 1.

look_at_obj ## Examples
Your task is to: look at bowl under the desklamp.
Plan: I need to 1. search around for a bowl and take it, 2. find a desklamp and use it. First I need to find a bowl.
A bowl is more likely to appear in drawer (1-3), desk (1), sidetable (1-2), shelf (1-5), garbagecan (1). I can check
one by one, starting with drawer 1.
Your task is to: examine the pen with the desklamp.
Plan: I need to 1. search around for a pen and take it, 2. find a desklamp and use it. First I need to find a pen.
A pen is more likely to appear in drawer (1-10), shelf (1-9), bed (1), garbagecan (1). I can check one by one,
starting with drawer 1.

pick_two_obj ## Examples
Your task is to: put two creditcard in dresser.
Plan: I need to 1. search around for a creditcard and take it, 2. go to dresser and put it down. 3. find another
creditcard, 4. go to dresser and put it down. First I need to find the first creditcard. A creditcard is more likely to
appear in drawer (1-2), coutertop (1), sidetable (1), diningtable (1), armchair (1-2), bed (1). I can check one by
one, starting with drawer 1.
Your task is to: put two cellphone in sofa.
Plan: I need to 1. search around for a cellphone and take it, 2. go to sofa and put it down. 3. find another
cellphone, 4. go to sofa and put it down. First I need to find the first cellphone. A cellphone is more likely to
appear in coffeetable (1), diningtable (1), sidetable (1-2), drawer (1-4), sofa (1), dresser (1), garbagecan (1). I
can check one by one, starting with coffeetable 1.

Table 13: Few-shot examples for State Plan in ALFWorld. Same as ReAct and other baselines, we
use one prompts for each type of task.

20

Head of system message
You are given a description of a household, please interact with the household to solve the task.
This is a simulation of and all the actions are high-level shortcuts. Follow the instructions to give your next reply.

RESPONSE FORMAT
Reply with the following template (<...> is the field description):
Thought: <your thought>
Action: <your action>
or
Action: <your action>
In you reply, you can give both a thought and an action, or just an action. You can only give one action at a time.

Environment feedback
After each of your turn, the environment will give you immediate feedback.
Observation: <observation>

Pick
Instructions
Please follow the plan to check receptacles in the household one by one to find the object of interest.
Each time, you can observe all the objects in the receptacle. Determine if the object you are looking for is in that
receptacle.
You need to find the EXACT object that is asked for. For example, if you need to find a "soapbar", only take it
when you see a "soapbar {i}" in the receptacle, instead of a "soapbottle {i}".
Use "open {recept}" command to open a receptacle.

Examples
- Use "go to {recept}" command to go to the receptacle:
Action: go to cabinet 1
Action: go to fridge 1
Action: go to diningtable 1
- Take the object only if the place have the exact object you are looking for:
Thought: Now I find the soapbar (1). Next, I need to take it.
Action: take spraybottle 2 from cabinet 2
Thought: Now I find the apple (1). Next, I need to take it.
Action: take apple 1 from diningtable 1

Error
You just took the wrong object. Please put it down with the "put obj in/on place" command, where "place" is the
place where you took the object from.
Please also give your thought of what is the next place to check based on the plan.

Examples
Thought: I accidentally took the tomato instead of the apple. I need to put it back, and then check diningtable 2.

Action: put tomato 1 in/on diningtable 1
Thought: The object I want to take is a soapbar, but I took a soapbottle. I need to put it back, and then check the
sinkbasin 1.
Action: put soapbottle 4 in/on toilet 1

Process (Heat)
Instructions
You now take the object of interest with you. Now, please go to the microwave to heat the object. You must
first go to the microwave with the "go to {microwave}" command. Then, use the "heat {obj} with {mi-
crowave}" command to heat the object. You don’t need to open the microwave or put the object in the microwave.

Examples:
- If you just picked the object, go to the microwave first:
Action: go to microwave 1
- Then heat the object:
Action: heat apple 1 with microwave 1
Action: heat bread 1 with microwave 1

Table 14: Instructions of StateFlow for ALFWorld.

21

Process (Cool)
Instructions
You now take the object of interest with you. Now, please go to the fridge to cool the object. You must first go to
the fridge with the "go to {fridge}" command. Then, use the "cool {obj} with {fridge}" command to cool the
object. You don’t need to open the fridge or put the object in the fridge.

Examples:
- If you just picked the object, go to the fridge first:
Action: go to fridge 1
Action: go to fridge 1
- Then cool the object:
Action: cool pan 1 with fridge 1
Action: cool potato 2 with fridge 1

Process (Clean)
Instructions
You now take the object of interest with you. Now, please go to the sinkbasin to clean the object. You must
first go to the sinkbasin with the "go to {sinkbasin}" command. Then, use the "clean {obj} with {sinkbasin}"
command to clean the object. You don’t need water or soap to clean the object.

Examples:
- Go to the sinkbasin first:
Action: go to sinkbasin 1
Action: go to sinkbasin 2
- Then clean the object:
Action: clean lettuce 1 with sinkbasin 1
Action: clean soapbar 4 with sinkbasin 2

Find Lamp
Instructions
You have found and taken the object, now please go around to find a desklamp. Plese use "go to {place{"
command to go to different places in the household to find a desklamp. Use "open {place}" command to open a
closed place if you need to.

Examples
Action: go to sidetable 1
Action: go to dresser 1

Use Lamp
Instructions
You now find a desklamp. Please use the "use {desklamp}" command to look at the object. "{desklamp}"
denotes the desklamp you just found. You should not perform any other actions.

Examples:
1. Observation: On the sidetable 2, you see a desklamp 3, a newspaper 1, and a statue 2.
Action: use desklamp 3
2. On the sidetable 2, you see a alarmclock 1, a desklamp 1, and a pen 2. Thought: Now I find a desklamp (1).
Next, I need to use it.
Action: use desklamp 1

Put
Instructions
You now take the object of interest with you. Now, please go to the required place to put down the object. You
must first go to the receptacle with "go to {recept}" command.
If the receptacle is closed, use the "open {recept}" command to open it. You can only take one object at a time.
If you task is to put two objects, please go to the required place to put the first object first. When you are at the
place, use the "put obj in/on place" command to put down the object.

Examples:
- Always go to the receptacle first:
Action: go to sidetable 1
Action: go to toilet 1
Action: go to diningtable 1
- Then put down the object:
Action: put apple 3 in/on sidetable 1
Action: put soapbar 4 in/on toilet 1

Table 15: Instructions of StateFlow for ALFWorld. (Continued)

22

System message
Interact with a self.setting system using self.language queries to answer a question.

Observe
Instructions
Use the DESCRIBE [table_name] or DESC [table_name] command to understand the structure of the relevant
tables. Only give one DESC command in action.

Examples
Action: execute[DESC highschooler]
Action: execute[DESC friends]

RESPONSE FORMAT
For action, put your SQL command in the execute[] block.
Reply with the following template (<...> is the field description, replace it with your own response):

Thought: <your thought on which table(s) is/are relevant in one short sentence>
Action: execute[<your command>]

Error
Instructions
Please carefully read the error message to understand what went wrong. If you don’t have enough information to
solve the question, you can use the DESC [table_name] command to explore another table. You may want to
review other tables to see if they have the information you need.

Examples
Thought: A ‘transcripts‘ table exists, but it doesn’t have the ‘release_date‘ column I came up with. I should find
out what columns are available.
Thought: The ‘friends‘ table has two ids. I should check if the ‘highschooler‘ table has a name associated with
an ID.
Thought: The ‘contestants‘ is a table, it is not a column in ‘people‘. I need to check the ‘contestants‘ table to see
how to get the contestant names.
Thought: I get a single number that is the number of likes that the high schooler Kyle has. This should be the
answer.

RESPONSE FORMAT
For action, put your SQL command in the execute[] block. You should only give one command to execute per
turn.
Reply with the following template (<...> is the field description, replace it with your own response):

Thought: <your thought on why this query is error and whether you should gather more information or fix the
error in one sentence>
Action: execute[<your command>]

Verify
Instructions Carefully check if the output answers the question exactly. Make sure the output only display
fields that the problem asks for. - If the output contains any extra fields, please revise and modify your query
(column alias is fine, no need to round numbers). - If the output doesn’t answer the question, please revise and
modify your query. You may use DESC/DESCRIBE to learn more about the tables. - If the output answers the
question exactly, please submit the query with this "Action: submit" command.

Examples
Thought: The output displays the contestant names and also contestant count. Although the count is used for
sorting, it should not be displayed in output. I should modify my query to only select the contestant names.
Thought: The question asks for the total population for North America. However, the output also has the
continent id. I should modify my query to only select the total population.

RESPONSE FORMAT
For action, put your SQL command in the execute[] block. If the problem is solved, your action should be
"Action: submit".
Reply with the following template (<...> is the field description, replace it with your own response, "|" is the
"or" operation):
Thought: <your thought on whether the output and command answers the problem>
Action: execute[<your new command>] | submit

Table 16: Instructions of StateFlow for SQL task (part 1).

23

Solve
Instructions Based on the understanding of the tables and the problem, formulate a SQL query with SELECT
that answers the question EXACTLY. Use specific clauses like WHERE, JOIN, GROUP BY, HAVING, etc if
necessary. If you need more information of another table, use DESC to explore the table.
Notes: You should construct your command that the output answers the question exactly. For example, If the
question asks for count, your command should output a single number. Only select the field the question asks
for. Do not include relevant but unnecessary fields such as ids or counts, unless the question specifically asks for
it. No need to CAST or ROUND numbers unless the question asks for it.

Examples:
Thought: I should write a SQL command that selects the names from a table about high schoolers in ascending
order of their grades. Grade should not be selected.
Action: execute[SELECT name, grade FROM high_schoolers ORDER BY high_schoolers.grades ASC]
Thought: I can use the SUM and AVG functions to get the total population and average area values for North
America.
Action: execute[execute[SELECT SUM(population) AS total_population, AVG(area) AS avg_area FROM
countries WHERE continent = ’North America’ AND area > 3000]]
Thought: I should write a SQL query that gets the name field from contestants and exclude the name of ’Jessie
Alloway’
Action: execute[SELECT contestant_name FROM contestants WHERE contestant_name != ’Jessie Alloway’]
Follow the RESPONSE FORMAT to give your thought and action.

RESPONSE FORMAT
For action, put your SQL command in the execute[] block.
Reply with the following template (<...> is the field description, replace it with your own response):

Thought: <your thought on constructing command to answer the query exactly>
Action: execute[<your command>]

Table 17: Instructions of StateFlow for SQL task (part 2).

System message
Interact with a Bourne Shell system using BASH queries to answer a question. Follow the user’s instructions to
solve the problem.

Solve
Instructions
Given the question, please give a self.language command to solve it.

Examples
Thought: I can try to use ‘od‘ (octal dump) command to get a hexadecimal dump and stitch together the values
into one continuous string.
Action: execute[od -A n -t x1 -N 16 /testbed/textfile7.txt | awk ’1 =1;print’ | tr -d ’ ’]
Thought: I should find the paths to all java files in the testbed directory, then apply the word count command to
each path.
Action: execute[find /testbed -name "*.java" -type f -exec md5sum + | sort | uniq -D -w 32 | awk ’print $1’]
Thought: I should find the paths to all php files in the testbed directory, then apply the word count command to
each path.
Action: execute[find /testbed -name "*.php" -type f -exec cat + | wc -l]
Thought: The ‘du‘ command is useful for printing out disk usage of a specific directory. I can use the -h option
to print in human readable format and the -s option to only print the total disk usage.
Action: execute[du -sh /workspace]

Follow the RESPONSE FORMAT to give your thought and action.
RESPONSE FORMAT
For action, put your BASH command in the execute[] block. Only give one command per turn.
Reply with the following template (<...> is the field description, replace it with your own response):

Thought: <your thought in one sentence>
Action: execute[<your command>]

Table 18: Instructions of StateFlow for Bash task (part 1).

24

Error
Instruction
Please carefully check your last command and output to understand what went wrong. Revise and modify your
command accordingly or try another command.

Examples
Observation: /bin/bash: line 1: xxd: command not found
Thought: Seems like xxd is not available. I can try to use ‘od‘ (octal dump) command to get a hexadecimal
dump.
Action: execute[od -A n -t x1 -N 16 /testbed/textfile7.txt]

Follow the RESPONSE FORMAT to give your thought and action.
RESPONSE FORMAT
Reply with the following template (<...> is the field description):
Thought: <your thought in one sentence>
Action: execute[<your command>]

Verify
Instructions
Carefully check if the question is answered.
- Please check if the desired tasks have been performed.
- If the question also asks for output, please check your last command and output, and make sure the output is in
the desired format, and doesn’t contain any extra fields.
- If the desired tasks have been performed, please submit the query with this "Action: submit" command.

Examples
Thought: This gives me storage information for every folder under the workspace directory, but I only need the
storage for just the ‘workspace/‘ directory. The ‘-s‘ option should help with this.
Action: execute[du -sh /workspace]
Thought: This shows the output hashes and they have the same values, indicating that these files are duplicates.
However, the file names are also shown, which are not needed.
Action: execute[find /testbed -name "*.java" -type f -exec md5sum + | sort | uniq -D -w 32 | awk ’print $1’]
Thought: This shows me too much information, I only need the total number of lines. I should add up the lines
together and output a single number.
Action: execute[find /testbed -name "*.php" -type f -exec cat + | wc -l]
Thought: The hello.txt file has been created successfully in the testbed/ directory, and it contains the Hello
World text. I can submit.
Action: submit

Please follow this RESPONSE FORMAT to give your thought and action.
RESPONSE FORMAT
For action, put your {self.language} command in the execute[] block. Only give one command per turn. If the
question is solved, your action should be "Action: submit".
Reply with the following template (<...> is the field description, replace it with your own response, "|" is the
"or" operation):

Thought: <your thought on whether the question is answered in one sentence>
Action: execute[<your new command>] | submit

Table 19: Instructions of StateFlow for Bash task (part 2).

25

ReAct Prompt Example 1
Question: What are the names and grades for each high schooler?
Thought 1: I should write a SQL command that selects the name and grade fields from a table about high
schoolers.
Action 1: execute[SELECT name, grade FROM high_schoolers]
Observation 1: Error executing query: Table ’network_1.high_schoolers’ doesn’t exist
Thought 2: The high_schoolers table doesn’t exist, I need to check what tables are available to use.
Action 2: execute[SHOW TABLES]
Observation 2: [(’friend’,), (’highschooler’,), (’likes’,)]
Thought 3: There is a table called ‘highschoolers‘. I should check what information this table contains. Action
3: execute[DESC highschooler]
Observation 3: [(’ID’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’), (’name’, ’text’, ’YES’, ”, None, ”), ...]
Thought 4: The highschooler table contains the name and grade columns. I can now write a SQL command that
answers the question
Action 4: execute[SELECT name, grade FROM highschooler]
Observation 4: [(’John’, 12), (’Haley’, 10), (’Alexis’, 11), (’Jordan’, 12), (’Austin’, 11), (’Tiffany’, 9), (’Kris’,
10), (’Jessica’, 11), (’Jordan’, 9), (’Brittany’, 10), (’Logan’, 12), (’Gabriel’, 9), (’Cassandra’, 9), (’Andrew’, 10),
(’Gabriel’, 11), (’Kyle’, 12)]
Thought 5: The output contains the name and grade for each high schooler, answering the question. I can submit
this as the answer.
Action 5: submit

ReAct_Refined Prompt Example 1
Question: What are the names and grades for each high schooler?
Thought 1: I should first find out what tables are available in this MySQL database that can help me
answer this question.
Action 1: execute[SHOW TABLES]
Observation 1: [(’friend’,), (’highschooler’,), (’likes’,)]
Thought 2: There is a table called ‘highschoolers‘. I should check what information this table contains.
Action 2: execute[DESC highschooler]
Observation 2: [(’ID’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’), (’name’, ’text’, ’YES’, ”, None, ”), ...]
Thought 3: The highschooler table contains the name and grade. I can now write a SQL command that answers
the question.
Action 3: execute[SELECT name, grade FROM highschooler]
...(Same as original example)

Table 20: (Example 1) Comparison of example trajectories from ReAct and refined version of ReAct
for the SQL task. For the new version, we always start with the "SHOW TABLES" command. In the
original ReAct prompt, it always starts with a select query but results in error.

26

ReAct Example 2
Question: What are the names of the contestants whose names are not ’Jessie Alloway’
Thought 1: I should write a SQL query that gets the name field from contestants and exclude the name of
’Jessie Alloway’
Action 1: execute[SELECT name FROM contestants WHERE name != ’Jessie Alloway’]
Observation 1: Error executing query: Unknown column ’name’ in ’field list’
Thought 2: It looks like there is a table called ‘contestants‘, but it doesn’t have a name column. I need to find out
what columns are available.
Action 2: execute[DESCRIBE contestants]
Observation 2: [(’contestant_number’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’), (’contestant_name’, ’var-
char(50)’, ’NO’, ...)]
Thought 3: The available columns for the ‘contestant‘ table are ‘contestant_number‘ and ‘contestant_name‘. I
can now write a SQL query.
Action 3: execute[SELECT contestant_name FROM contestants WHERE contestant_name != ’Jessie Alloway’]
Observation 3: [(’Edwina Burnam’,), (’Tabatha Gehling’,), (’Kelly Clauss’,), (’Alana Bregman’,), (’Jessie
Eichman’,), (’Allie Rogalski’,), (’Nita Coster’,), (’Kurt Walser’,), (’Ericka Dieter’,), (’Loraine NygrenTania
Mattioli’,)]
Thought 4: The SQL query worked, and the output shows all the contestant’s names, but does not include ’Jessie
Alloway’. I am finished with this query.
Action 4: submit

ReAct_refined Example 2
Question: What are the names of the contestants whose names are not ’Jessie Alloway’?
Thought 1: I should first find out what tables are available in this MySQL database that can help me
answer this question
Action 1: execute[SHOW TABLES]
Observation 1: [(’contestants’)]
Thought 2: It looks like there is a table called ‘contestants‘, but it doesn’t have a name column. I need to find out
what columns are available.
Action 2: execute[DESCRIBE contestants]
Observation 2: [(’contestant_number’, ’int’, ’NO’, ’PRI’, None, ’auto_increment’), (’contestant_name’, ...)]
Thought 3: The available columns for the ‘contestant‘ table are ‘contestant_number‘ and ‘contestant_name‘. I
can now write a SQL query.
Action 3: execute[SELECT contestant_name FROM contestants WHERE contestant_name != ’Jessie Alloway’]
...(same as original ReAct example)

Table 21: Example 2) Comparison of example trajectories from ReAct and refined version of ReAct
for the SQL task.

27

	Introduction
	Background
	Methodology
	StateFlow
	Deployment Guideline
	A Case Study of StateFlow Design on SQL

	Experiments
	InterCode Benchmark
	ALFWorld

	Related work
	Conclusion
	Deployment Guide
	InterCode
	Experiment Details
	Additional Analysis
	Additional Results

	ALFWorld
	Experiment Details
	Additional Analysis
	Additional Experiments

