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ABSTRACT

We propose a depth estimation method from a single-shot monocular endoscopic image using
Lambertian surface translation by domain adaptation and depth estimation using multi-scale edge
loss. We employ a two-step estimation process including Lambertian surface translation from unpaired
data and depth estimation. The texture and specular reflection on the surface of an organ reduce the
accuracy of depth estimations. We apply Lambertian surface translation to an endoscopic image to
remove these texture and reflections. Then, we estimate the depth by using a fully convolutional network
(FCN). During the training of the FCN, improvement of the object edge similarity between an estimated
image and a ground truth depth image is important for getting better results. We introduced a muti-scale
edge loss function to improve the accuracy of depth estimation. We quantitatively evaluated the
proposed method using real colonoscopic images. The estimated depth values were proportional to
the real depth values. Furthermore, we applied the estimated depth images to automated anatomical
location identification of colonoscopic images using a convolutional neural network. The identification
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accuracy of the network improved from 69.2% to 74.1% by using the estimated depth images.

1. Introduction

Diagnosis and treatment using endoscopes can encounter some
common problem that the difficulty of understanding 3D struc-
tures. Although some laparoscopes are equipped with stereo
scope cameras, most endoscopes, including colonoscopes, have
monocular cameras because of their small size. Image-based assis-
tance by computers can help solve the problem. Examples of
image-based endoscope assistance include endoscope navigation
(Hayashi et al. 2016), tracking (Luo et al. 2015), lesion detection
(Brandao et al. 2017; Yuan et al. 2018), and scene understanding
during surgery (Twinanda et al. 2017; Aksamentov et al. 2017).
However, the lack of 3D information in monocular endoscopic
images makes using such assistance difficult. Therefore, recon-
struction of 3D structures or depth estimation from endoscopic
images is needed in many endoscope assistance applications.
Previous research has proposed 3D structure reconstruction
or depth estimation from endoscopic images, including Shape
from Shading and feature-point matching techniques Mair-(Mair-
Hein et al. 2013). Because sensors for depth measurement cannot
be used in combination with endoscopes due to the limitation of
the size, image-based estimation is commonly performed to
estimate depth. Depth estimation from endoscopic images is
commonly performed. However, these approaches easily fail to
estimate depths from real endoscopic images. This is because
endoscopic images can portray a huge variety of organ-surface
textures. Furthermore, organs appearing in endoscopic images

show non-rigid deformations. Such deformations decrease the
matching accuracies of feature points in images. Thus, a new
depth estimation method that does not rely on these previous
techniques is needed. Recently, many deep learning-based
depth estimation methods from indoor or driving images
(Godard et al. 2017; Luo et al. 2018; Prasad and Bhowmick
2019; Liu 2019a; Guo et al. 2019; Ma et al. 2019; Zhang et al.
2019; Chabra et al. 2019; Ren et al. 2019) and endoscopic images
(Visentini-Scarzanella et al. 2017; Mahmood 2018a, 2018b, 2018c;
Rau et al. 2019; Liu et al. 2018, 2019b; Luo et al. 2019) have been
proposed. Among the estimation methods from endoscopic
images, Visentini-Scarzanella et al. (Visentini-Scarzanella et al.
2017) trained and tested only using images taken from
a phantom. Mahmood et al. (Mahmood 2018a, 2018b, 2018c)
performed quantitative evaluation on a phantom and a porcine
colon datasets. Rau et al. (Rau et al. 2019) also evaluated their
method on a phantom dataset. Quantitative performances of the
previous methods on real human dataset remain obscure. Liu
et al. (Liu et al. 2018, 2019b) and Luo et al. (Luo et al. 2019)
performed estimations from time-series and stereo images,
respectively. Depth estimation from a single-shot image is still
a challenging task as a baseline of depth estimation methods
using time-series or stereo camera images. The single-shot
image-based depth estimation is useful to perform automatic
classification or recognition of large number of previously stored
single-shot monocular endoscopic images in retrospective stu-
dies of endoscopic image analysis.
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We propose a depth estimation method from a single-
shot monocular endoscopic image. The difficulty of the
depth estimation is that we cannot obtain real endoscopic
images and their corresponding depth images. Depth sen-
sors cannot be attached to endoscopes because of the size
limitation. To tackle the difficulty, we employ a two-step
estimation process including Lambertian surface translation
from unpaired data and depth estimation. While depth
estimation from a Lambertian surface in a 2D image is
possible, light reflections on organ surfaces in real endo-
scopic images contain not only diffuse but also specular
reflections. Also, textures on organ surfaces make depth
estimation difficult. We remove such specular reflections
and textures on the organ surface by using a real to
Lambertian surface translation by a domain adaptation
technique. The domain adaptation translation is performed
by a fully convolutional network (FCN), which is trained in
an unpaired image training framework. Then, the domain
translated images are processed by a depth estimation net-
work. We use a DenseNet-based encoder-decoder-style FCN
as the depth estimation network. We propose a multi-scale
edge loss that helps to give highly accurate depth estima-
tions. Object edge information is important to evaluate the
quality of depth estimations. The multi-scale edge loss eval-
uates the estimation quality of object edges, including clear
to blurred edges. We obtain results from the depth estima-
tion network trained using the multi-scale edge loss. We
performed quantitative evaluation of depth estimation
results on real human dataset that previous methods failed
to report.

The contributions of this paper can be summarised as: (1)
a Lambertian surface translation process by domain adaptation
to improve depth estimation accuracy, (2) a multi-scale edge
loss for FCN-based depth estimation, and (3) quantitative eva-
luation of depth estimation on real human dataset. Use of the
loss improved the depth estimation accuracy.

2. Depth estimation method
2.1. Overview

A single-shot monocular real endoscopic image is the input of
our method. Lambertian surface translation is applied to the
image to remove specular reflections and textures on the organ
surface. The translated image is processed by the depth
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Real endoscopic
images, CT volumes

Lambertian Surface
Translation
F:R—V

Real endoscopic images

Lambertian surface translation result

estimation network. The network is trained using the multi-
scale edge loss. The output of the network is an estimated
depth image. The process flow of the proposed method is
shown in Figure 1.

Depth images that correspond to real colonoscopic or
bronchoscopic images are difficult to obtain because of the
size limitation of such endoscopes. Therefore, we employ an
unpaired training framework to estimate depth images from
real endoscopic images. Our method establishes a depth esti-
mation network from unpaired training data.

2.2. Lambertian surface translation by domain
adaptation

Following the shape from shading theory (Horn 1990), we can
estimate the shape of a 3D surface from a 2D image that
captures a Lambertian surface having the homogeneous reflec-
tion property. This is because surface normals are calculated
from shading or intensity values on the surface in a perfect
diffuse reflection. The intensity value on the surface ¢ is calcu-
lated as

¢ =pN-S=pcosb, (1)

where p is the diffuse reflectance rate, N is the surface normal, S
is the light direction, and 0 is the angle between N and S. In
endoscopic images, the light direction is the same as the cam-
era direction because the light and the camera are mounted at
almost the same position. From the above equation, we obtain

0 = cos™! <%>, 2

to estimate the surface normal. The surface normal vector is
calculated under the assumption that the surface is smooth and
continuous. Based on the above equations, the shape or depth
of a 3D surface can be calculated from the surface normals if we
have the p of the surface.

However, light reflections on organ surfaces contain not only
diffuse but also specular reflections. In the dichromatic reflection
model (Shafer 1985), light reflection on the surface is represented
as the sum of the diffuse and specular components. In a previous
method (Umeyama and Godin 2004), parameters in the model
were calculated from object images taken by a rotating polariser.
This approach is difficult to apply to in-vivo endoscopic images
because there is no commercially available endoscopes including
colonoscope or bronchoscope that has the function of rotating

Training data
Depth Estimation
A
vV—=D

i

Depth estimation result

Figure 1. Process flow of proposed depth estimation method. A single-shot monocular real endoscopic image is converted by the Lambertian surface translation
process to remove specular light reflection and textures on organ surfaces. The depth estimation method trained using virtual endoscopic images and depth images

generated from CT volumes is applied to the image to estimate a depth image.
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polarising filters. Because it is quite difficult to measure the light
reflection properties on the in vivo organ surfaces, including
diffuse and specular reflectance rates that are necessary to cal-
culate the dichromatic reflection model, an alternate approach to
reduce the effects of specular reflections on shape estimation is
necessary. Also, there are organ-specific textures on the organ
surfaces. Such textures make shape estimation difficult.

We remove specular light reflection and textures on organ
surfaces from endoscopic images by using a translation based
on a domain adaptation technique from real to Lambertian
surface domains. Because we build the translator using a data-
driven approach, we can skip measurement of the light reflec-
tion properties on the in vivo organ surfaces. We use an FCN to
perform the domain adaptation. Sets of endoscopic images in
real and Lambertian surface domains are denoted as Rand V,
respectively. The translator performs mapping F: R — V. We
train the FCN using CycleGAN (Zhu et al. 2017), which is
a training framework that uses unpaired real and virtual endo-
scopic images. Real endoscopic images r;(i=1,...,/) € R are
taken from patients during endoscopic diagnoses. Endoscopic
images purely containing Lambertian organ surfaces are gen-
erated as virtual endoscopic images. Virtual endoscopic images
vi(j =1,...,J) € V are generated from CT volumes of patients
using a volume rendering technique (Mori et al. 2003) that uses
diffuse reflectance as a light reflection model on organ surfaces.
I'and J are the numbers of real and virtual endoscopic images,
respectively. The translator F is implemented as a U-Net
(Ronneberger et al. 2015) with instance normalisation
(Ulyanov et al. 2017) after each convolution layer.

2.3. Depth estimation network

2.3.1. Network structure

Depth estimation from a monocular single-shot 2D image is
an ill-posed problem. However, with the development of
deep learning-based depth estimation techniques, reason-
able depths can be estimated from such images. Among
many network structures for depth estimation, the enco-
der-decoder-style depth estimation FCN (Alhashim and
Wonka 2019) based on the DenseNet-169 (Huang et al.
2017) produces accurate and high-resolution depth estima-
tions. The depth estimation FCN has a pre-trained
DenseNet-169 as an encoder. The decoder of the depth
estimation FCN consists of upsampling and convolution
layers. Feature maps of many resolutions in the encoder
are sent to corresponding layers in the decoder by skip
connections (concatenation operation). The skip connec-
tions help keep spatial resolutions and produce detailed
estimations of depth images. DenseNet-169 in the encoder
is pre-trained on the ImageNet. Even though the weights
on the network are pre-trained to classify images, the
transfer learning from classification to depth estimation
improves depth estimations.

2.3.2. Multi-scale edge loss

An appropriate loss function for depth estimation is needed
to get better training results from the FCN. L1 or L2 norms
are commonly used as loss functions that evaluate the

difference between the ground truth and estimated depth
images. Object edge information in depth images is also
important for training a depth estimation network
(Alhashim and Wonka 2019). Alhashim and Wonka
(Alhashim and Wonka 2019) introduced first-order differen-
tial of depth values in the loss function to consider object
edge difference. They calculated the first-order differential
of depth values in a small local region, such as a region in
3 x 3 pixels. However, the use of a small local region results
in consideration of very clear edges in the loss function. In
some cases, edges of objects in endoscopic depth images
are not clear because endoscopic images are blurred when
the movement of the endoscope tip was quick. Because the
application target of the method proposed by Alhashim and
Wonka (Alhashim and Wonka 2019) is made up of natural
images, their loss function is not suitable for endoscopic
images.

We propose a multi-scale edge loss term in a loss func-
tion that takes clear and blurred object edges into
account. The loss evaluates the difference of the edges in
depth images that have multiple thickness. This term is
effective in quality evaluations of endoscopic depth
images. We represent a ground truth depth image as D
and an estimated depth image as D. Our loss function L is
represented as

L(Daﬁ) :ALd(DaIS) +L5(D76) +L6(D76)7 (3)

where Ly4(D, D) is the point-wise L1 loss term and Ls(D, D) is the
structural similarity (SSIM)-based loss term. Definitions of the
terms can be found in Alhashim and Wonka (Alhashim and
Wonka 2019). L.(D, D) is the multi-scale edge loss term, which is
described as

6

~(7)
p G£75)|’|Gp _G[<77)|}7

. 1 P ~ (3 o

Le(D,D) = 5> max{|G;” — G|, |G
p

(4)

where p is the index of a pixel in a depth image and P is the

total number of pixels in a depth image. G® is the edge image
obtained by applying the 3 x 3 differential filter to D. Similarly,
G® and G”) are obtained by applying the 5 x 5 and 7 x 7
differential filters to D, respectively. The 3 x 3,5 x 5,and 7 x 7
differential filters calculate differentials between adjacent pix-
els, pixels at one pixel intervals, and pixels at two pixel intervals,

respectively, in D. G(3>, G(5>, and 6(7) are obtained by applying

the three scales differential filters to D.

2.3.3. Network training

We train the depth estimation FCN using the multi-scale edge
loss. Virtual endoscopic images v; and their corresponding
depth images d; are fed to the FCN. Depth images d;, which
correspond to v;, are generated from the CT volumes of
patients. The depth images have greyscale intensity values
that correspond to the distance from a virtual camera position
to a position on the surface of an inner wall of a hollow organ.
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2.4. Depth estimation

To estimate a depth image from a real endoscopic image, two
trained FCNs are used. A real endoscopic image is processed by
F to translate into a Lambert surface. The translated image is
then processed by the depth estimation FCN to obtain a depth

estimation result d.

We perform a simple correction process of depth values of
the depth estimation result. The correction process contains
scaling and translation of depth values. The correction process
is applied to each depth value in d by

di = sdy + t, (5)

where s and t are the scaling and translation coefficients of the
correction process. k is an index of pixels in d. disa depth
value of k-th pixel in d. di is a corrected depth value of k-th
pixel in a corrected depth image d. We obtain the corrected
depth image d as the final depth estimation result.

3. Experiments and results

We evaluated the proposed method quantitatively. We applied
the method to real colonoscopic images with a point depth to
evaluate the accuracy of the depth estimation. Also, to evaluate
the usefulness of the estimated depth images in automated
endoscopic scene understanding, we performed automated
anatomical location identification of colonoscopic images
using a convolutional neural network (CNN). The estimated
depth images were used for image classification.

We generated J = 8, 085 virtual colonoscopic images and cor-
responding depth images from six cases of colon CT volumes.
These images were taken during manual fly-through in the colon
in the CT volumes. For the training of the Lambertian surface
translator, the virtual colonoscopic images and / = 13,406 real
colonoscopic images were used. The generators and discrimina-
tors were trained in 400 iterations with a 38-minibatch size. The
depth estimation network was trained using J = 8,085 pairs of
virtual colonoscopic and depth images. The training epoch was 7,
and the minibatch size was 10. The parameter value was set
asA=0.1.

In the correction process of depth values, values of the
parameters were set as s = 0.73 and t = —3.0. These values
were selected experimentally.

The size of all images used in our method was 256 x 256
pixels. The virtual and real colonoscopic images were in colour,
and the depth images were greyscale. The brightest and dark-
est intensity values in the depth images correspond to depth
values of 0 and 100 mm, respectively.

3.1. Ablation study and comparative study

We performed an ablation study of the proposed method. We
proposed the Lambertian surface translation (LST) method and the
depth estimation by the FCN using the multi-scale edge loss (ME
loss) (LST + Depth estimation with ME loss (Proposed)). To confirm
the effectiveness of using the multi-scale edge loss, we used the
mean absolute error loss (MAE loss) as the loss function to train the
depth estimation FCN (LST + Depth estimation with MAE loss). We

also compare results obtained by using and without using the LST.
To perform the comparison, we made a depth estimation method
from real colonoscopic images without using the LST (Depth esti-
mation without LST). We made the method by using an image
translation based on a domain adaptation technique trained using
CycleGAN. We need to use the unpaired training technique
because the real colonoscopic and depth images are unpaired.

Depth estimation results of the above three methods are
shown in Figure 2. The results of the proposed method and the
LST + Depth estimation with MAE loss represented the shape of
the colonic surfaces accurately. In the results of the Depth
estimation without LST, depth values were affected by texture
and specular light reflections on the surface. Estimated depth
values in these areas were not accurate.

We compared the proposed method with a previously pro-
posed depth estimation method from a single-shot monocular
image (Iro et al. 2016). The previous method uses a fully con-
volutional residual network (FCRN) to estimate depth images.
We used the method to estimate depth images from the results
of the LST (LST + FCRN). The FCRN was trained using 8,085 pairs
of virtual colonoscopic and depth images. The training epoch
was 40, and the minibatch size was 16. Depth estimation results
of the LST + FCRN are shown in Figure 2. Colonic surface shapes
were not represented in the results.

3.2. Evaluation of depth estimation accuracy

We used graduated endoscopy forceps for measurement of the
sizes or lengths in the endoscopic images. The forceps displays
2 mme-scaled labels along its bar-like body. During colonoscope
insertions into patients, we aligned the forceps from the cam-
era position of the colonoscope to the colonic wall to measure
depth values. Then, we took real endoscopic images that
included the aligned forceps. The measured depth values
were used as the ground truth of the depth values. The image
was called real endoscopic image with a point depth.

We applied the proposed method to 60 real endoscopic images
with a point depth. In the estimated depth images, we picked up
an estimated depth value at a position on the colonic wall near the
location where the forceps pointed as shown in Figure 3. We
avoided picking up an estimated depth value on the forceps
because estimated depth value on the forceps is not accurate.
We selected an estimated depth value on the colonic surface
near the forceps. We compared the ground truth and estimated
depth values. The results are shown in Table 1. Even though
absolute values of the estimated depth values are different from
the ground truth, the averaged estimated depth values were
clearly increase along with the ground truth. The correlation coef-
ficient of the ground truth and estimated depth values was 0.45. It
means the estimated depth values by the proposed method were
correlated with the ground truth depth values.

3.3. Application of Depth Estimation Results to
Anatomical Location Identification from Colonoscopic
Images

Depth information is wuseful in automated location-
identification. To evaluate the usefulness of our method for
this identification, we used the estimated depth images in CNN-
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Depth estimation results:
LST+
Depth estimation with ME loss
(Proposed) \

Texture on surface  Specular light reflection

Real endoscopic image

LST result

LST+
Depth estimation with MAE loss

Depth estimation without LST

LST+FCRN

Depth: 0 100mm

Figure 2. Results of LST and depth estimations. The real colonoscopic images shown in the top row were used as the input of the translator. Results of LST are also
shown. Depth estimation results using proposed method are shown as LST + Depth estimation with ME loss, which uses LST and depth estimation FCN trained using
multi-scale edge loss (ME loss). Results obtained using mean absolute error loss (MAE loss) are indicated as LST + Depth estimation with MAE loss. Results obtained
without using LST are indicated by Depth estimation without LST. Results obtained by FCRN (Iro et al. 2016) are indicated as LST + FCRN.

Depth:
0 8 100mm

Figure 3. Real endoscopic images with a point depth and depth estimations. Lengths of forceps are shown in real endoscopic images. Depth values estimated by
proposed method were measured at the positions on the colonic wall near the location where the forceps pointed (indicated by arrows). Measuring estimated depth
values on the forceps was avoided because estimated depth values on the forceps are not accurate.
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Table 1. Relationships between ground truth and estimated depth values.

Ground truth (mm) Average estimated (mm) Number of images

4and 6 5.38 5
8and 10 11.05 5
12 and 14 15.73 1
16 and 18 16.66 16
20 20.21 23

based anatomical location identification of real colonoscopic
images. We made a location identification CNN, as shown in
Figure 4. The CNN classified an input image into three classes:
the ileocaecal area and ascending colon, the descending colon,
and the rectum. We trained the CNN using two sets of images:
a set of only real colonoscopic images and a set of combined
images of real colonoscopic images and depth images. The
combined images were made by combining the real colono-
scopic images and depth images in the colour channel. We
used 2131 real colonoscopic images that were not used in
training either the domain adaptation translator or the depth
estimation network. Depth images were generated from them
using the four methods used in 3.1. 80% and 20% of the images
were used for training and evaluation of the CNN, respectively.
Separation of images into the training and evaluation sets were
performed randomly. The CNN was trained in 50 epochs with
a 50-minibatch size. We compared the classification accuracies
of the CNN when trained using the two sets of images.

We performed the random training/evaluation sets separa-
tions and CNN trainings five times. The classification accuracies
are shown in 2. From this table, the depth images contributed
to improving the classification accuracies of CNN. Among the
four depth estimation methods, using the depth images gen-
erated by the proposed method resulted in obtaining the high-
est classification accuracy. This shows that the depth images
generated by the proposed method include much useful infor-
mation for understanding real colonoscopic images.

4. Discussion

Machine learning-based depth estimation from colonoscopic
images is difficult because commercially available colono-
scopes cannot obtain depth images. By translating real colono-
scopic images to virtual images by the LST, the depth
estimation network trained in the virtual image domain is
applicable for colonoscope depth estimation.

Input image

In Figure 2, the depth images generated by the proposed
method reflect the distance from the camera to the colonic wall
at any point on the image. The importance of the LST can be
observed by comparing the results of the proposed method
and the results obtained without using LST. In the results
obtained without using LST, depth values were affected by
texture and specular light reflections on the colonic surfaces.
The proposed method obtained better depth estimation results
regardless of them. The estimated depth values and the ground
truth values had a positive correlation (the correlation coeffi-
cient was 0.45) in the experiments using the real endoscopic
images with a point depth. This means the estimated depth
images represent the shape of colonic walls. However, absolute
values of the estimated depth were different from the ground
truth in Table 1. The differences were caused by difference of
the real and virtual camera parameters. The camera parameters
of the real colonoscope and virtual camera should be calibrated
to reduce differences of how these cameras map a target object
to images. In our method, camera calibration was not per-
formed. We need to calibrate real colonoscope and virtual
camera to improve the results.

We conducted an experiment to evaluate the usefulness of the
estimated depth images for automated location identification.
The averaged accuracy of the location identification from images
was improved from 69.2% to 74.1% by using the estimated depth
images obtained by using the proposed method. We obtained the
highest accuracy among the depth estimation methods shown in
Table 2. The results indicate the LST and ME loss proposed in this
paper contribute in obtaining high quality depth estimation
results. The shape information of objects in scenes is quite impor-
tant for understanding scenes. However, the sizes of objects are
difficult to understand from 2D images because distance informa-
tion from the camera to the object has lost. The estimated depth
images contributed to recover the distance information and
improved the automated location identification accuracy. We
showed a typical result as one example of using the proposed
depth estimation method. In practice, the proposed method can
be applied to many automated endoscopic tasks involving scene
understanding.

The depth images can be used to improve automated navi-
gation, tracking, scene understanding, lesion detection, and
quantitative analysis of lesions. By using the depth images,
these methods can utilise not only colour information but
also 3D shape information on the surface of organs or surgical

Color (3ch)
or
( 3
. N 512 Class
16 16 32. 32 64 64 128 128 2048 output
Color + Depth )

(4ch) : 3x3 Convolution

: 4x4 MaxPooling

: 2x2 MaxPooling
: Fully connected

Figure 4. Structure of CNN for anatomical location identification of colonoscopic images. The boxes are layers in the CNN. The numbers shown below the boxes are the
numbers of kernels or neuron units. The three neurons in the final layer correspond to the three classes.
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Table 2. Classification accuracies of location identification CNN. R and D mean
real colonoscopic and depth images. Averages and standard deviations in five
times experiments were shown.

Input of CNN Classification accuracy (Ave. = S.D.)

R 69.2 £ 1.5%
R, D generated by 741 + 25%
LST + Depth estimation with ME loss

(Proposed)

R, D generated by 708 £ 21 %
LST + Depth estimation with MAE loss

R, D generated by 699 £ 24 %
Depth estimation without LST

R, D generated by 63.7 + 88 %

LST + FCRN (Iro et al. 2016)

tools. The proposed method shows quite promising results for
enhancing endoscopic diagnosis/treatment assistance. Our
method can estimate depths from monocular single-shot
images. This is an important result to extend our application
to stereo cameras and time-series images.

An important clinical application of the depth estimation is
size measurement of a colonic polyp during a colon inspection.
Colonic polyps larger than 5 mm should be confirmed by
a physician whether they are benign or malignant. Our method
provided accurate depth estimation results when a measurement
target was close to the colonoscope camera. Our method can be
used to measure a colonic polyp size when a physician finds
a suspicious region during an inspection. To improve clinical
value of our method, depth estimation accuracy of targets that
are distant from the colonoscope camera should be improved.

5. Conclusions

We proposed a depth estimation method from monocular single-
shot endoscopic images. A domain adaptation technique was
used to translate a real endoscopic image into a Lambertian sur-
face domain. The translated image was processed by the depth
estimation FCN. The FCN has a DenseNet-based encoder-decoder
structure. The FCN was trained using the multi-scale edge loss. In
the experiment using real endoscopic images with a point depth,
the estimated depth values had positive correlation with the
ground truth values. Also, in the experiment using the location
identification CNN, use of the estimated depth image resulted in
improvement of averaged identification accuracy, from 69.2% to
74.1%. Our future work will include investigation of network
structures for domain adaptation or depth estimation and appli-
cations to scene understanding of other types of images.
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