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Abstract
Healthcare knowledge graphs (HKGs) have
emerged as a promising tool for organizing med-
ical knowledge in a structured and interpretable
way, which provides a comprehensive view of
medical concepts and their relationships. How-
ever, challenges such as data heterogeneity and
limited coverage remain, emphasizing the need
for further research in the field of HKGs. This
survey paper serves as the first comprehensive
overview of HKGs. We summarize the pipeline
and key techniques for HKG construction (i.e.,
from scratch and through integration), as well as
the common utilization approaches (i.e., model-
free and model-based). To provide researchers
with valuable resources, we organize existing
HKGs1 based on the data types they capture and
application domains, supplemented with pertinent
statistical information. In the application section,
we delve into the transformative impact of HKGs
across various healthcare domains, spanning from
fine-grained basic science research to high-level
clinical decision support. Lastly, we shed light
on the opportunities for creating comprehensive
and accurate HKGs in the era of large language
models, presenting the potential to revolutionize
healthcare delivery and enhance the interpretabil-
ity and reliability of clinical prediction.

1. Introduction
A knowledge graph (KG) is a data structure that captures
the relationships between different entities and their at-
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tributes (Ji et al., 2021; Nicholson & Greene, 2020). KG
models and integrates data from various sources, includ-
ing structured and unstructured data, and has been studied
to support a wide range of applications such as search en-
gines (Wang et al., 2019a), recommendation systems (Wang
et al., 2019b; Zhou et al., 2020), and question answer-
ing (Lin et al., 2019; Yasunaga et al., 2021; Yan et al., 2021;
Kan et al., 2021). Particularly for healthcare, KG facilitates
an interpretable representation of medical concepts such as
drugs and disease, which enables context-aware insights and
enhances clinical research, decision-making, and healthcare
delivery (Santos et al., 2022; Chandak et al., 2023).

On the data side, Healthcare knowledge graphs (HKGs) are
usually built on the landscape from complex medical sys-
tems such as electronic health records, medical literature,
clinical guidelines, and patient-generated data (Bouayad
et al., 2017; Rajkomar et al., 2018). However, these data
resources are often heterogeneous and distributed, making it
challenging to integrate and analyze them effectively (Mehta
& Pandit, 2018). The data heterogeneity can also lead
to incomplete or inconsistent data representations within
HKGs, limiting their usefulness for downstream healthcare
tasks (Dash et al., 2019). Additionally, the current use of
domain-specific knowledge graphs may result in limited
coverage and granularity of the knowledge captured across
different levels, hindering the ability to identify correlations
and relationships between medical concepts from multiple
domains. These challenges underscore the need for contin-
ued research on HKGs to fully realize their potential.

On the model side, HKG can be constructed from scratch or
through the integration of existing dataset resources, where
many key steps such as entity and relation extraction can be
optimized depending on natural language processing tools
and algorithms. Recent progress in general domain knowl-
edge extraction has leveraged advances in pre-trained large
language models, (i.e. BERT (Devlin et al., 2019), GPT-
3 (Brown et al., 2020)). These models revolutionize the field
of natural language processing, enabling the efficient and
effective integration of heterogeneous medical data from var-
ious sources. The use of pre-trained models has also allowed
for the development of more accurate and comprehensive
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medical ontologies and taxonomies (Zhang et al., 2021a; Yu
et al., 2020; Wang et al., 2021a; Zeng et al., 2021), allowing
for the construction of unprecedentedly comprehensive and
fine-grained KGs for healthcare (Xu et al., 2020).

A comprehensive and fine-grained healthcare knowledge
graph holds the potential to revolutionize healthcare across
various levels (Gyrard et al., 2018; Santos et al., 2022; Li
et al., 2020). At the micro-scientific level, HKGs can help
researchers identify new phenotypic and genotypic correla-
tions and understand the underlying mechanisms of disease
(Hassani-Pak & Rawlings, 2017), leading to more targeted
and effective treatments (Seneviratne et al., 2021; Chan-
dak et al., 2023). At the clinical care level, HKGs can be
used to develop clinical decision support systems that pro-
vide clinicians with relevant information, improving clinical
workflows and patient outcomes (Eberhardt et al., 2012;
Castaneda et al., 2015). Therefore, conducting an extensive
survey of the existing literature on healthcare knowledge
graphs becomes an indispensable roadmap and invaluable
resource for constructing a comprehensive HKG that can
drive transformative advancements in healthcare.

To the best of our knowledge, this survey paper represents
the first comprehensive overview of healthcare knowledge
graphs (HKGs). The content overview of the survey is de-
picted in Figure 1, providing a visual summary of the key
aspects discussed. We delve into the construction pipelines
of HKGs, including both building from scratch and inte-
gration approaches, and highlight the key techniques em-
ployed in HKG construction. Additionally, we explore two
common utilization methods of HKGs, namely model-free
and model-based approaches (Section 2). In Section 3, we
compile a comprehensive summary of existing HKG re-
sources across various applications, serving as a valuable
reference for researchers interested in utilizing or building
upon HKGs. Furthermore, we meticulously investigate the
literature on mainstream health applications, offering an in-
depth overview of the diverse use cases of HKGs in health-
care (Section 4). Finally, we address the unique challenges
associated with HKGs and discuss promising research di-
rections, particularly in leveraging large language models
to enhance their potential (Section 5). This survey paper
targets a wide range of audience, including researchers, prac-
titioners, clinicians, and other experts in healthcare, medical
informatics, data science, and artificial intelligence.

2. Backgrounds
2.1. HKG Definition

A healthcare knowledge graph (HKG) is a domain-specific
knowledge graph designed to capture medical concepts such
as drugs, diseases, genes, phenotypes, and so on, and their
relationships in a structured and semantic way.

2.2. HKG Construction

Healthcare knowledge graphs can be constructed from
scratch or through the integration of existing data resources.

Constructing HKGs from Scratch. A multi-step pipeline,
as in Figure 2, is used to construct HKGs from scratch.

1. The first step is to identify the scope and objectives. In
most cases, researchers develop a schema (Guarino et al.,
2009; Blagec et al., 2022) or use existing schemas (Guar-
ino et al., 2009; Ashburner et al., 2000; Schriml et al.,
2012; Bard et al., 2005) to serve as the formal and ex-
plicit specification of a domain, thus ensuring consistent,
coherent, and aligned domain knowledge. Unlike the
general domain KG, utilizing schemas is a common prac-
tice in HKG construction.

2. Secondly, researchers gather data from various sources,
including medical literature, clinical trials, and patient-
generated data. It’s essential to ensure the quality and
consistency of the data and to remove any identifiable
information to protect patient privacy.

3. The third step is to extract and transform the data into
a structured format. This step involves identifying med-
ical entities and creating relationships between them
via specialized biomedical Natural Language Processing
(NLP) tools (Song et al., 2021; Xing et al., 2020; Hahn
& Oleynik, 2020).

4. Next, researchers map the entities and relationships to
the chosen ontologies with the help of thesauruses (Bo-
denreider, 2004) or terminologies (Donnelly et al., 2006;
Hirsch et al., 2016). This step ensures that the knowledge
graph is interoperable with other healthcare systems and
facilitates data integration.

5. Until now, an initial KG has been built. The next step is
to populate the KG to infer missing links between entities.
This inference can be done using graph databases (Wang
et al., 2020) or link prediction models (Bordes et al.,
2013; Lu & Yang, 2022).

6. The final step is to continuously update and validate
the KG to ensure accuracy and relevance. This step
involves incorporating new data and knowledge, refining
the schema, and evaluating the quality of the KG.

Constructing HKGs by Integration. Considering signifi-
cant efforts have been paid to construct and curate HKGs
from scratch, it is promising to integrate these data resources
to avoid repetitive work. Healthcare KG integration (also
called Healthcare KG fusion) refers to the processing of
merging two or more HKGs into a single, more compre-
hensive graph (Himmelstein et al., 2017; Su et al., 2023;
Youn et al., 2022). The integration process is challeng-
ing because different HKGs may use different terminolo-
gies, schemas, or data formats. To address these challenges,
researchers have developed various techniques and algo-
rithms for knowledge graph fusion, including ontology
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Figure 1. Overview of healthcare knowledge graph in this survey.
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Figure 2. The pipeline of constructing HKGs from scratch.

matching (Faria et al., 2014; He et al., 2022), schema align-
ment (Suchanek et al., 2011; Maaroufi et al., 2014), entity
resolution (Bachman et al., 2018; Hu et al., 2021), and con-
flicts resolution (Ma et al., 2023). These methods aim to
identify and reconcile the differences between KGs.

Techniques for HKG Constructions. Traditionally, each
step of HKG construction involves one specially designated
model. For instance, Hidden Markov Models and Recur-
rent Neural Networks are widely used for healthcare named
entity recognition, relation extraction, and other sequence
tagging tasks, while Translational Models and Graph Neural
Networks are used for HKG completion and conflicts reso-
lution tasks. Recently, large language models (LLMs) have
shown great utility to serve as a uniform tool for construct-
ing KGs (Ye et al., 2022). Several key steps of constructing
KGs, such as named entity recognition (Liang et al., 2020;
Chen et al., 2023a; Huang et al., 2022; Liu et al., 2022a),
relation extraction (Zhuang et al., 2022; Lu et al., 2022;
Yang et al., 2022), entity linking (De Cao et al.; Mrini et al.,
2022; Cho et al., 2022), and KG completion (Geng et al.,
2022; Saxena et al., 2022; Xie et al., 2022; Shen et al.,
2022), have been successfully tackled by these large foun-
dation models. Early explorations of construction HKG
with large foundation models show that healthcare entity
normalization (Zhang et al., 2023; Agrawal et al., 2022),

healthcare entity recognition (Fries et al., 2021; Hu et al.,
2023), healthcare entity linking (Zhu et al., 2022a), and
healthcare knowledge fusion (Lu et al., 2023) can also be
performed, without extensive training on expensive health-
care annotated corpus. On the other hand, researchers start
to construct KGs under the open-world assumption (Shi &
Weninger, 2018; Das et al., 2020; Niu et al., 2021; Li et al.,
2022; Lu & Yang, 2022), thus getting rid of the dependency
on pre-defined schemas and exhaustive entity&relation nor-
malization. Although open-world KGs greatly increase the
coverage, ensuring the quality of extracted knowledge is
still an open research challenge, especially for explainable
and trustworthy HKGs.

2.3. HKG Utilization

Model-free Utilization. Various query languages can
be used for KGs, such as SPARQL, Cypher, and
GraphQL (Wang et al., 2020). These query languages allow
users to query healthcare KGs using a standardized syntax,
thus enabling users to retrieve, manipulate, and analyze data
in a structured and consistent way. More complex appli-
cations can be further supported by graph queries. For in-
stance, automatic healthcare question answering can be tack-
led by Natural Language Question-to-Query (NLQ2Query)
approach (Kim et al., 2022), where natural language ques-
tions are first translated into executable graph queries and
then answered by the query responses. HKGs can also be
utilized as an up-to-date and trustworthy augmentation to
large language models (LLMs) for many applications. Some
pioneering studies (Liu et al., 2022b; Guu et al., 2020; Xu
et al., 2023b; Shi et al., 2023) show that retrieved knowl-
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edge triples can improve the reliability of LLMs in various
knowledge-intensive tasks, by addressing the nonsensical
or unfaithful generation. Moreover, KGs can be a useful
tool for fact-checking (Tchechmedjiev et al., 2019; Vedula
& Parthasarathy, 2021; Mayank et al., 2022) as they pro-
vide a structured representation of information that can be
used to quickly and efficiently verify the accuracy of claims.
Researchers have explored the utility of HKGs in identi-
fying ingredient substitutions of food (Shirai et al., 2021),
COVID-19 fact-checking (Mengoni & Yang, 2022), etc.

Model-based Utilization. Utilizing HKGs in complex rea-
soning tasks often involves utilizing machine learning mod-
els. HKG embeddings (Yu et al., 2021; Su et al., 2022)
have shown great potential to tackle these tasks. In par-
ticular, HKG embedding models are a class of machine
learning models that aim to learn low-dimensional vector
representations, or embeddings, of the entities and relations
in a knowledge graph. After obtaining HGK embeddings,
they can be plugged into any kind of deep neural network
and further fine-tuned toward downstream objectives. On
the other hand, symbolic logic models represent another
prominent approach for KG reasoning due to their inter-
pretability. More specifically, symbolic reasoning models
first mine logical rules from existing knowledge by inductive
logic programming (Muggleton, 1992), association rule min-
ing (Galárraga et al., 2013), or Markov logic networks (Kok
& Domingos, 2005). These minded rules are used to infer
new facts, make logical deductions and answer complex
queries. Recently, researchers start to explore combining
logical rules into KG embedding to further improve the gen-
eralization and performance of HKG reasoning (Alshahrani
et al., 2017; Zhu et al., 2022b).

3. Resources
In this section, we aim to provide a detailed resource
overview of the current state of healthcare knowledge graphs
(HKGs), as a reference for researchers and healthcare profes-
sionals interested in developing and applying HKGs. A vast
range of HKG resources from various domains is organized
in Table 1, with attribute information including HKG name,
node types, edge types, statistics, and their applications.

4. Applications
4.1. Basic Science Research

Several previous biological terms can also be considered as
knowledge graphs such as ontology (e.g., gene ontology, cell
ontology, disease ontology), network (e.g., gene regulatory
network), etc. We use the original biological terms as they
are more popular according to historical reasons.

4.1.1. MEDICINAL CHEMISTRY

Topics related to medicinal chemistry involve drug-drug in-
teractions (DDIs) and drug-target interactions (DTIs), which
will be discussed in this section.

Drug-drug interactions (DDIs) refer to changes in the ac-
tions, or side effects, of drugs when they are taken at the
same time or successively (Giacomini et al., 2007). In gen-
eral, DDIs are a significant contributor to life-threatening
adverse events (Su et al., 2022; Pang et al., 2022; Yu et al.,
2023), and their identification is one of the key tasks in pub-
lic health and drug development. The existence of diverse
datasets on drug-drug interactions (DDIs) and biomedical
KGs has enabled the development of machine learning mod-
els that can accurately predict DDIs (Zhong et al., 2023).
Yu et al. (2021) develop SumGNN, a model that includes
a subgraph extraction module to efficiently extract relevant
subgraphs from a KG, a self-attention-based summarization
scheme to generate reasoning paths within the subgraph,
and a multichannel module for integrating knowledge and
data, resulting in significantly improved predictions of multi-
typed DDIs. Su et al. (2022) propose DDKG, an attention-
based KG representation learning framework that involves
an encoder-decoder layer to learn the initial embeddings
of drug nodes from their attributes in the KG. Karim et al.
(2019) compare various techniques for generating KG em-
beddings with different settings and conclude that a com-
bined convolutional neural network and LSTM yield the
highest accuracy when predicting drug-drug interactions
(DDIs). Dai et al. (2021) propose a new KG embedding
framework by introducing adversarial autoencoders based
on Wasserstein distances and Gumbel-Softmax relaxation
for DDI tasks. Lin et al. (2020) develop KGNN that resolves
the DDI prediction by capturing drug and its potential neigh-
borhoods by mining their associated relations in KG.

Drug-target interactions (DTIs) is just as important as
DDIs (Chen et al., 2016). Machine learning models can
leverage knowledge graphs constructed from various types
of interactions, such as drug-drug, drug-disease, protein-
disease, and protein-protein interactions, to aid in the pre-
diction of DTIs. For instance, Li et al. (2023) utilize the
KG transfer probability matrix to redefine the drug-drug
and target-target similarity matrix, thus constructing the
final graph adjacent matrix to learn node representations
by VGAE and augmenting them by utilizing dual Wasser-
stein Generative Adversarial Network with gradient penalty.
Zhang et al. (2021c) propose a new hybrid method for DTI
prediction by first constructing DTI-related KGs and then
employing graph representation learning model to obtain
feature vectors of the KG. Wang et al. (2022b) construct
a knowledge graph of 29,607 positive drug-target pairs by
DistMult embedding strategy, and propose a Conv-Conv
module to extract features of drug-target pairs. Ye et al.
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Table 1. Resource of Existing Healthcare Knowledge Graphs (HKGs).
Name Node Types Edge Types Statistic Application

HetioNet (Himmelstein & Baranzini, 2015) 11 (e.g., drug, disease) 24 (e.g., drug-disease) #N: 47.0 K, #E: 2.3 M Medicinal Chemistry
DrKG (Ioannidis et al., 2020) 13 (e.g., disease, gene) 107 (e.g., disease-gene) #N: 97 K, #E: 5.8 M Medicinal Chemistry

PrimeKG (Chandak et al., 2023) 10 (e.g., phenotypes) 30 (e.g., disease-phenotype) #N: 129.4 K, #E: 8.1 M Medicinal Chemistry
Gene Ontology2 (Ashburner et al., 2000) 3 (e.g., biological process) 4 (e.g., partOf) #N: 43 K, #E: 7544.6K Bioinformatics

KEGG3 (Kanehisa & Goto, 2000) 16 (e.g., pathway) 4 (e.g., partOf) #N: 48.5 M, #E: unknown Bioinformatics
STRING4 (Szklarczyk et al., 2023) 1 (e.g., protein) 4 (e.g., interactions) #N: 67.6 M, #E: 20 B Bioinformatics
Cell Ontology5 (Diehl et al., 2016) 1 (i.e., cell type) 2 (e.g, subClassOf) #N: 2.7 K, #E: 15.9 K Bioinformatics

GEFA (Ranjan et al., 2022) 510 (e.g., kinases) 2 (e.g., drug-drug) #N: 0.5 K, #E: 30.1 K Drug Development
Reaction (Li & Chen, 2022) 2 (e.g., reactant & normal) 19 (e.g., reaction paths) #N: 2192.7 K, #E: 932.2 K Drug Development
ASICS (Jeong et al., 2022) 2 (e.g., reactant & product) 1 (e.g., reactions) #N: 1674.9 K, #E: 923.8 K Drug Development

Hetionet (Jeong et al., 2022) 11 (e.g., biological process) 24 (e.g., disease–associates–gene) #N: 47.0 K, #E: 2250.2 K Drug Development
LBD-COVID (Zhang et al., 2021b) 1 (i.e., concept) 1 (i.e., SemMedDB relation) #N: 131.4 K, #E: 1016.1 K Drug Development

GP-KG (Gao et al., 2022) 7 (e.g., drug) 9 (e.g., disease–gene) #N: 61.1 K, #E: 1246.7 K Drug Development
DRKF (Zhang & Che, 2021) 4 (e.g., drug) 43 (e.g., drug-disease) #N: 12.5 K, #E: 165.9 K Drug Development

DDKG (Ghorbanali et al., 2023) 2 (i.e., drug & disease) 1 (e.g., drug-disease) #N: 551, #E: 2.7 K Drug Development
Disease Ontology6 (Schriml et al., 2012) 1 (i.e., disease) 2 (e.g., subClassOf) #N: 11.2 K, #E: 8.8 K Clinical Decision Support

DrugBank (Wishart et al., 2018) 4 (e.g., drug, pathway) 4 (e.g., drug-target) #N: 7.4 K, #E: 366.0 K Clinical Decision Support
KnowLife (Ernst et al., 2014) 6 (e.g., genes) 14 (e.g., gene-diseases) #N: 2.9 M, #E: 11.4 M Clinical Decision Support
PharmKG (Zheng et al., 2021) 3 (e.g. diseases) 3 (e.g. chemical-diseases) #N: 7601, #E: 500958 Clinical Decision Support

ROBOKOP7 (Bizon et al., 2019) 54 (e.g., genes, drugs) 1064 (e.g. biolink, CHEBI) #N: 8.6M , #E: 130.4 M Clinical Decision Support
iBKH8 (Su et al., 2023) 11 (e.g., anatomy, disease) 18 (e.g., anatomy-gene) #N: 2.4 M, #E: 48.2 M Clinical Decision Support

(2021b) learn a low-dimensional representation for various
entities in the KG, and then integrate the multimodal infor-
mation via neural factorization machine.

4.1.2. BIOINFORMATICS RESEARCH

Knowledge graphs have been in use in Bioinformatics re-
search for quite some time. In a Bioinformatics setting,
a knowledge graph is a type of resource that represents
biomedical knowledge in a structured and interconnected
way. It is a graph-based representation where nodes are
biomedical entities (such as mutations, genes, proteins,
metabolites, diseases, and biological pathways) and edges
are their relationships (such as associations, interactions,
regulations)(Nicholson & Greene, 2020).

Conventional Bioinformatics Resource: While not explic-
itly referred to as such, we consider many conventional
biomedical resources, such as Gene Ontology (Ashburner
et al. (2000)), STRING (Szklarczyk et al. (2023)), KEGG
(Kanehisa & Goto (2000)) can be classified as knowledge
graphs. These resources have already been extensively uti-
lized and have been shown to make significant advance-
ments in current biomedical research. Gene Ontology (GO)
is a knowledge graph that contains information about the
functions of genes and their products. It is widely used
in gene annotation and functional analysis. STRING is
another example of a biomedical knowledge graph. It is
a database that contains information about protein-protein
interactions (PPIs). STRING integrates information from
multiple sources, including experimental data, literature,
and databases, to provide a comprehensive view of PPIs.
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a
knowledge graph that contains information about biologi-
cal pathways and networks. KEGG integrates information
from multiple sources, including genomics, metabolomics,

and systems biology, to provide a comprehensive view of
cellular processes.

Multi-Omics Applications: In recent years, the field of
multi-omics analysis has become increasingly important for
understanding biological systems, such as genomics, tran-
scriptomics, proteomics, metabolomics, and epigenomics.

HKGs have been used to identify disease-associated muta-
tions, genes, proteins, and metabolites by integrating multi-
omics data with existing biological knowledge. This ap-
proach has led to the discovery of novel biomarkers and
therapeutic targets for various diseases and interpreting the
functional effects of genetic elements. Quan et al, built a
comprehensive multi-relational HKG, called AIMedGraph,
providing interpretation of impact of genetic variants on
disease or treatment (Quan et al.). GenomicsKG (Jha et al.,
2019) is an HKG to analyze and visualize multi-omics data.
GenomicsKG can be used to improve drug development
based on clinical genomics correlations and personalized
drug customization in the extended version based on inter-
active relationships.

Single-Cell: Cells are fundamental and essential units of liv-
ing organisms. With high-throughput sequencing technolo-
gies advancing to measure genomic profiles in a single-cell
resolution, cell functions (inside cells) and cell-cell interac-
tions (between cells) are revealed (Linnarsson & Teichmann,
2016). The gene regulatory mechanism, visualized by gene
regulatory networks (GRNs), plays a crucial role in cell
functions, impacting gene expression, cell differentiation,
and disease progression. GRNs depict interactions between
genes and their regulators and can be largely expanded by
mining the whole-genome scale measurements provided by
single-cell sequencing data. For example, GRNdb provides
detailed regulon and TF-target pairs information from dif-
ferent human and mouse tissues under different conditions
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by analyzing existing sequencing data (Fang et al., 2021).
GenomicKB integrates existing datasets along with genome
annotations and formulates the data into a KG to empha-
size the relationships among genomic entries (Feng et al.,
2023). On the other hand, cell-cell interactions also help
understand cell cycles, cell fate decisions, tissue develop-
ment, etc. Among several approaches through that cells
can interact, cell-cell communication or cell signaling is
of the most interest (Eltzschig et al., 2006), cells send sig-
naling molecules called ligands and receive them through
receptors located on cell surfaces. Recent advancements in
spatial sequencing technologies incorporate colocalization
information to better model and score ligand-receptor inter-
actions (LRIs) as shown in recent studies (Liu et al., 2022c;
Dimitrov et al., 2022). Although many LRIs databases (Efre-
mova et al., 2020; Shao et al., 2021) have been constructed
and applied to infer cell-cell communication, only recently,
SpaTalk (Shao et al., 2022) integrates CellTalkDB, KEGG
pathways, Reactome and TFs from AnimalTFDB to con-
struct a ligand-receptor-target KG to help improve the infer-
ence of cell-cell communication. The success of SpaTalk
indicates that correctly utilizing the KG could provide help-
ful information in cell-cell communication tasks. With the
continuous collection of cell type information in Cell On-
tology (Diehl et al., 2016), adding cell types as nodes into
the biomedical KG could potentially provide biomedical re-
searchers with cell-type-specificity and higher-resolution in-
formation as Bioteque does (Fernández-Torras et al., 2022).
We hope that a comprehensive KG constructed by mining
single-cell sequencing data could help revolutionize the un-
derstanding of biological mechanisms in different cells.

4.2. Pharmaceutical Research Development

4.2.1. DRUG DEVELOPMENT

Drug development identifies novel chemical compounds that
can effectively treat or alleviate human diseases. Despite the
growing trend of computer-assisted drug discovery (Wang
et al., 2022a; Zeng et al., 2022; Pan et al., 2022a; Du et al.,
2021; Wang et al., 2022c; Zhang & Zhao, 2021), there re-
mains a key question regarding how to effectively integrate
data and extract valuable insights from the vast chemical
dataset. To approach this question, KGs have been em-
ployed for drug discovery due to various advantages (Zeng
et al., 2022): (1) In contrast to traditional methods that
capture only one type of relationship, KGs are capable of
providing heterogeneous information that includes diverse
entities (e.g., scaffolds, proteins and genes); (2) KGs can
handle multiple types of relationships between various types
of entities, such as drug-target pairs; and (3) KGs can pro-
vide unstructured semantic relationships between entities.
In such graphs, entities are represented as nodes while their
relationships are represented as edges, by which complex
relations in biochemical systems can be easily handled.

In general, the field of drug development encompasses two
main areas: drug design and drug repurposing. Drug design
creates novel and diverse drug molecules with desirable
pharmaceutical properties (Jing et al., 2018; Fu et al., 2021),
whereas drug repurposing identifies new uses for existing
approved drugs that were originally developed for a different
indication (Pan et al., 2022b; Huang et al., 2020).

Drug Design. Knowledge Graphs are widely employed
in drug design, particularly in the generation of novel
molecules that hold promise as potential drug candidates
for various diseases (Ranjan et al., 2022; Li & Chen, 2022).
Ranjan et al. (2022) utilize Gated Graph Neural Network
(GGNN) to generate novel molecules that target the coro-
navirus (i.e., SARS-CoV-2) (Hasöksüz et al., 2020) and
integrate KGs into their approach to reduce the search
space. Specifically, KGs were leveraged to discard non-
binding molecules before inputting them into the Early Fu-
sion model, thus optimizing the efficiency of the drug design
process. In addition to employing deep learning for direct
structure design, KGs are also utilized in the analysis of
chemical synthesis. Quantitative estimation of molecular
synthetic accessibility plays a critical role in prioritizing the
molecules generated from generative models. For instance,
Li & Chen (2022) utilize reaction KGs to construct classi-
fication models for compound synthetic accessibility. By
leveraging KGs that capture information about reactions,
including reaction types, substrates, and reaction conditions,
they are able to train machine learning models that could
predict the synthetic accessibility of compounds. Jeong et al.
(2022) introduce an intelligent system that integrates gen-
erative exploration and exploitation of reaction knowledge
base to support synthetic path design.

Drug Repurposing. Compared to drug design, KGs are
more commonly utilized to expedite the drug re-purposing
process (Zhu et al., 2020; MacLean, 2021; Himmelstein
et al., 2017; Zhang et al., 2021b; Gao et al., 2022; Xu
et al., 2019; Zhang & Che, 2021; Fang et al., 2023; Ghor-
banali et al., 2023). Many applications on drug re-purposing
that utilize KGs are primarily focused on link prediction
tasks (MacLean, 2021). To re-purpose promising drug candi-
dates for new indications, many methods employ predictive
models that focus on predicting drug-treats-disease rela-
tionships within pharmacological knowledge graphs KGs.
Himmelstein et al. (2017) use a degree-normalized path-
way model on the hetionet KG which includes genes, dis-
eases, tissues, pathophysiologies, and multimodal edges,
to identify potentially repurposable drugs for epilepsy. Xu
et al. (2019) develop a multi-path random walk model on
a network that incorporates gene-phenotype associations,
protein-protein interactions, and phenotypic similarities for
training and prediction purposes. Zhang et al. (2021b) in-
troduce an integrative and literature-based discovery model
for identifying potential drug candidates from COVID-19-
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focused research literature, including PubMed and other
relevant sources. Gao et al. (2022) construct a knowledge
graph (KG) by integrating multiple genotypic and pheno-
typic databases. They then learn low-dimensional repre-
sentations of the KG and utilize these representations to
infer new drug-disease interactions, providing insights into
potential drug repurposing opportunities. Zhang & Che
(2021) introduce a model for drug re-purposing in Parkin-
son’s disease that leverages a local medical knowledge base
incorporating accurate knowledge along with medical litera-
ture containing novel information. Ghorbanali et al. (2023)
present the DrugRep-KG method, which utilizes a KG em-
bedding approach for representing drugs and diseases in the
process of drug repurposing.

4.2.2. CLINICAL TRIAL

The major goal of clinical trials is to assess the safety and
effectiveness of drug molecules on human bodies. A novel
drug molecule needs to pass three phases of clinical trials
before it is approved by Food and Drug Administration
(FDA) and enters the drug market. The whole process is
prohibitively time-consuming and expensive, costing 7-11
years and two billion dollars on average (Martin et al., 2017).

Clinical Trial Optimization targets on identifying eligible
patients for clinical trials based on their medical history
and health conditions (Rivera et al., 2020; He et al., 2020).
Recently, with massive electronic health records (EHR) data
and trial eligibility criteria (EC), data-driven methods have
been studied to automatically assign appropriate patients for
clinical trials (Yuan et al., 2019; Tseo et al., 2020; Liu et al.,
2021b). However, it is often hard to fully capture and rep-
resent the complex knowledge present in unstructured ECs
and EHR data, as ECs may only provide general disease
concepts. In contrast, patient EHR data contain more spe-
cific medical codes to represent patient conditions. To better
capture the interactions among different medical concepts
from EHR records and ECs, Gao et al. (2020a) enhance
patient records with hierarchical taxonomies to align med-
ical concepts of varying granularity between EHR codes
and ECs. Besides, Fu et al. (2022) leverage additional
knowledge-embedding modules along with drug pharma-
cokinetic and historical trial data to improve the patient trial
optimization process, and Wang et al. (2023) leverage the
knowledge graphs to learn static trial embedding and further
designed meta-learning module to generalize well over the
imbalanced clinical trial distribution.

4.3. Clinical Decision Support

Nowadays, abundant Electronic Health Record (EHR) data
enables better computational models for accurate diagnoses
and treatments. EHR contains essential patient information
such as disease diagnoses, prescribed medications, and test

results. Due to this valuable information, EHRs are exten-
sively utilized to identify patterns in patient health and assist
healthcare providers in making informed clinical decisions.

To facilitate automatic clinical predictions, various deep-
learning-based approaches have been adopted including
recurrent neural networks (RNN) (Choi et al., 2016; Ma
et al., 2017; Yin et al., 2019; Fu et al., 2019; Raket et al.,
2020; Gao et al., 2020b; Chen et al., 2019; Guo et al., 2021),
graph neural networks (GNN) (Choi et al., 2020; Wang et al.,
2021b; Zhu & Razavian, 2021; Xu et al., 2022; Nelson et al.,
2022; Mao et al., 2022; Cai et al., 2022; Nikolentzos et al.,
2023; Xu et al., 2023a), and transformers (Ma et al., 2020;
Prakash et al., 2021; Antikainen et al., 2023; Labach et al.,
2023; Chen et al., 2023b; Shickel et al., 2023). However,
the sparsity of EHR data typically allows for only a small
fraction of medical codes to be learned effectively, thereby
restricting the ability of deep learning approaches. To over-
come this drawback, KGs have been applied to incorporate
prior medical knowledge for these deep learning models,
which augment the representation of medical codes to better
support the downstream tasks.

4.3.1. STEPS TO ADVANCE PREDICTION MODELS

ICD Coding aims to extract diagnosis and procedure codes
from clinical notes which often consisted of raw text (Mul-
lenbach et al., 2018; Zhang et al., 2020; Vu et al., 2021;
Dong et al., 2022). It is often challenging, as the size of the
candidate target codes can be large and their distribution is
often long-tailed (Kim & Ganapathi, 2021). To overcome
this, Xie et al. (2019) and Cao et al. (2020) propose to lever-
age knowledge graphs as distant supervision (Min et al.,
2013; Zhang et al., 2022) and inject the label information
via structured knowledge graph propagation by leveraging
graph convolution networks to learn the correlations among
medical codes. Besides, Lu et al. (2020) propose to lever-
age knowledge graphs as well as the co-occurrence graph
among clinical nodes simultaneously with a knowledge ag-
gregation module to boost the performance of ICD coding
further. Overall, injecting additional knowledge with graph
neural networks offers a way to mitigate the imbalanced
label distribution and thus better.
Entity and Relation Extraction from Health Records.
Health records contain rich unstructured or semi-structured
data, making it difficult for clinicians to analyze relevant
information. Entity and relation extraction helps convert this
unstructured text into structured data that can be more easily
processed, understood, and utilized. Specifically, Varma
et al. (2021) transfer structural knowledge from the knowl-
edge base to the medical domain, which improved the dis-
ambiguation accuracy of rare entities. Fries et al. (2021)
leverage clinical ontologies to provide weak supervision
sources to create additional training data for clinical en-
tity disambiguation. Yuan et al. (2023) inject additional
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knowledge from the knowledge graphs for entity linking,
and proposed Post-pruning and thresholding techniques to
reduce the effect of unlinkable entity mentions. Besides, Fei
et al. (2021); Roy & Pan (2021) propose additional post-
training steps to align the language models with biomedical
knowledge. Hong et al. (2021) construct embeddings for a
wide range of codified concepts from EHRs to identify rele-
vant features related to a disease of interest, and Lin et al.
(2022) design a co-training scheme to jointly learn from
text and knowledge graphs for extracting disease-disease
relations. Fusing knowledge graphs with deep language
models can flexibly accommodate missing data types and
brings additional performance gains, especially for those
rare entities and relations.
Clinical Report Summarization. Numerous studies have
focused on transforming raw patient visit data into concise
yet informative medical reports to enhance the automatic
diagnosis process. Although standard models for medical
report generation have achieved promising performances,
there is usually no guarantee of the clinical informative-
ness of the generated text. To improve the faithfulness of
the summarized text, Biswal et al. (2020) exploit the an-
chor words of relevant disease phenotypes from the external
knowledge base to ensure the clinical accuracy of the gen-
erated report. Liu et al. (2021a) use an additional memory-
augmented module to distill the fine-grained knowledge
preserved in the knowledge graph to acquire accurate report
generation. Besides, another specific issue of the clinical
report is the missing data: some attributes are inevitably
missing (Cismondi et al., 2013) when scored by domain
experts. To combat the missing data issue, Xi et al. (2021)
design a knowledge-aware encoder-decoder structure that
injects structural information from knowledge graphs during
the encoding stage and infers patients’ links to clinical out-
comes during the decoder stage. In summary, incorporating
external knowledge graphs into clinical report summariza-
tion enhances the content’s factual accuracy and alleviates
the impact of missing data by grounding the generated text
in verified knowledge.

4.3.2. EVIDENCE GENERATION FOR RISK PREDICTION

Disease Prediction aims to predict the potential diseases of
a given patient with his past clinical records. To assist the
diagnosis with additional knowledge, GRAM (Choi et al.,
2017) and KAME (Ma et al., 2018) utilize a medical ontol-
ogy (Dubberke et al., 2006) where the leaf nodes are the
medical codes found in EHR data, and their ancestors are
more general categories. By incorporating information from
medical ontologies into deep learning models via neural at-
tention, these approaches learn better embeddings for differ-
ent medical concepts to alleviate the data scarcity bottleneck.
Yin et al. (2019); Zhang et al. (2019) further consider the
domain-specific knowledge graph KnowLife (Ernst et al.,

2015) to enrich the embeddings of medical entities with
their neighbors on the knowledge graph. These approaches
mainly directly update the embeddings of different con-
cepts to improve feature learning, but ignore the high-level
order information from the knowledge graph. To tackle
this drawback, Ye et al. (2021a) explicitly exploit paths
in KG from the observed symptoms to the target disease
to model the personalized information for diverse patients
with a relational-guided attention mechanism. Xu et al.
(2021) design a self-supervised learning approach to pre-
train a graph attention network for learning the embedding
of medical concepts and completing the knowledge graph si-
multaneously. These approaches better harness the structure
information, and often lead to better performance than the
pure embedding-based knowledge integration techniques.

Treatment Recommendation aims to recommend personal-
ized medications to patients based on their individual health
conditions, which can help physicians to select the most ef-
fective medications for their patients, and improve treatment
outcomes (Zhang et al., 2017; Bhoi et al., 2021; Shang et al.,
2019b). To effectively exploit external knowledge, Shang
et al. (2019a) use drug ontologies to design additional pre-
training loss and directly improve the representation of
drugs, and several studies (Wu et al., 2022; Tan et al., 2022;
Yang et al., 2021) attempt to extract the additional drug
interaction graphs to model the negative side effects of spe-
cific drug pairs and reduce the possibility of recommending
negative drug-drug interaction combinations.

5. Promise and Outlook
Several promising research directions in computer science
are poised to generate large and accurate healthcare knowl-
edge graphs (HKGs) in the near future. One such direction
involves the development of advanced entity and relation ex-
traction techniques that can effectively capture and represent
complex biomedical knowledge. Additionally, large lan-
guage models (a.k.a. foundation models) like GPT-3 have
demonstrated promise in capturing the semantics and con-
text of biomedical language (Agrawal et al., 2022; Singhal
et al., 2022; Nath et al., 2022), allowing researchers to better
understand and interpret complex biomedical data (Moor
et al., 2023). Another direction includes the use of graph-
based learning paradigms capable of effectively integrating
heterogeneous data sources and learning from the complex
relationships within HKGs. These approaches can facilitate
the creation of comprehensive and fine-grained HKGs that
capture a diverse range of biomedical knowledge, ultimately
promoting the interpretability of biomedical research and
clinical decision-making.

The potential impact of comprehensive and fine-grained
HKGs on biomedical research and clinical practice is signif-
icant. By integrating vast amounts of biomedical knowledge
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from multiple domains, HKGs can facilitate the discov-
ery of new disease mechanisms and identification of novel
drug targets. They also hold the potential to enable per-
sonalized medicine by identifying patient subgroups with
shared disease mechanisms and guiding the selection of
targeted interventions based on individual patient character-
istics. Additionally, HKGs can enhance clinical decision-
making by providing access to up-to-date and pertinent
biomedical knowledge, thereby improving efficiency and
accuracy. Overall, the creation and utilization of HKGs
present a promising avenue for promoting transparency and
interpretability for clinical practice.

6. Conclusion
In conclusion, healthcare knowledge graphs (HKGs) offer
a promising approach to capturing and organizing medical
knowledge in a structured and interpretable way, providing
a comprehensive and fine-grained view of medical concepts
and relationships. Despite challenges like data heterogeneity
and limited coverage, recent technical advancements have
enabled the creation of comprehensive and precise HKGs.
This survey provides a comprehensive overview of the cur-
rent state of HKGs, covering their construction, utilization
models, and applications in healthcare. We also discuss
potential future developments, emphasizing the importance
of HKGs in facilitating efficient and effective healthcare
delivery. With the emergence of large language models,
the potential for creating even more comprehensive and
precise HKGs is unprecedented. In conclusion, healthcare
knowledge graphs (HKGs) hold great potential in improving
the interpretability of healthcare, enabling transparent and
informed decision-making, and promoting evidence-based
practices for better patient outcomes.
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Hasöksüz, M., Kilic, S., and Sarac, F. Coronaviruses and
sars-cov-2. Turkish journal of medical sciences, 50(9):
549–556, 2020.

Hassani-Pak, K. and Rawlings, C. Knowledge discovery in
biological databases for revealing candidate genes linked
to complex phenotypes. Journal of integrative bioinfor-
matics, 14(1), 2017.

He, Y., Chen, J., Dong, H., Jiménez-Ruiz, E., Hadian, A.,
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