
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSEEVAL: EFFICIENT EVALUATION OF LARGE LAN-
GUAGE MODELS BY SPARSE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to scale up, their performance on
various downstream tasks has significantly improved. However, evaluating their
capabilities has become increasingly expensive, as performing inference on a large
number of benchmark samples incurs high computational costs. In this paper,
we revisit the model-item performance matrix and show that it exhibits sparsity,
that representative items can be selected as anchors, and that the task of efficient
benchmarking can be formulated as a sparse optimization problem. Based on these
insights, we propose SparseEval, a method that, for the first time, adopts gradient
descent to optimize anchor weights and employs an iterative refinement strategy for
anchor selection. We utilize the representation capacity of MLP to handle sparse
optimization and propose the Anchor Importance Score and Candidate Importance
Score to evaluate the value of each item for task-aware refinement. Extensive
experiments demonstrate the low estimation error and high Kendall’s τ of our
method across a variety of benchmarks, showcasing its superior robustness and
practicality in real-world scenarios.

1 INTRODUCTION

In recent years, the capabilities of large language models (LLMs) have improved dramatically as
model scales have grown (Brown, 2020; Achiam et al., 2023; Bai et al., 2023; Yang et al., 2024; Team,
2025; Guo et al., 2025). From early small- and medium-sized models to today’s hundred-billion-
parameter giants, LLMs have achieved remarkable performance in natural language understanding,
reasoning, and generation tasks. However, this performance gain comes along with the increased
inference cost and evaluation overheads. Larger models require significantly more computational
resources and time for inference, particularly during evaluation where the cost of running on large-
scale datasets may become prohibitively high. This raises a crucial question in both research and
practical deployment: how can we reduce inference costs while maintaining evaluation quality?

Previous studies have noted that evaluation datasets often contain a significant amount of redundancy,
as demonstrated by visualization techniques such as UMAP (McInnes et al., 2018; Vivek et al., 2023)
and t-SNE (Maaten and Hinton, 2008; Yuan et al., 2025). These techniques analyze similarities
between samples based on input prompts or the model’s output probability distributions, revealing un-
derlying patterns in the data. However, such methods typically rely on surface-level information—like
prompts or predicted probabilities—to detect redundancy, which requires additional resources that
may be costly or difficult to acquire. Building on these observations, recent work has employed Item
Response Theory to reduce the number of evaluation samples (Polo et al., 2024) , while others have
adopted adaptive clustering strategies for data selection to specific models (Yuan et al., 2025; Wang
et al., 2025).

Building such an efficient evaluation benchmark necessitates addressing three core challenges. First
is the existence question: how can we intuitively and quantitatively demonstrate the presence of
sparsity in evaluation tasks to justify efficient evaluation? Second is anchor weighting optimization:
given pre-selected anchors, how can we optimize their weights so that they effectively represent the
characteristics of the entire dataset? Third is anchor selection: how should the choice of anchors be
guided by the optimized weights and downstream task requirements to ensure higher task relevance
in evaluation results? These challenges form the backbone of designing an effective evaluation
framework.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Item Index

0

200

400

600

800

1000

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.81 Inter-Cluster: 0.48

(a) ARC

0 200 400 600 800 1000 1200
Item Index

0

200

400

600

800

1000

1200

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.79 Inter-Cluster: 0.67

(b) GSM8k

0 2000 4000 6000 8000 10000
Item Index

0

2000

4000

6000

8000

10000

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.89 Inter-Cluster: 0.63

(c) Hellaswag

0 2000 4000 6000 8000 10000 12000 14000
Item Index

0

2000

4000

6000

8000

10000

12000

14000

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.72 Inter-Cluster: 0.50

(d) MMLU

0 100 200 300 400 500 600 700 800
Item Index

0

100

200

300

400

500

600

700

800

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.83 Inter-Cluster: 0.48

(e) TruthfulQA

0 200 400 600 800 1000 1200
Item Index

0

200

400

600

800

1000

1200

Ite
m

 In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

m
ila

rit
y

Intra-Cluster: 0.82 Inter-Cluster: 0.56

(f) Winogrande

Figure 1: Evidence of Evaluation Sparsity in LLM Benchmarks. We construct an item-item simi-
larity matrix by computing the cosine similarity between item vectors. The presence of pronounced
diagonal blocks, along with both high intra- and inter-cluster similarity, suggests the existence of
evaluation sparsity and redundancy in the benchmark.

In this work, we revisit the model-item matrix and use spectral clustering to uncover its highly
structured and sparse nature. Our analysis reveals that even clustering data with a few anchor
points leads to a high degree of intra-cluster similarity and strong inter-cluster predictability. This
suggests that the model predictions across samples encode a large amount of transferable information,
providing theoretical support for efficient evaluation. Therefore, we propose SparseEval, a task-
aware efficient evaluation for large foundation models by sparse optimization. For anchor weight
optimization, we propose a training strategy based on gradient descent optimization. We dynamically
adjusts weights by optimizing reconstruction loss and significantly improves evaluation accuracy. For
anchor selection, we design a task-aware strategy that leverages error-correlation anchor refinement
to identify more representative anchor subsets. SparseEval not only reduces evaluation cost but also
enhances alignment between the anchors and downstream task requirements.

Unlike existing methods, our framework capture evaluating sparsity directly from the model-item
matrix without relying on additional embeddings or complex preprocessing. By integrating spectral
clustering with gradient-based optimization, our approach accurately predicts model performance
on entire datasets using a minimal number of anchor points. This results in a practical and scalable
solution that strikes a strong balance between computational efficiency and evaluation accuracy.
Our experiments show that compared to traditional full-dataset evaluation, our method can reduce
inference costs to only 100 instances while maintaining low estimate errors (MAE < 2%) and and
highly consistent performance estimates (Kendall’s Tau > 0.9). Moreover, our framework is highly
generalizable and can be easily adapted to various evaluation settings and task types, offering a new
direction for designing efficient evaluation benchmarks in the era of large-scale language models.

2 RELATED WORKS

Efficient Data Selection Various studies have explored efficient data selection across different
settings. LIMA (Zhou et al., 2023) demonstrates that a large language model can be effectively
aligned using only 1,000 high-quality examples, as most of the model’s knowledge is obtained

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

during pretraining. LIMR (Li et al., 2025) argues that in the context of reinforcement learning for
language model training, a small but strategically curated dataset can outperform significantly larger
ones. LIMO (Ye et al., 2025) further shows that strong mathematical reasoning capabilities can be
elicited from a knowledge-rich language model by fine-tuning it on just 800 high-quality examples,
surpassing models trained on datasets more than 100 times larger. These approaches primarily aim
to extract high-quality samples from the original dataset, rather than aligning performance on the
original dataset.

Efficient LLM Evaluation Evaluating LLMs is often resource intensive due to the large number of
models and test items involved. Several methods have been proposed to reduce evaluation costs by
selecting a subset of models or items, while closely aligning with the original benchmark in terms of
both accuracy and ranking—a field often referred to as Efficient LLM Evaluation. Anchor Points
(Vivek et al., 2023) analyzes language models using small and representative subsets of evaluation
data, while Flash-HELM (Perlitz et al., 2023) adopts a coarse-to-fine strategy that adaptively adjusts
the number of evaluation samples for higher-ranking models. In addition, Pacchiardi et al. (2024)
proposes using performance on a small set of reference instances as input features to a general
assessor model to predict a new LLM’s performance on unseen instances. TinyBenchmark (Polo
et al., 2024) employs Item Response Theory (IRT) to guide data selection and TailoredBench (Yuan
et al., 2025) presents another approach by creating a customized, adaptive benchmark tailored to each
model. Recently, EffiEval (Wang et al., 2025) aims to improve evaluation efficiency by selecting a
small subset of data that maximizes the coverage of a model’s internal capabilities.

3 LLM EVALUATION CAN BE SPARSE

In this section, we first discuss the evalution sparsity in current benchmarks by revisiting the model-
item performance matrix. Next, we formally define the problem formulation of efficient evaluation as
sparse optimization.

3.1 EVALUATING SPARSITY IN LLM BENCHMARKS

Given a model-item score matrix S ∈ {−1, 1}m×n, where m and n denote the number of models
and items respectively, and where Si,j = 1 indicates a correct prediction and Si,j = −1 indicates
an incorrect one. We observe an inherent sparsity structure in this evaluation matrix, which enables
more efficient evaluation. In particular, we analyze inter-item relationships by examining the column
vectors of S, where each column represents the response patterns of all models to a specific item.
By computing the cosine similarity between these item vectors, we construct an item-item similarity
matrix Sitem ∈ Rn×n, where each entry reflects the similarity between a pair of test items.

To further explore the structure of the dataset, we apply spectral clustering to Sitem and partition the
test items into five clusters, as shown in Figure 1. The resulting clusters reveal strong intra-cluster
similarity, as evidenced by the pronounced diagonal blocks in the clustered similarity matrix. This
observation indicates that many test items are highly similar to each other in terms of model response
patterns, suggesting the presence of redundancy and potential for sparsity in the benchmark. Such a
clustering structure implies that it may be feasible to select a small subset of representative items
(referred to as anchors) that can effectively capture the diversity of the entire dataset. Moreover, we
observe that there also exists considerable inter-cluster similarity among the items after clustering,
indicating that all the item vectors share substantial common information, making mutual prediction
possible. This reveals the widespread existence of Evaluation Sparsity in LLM benchmarks. By
focusing evaluation on these anchors, we can potentially reduce the overall evaluation cost while
preserving the discriminative power of the benchmark, which motivates the subsequent development
of anchor-based sparse evaluation.

3.2 PROBLEM FORMULATION

The goal is to reduce the evaluation cost of LLM benchmarks by selecting a small subset of informative
items, such that performance evaluated on this subset can closely approximate the result on the full
dataset. We achieve this by learning a item-level weighting function, and cast this as an sparse
optimization problem.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proxy
Model

Item

Initalization

Model

True Accuracy

Predicted Accuracy

Refinement

AIS

CIS

0.9

0.2

0.5

0.9

Swap Proxy
Model

True Accuracy

Predicted Accuracy

Anchor Importance Score (AIS)

Grad Norm

Anchor Selection

Overestimate

Underestimate
True Accuracy

Predicted Accuracy

Candidate Importance Score (CIS)

Candidate

0.5
Dot Product

0.9

0.2

0.9

Figure 2: Anchor Refinement in SparseEval. We leverage a proxy model to perform task-aware anchor
refinement. By iteratively replacing items with low Anchor Importance Scores with those having high Candidate
Importance Scores, we are able to obtain more representative anchors for efficient evaluation.

General Formulation Let S = [s1, s2, . . . , sn] ∈ Rm×n denote the per-item evaluation scores.
With given sparsity k, we construct the sparse input S′ = S ⊙ (1W

m⊤) by introducing weighting
factor W ∈ Rn (∥W∥0 ≤ k), where ⊙ denotes the element-wise product. Let f : Rn → R be an
aggregation function that maps the sparse input to an overall benchmark score. We now formulate the
evaluation task as the following optimization problem:

minimize
W, f

∣∣f(S ⊙ (1mW⊤))− SWa

∣∣
1

subject to ∥W∥0 ≤ k
, (1)

where Wa = 1
n1n is a uniform averaging vector over the full set of n items and SWa denotes the

real performance of the model. This formulation encourages the learned function f(S ⊙ (1mW⊤))
applied to a small subset of items to approximate the full evaluation WT

a S.

Linear Formulation When f is a linear function, it can be absorbed by W and we can derive the
objective of all previous methods (Polo et al., 2024; Yuan et al., 2025), which directly selects a sparse
subset of items whose weighted average matches the full benchmark score.

minimize
W

|SW − SWa|1
subject to ∥W∥0 ≤ k

. (2)

4 METHODOLOGY

In this section, we first describe the anchor weight predictor for pre-selected anchors in an end-to-end
optimization. We then discuss the initialization and refinement strategy of anchors in SparseEval.

4.1 ANCHOR WEIGHT PREDICTOR

We begin by focusing on a simplified version of the problem: given a fixed set of anchor points, we
aim to find an appropriate method for assigning weights to these anchors for perfomance estimation.
Traditional methods, such as TinyBenchmark (Polo et al., 2024), typically train an Item Response
Theory (IRT) model and then apply k-means clustering to the resulting IRT representations in order
to identify anchor points. The weights of these anchors are subsequently assigned based on the
distribution of the clusters. Other approaches (Yuan et al., 2025) leverage scaling factors to calibrate
the performance estimation. In contrast, by formulating the task as a sparse optimization problem,
we observe that the aggregation function f can be approximated using a MLP model for end-to-end
optimization. Therefore, it becomes possible to directly optimize the anchor weights via gradient
descent by minimizing a reconstruction loss.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 SparseEval

Require: Prediction matrix S ∈ {−1, 1}m×n, number of anchors k, refinement steps R, learning
rate η, proxy training epochs E, final training epochs F

1: Anchor Selection and Refinement:
2: Initialize anchors A using k-means or random sampling based on validation set
3: for r = 1 → R do
4: Train a proxy MLP fr on current anchors A with E epochs to predict overall model perfor-

mance
5: Compute prediction residuals: e in Eq. 4
6: for each anchor i ∈ A do
7: Compute Anchor Importance Score AISi in Eq. 6 for anchor i
8: end for
9: for each candidate j /∈ A do

10: Compute Candidate Importance Score CISj in Eq. 5 for candidate j
11: end for
12: Remove weakest anchor i∗ = argmini AISi from A
13: Add strongest candidate j∗ = argmaxj CISj to A
14: end for
15: Final MLP Training:
16: Train final MLP model f on selected anchors A with F epochs to predict overall model perfor-

mance
17: Return final trained MLP model f and anchor set A

Formally, let W denote the given sparse weight factor (∥W∥0 ≤ k), Wa the ground-truth uniform
averaging weights, and Strain ∈ RM×n the training score matrix over M examples and n items. The
square loss function for anchor weight optimization is defined as:

L =
1

M

∥∥f(Strain ⊙ (1MW⊤))− StrainWa

∥∥
2
, (3)

4.2 ANCHOR INITIALIZATION

Based on our earlier observations, we find that most datasets exhibit strong intra-cluster similarity,
which motivates us to initialize anchor points directly by k-means clustering. Applying k-means
directly captures the cluster structure of the original dataset, leading to the selection of representative
anchors that work well with subsequent gradient-based optimization. However, for datasets with
weaker intra-cluster similarity such as MMLU, we observe that random initialization can also perform
surprisingly well, and in some cases, it even outperforms k-means initialization.

Therefore, in practice, we adopt an adaptive strategy for anchor initialization. For each dataset, we
evaluate both k-means and random initialization on a small set of models as the validation set and
choose the better method for the final initialization.

4.3 ANCHOR REFINEMENT

Directly optimizing the weights of the anchors initialized as described above presents a key limitation
that these initialization strategies are not tailored to the downstream task. The random initialization
selects arbitrary points from the dataset, while the k-means approach captures only the clustering
structure of the data. However, neither method participates in the end-to-end optimization process
based on reconstruction loss, and the anchors remain fixed after initialization. As a result, the selected
subsets may be suboptimal for perfomance estimation tasks.

To address this, we explore the relationship between anchors and candidates within the MLP model
for anchor refinement. In our setup, the MLP takes the predictions of the anchors as input and uses
the predictions of the candidates as targets to learn from. Two essential components naturally emerge
from end-to-end training with reconstruction loss and backpropagation: errors and gradients. The
error can be attributed to each non-anchor individually, reflecting how well the current set of anchors

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

predicts each non-anchor. Conversely, the gradients can be obtained by propagating the errors back
through the network and can be assigned to each anchor, indicating its contribution and importance
in the perfomance estimation.

Formally, given m models, n items, and a prediction matrix S ∈ {−1, 1}m×n, the model-level
calibration residuals are computed as:

e = f(S ⊙ (1mW⊤))− SWa. (4)

Intuitively, if ej > 0, it means that the proxy model overestimates model j. In contrast, if ej < 0,
it underestimates it. Now, consider the prediction pattern of a candidate item i as a feature vector,
representing the model performance over this item. If this feature tends to be positive where the
residual vector is positive and negative where it is negative, then the absolute value of their dot product
will be high. That is, features that are aligned with the structure of the residuals can consistently
indicate whether a model is being overestimated or underestimated. For example, if a feature value of
+1 typically corresponds to overestimated models and −1 to underestimated ones, the dot product
with the residuals will have a large absolute magnitude, suggesting that it is an informative feature.
Based on this intuition, we define the Candidate Importance Score (CIS) for candidate item i as
the absolute value of the dot product between its prediction pattern and the residual vector:

CISi =
∣∣(S:,i)

T e
∣∣ = ∣∣(S:,i)

T
(
f(S ⊙ 1mW⊤)− SWa

)∣∣ (5)

Simultaneously, we can leverage the magnitude of the gradient during backpropagation to assess the
influence of a given anchor on optimizing the prediction error. This is especially useful in the context
of fast-training proxy models, where the absolute gradient is often a more direct indicator of impact
on the error than the weight activation from the first layer. Therefore, we can compute the Anchor
Importance Score (AIS) for anchor i as follows:

AISi =

∥∥∥∥ ∂L
∂S:,i

∥∥∥∥
1

=
1

N
· ∂

∂S:,i

∥∥f(S ⊙ 1mW⊤)− SWa

∥∥
2
. (6)

At each step of the iterative refinement process, we apply gradient descent with a proxy MLP model
on the current set of anchors to calculate AIS of each anchor and CIS of each candidate. We then
replace the anchor with the lowest AIS with the candidate that has the highest CIS. After R refinement
steps, we train a final MLP model which sharing the same architecture but with a different number of
input features as the final model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We collect the LLM evaluation results from Open-LLM Leaderboard (Fourrier et al., 2024),
and we obtain model-item accuracy matrix on six LLM benchmarks including ARC (Clark et al.,
2018), GSM8K (Cobbe et al., 2021), HellaSwag (Zellers et al., 2019), MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2022), and Winogrande (Sakaguchi et al., 2021). For LLM benchmarks,
it is noteworthy that we expand the number of models from 300 in TinyBenchmark to 5,000, allowing
us to more thoroughly evaluate generalization performance across a wider range of models.

Implementation Details We randomly select 200 models as the validation and test sets for the LLM
benchmarks, with equal sizes. The remaining data are used as the training set. We utilize a 4-layer
MLP in LLM Benchmarks and 6e-4 as the learning rate. The refinement step is set to be 10. We
utilize MAE and Kendall’s τ as two metrics for evaluation.

5.2 MAIN RESULTS

In Table 1, we compare our method with several baselines, including Anchor Points (Vivek et al.,
2023), gp-IRT (Polo et al., 2024), and TailoredBench (Yuan et al., 2025). The results demonstrate that
SparseEval significantly outperforms all baseline methods, consistently achieving lower estimation
error and higher correlation coefficients across varying numbers of anchors. As the number of
models scales up to 5000, traditional cluster-based and IRT-based methods struggle to fully utilize

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main Results on LLM Benchmarks. SparseEval consistently outperform baselines by up
to 2% lower estimate errors and 0.1 improvement in Kendall’s τ than baselines.

Dataset Method Anchor = 20 Anchor = 40 Anchor = 60 Anchor = 80 Anchor = 100
MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑

ARC

Anchor Points 4.004 0.769 2.375 0.866 2.890 0.867 2.289 0.868 10.620 0.578
gp-IRT 5.332 0.641 3.642 0.698 2.959 0.758 2.612 0.761 2.274 0.787
TailoredBench 3.426 0.824 2.646 0.854 2.448 0.852 2.816 0.862 2.413 0.873
SparseEval 1.778 0.863 1.581 0.883 1.404 0.902 1.227 0.910 1.165 0.917

GSM8K

Anchor Points 4.433 0.844 3.756 0.878 3.631 0.916 2.778 0.906 5.295 0.842
gp-IRT 5.275 0.802 3.984 0.832 3.161 0.871 2.774 0.880 2.424 0.887
TailoredBench 5.412 0.833 4.157 0.885 4.271 0.892 4.003 0.900 4.203 0.912
SparseEval 3.305 0.872 2.321 0.908 1.960 0.925 1.754 0.931 1.619 0.936

HellaSwag

Anchor Points 3.272 0.796 2.619 0.875 2.416 0.856 1.962 0.847 2.012 0.889
gp-IRT 5.323 0.661 3.501 0.687 2.754 0.745 1.992 0.784 1.750 0.783
TailoredBench 2.352 0.811 2.257 0.847 1.868 0.861 1.957 0.857 1.968 0.876
SparseEval 1.477 0.857 1.210 0.890 0.993 0.906 0.942 0.910 0.827 0.918

MMLU

Anchor Points 4.898 0.727 2.830 0.801 2.331 0.850 1.964 0.856 7.890 0.764
gp-IRT 5.940 0.569 3.802 0.692 3.190 0.710 2.537 0.798 2.202 0.829
TailoredBench 4.046 0.755 2.677 0.845 2.421 0.857 2.216 0.876 2.019 0.862
SparseEval 1.718 0.832 1.282 0.871 0.997 0.890 0.962 0.896 0.842 0.908

TruthfulQA

Anchor Points 3.215 0.803 2.443 0.838 1.958 0.870 1.758 0.885 1.733 0.891
gp-IRT 4.452 0.712 3.032 0.771 2.250 0.823 1.973 0.836 1.808 0.847
TailoredBench 2.554 0.847 2.105 0.855 1.928 0.863 1.718 0.874 1.577 0.895
SparseEval 1.756 0.878 1.589 0.886 1.243 0.911 1.083 0.922 1.027 0.931

Winogrande

Anchor Points 5.577 0.694 4.037 0.737 4.038 0.710 3.621 0.752 3.019 0.810
gp-IRT 4.903 0.533 3.417 0.547 2.617 0.630 2.284 0.659 1.957 0.725
TailoredBench 3.212 0.705 3.740 0.751 3.478 0.760 3.130 0.752 3.120 0.788
SparseEval 2.088 0.794 1.500 0.853 1.361 0.867 1.182 0.882 1.027 0.897

0 100 200 300 400 500
Number of Anchors

0

2

4

6

8

10

12

M
AE

 (%
) Anchor Points

gp-IRT
TailoredBench
SparseEval

Figure 3: Error Trend on ARC.
SparseEval consistently outper-
forms baselines.

20 40 60 80 100
Number of Anchors

2.0

2.5

3.0

3.5

M
AE

 (%
)

Linear Weight (MAE)
Linear Weight ()
MLP (MAE)
MLP ()

0.86

0.88

0.90

0.92

Figure 4: Ablation over net-
work architecture on GSM8K.

10 20 30 40 50 60 70 80 90 100
Training Data Proportion (%)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

M
AE

 (%
)

523
(1.12%)

1045
(0.95%)

1568
(0.95%)

2091
(0.85%)

2614
(0.83%)

3136
(0.84%)

3659
(0.82%)

4182
(0.84%)

4704
(0.81%)

5227
(0.83%)

522
(1.05%)

1045
(0.93%)

1568
(0.88%)
2090

(0.84%)
2612

(0.83%)

3135
(0.84%)

3657
(0.83%)

4180
(0.84%)

4702
(0.83%)

5225
(0.84%)

HellaSwag
MMLU

Figure 5: Ablation over train-
ing data proportion on Hel-
laSwag and MMLU.

the large volume of data. In particular, when using only 100 items for prediction, these methods
often exhibit estimation errors exceeding 2%. In contrast, SparseEval leverages anchor refinement
and weight optimization to fully exploit the training data and enhance generalization via gradient
descent, achieving estimation errors below 1%, outperforming prior state-of-the-art approaches by a
substantial margin. In addition to a low MAE, SparseEval also achieves Kendall’s τ scores above
0.90, indicating a strong correlation with the original model rankings and further validating the
effectiveness and practicality of our method.

5.3 ABLATION STUDY

Over 5x reduction in anchor points than baselines. As shown in Fig. 3, SparseEval achieves
comparable performance to other baselines that use 500 anchors, with only 100 anchors, representing
more than a 5× reduction in anchor points. Interestingly, as the number of anchors increases, the
performance of Anchor Points drops significantly, indicating that clustering alone without adaptive
anchor weight adjustment is far from sufficient.

Sparse optimization benefits from deeper architecture. We compare the estimation performance
between a traditional linear weight and an MLP-based estimator in Fig. 4. Due to its limited
representational capacity, the linear model performs worse, whereas the deeper MLP architecture is
better suited for the challenging task of anchor weight optimization.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation Results on anchor selection. SparseEval benefits from anchor refinement for
downsteam estimates tasks.

Dataset Method Anchor = 20 Anchor = 40 Anchor = 60 Anchor = 80 Anchor = 100
MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑ MAE (%) ↓ τ ↑

ARC
Random 3.131 0.741 2.121 0.819 1.770 0.856 1.433 0.881 1.339 0.890
k-means 1.945 0.847 1.656 0.878 1.427 0.897 1.314 0.903 1.218 0.913
SparseEval 1.778 0.863 1.581 0.883 1.404 0.902 1.227 0.910 1.165 0.917

GSM8K
Random 3.831 0.856 2.694 0.896 2.467 0.908 2.086 0.918 1.857 0.928
k-means 3.544 0.860 2.491 0.898 2.042 0.925 1.767 0.933 1.631 0.938
SparseEval 3.305 0.872 2.321 0.908 1.960 0.925 1.754 0.931 1.619 0.936

HellaSwag
Random 2.465 0.728 1.804 0.788 1.389 0.839 1.207 0.858 1.152 0.867
k-means 1.631 0.859 1.258 0.882 0.973 0.906 0.931 0.909 0.772 0.919
SparseEval 1.477 0.857 1.210 0.890 0.993 0.906 0.942 0.910 0.827 0.918

MMLU
Random 2.152 0.774 1.393 0.854 1.117 0.879 0.996 0.894 0.850 0.903
k-means 2.152 0.774 1.393 0.854 1.117 0.879 0.996 0.894 0.850 0.903
SparseEval 1.718 0.832 1.282 0.871 0.997 0.890 0.962 0.896 0.842 0.908

TruthfulQA
Random 2.887 0.800 2.000 0.854 1.601 0.882 1.356 0.902 1.204 0.915
k-means 2.107 0.849 1.417 0.892 1.296 0.902 1.181 0.914 1.058 0.926
SparseEval 1.756 0.878 1.589 0.886 1.243 0.911 1.083 0.922 1.027 0.931

Winogrande
Random 2.617 0.726 1.761 0.821 1.450 0.851 1.277 0.870 1.104 0.886
k-means 2.617 0.726 1.761 0.821 1.450 0.851 1.277 0.870 1.104 0.886
SparseEval 2.088 0.794 1.500 0.853 1.361 0.867 1.182 0.882 1.027 0.897

2.5 0.0 2.5 5.0 7.5 10.0
Score

0.0

0.5

1.0

De
ns

ity

Before
After

(a) GSM8K AIS

0.5 0.0 0.5 1.0 1.5 2.0
Score

0.0

0.5

1.0

1.5

2.0

De
ns

ity

Before
After

(b) ARC AIS

0.0 2.5 5.0 7.5 10.0
Score

0.0

0.1

0.2

0.3
De

ns
ity

Before
After

(c) GSM8K CIS

0 1 2 3
Score

0.0

0.2

0.4

0.6

0.8

De
ns

ity

Before
After

(d) ARC CIS

Figure 6: AIS and CIS distribution w.r.t anchor refinement. The importance scores shift noticeably
to the right after refinement, indicating an improvement in the quality of the anchor set.

Comparable performance with limited training data. We adjust the proportion of training data
and present the results in Fig. 5. As expected, model performance degrades as the amount of training
data decreases. However, even with only 10% of the data, SparseEval is able to maintain a MAE near
1%, demostrating the robustness of our method.

Anchor Selection. We compare different anchor selection methods to investigate the effectiveness
of our anchor refinement strategy. As shown in Table 2, anchor refinement clearly leads to a superior
anchor set. This indicates that both AIS and CIS, used as metrics for selecting anchors and candidates
respectively, are highly aligned with the objective of the downstream prediction task. Notably, the
improvement brought by anchor refinement becomes more significant when the number of anchors
is limited. This suggests that, in such cases, strategies like k-means and random selection fail to
correctly represent the characteristics of the original dataset, and multiple rounds of refinement are
necessary to discover a better anchor set.

5.4 ANALYSIS AND DISCUSSION

AIS and CIS improvement through refinement. We further investigate the mechanism behind
our anchor refinement process by analyzing the distributions of both anchors and candidates. As can
be observed from Fig.6, both AIS and CIS improve significantly after refinement. AIS reflects the
sensitivity of the selected anchors to prediction error, while CIS measures how strongly a candidate
responds to the predictive behavior of the current proxy model. The consistent improvement of both
metrics through refinement indicates a continuous enhancement in the quality of the anchor set.

Error Analysis. We sampled a subset of test examples from both SparseEval and gp-IRT, and
visualized their prediction errors, as demonstrated in Fig. 7. We observed that some models eval-
uated by gp-IRT exhibit errors close to 10%, making it unsuitable for precise prediction tasks. In
contrast, SparseEval shows consistently lower average and maximum errors compared to gp-IRT,
demonstrating its generality and robustness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5 0.6 0.7 0.8
True Accuracy

0

2

4

6

8

10

Er
ro

r (
%

)

SparseEval gp-IRT

Figure 7: Error Analysis
on MMLU. SparseEval shows
smaller max error than gp-IRT.

0.005 0.000 0.005 0.010 0.015 0.020 0.025
Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

Figure 8: Weight values on
MMLU. Negative value expand
the optimization space.

ARC HellaSwag MMLU TruthfulQAWinogrande0

200

400

600

800

1000

Tr
ai

ni
ng

 T
im

e
(s

)

107.7

640.0

954.0

84.1
132.8

69.5 77.0 48.2 59.9 44.6

gp-IRT
SparseEval

Figure 9: Efficiency Analysis.
SparseEval is more efficient than
IRT-based method.

0 1000 2000 3000 4000 5000
Model Index

0

1000

2000

3000

4000

5000

M
od

el
 In

de
x

0.0

0.2

0.4

0.6

0.8

1.0

(a) Arc

0 1000 2000 3000 4000 5000 6000
Model Index

0

1000

2000

3000

4000

5000

6000

M
od

el
 In

de
x

0.0

0.2

0.4

0.6

0.8

1.0

(b) GSM8K

0 1000 2000 3000 4000 5000
Model Index

0

1000

2000

3000

4000

5000

M
od

el
 In

de
x

0.0

0.2

0.4

0.6

0.8

1.0

(c) HellaSwag

Figure 10: Model-model similarity matrix visualization.

Weight Analysis. We visualize the distribution of weights obtained from linear weight optimization,
as shown in Fig.8. The weight values are relatively concentrated and mostly close to zero. Interest-
ingly, we observe that some weights take negative values that is impossible in traditional cluster-based
methods, thereby significantly expanding the optimization space.

Training efficiency. We further investigate the efficiency between SparseEval and baselines. The
inference cost is based on the number of anchors. After both methods generate anchors and weights,
the inference time cost is roughly the same, so we focus mainly on the training time cost. In gp-IRT,
the time is mostly spent on training the IRT model. This training process is very time-consuming,
taking as long as 16 minutes for training on MMLU. For SparseEval, its time cost is much lower than
that of gp-IRT, demonstrating the superior efficiency of our method.

Model-model similarity. Surprisingly, we also observe sparsity in the model-model similarity
matrix, as shown in Fig. 10. This suggests that the performance of unknown models can potentially
be predicted from that of known models, which is consistent with the findings in TailorBench (Yuan
et al., 2025). We leave incorporating this sparsity structure into anchor weight optimization and
anchor selection in the future work.

6 CONCLUSIONS

In this work, we introduce SparseEval, a novel framework that significantly reduces evaluation costs
by selecting and weighting a small set of representative test items. We formalize sparse evaluation as
a sparse optimization problem, propose the anchor refinement strategy for better anchor selection
representativeness. Empirically, SparseEval outperforms baselines with more stable predictions and
substantially lower training overhead across various LLM benchmarks. However, our approach has
certain limitations. For instance, the use of gradient descent requires a sufficient number of samples
to guarantee performance. We hope our work could bring inspiration for future work in the filed of
efficient evaluations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open
llm leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/
open_llm_leaderboard, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Limr: Less is more for rl scaling. arXiv preprint
arXiv:2502.11886, 2025.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3214–3252, 2022.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Lorenzo Pacchiardi, Lucy G Cheke, and José Hernández-Orallo. 100 instances is all you need:
predicting the success of a new llm on unseen data by testing on a few instances. arXiv preprint
arXiv:2409.03563, 2024.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking of language models.
arXiv preprint arXiv:2308.11696, 2023.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
tinybenchmarks: evaluating llms with fewer examples. In International Conference on Machine
Learning, pages 34303–34326. PMLR, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Qwen Team. Qwen3: Think deeper, act faster. https://qwenlm.github.io/blog/qwen3/,
2025.

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking models
with much fewer examples. arXiv preprint arXiv:2309.08638, 2023.

10

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://qwenlm.github.io/blog/qwen3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaoning Wang, Jiahao Ying, Yixin Cao, Yubo Ma, and Yugang Jiang. Effieval: Efficient and general-
izable model evaluation via capability coverage maximization. arXiv preprint arXiv:2508.09662,
2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Peiwen Yuan, Yueqi Zhang, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. Beyond one-size-fits-all: Tailored benchmarks for efficient evaluation.
arXiv preprint arXiv:2502.13576, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36:55006–55021, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A DATASET AND LICENSE

We collect the LLM evaluation results of more than 5000 models from Open LLM Leaderboard
Fourrier et al. (2024). Below are the datasets used in this paper that have known license information.

The following datasets used in this paper are under the MIT licenses: GSM8K Cobbe et al. (2021)
and MMLU Hendrycks et al. (2020).

The following datasets used in this paper are under the CC BY 4.0 licenses: HellaSwag Zellers et al.
(2019).

The following datasets used in this paper are under the CC BY-SA 4.0 licenses: ARC Clark et al.
(2018).

The following datasets used in this paper are under the Apache-2.0 license: TruthfulQA Lin et al.
(2022), Winogrande Sakaguchi et al. (2021).

B LLM USAGE

In the preparation of this manuscript, we made limited use of LLMs as a general-purpose writing
assistant. Specifically, the LLMs are employed to polish wording, improve sentence fluency, and
adjust grammatical structure for clarity and readability. At no point did the LLMs contribute to
research ideation, the formulation of hypotheses, methodological design, execution of experiments,
or interpretation of results. Their role was strictly confined to surface-level language refinement,
comparable to the functions of a grammar-checking or style-editing tool. All intellectual contributions,
including the conception of ideas, development of approaches, and analysis of findings, are entirely
the work of the authors.

12

	Introduction
	Related Works
	LLM Evaluation can be Sparse
	Evaluating Sparsity in LLM Benchmarks
	Problem Formulation

	Methodology
	Anchor Weight Predictor
	Anchor Initialization
	Anchor Refinement

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Analysis and Discussion

	Conclusions
	Dataset and License
	LLM Usage

