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Abstract: Underactuated system tasks, like shepherding passive agents using ac-1

tive coordinated robotic agent teams, require quick reactions and consistent per-2

ception and control. A recent learning-based solution demonstrated the agility3

required for such a task, but only accounted for single cohesive flocks. Non-4

contiguous flocks, on the other hand, can diffuse if not handled in a timely fashion.5

We address the disjoint flock case by defining novel reward schemes, based on the6

shepherds’ visual observations. We show that policies trained on these rewards7

succeed at shepherding disjoint and fractious flocks to a goal region in a motion-8

efficient manner, and provide comparisons to state of the art learning-based and9

heuristic methods.10

Keywords: Motion Planning, Robot Shepherding11

1 Introduction12

The shepherding problem asks how to efficiently get a group of reactive mobile agents (e.g. a flock13

of sheep) to a goal region by influencing sheep motion with a team of actively controlled and co-14

ordinated mobile guiding agents (e.g. shepherds). An interesting yet complicating feature of shep-15

herding is that flocks may split in the process of being herded, or even start in separate clusters.16

Shepherds must then decide where to move to coalesce these groups of agents at a goal region.17

Smart, agile solutions to split flock shepherding must quickly allocate shepherds to tasks and plan18

motions for the shepherds, getting flocks to the goal while using minimal energy. Some heuristic19

methods attempt to collect separated sheep [1, 2, 3], but are not always efficient in terms of shep-20

herd energy expended [4]. Learning based approaches have either used small numbers of herded21

agents [5, 6, 7] or used parameters and setups making split flocks unlikely [4]. Here we introduce22

a new perception-based reward scheme to [4], inspired in part by a recent occlusion-based heuristic23

method [3], allowing multiple-shepherd policies to effectively learn how to shepherd multiple split24

flocks of sheep quickly and efficiently.25

2 Related Work26

Shepherding has been explored with single [8, 9, 10, 1] and multiple [11, 12, 13, 4, 3] shepherd27

agents, environments with static obstacles [10, 11, 7], and in discrete [14, 15, 16] and continu-28

ous [10, 1, 12, 4] state and action spaces. In addition to herding animals, it is relevant for practical29

applications to fields such as security [17], crowd control [18], and environmental protection [19].30

Few works directly address the problem of shepherding split flocks. El-Fiqi et al. examined two31

heuristic methods with flocks initialized in a variety of patterns [2]. Hu et al. assigned shepherds to32

split flocks by a coordination protocol [3]. Those methods assume global information about goal,33

sheep and and shepherds. We present and evaluate a limited-perception, learning-based solution to34

shepherding split flocks with shepherd-local observations a key component to reward.35
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Most shepherding works consider one of two types of dynamics for the passively guided agents.36

Reynolds’ bird-like boids flocking dynamics [20] with added shepherd-avoidance terms have been37

studied in several shepherding works [10, 21, 7, 4]. Strömbom et al. presented dynamics in which38

sheep move away from shepherds, towards a local center of mass of sheep, and away from other39

sheep which get too close [1]. Strömbom et al. dynamics have been used heavily in shepherding40

problem research [12, 22, 6, 4]. We choose here to use the dynamics of Strömbom et al., as they41

reproduce sheep-like herding well and have a parameter n controlling flock cohesion.42

3 Methods43

This work extends a learning based shepherding approach [4]. Except where specified, parameters44

are as described in that work. Training ran for 300M timesteps, taking ∼ 2 days per model. In-45

put forms a 1, 536 × 1 × 3 size array, consisting of three 512-ray lidar observations for the three46

observable types (sheep, other shepherds, and the goal region) concatenated, with a framestack of47

three. Network output is velocity. Training and experimental validation both use seeded random48

unbounded environments. A goal region of radius 2.5m is placed randomly within a 50m × 50m49

box. One or more flocks of sheep are placed around random points 10m to 20m from the goal50

center in Gausssian distributions with zero mean and standard deviation 1m. Shepherd robots are51

placed at random with a uniform distribution within the 50m × 50m box. Episodes of training or52

experimentation are 1000 time steps with a time step of 0.2s. Each shepherd agent senses and acts53

without explicit communication at every time step. Strömbom dynamics parameters are as in [4]54

with the exception of the cohesion parameter, n, which determines the nearest neighbors used to55

calculate the sheep attraction to the local center of mass. This value is set to 40 in training, is 40 in56

the varying number of starting flocks experiment, and varied in the varying flock cohesion parameter57

experiment. Two flocks and 1 to 6 shepherds are used in training.58

We define three components of a shared global reward: an occupancy reward, roccupy , and distance59

penalty, rdistance, which were both present in [4], and an occlusion reward, rocclude, which is new60

to this work. Each reward has an associated weight:61

rtotal = woccupy · roccupy + wdistance · rdistance + wocclude · rocclude, (1)

where woccupy = 10, wdistance = −0.1, as in [4], and wocclude = 0.1, tuned empirically. roccupy is62

the number of sheep in the goal region at a given time step divided by both the total number of sheep63

(fixed here to 100) and the total number of time steps in an episode (fixed here to 1000). rdistance64

is 1 + di, where di is the distance from the goal border to sheep i, summed across all sheep outside65

the goal. Finally, rocclude is calculated as:66

rocclude =

∑P
p

∑Bp

b 1 if ∃ s ∈ S s.t. C(p, b, s) else 0

|P| · T
, (2)

67
where C(p, b, s) = V (p, b, g, s) ∧D(p, b, s) ∈ [α,min(D(p, b, g), I)]. (3)

S is a set of sheep to be defined, P is the set of shepherds, Bp is the set of lidar beams of shepherd68

p ∈ P , g is the goal, T is the total timesteps of the episode, V (p, b, g, s) is a Boolean function that69

is true when both g and s ∈ S are visible along beam b, D(p, b, x) is the distance from shepherd p70

to entity x’s edge along beam b, α is the minimum distance from shepherd to sheep (2m), and I is71

the influence radius of the shepherd (10m in [4]). We define two variants of Occlusion reward: one72

variant, referred to as “Any Sheep”, where S is the set of all sheep, and another variant, referred to73

as “Wild Sheep”, where S is the set of sheep that have yet to reach the goal.74

A shepherd satisfying eq. (3) with a sheep is properly driving that sheep towards the goal. Note75

that defining α is critical: without it, shepherds learned to go inside the flocks, disrupting them. The76

training curves seen in Figure 1 show that the Wild Sheep reward scheme converges at around 25M77

time steps, faster than the Any Sheep scheme at around 60M time steps. We hypothesize that this78

happens because Any Sheep is initially distracted from collecting more flocks by sheep that already79

entered the goal.80
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Figure 1: Mean reward curves for the original reward scheme of [4] and the Any Sheep and Wild
Sheep reward schemes. Note that the range of rewards possible vary significantly between methods.

We compare against three state of the art heuristic shepherding methods chosen for being applicable81

to the Strömbom flock dynamics [1]. First, the Strömbom et al. heuristic (hereafter just Strömbom)82

switches between collecting distant sheep and driving a single coherent flock [1]. The Strömbom83

shepherding heuristic was originally defined for one shepherd only, but has been extended to mul-84

tiple shepherds [23, 13]. Second, the Pierson and Schwager shepherding heuristic (hereafter just85

Pierson) forms an arc around a flock to drive the flock with unicycle-like dynamics [12]. Third, the86

El-Fiqi et al. shepherding heuristic (hereafter just called El-Fiqi) distributes multiple shepherds to87

distinct collecting and driving tasks while avoiding disturbing sheep unnecessarily [2]. The El-Fiqi88

algorithm has three important parameters which determine where and how shepherds travel: R1, R289

and R3. We set R1 to 5m, R2 to 4m, and R3 to equal the shepherd influence radius (10m). Finally,90

we additionally compare against the deep reinforcement learning model presented in [4] trained91

without new occlusion reward under otherwise identical conditions to the new models.92

4 Experiments93

4.1 Varying Number of Starting Flocks94

In this experiment we evaluate the ability of the different shepherding methods to handle varying95

numbers of starting flocks. We vary the number of starting flocks from 1 to 5. Parameter n, which96

determines sheep attraction nearest neighbor count, is fixed at 40. There are three shepherds.97

We find that the new perception-based rewards are critical to learning how to shepherd multiple98

flocks as well or better than existing heuristic methods. Figure 2 (a) shows the mean number of99

sheep arriving at the goal across 100 trials. Note that the original learning algorithm presented in [4]100

did not come up with a good policy for getting single or multiple flocks to the goal, or learn well with101

(a) Mean number of sheep arriving at goal. (b) Mean shepherd path lengths (meters).

Figure 2: Results for varied flock counts, 100 trials each.
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(a) Mean number of sheep arriving at goal. (b) Mean shepherd path lengths (meters).

Figure 3: Results for varied cohesion parameter n, 100 trials each.

the training parameters (two flocks, n = 40). By contrast, Any Sheep and Wild Sheep nearly always102

get a single flock to the goal, and typically get all flocks to the goal with multiple flocks. These103

models perform comparably to the heuristic comparison algorithms for shepherding single flocks,104

and get high numbers of sheep to the goal in the case of multiple flocks. Moreover, as Figure 2 (b)105

shows, these models do so more efficiently (with travel distance a proxy for battery consumption)106

than the best performing heuristics, with average shepherd path lengths consistently about 100m less107

than well-performing heuristic methods. This shows that the models trained with perception-based108

rewards are effective at shepherding different numbers of flocks, successfully generalizing from the109

training experience of always two flocks, which is a marked improvement over [4].110

4.2 Varying Flock Cohesion Parameter111

Flocks that are not very cohesive may split or lose sheep. Here we evaluate the ability of the different112

shepherding methods to handle split flocks with more or less cohesiveness. We vary the parameter113

n from 10 to 85 in increments of 15. Greater n corresponds to greater cohesion. These experiments114

all start out with two flocks and three shepherds.115

The new perception-based reward models are again effective and efficient at shepherding, general-116

izing to varied cohesion parameter n values. Figure 3 (a) shows the effectiveness of all methods117

reduces with less flock cohesion. However, even at n = 10, the models with perception-based re-118

ward perform as well or better than the best heuristic method. Figure 3 (b) shows that the shepherd119

path lengths, a metric of efficiency, are slightly higher for lower values of cohesion parameter n.120

However, in all cases where the heuristic methods on average delivered 50% or more sheep to the121

goal, average shepherd path lengths are about 100m shorter. The models which use perception-based122

reward for training generalize well to amounts of flock cohesion not encountered in training.123

5 Conclusion124

In this work presented a novel perception-based reward approach to shepherding groups of sheep to125

a goal, a task that requires reactive controls and continuous actions and observations. The policies126

learned are significantly more effective at guiding disjointed flocks than the state of the art learning127

method without the perception-based rewards, and are comparably as effective as state of the art128

heuristic shepherding methods. Moreover, they are significantly more efficient in terms of shepherd129

path lengths than the state of the art heuristics. The results show that the perception of goal occlusion130

is an effective tool for improving agile shepherding beyond what was previously possible.131
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