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ABSTRACT
We propose a depth estimation method from a single-shot monocular endoscopic image using 
Lambertian surface translation by domain adaptation and depth estimation using multi-scale edge 
loss. We employ a two-step estimation process including Lambertian surface translation from unpaired 
data and depth estimation. The texture and specular reflection on the surface of an organ reduce the 
accuracy of depth estimations. We apply Lambertian surface translation to an endoscopic image to 
remove these texture and reflections. Then, we estimate the depth by using a fully convolutional network 
(FCN). During the training of the FCN, improvement of the object edge similarity between an estimated 
image and a ground truth depth image is important for getting better results. We introduced a muti-scale 
edge loss function to improve the accuracy of depth estimation. We quantitatively evaluated the 
proposed method using real colonoscopic images. The estimated depth values were proportional to 
the real depth values. Furthermore, we applied the estimated depth images to automated anatomical 
location identification of colonoscopic images using a convolutional neural network. The identification 
accuracy of the network improved from 69.2% to 74.1% by using the estimated depth images.
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1. Introduction

Diagnosis and treatment using endoscopes can encounter some 
common problem that the difficulty of understanding 3D struc
tures. Although some laparoscopes are equipped with stereo 
scope cameras, most endoscopes, including colonoscopes, have 
monocular cameras because of their small size. Image-based assis
tance by computers can help solve the problem. Examples of 
image-based endoscope assistance include endoscope navigation 
(Hayashi et al. 2016), tracking (Luo et al. 2015), lesion detection 
(Brandao et al. 2017; Yuan et al. 2018), and scene understanding 
during surgery (Twinanda et al. 2017; Aksamentov et al. 2017). 
However, the lack of 3D information in monocular endoscopic 
images makes using such assistance difficult. Therefore, recon
struction of 3D structures or depth estimation from endoscopic 
images is needed in many endoscope assistance applications.

Previous research has proposed 3D structure reconstruction 
or depth estimation from endoscopic images, including Shape 
from Shading and feature-point matching techniques Mair-(Mair- 
Hein et al. 2013). Because sensors for depth measurement cannot 
be used in combination with endoscopes due to the limitation of 
the size, image-based estimation is commonly performed to 
estimate depth. Depth estimation from endoscopic images is 
commonly performed. However, these approaches easily fail to 
estimate depths from real endoscopic images. This is because 
endoscopic images can portray a huge variety of organ-surface 
textures. Furthermore, organs appearing in endoscopic images 

show non-rigid deformations. Such deformations decrease the 
matching accuracies of feature points in images. Thus, a new 
depth estimation method that does not rely on these previous 
techniques is needed. Recently, many deep learning-based 
depth estimation methods from indoor or driving images 
(Godard et al. 2017; Luo et al. 2018; Prasad and Bhowmick 
2019; Liu 2019a; Guo et al. 2019; Ma et al. 2019; Zhang et al. 
2019; Chabra et al. 2019; Ren et al. 2019) and endoscopic images 
(Visentini-Scarzanella et al. 2017; Mahmood 2018a, 2018b, 2018c; 
Rau et al. 2019; Liu et al. 2018, 2019b; Luo et al. 2019) have been 
proposed. Among the estimation methods from endoscopic 
images, Visentini-Scarzanella et al. (Visentini-Scarzanella et al. 
2017) trained and tested only using images taken from 
a phantom. Mahmood et al. (Mahmood 2018a, 2018b, 2018c) 
performed quantitative evaluation on a phantom and a porcine 
colon datasets. Rau et al. (Rau et al. 2019) also evaluated their 
method on a phantom dataset. Quantitative performances of the 
previous methods on real human dataset remain obscure. Liu 
et al. (Liu et al. 2018, 2019b) and Luo et al. (Luo et al. 2019) 
performed estimations from time-series and stereo images, 
respectively. Depth estimation from a single-shot image is still 
a challenging task as a baseline of depth estimation methods 
using time-series or stereo camera images. The single-shot 
image-based depth estimation is useful to perform automatic 
classification or recognition of large number of previously stored 
single-shot monocular endoscopic images in retrospective stu
dies of endoscopic image analysis.
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We propose a depth estimation method from a single- 
shot monocular endoscopic image. The difficulty of the 
depth estimation is that we cannot obtain real endoscopic 
images and their corresponding depth images. Depth sen
sors cannot be attached to endoscopes because of the size 
limitation. To tackle the difficulty, we employ a two-step 
estimation process including Lambertian surface translation 
from unpaired data and depth estimation. While depth 
estimation from a Lambertian surface in a 2D image is 
possible, light reflections on organ surfaces in real endo
scopic images contain not only diffuse but also specular 
reflections. Also, textures on organ surfaces make depth 
estimation difficult. We remove such specular reflections 
and textures on the organ surface by using a real to 
Lambertian surface translation by a domain adaptation 
technique. The domain adaptation translation is performed 
by a fully convolutional network (FCN), which is trained in 
an unpaired image training framework. Then, the domain 
translated images are processed by a depth estimation net
work. We use a DenseNet-based encoder-decoder-style FCN 
as the depth estimation network. We propose a multi-scale 
edge loss that helps to give highly accurate depth estima
tions. Object edge information is important to evaluate the 
quality of depth estimations. The multi-scale edge loss eval
uates the estimation quality of object edges, including clear 
to blurred edges. We obtain results from the depth estima
tion network trained using the multi-scale edge loss. We 
performed quantitative evaluation of depth estimation 
results on real human dataset that previous methods failed 
to report.

The contributions of this paper can be summarised as: (1) 
a Lambertian surface translation process by domain adaptation 
to improve depth estimation accuracy, (2) a multi-scale edge 
loss for FCN-based depth estimation, and (3) quantitative eva
luation of depth estimation on real human dataset. Use of the 
loss improved the depth estimation accuracy.

2. Depth estimation method

2.1. Overview

A single-shot monocular real endoscopic image is the input of 
our method. Lambertian surface translation is applied to the 
image to remove specular reflections and textures on the organ 
surface. The translated image is processed by the depth 

estimation network. The network is trained using the multi- 
scale edge loss. The output of the network is an estimated 
depth image. The process flow of the proposed method is 
shown in Figure 1.

Depth images that correspond to real colonoscopic or 
bronchoscopic images are difficult to obtain because of the 
size limitation of such endoscopes. Therefore, we employ an 
unpaired training framework to estimate depth images from 
real endoscopic images. Our method establishes a depth esti
mation network from unpaired training data.

2.2. Lambertian surface translation by domain 
adaptation

Following the shape from shading theory (Horn 1990), we can 
estimate the shape of a 3D surface from a 2D image that 
captures a Lambertian surface having the homogeneous reflec
tion property. This is because surface normals are calculated 
from shading or intensity values on the surface in a perfect 
diffuse reflection. The intensity value on the surface ϕ is calcu
lated as 

ϕ ¼ ρN � S ¼ ρ cos θ; (1) 

where ρ is the diffuse reflectance rate, N is the surface normal, S 
is the light direction, and θ is the angle between N and S. In 
endoscopic images, the light direction is the same as the cam
era direction because the light and the camera are mounted at 
almost the same position. From the above equation, we obtain 

θ ¼ cos� 1 ϕ
ρ

� �

; (2) 

to estimate the surface normal. The surface normal vector is 
calculated under the assumption that the surface is smooth and 
continuous. Based on the above equations, the shape or depth 
of a 3D surface can be calculated from the surface normals if we 
have the ρ of the surface.

However, light reflections on organ surfaces contain not only 
diffuse but also specular reflections. In the dichromatic reflection 
model (Shafer 1985), light reflection on the surface is represented 
as the sum of the diffuse and specular components. In a previous 
method (Umeyama and Godin 2004), parameters in the model 
were calculated from object images taken by a rotating polariser. 
This approach is difficult to apply to in-vivo endoscopic images 
because there is no commercially available endoscopes including 
colonoscope or bronchoscope that has the function of rotating 

Figure 1. Process flow of proposed depth estimation method. A single-shot monocular real endoscopic image is converted by the Lambertian surface translation 
process to remove specular light reflection and textures on organ surfaces. The depth estimation method trained using virtual endoscopic images and depth images 
generated from CT volumes is applied to the image to estimate a depth image.
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polarising filters. Because it is quite difficult to measure the light 
reflection properties on the in vivo organ surfaces, including 
diffuse and specular reflectance rates that are necessary to cal
culate the dichromatic reflection model, an alternate approach to 
reduce the effects of specular reflections on shape estimation is 
necessary. Also, there are organ-specific textures on the organ 
surfaces. Such textures make shape estimation difficult.

We remove specular light reflection and textures on organ 
surfaces from endoscopic images by using a translation based 
on a domain adaptation technique from real to Lambertian 
surface domains. Because we build the translator using a data- 
driven approach, we can skip measurement of the light reflec
tion properties on the in vivo organ surfaces. We use an FCN to 
perform the domain adaptation. Sets of endoscopic images in 
real and Lambertian surface domains are denoted as R and V, 
respectively. The translator performs mapping F : R! V. We 
train the FCN using CycleGAN (Zhu et al. 2017), which is 
a training framework that uses unpaired real and virtual endo
scopic images. Real endoscopic images riði ¼ 1; . . . ; IÞ 2 R are 
taken from patients during endoscopic diagnoses. Endoscopic 
images purely containing Lambertian organ surfaces are gen
erated as virtual endoscopic images. Virtual endoscopic images 
vjðj ¼ 1; . . . ; JÞ 2 V are generated from CT volumes of patients 
using a volume rendering technique (Mori et al. 2003) that uses 
diffuse reflectance as a light reflection model on organ surfaces. 
I and J are the numbers of real and virtual endoscopic images, 
respectively. The translator F is implemented as a U-Net 
(Ronneberger et al. 2015) with instance normalisation 
(Ulyanov et al. 2017) after each convolution layer.

2.3. Depth estimation network

2.3.1. Network structure
Depth estimation from a monocular single-shot 2D image is 
an ill-posed problem. However, with the development of 
deep learning-based depth estimation techniques, reason
able depths can be estimated from such images. Among 
many network structures for depth estimation, the enco
der-decoder-style depth estimation FCN (Alhashim and 
Wonka 2019) based on the DenseNet-169 (Huang et al. 
2017) produces accurate and high-resolution depth estima
tions. The depth estimation FCN has a pre-trained 
DenseNet-169 as an encoder. The decoder of the depth 
estimation FCN consists of upsampling and convolution 
layers. Feature maps of many resolutions in the encoder 
are sent to corresponding layers in the decoder by skip 
connections (concatenation operation). The skip connec
tions help keep spatial resolutions and produce detailed 
estimations of depth images. DenseNet-169 in the encoder 
is pre-trained on the ImageNet. Even though the weights 
on the network are pre-trained to classify images, the 
transfer learning from classification to depth estimation 
improves depth estimations.

2.3.2. Multi-scale edge loss
An appropriate loss function for depth estimation is needed 
to get better training results from the FCN. L1 or L2 norms 
are commonly used as loss functions that evaluate the 

difference between the ground truth and estimated depth 
images. Object edge information in depth images is also 
important for training a depth estimation network 
(Alhashim and Wonka 2019). Alhashim and Wonka 
(Alhashim and Wonka 2019) introduced first-order differen
tial of depth values in the loss function to consider object 
edge difference. They calculated the first-order differential 
of depth values in a small local region, such as a region in 
3� 3 pixels. However, the use of a small local region results 
in consideration of very clear edges in the loss function. In 
some cases, edges of objects in endoscopic depth images 
are not clear because endoscopic images are blurred when 
the movement of the endoscope tip was quick. Because the 
application target of the method proposed by Alhashim and 
Wonka (Alhashim and Wonka 2019) is made up of natural 
images, their loss function is not suitable for endoscopic 
images.

We propose a multi-scale edge loss term in a loss func
tion that takes clear and blurred object edges into 
account. The loss evaluates the difference of the edges in 
depth images that have multiple thickness. This term is 
effective in quality evaluations of endoscopic depth 
images. We represent a ground truth depth image as D 
and an estimated depth image as D̂. Our loss function L is 
represented as 

LðD; D̂Þ ¼ λLdðD; D̂Þ þ LSðD; D̂Þ þ LeðD; D̂Þ; (3) 

where LdðD; D̂Þ is the point-wise L1 loss term and LSðD; D̂Þ is the 
structural similarity (SSIM)-based loss term. Definitions of the 
terms can be found in Alhashim and Wonka (Alhashim and 
Wonka 2019). LeðD; D̂Þ is the multi-scale edge loss term, which is 
described as 

LeðD; D̂Þ ¼
1
P

XP

p
maxfjĜ

ð3Þ
p � Gð3Þp j; jĜ

ð5Þ
p � Gð5Þp j; jĜ

ð7Þ
p � Gð7Þp jg;

(4) 

where p is the index of a pixel in a depth image and P is the 
total number of pixels in a depth image. Gð3Þ is the edge image 
obtained by applying the 3� 3 differential filter to D. Similarly, 
Gð5Þ and Gð7Þ are obtained by applying the 5� 5 and 7� 7 
differential filters to D, respectively. The 3� 3, 5� 5, and 7� 7 
differential filters calculate differentials between adjacent pix
els, pixels at one pixel intervals, and pixels at two pixel intervals, 

respectively, in D. Ĝ
ð3Þ
; Ĝ
ð5Þ

, and Ĝ
ð7Þ

are obtained by applying 
the three scales differential filters to D̂.

2.3.3. Network training
We train the depth estimation FCN using the multi-scale edge 
loss. Virtual endoscopic images vj and their corresponding 
depth images dj are fed to the FCN. Depth images dj, which 
correspond to vj, are generated from the CT volumes of 
patients. The depth images have greyscale intensity values 
that correspond to the distance from a virtual camera position 
to a position on the surface of an inner wall of a hollow organ.
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2.4. Depth estimation

To estimate a depth image from a real endoscopic image, two 
trained FCNs are used. A real endoscopic image is processed by 
F to translate into a Lambert surface. The translated image is 
then processed by the depth estimation FCN to obtain a depth 
estimation result d̂.

We perform a simple correction process of depth values of 
the depth estimation result. The correction process contains 
scaling and translation of depth values. The correction process 
is applied to each depth value in d̂ by 

~dk ¼ sd̂k þ t; (5) 

where s and t are the scaling and translation coefficients of the 
correction process. k is an index of pixels in d̂. d̂k is a depth 
value of k-th pixel in d̂. ~dk is a corrected depth value of k-th 
pixel in a corrected depth image ~d. We obtain the corrected 
depth image ~d as the final depth estimation result.

3. Experiments and results

We evaluated the proposed method quantitatively. We applied 
the method to real colonoscopic images with a point depth to 
evaluate the accuracy of the depth estimation. Also, to evaluate 
the usefulness of the estimated depth images in automated 
endoscopic scene understanding, we performed automated 
anatomical location identification of colonoscopic images 
using a convolutional neural network (CNN). The estimated 
depth images were used for image classification.

We generated J ¼ 8; 085 virtual colonoscopic images and cor
responding depth images from six cases of colon CT volumes. 
These images were taken during manual fly-through in the colon 
in the CT volumes. For the training of the Lambertian surface 
translator, the virtual colonoscopic images and I ¼ 13; 406 real 
colonoscopic images were used. The generators and discrimina
tors were trained in 400 iterations with a 38-minibatch size. The 
depth estimation network was trained using J ¼ 8; 085 pairs of 
virtual colonoscopic and depth images. The training epoch was 7, 
and the minibatch size was 10. The parameter value was set 
as λ ¼ 0:1.

In the correction process of depth values, values of the 
parameters were set as s ¼ 0:73 and t ¼ � 3:0. These values 
were selected experimentally.

The size of all images used in our method was 256� 256 
pixels. The virtual and real colonoscopic images were in colour, 
and the depth images were greyscale. The brightest and dark
est intensity values in the depth images correspond to depth 
values of 0 and 100 mm, respectively.

3.1. Ablation study and comparative study

We performed an ablation study of the proposed method. We 
proposed the Lambertian surface translation (LST) method and the 
depth estimation by the FCN using the multi-scale edge loss (ME 
loss) (LST + Depth estimation with ME loss (Proposed)). To confirm 
the effectiveness of using the multi-scale edge loss, we used the 
mean absolute error loss (MAE loss) as the loss function to train the 
depth estimation FCN (LST + Depth estimation with MAE loss). We 

also compare results obtained by using and without using the LST. 
To perform the comparison, we made a depth estimation method 
from real colonoscopic images without using the LST (Depth esti
mation without LST). We made the method by using an image 
translation based on a domain adaptation technique trained using 
CycleGAN. We need to use the unpaired training technique 
because the real colonoscopic and depth images are unpaired.

Depth estimation results of the above three methods are 
shown in Figure 2. The results of the proposed method and the 
LST + Depth estimation with MAE loss represented the shape of 
the colonic surfaces accurately. In the results of the Depth 
estimation without LST, depth values were affected by texture 
and specular light reflections on the surface. Estimated depth 
values in these areas were not accurate.

We compared the proposed method with a previously pro
posed depth estimation method from a single-shot monocular 
image (Iro et al. 2016). The previous method uses a fully con
volutional residual network (FCRN) to estimate depth images. 
We used the method to estimate depth images from the results 
of the LST (LST + FCRN). The FCRN was trained using 8,085 pairs 
of virtual colonoscopic and depth images. The training epoch 
was 40, and the minibatch size was 16. Depth estimation results 
of the LST + FCRN are shown in Figure 2. Colonic surface shapes 
were not represented in the results.

3.2. Evaluation of depth estimation accuracy

We used graduated endoscopy forceps for measurement of the 
sizes or lengths in the endoscopic images. The forceps displays 
2 mm-scaled labels along its bar-like body. During colonoscope 
insertions into patients, we aligned the forceps from the cam
era position of the colonoscope to the colonic wall to measure 
depth values. Then, we took real endoscopic images that 
included the aligned forceps. The measured depth values 
were used as the ground truth of the depth values. The image 
was called real endoscopic image with a point depth.

We applied the proposed method to 60 real endoscopic images 
with a point depth. In the estimated depth images, we picked up 
an estimated depth value at a position on the colonic wall near the 
location where the forceps pointed as shown in Figure 3. We 
avoided picking up an estimated depth value on the forceps 
because estimated depth value on the forceps is not accurate. 
We selected an estimated depth value on the colonic surface 
near the forceps. We compared the ground truth and estimated 
depth values. The results are shown in Table 1. Even though 
absolute values of the estimated depth values are different from 
the ground truth, the averaged estimated depth values were 
clearly increase along with the ground truth. The correlation coef
ficient of the ground truth and estimated depth values was 0.45. It 
means the estimated depth values by the proposed method were 
correlated with the ground truth depth values.

3.3. Application of Depth Estimation Results to 
Anatomical Location Identification from Colonoscopic 
Images

Depth information is useful in automated location- 
identification. To evaluate the usefulness of our method for 
this identification, we used the estimated depth images in CNN- 
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Figure 2. Results of LST and depth estimations. The real colonoscopic images shown in the top row were used as the input of the translator. Results of LST are also 
shown. Depth estimation results using proposed method are shown as LST + Depth estimation with ME loss, which uses LST and depth estimation FCN trained using 
multi-scale edge loss (ME loss). Results obtained using mean absolute error loss (MAE loss) are indicated as LST + Depth estimation with MAE loss. Results obtained 
without using LST are indicated by Depth estimation without LST. Results obtained by FCRN (Iro et al. 2016) are indicated as LST + FCRN.

Figure 3. Real endoscopic images with a point depth and depth estimations. Lengths of forceps are shown in real endoscopic images. Depth values estimated by 
proposed method were measured at the positions on the colonic wall near the location where the forceps pointed (indicated by arrows). Measuring estimated depth 
values on the forceps was avoided because estimated depth values on the forceps are not accurate.
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based anatomical location identification of real colonoscopic 
images. We made a location identification CNN, as shown in 
Figure 4. The CNN classified an input image into three classes: 
the ileocaecal area and ascending colon, the descending colon, 
and the rectum. We trained the CNN using two sets of images: 
a set of only real colonoscopic images and a set of combined 
images of real colonoscopic images and depth images. The 
combined images were made by combining the real colono
scopic images and depth images in the colour channel. We 
used 2131 real colonoscopic images that were not used in 
training either the domain adaptation translator or the depth 
estimation network. Depth images were generated from them 
using the four methods used in 3.1. 80% and 20% of the images 
were used for training and evaluation of the CNN, respectively. 
Separation of images into the training and evaluation sets were 
performed randomly. The CNN was trained in 50 epochs with 
a 50-minibatch size. We compared the classification accuracies 
of the CNN when trained using the two sets of images.

We performed the random training/evaluation sets separa
tions and CNN trainings five times. The classification accuracies 
are shown in 2. From this table, the depth images contributed 
to improving the classification accuracies of CNN. Among the 
four depth estimation methods, using the depth images gen
erated by the proposed method resulted in obtaining the high
est classification accuracy. This shows that the depth images 
generated by the proposed method include much useful infor
mation for understanding real colonoscopic images.

4. Discussion

Machine learning-based depth estimation from colonoscopic 
images is difficult because commercially available colono
scopes cannot obtain depth images. By translating real colono
scopic images to virtual images by the LST, the depth 
estimation network trained in the virtual image domain is 
applicable for colonoscope depth estimation.

In Figure 2, the depth images generated by the proposed 
method reflect the distance from the camera to the colonic wall 
at any point on the image. The importance of the LST can be 
observed by comparing the results of the proposed method 
and the results obtained without using LST. In the results 
obtained without using LST, depth values were affected by 
texture and specular light reflections on the colonic surfaces. 
The proposed method obtained better depth estimation results 
regardless of them. The estimated depth values and the ground 
truth values had a positive correlation (the correlation coeffi
cient was 0.45) in the experiments using the real endoscopic 
images with a point depth. This means the estimated depth 
images represent the shape of colonic walls. However, absolute 
values of the estimated depth were different from the ground 
truth in Table 1. The differences were caused by difference of 
the real and virtual camera parameters. The camera parameters 
of the real colonoscope and virtual camera should be calibrated 
to reduce differences of how these cameras map a target object 
to images. In our method, camera calibration was not per
formed. We need to calibrate real colonoscope and virtual 
camera to improve the results.

We conducted an experiment to evaluate the usefulness of the 
estimated depth images for automated location identification. 
The averaged accuracy of the location identification from images 
was improved from 69.2% to 74.1% by using the estimated depth 
images obtained by using the proposed method. We obtained the 
highest accuracy among the depth estimation methods shown in 
Table 2. The results indicate the LST and ME loss proposed in this 
paper contribute in obtaining high quality depth estimation 
results. The shape information of objects in scenes is quite impor
tant for understanding scenes. However, the sizes of objects are 
difficult to understand from 2D images because distance informa
tion from the camera to the object has lost. The estimated depth 
images contributed to recover the distance information and 
improved the automated location identification accuracy. We 
showed a typical result as one example of using the proposed 
depth estimation method. In practice, the proposed method can 
be applied to many automated endoscopic tasks involving scene 
understanding.

The depth images can be used to improve automated navi
gation, tracking, scene understanding, lesion detection, and 
quantitative analysis of lesions. By using the depth images, 
these methods can utilise not only colour information but 
also 3D shape information on the surface of organs or surgical 

Table 1. Relationships between ground truth and estimated depth values.

Ground truth (mm) Average estimated (mm) Number of images

4 and 6 5.38 5
8 and 10 11.05 5
12 and 14 15.73 11
16 and 18 16.66 16
20 20.21 23

Figure 4. Structure of CNN for anatomical location identification of colonoscopic images. The boxes are layers in the CNN. The numbers shown below the boxes are the 
numbers of kernels or neuron units. The three neurons in the final layer correspond to the three classes.
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tools. The proposed method shows quite promising results for 
enhancing endoscopic diagnosis/treatment assistance. Our 
method can estimate depths from monocular single-shot 
images. This is an important result to extend our application 
to stereo cameras and time-series images.

An important clinical application of the depth estimation is 
size measurement of a colonic polyp during a colon inspection. 
Colonic polyps larger than 5 mm should be confirmed by 
a physician whether they are benign or malignant. Our method 
provided accurate depth estimation results when a measurement 
target was close to the colonoscope camera. Our method can be 
used to measure a colonic polyp size when a physician finds 
a suspicious region during an inspection. To improve clinical 
value of our method, depth estimation accuracy of targets that 
are distant from the colonoscope camera should be improved.

5. Conclusions

We proposed a depth estimation method from monocular single- 
shot endoscopic images. A domain adaptation technique was 
used to translate a real endoscopic image into a Lambertian sur
face domain. The translated image was processed by the depth 
estimation FCN. The FCN has a DenseNet-based encoder-decoder 
structure. The FCN was trained using the multi-scale edge loss. In 
the experiment using real endoscopic images with a point depth, 
the estimated depth values had positive correlation with the 
ground truth values. Also, in the experiment using the location 
identification CNN, use of the estimated depth image resulted in 
improvement of averaged identification accuracy, from 69.2% to 
74.1%. Our future work will include investigation of network 
structures for domain adaptation or depth estimation and appli
cations to scene understanding of other types of images.
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