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Abstract

GFlowNets have exhibited promising performance in generating diverse candidates
with high rewards. These networks generate objects incrementally and aim to
learn a policy that assigns probability of sampling objects in proportion to rewards.
However, the current training pipelines of GFlowNets do not consider the presence
of isomorphic actions, which are actions resulting in symmetric or isomorphic
states. This lack of symmetry increases the amount of samples required for training
GFlowNets and can result in inefficient and potentially incorrect flow functions. As
a consequence, the reward and diversity of the generated objects decrease. In this
study, our objective is to integrate symmetries into GFlowNets by identifying
equivalent actions during the generation process. Experimental results using
synthetic data demonstrate the promising performance of our proposed approaches.

1 Introduction

Generative Flow Networks (GFlowNets, Bengio et al. [2021a]) have been proposed as a method to
generate a wide range of high-quality candidates. By learning a stochastic policy π for generating
discrete objects x, GFlowNets iteratively add simple building blocks to partial objects, resulting
in diverse and high-scoring candidates. These networks have shown promising performance in
various tasks such as diverse molecule generation, active learning, biological sequence design, graph
combinatorial optimization, and probabilistic learning [Bengio et al., 2021a, Jain et al., 2022, Zhang
et al., 2023, 2022, Deleu et al., 2022].

However, prior works mostly neglect the internal symmetries within the generation process, leading
to redundant data representations. Recent theoretical findings highlight the potential for improved
sample complexity by incorporating data symmetry [Tahmasebi and Jegelka, 2023], and several
approximation strategies for invariance have been proposed in the context of Graph Neural Networks
(GNNs) [Murphy et al., 2019, 2018, Hu et al., 2021, Shuaibi et al., 2021, Puny et al., 2021, Ma et al.,
2023]. Unfortunately, the current training pipelines for GFlowNets do not consider the existence
of symmetric states and actions. This oversight could result in increased sample complexity and
potentially incorrect flow probabilities, ultimately impacting the diversity and average reward of the
generated objects.

To address this issue, we present two approaches in the GFlowNet training process that enforce
invariance to isomorphic states and actions. When faced with isomorphic states, we suggest using
canonization techniques to reduce the states (partial objects) to their canonical form, thereby reducing
the size of the state space. For the graph generation process, isomorphic actions are defined as actions
that lead to isomorphic preceding graphs, but these actions lack an efficient canonical form. In
this scenario, we propose the use of handcrafted positional encodings (PE) to identify isomorphic
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actions efficiently while maintaining expressive power. Our synthetic experiments demonstrate the
effectiveness of these proposed approaches.

2 Background

We will examine the framework proposed by Bengio et al. [2021a], which involves a pointed directed
acyclic graph (DAG) denoted as (S,A). In this setting, there is a designated initial state, S consists
of a finite set of vertices called states, and A ⊂ S × S represents a set of directed edges known
as actions. If an action s → s′ exists, we refer to s as the parent and s′ as the child. Additionally,
there is precisely one state that has no incoming edge, identified as the initial state s0 ∈ S. States
without outgoing edges are referred to as terminating. We denote the set of terminating states as X .
A complete trajectory is a sequence τ = (s0 → · · · → sn) such that each si → si+1 is an action
and sn ∈ X . We represent the set of complete trajectories as T , and xτ indicates the last state of a
complete trajectory τ .

GFlowNets belong to a category of models that amortize the cost of sampling from an intractable
target distribution over X . These models accomplish this by learning a functional approximation of
the target distribution using its unnormalized density or reward function denoted as R : X → R+.
Bengio et al. [2021a] defines a trajectory flow F : T → R≥0. We can define a state flow F (s) =∑

τ∋s F (τ) for any state s and an edge flow F (s → s′) =
∑

τ∋s→s′ F (τ) for any edge s → s′.
The trajectory flow induces a probability measure P (τ) = F (τ)

Z , where Z =
∑

τ∈T represents the

total flow. Furthermore, we define the forward policy PF (s
′|s) = F (s→s′)

F (s) and the backward policy

PB(s|s′) = F (s→s′)
F (s′) . In this context, the flows can be likened to the amount of water flowing through

edges (similar to pipes) or states (resembling tees connecting pipes) [Malkin et al., 2022]. R(x)
represents the amount of water passing through the terminal state x, while PF (s

′|s) corresponds to
the relative quantity of water flowing in edges originating from s.

2.1 GFlowNets training criteria

The objective of training GFlowNets is to enable the model to sample objects x with a probability
proportional to R(x). To achieve this goal, we introduce several training criteria.

Flow matching (FM). We define a flow to be consistent if it satisfies the flow matching constraint
for all internal states s, meaning that the incoming flows equal the outgoing flows:

∑
s′′→s F (s′′ →

s) = F (s) =
∑

s→s′ F (s → s′). Bengio et al. [2021a] propose approximating the edge flow with a
model Fθ(s, s

′) parameterized by θ using the FM objective. For non-terminal states, the objective is
defined as LFM(s) = (log

∑
(s′′→s)∈A Fθ(s

′′, s)− log
∑

(s→s′)∈A Fθ(s, s
′))2. At terminal states, a

similar objective encourages the incoming flow to match the corresponding reward. The objective is
optimized using trajectories sampled from a training policy π with full support, such as a tempered
version of PFθ

or a mixture of PFθ
with a uniform policy U : πθ = (1 − ε)PFθ

+ εU . This
approach is similar to ε-greedy and entropy-regularized strategies in reinforcement learning (RL) to
improve exploration. Bengio et al. [2021a] prove that if we reach a global minimum of the expected
loss function and the training policy πθ has full support, then GFlowNet samples from the target
distribution.

Detailed balance (DB). The DB objective was proposed by Bengio et al. [2021b] to eliminate the
need for computationally expensive summing operations over the parents or children of states. In
DB-based learning, we train a neural network with a state flow model Fθ, a forward policy model
PFθ

(·|s), and a backward policy model PBθ
(·|s) parameterized by θ. The optimization objective is to

minimize LDB(s, s
′) = (log(Fθ(s)PFθ

(s′|s))− log(Fθ(s
′)PBθ

(s|s′)))2. Sampling from the target
distribution is also done if a global minimum of the expected loss is achieved and πθ has full support.

Trajectory balance (TB). The TB objective, proposed by Malkin et al. [2022], aims to enable
faster credit assignment and learning over longer trajectories. The loss function for TB is LTB(τ) =

(log(Zθ

∏n−1
t=0 PFθ

(st+1|st))− log(R(x)
∏n−1

t=0 PBθ
(st|st+1)))

2, where Zθ is a learnable parameter.
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3 Method

We propose to enforce invariance constraints into the design of GFlowNets. Here, invariance of a
function f under a group of transformations G is defined as f(s) = f(g · s), where group element g
acts on the input domain of f . This means that inputs in the same orbit of G are equivalent, in the
sense that they produce the same output when fed to f .

3.1 State invariance

Now consider the case where the state space of GFlowNet S has a symmetric structure. Ideally we
would require the forward policy of GFlowNet to satisfy state invariance:

PF (s
′|s) = PF (g · s′|g · s), ∀s, s′ ∈ S,∀g ∈ G,

where g is a transformation, such as a reflection in the S space. If this constraint could be achieved,
then the GFlowNet would obtain improved performance since it will not waste capacity on unneces-
sary modeling. The same idea applies to flows, edge flows, and backward policies:

F (s → s′) = F (g · s → g · s′), F (s) = F (g · s),
PB(s|s′) = PB(g · s|g · s′), ∀s, s′ ∈ S,∀g ∈ G.

Symmetrization via group averaging When training a GFlowNet with flow matching, we pa-
rameterize the edge flow function F (s → s′). One way to make the edge flow output correct, is to
combine the output for equivalent actions, such as with averaging:

F (s → s′) =
1

|G|
∑
g∈G

F̃ (g · s → g · s′).

We can use a similar strategy to deal with the forward and backward policy, which are needed in the
detailed balance or trajectory balance parameterizations. For the state flow function F (s), we can set
F (s) = 1

|G|
∑

g∈G F̃ (g · s) for an arbitrary neural network F̃ (·). The same operation can be applied
to the forward and backward policy modeling. The disadvantage of such procedure is a potentially
high computational cost when the group G is large, since enumerating all the group elements requires
O(|G|) complexity.

Symmetrization via canonical representation For some of the objects’ representations, there is
a more efficient way to detect symmetry. If there exists a function C(·) (we call C(s) the canonical
form of s) such that

C(s) = C(g · s), ∀g ∈ G,

then we could achieve state invariance with an arbitrary neural network F̃ as follows:

F (s → s′) := F̃
(
C(s) → C(s′)

)
.

The previous method needs |G| forward passes of the neural network, while this method only requires
one forward pass. The disadvantage of this procedure is that not all kinds of data possess a proper
canonical form.

3.2 Action invariance

Symmetries may exist not only in the state space but also in the actions involved. Let’s consider
the graph generation environment, where actions include adding a node to an existing node and
connecting them with a new edge. In Figure 1, we can see that there are three possible actions that
lead from the left graph to the right graph. These actions involve adding a new node to any of the
three existing nodes. We refer to them as isomorphic actions because they all result in the same (i.e.,
isomorphic) graph. However, in the opposite direction, there is only one action that leads from the
right graph to the left graph, which is the removal of node 4 and the edge connecting node 1 and node
4. Currently, GFlowNet training pipelines do not consider such isomorphic actions and would treat
these three isomorphic actions as distinct, resulting in an incorrect forward edge flow that is three
times larger than it should be.
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Figure 1: An example of action symmetry. There
are three possible actions leading from the left
graph to the right graph, but only one action lead-
ing backwards.

In order to model the correct flow, it is neces-
sary to identify symmetric actions and sum their
probabilities during the training process. Since
these symmetric actions do not have an efficient
canonical form, it is essential to enumerate all
of these actions given a graph-action pair.

Symmetrization via isomorphism testing
One straightforward method to enumerate iso-
morphic actions of a given action is to iterate
through all possible actions and verify if they
generate isomorphic graphs. However, perform-
ing direct isomorphism checks is computation-
ally expensive and requires a time complexity
of O(n× n!), as described by Cordella et al. [2001], which makes it impractical for larger graphs.
Hence, in practice, we require approximation schemes to overcome this limitation.

Symmetrization via graph-level positional encoding An alternative approach that improves
efficiency over direct isomorphism testing involves using graph-level positional encoding (PE). PE
functions as an embedding technique that maps a graph to a representation vector. Isomorphic graphs
are guaranteed to have identical graph-level PEs. However, due to the inherent limitations in the
expressive power of PE, it is possible for two non-isomorphic graphs to share the same graph-level
PE. Our objective is to use graph-level PEs that are both expressive and computationally efficient,
meaning they can effectively differentiate between most non-isomorphic graphs.

We investigate three kinds of PEs: PEs produced by the 1-WL test [Weisfeiler and Leman, 1968],
random walk positional encoding (RWPE) [Li et al., 2020], and sum of edge features.

1. The 1-WL test is a color refinement method that finds for each node in each graph a signature
based on the neighborhood around the node. These signatures can then be used to find
the correspondance between nodes in the two graphs, which can be used to check for
isomorphism.

2. The RWPE is defined as the concatenation of the diagonal elements of powers of the random
walk matrix: xi = [(AD−1)kii], k = 1, 2, . . . , where xi is the RWPE of node i and AD−1

is the random walk matrix of the graph. The original RWPE does not consider node colors,
thus it cannot distinguish graphs with the same structure but different node colors. Here we
propose to incorporate node colors into RWPE, by multiplying the powers of the random
walk matrix with node colors: xi = [(cTAD−1)ki ], k = 1, 2, . . . , where c is a vector
representing node colors. We then take

∑
i xi as the graph-level PE.

3. We could also calculate all edge features by summing2 node features of their vertices and
considering their sum as the graph-level feature. That is, for edge (i, j), its edge feature is
defined as eij := xi + xj and we could take

∑
(i,j)∈E eij as the graph-level PE.

We evaluate these three PE methods on graphs with a maximum of 7 nodes, where each node can be
assigned one of two available colors. The actions considered in these graphs are the addition of nodes
(i.e., adding a node to an existing node and connecting them with an edge) and the addition of edges
(i.e., introducing a previously non-existent edge). We systematically test all possible combinations of
graph-action pairs and assess the PE methods’ ability to accurately enumerate all isomorphic actions.
We record the error rate and running time for each PE method, and the results are summarized in
Table 1.

As shown in Table 1, both “RW + edge” and “WL + RW + edge” achieves almost perfect accuracy in
discovering isomorphic actions. However the former is much faster to compute than the latter, thus
we use “RW + edge” as PE in our experiments.

Symmetrization via node-level and edge-level positional encoding Symmetrization via graph-
level PE requires iterating through all possible actions and calculating the graph-level PEs of each

2In practice we take the sum of squares instead of sum to avoid collision.
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Table 1: The running time and error rate of different PE methods, where “WL” represents the 1-WL
test feature, “RW” refers to random walk positional encodings (multiplied with node colors), and
“edge” signifies the calculation of all edge features (by summing node features of their vertices) and
considering their sum as the graph-level feature.

PE method Running time Error rate

WL 7h17min 989650/2483411 = 0.3985
WL + edge 7h51min 485123/2483411 = 0.1953

RW 4h24min 1493301/2483411 = 0.6013
RW + edge 4h41min 38/2483411 = 0.000013691
WL + RW 10h59min 952227/2483411 = 0.3834

WL + RW + edge 10h56min 0/2483411 = 0

preceding graph of these actions, which could be inefficient since we only care about actions on the
single original graph. Here we propose an approximating alternative, by calculating the node-level
and edge-level PEs of the original graph. If we wish to verify whether two node-adding actions are
isomorphic, we can calculate the node-level PEs of their corresponding nodes and check whether
they are identical. Similarly, we verify whether two edge-adding actions are isomorphic by checking
whether the edge-level PEs of their corresponding edges are identical. In this way, we only need to
calculate the PEs of nodes and edges of the original graph, which is more efficient than calculating
the graph-level PEs of all preceding graphs. The node-level and edge-level PEs are the same as
described above, without taking their sum as graph-level feature.
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0 1

2

34

5

0 1

2

34

5

add edge (0,5) add edge (2,4)

isomorphic

Figure 2: An example where two actions with different edge-level
PEs could lead to isomorphic graphs.

One disadvantage of using node-
level and edge-level PEs is that
actions with distinct PEs do not
always lead to non-isomorphic
graphs. We give a counterexam-
ple in Figure 2. As shown in
Figure 2, edge (0,5) and edge
(2,4) are structurally dissimilar,
thus they have different PEs, yet
they lead to isomorphic graphs.
Luckily such counterexamples
are quite rare (1 in a few thou-
sand graphs) and they have neg-
ligible impact on model’s per-
formance. We use node-level
and edge-level PEs in our exper-
iments.

4 Experiments

4.1 Experiments on state invariance

Figure 3: The HyperGrid
environment.

We implement and evaluate our method on the benchmark adopted by
Bengio et al. [2021a], Malkin et al. [2022], namely hypergrid exploration
sampling tasks. Starting from one corner, an agent moves in a grid-like
world to explore the landscape defined by the following reward function
in Equation equation 1. The agent starts at the fixed down left corner in
every episode, and is only allowed to move up or right at each step. A
third stop action indicates to terminate the trajectory and leave the agent at
the grid it stands. Ideally, the agent should learn to stop at relatively high
reward regions at terminating times. Also, we do not want the agent’s
solution to converge to a particular mode, but would like it to discover all
different modes (4 modes in example in Figure 3). Therefore, we use the
L1 distance between the empirical distribution (sampled by the GFlowNet
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agent) and the ground truth distribution as the evaluation metric.

R(x) = R0 + 0.5

D∏
d=1

I[0.25 < |xd − 0.5|] + 2

D∏
d=1

I[0.3 < |xd − 0.5| < 0.4]. (1)

In Equation equation 1, x = (x1, . . . , xD) where D is the number of state dimension. Notice that
the reward function is invariant to the permutation of the coordinate ordering. This indicates that our
flow model should be invariant to the permutation of state coordinates, i.e., the group G contains
all permutations of D elements. Notice that under such scenario, the proposed enumeration based
method would require D! times of neural network forward pass. On the other hand, in order to
conduct the second canonization based method, we define

C(x) := (xπ(1), . . . , xπ(D)), xπ(1) ≤ · · · ≤ xπ(D),

where π denotes the permutation to arange the coordinates in descending order. Notice that on the
states which contains two equal coordinates, our method cannot guarantee exact invariance and thus
being an approximation (yet efficient) method.

We plot the L1 error with regards to the number of steps (i.e., the number of visited states). The
results in Figure 4 indicate that our proposed methods consistently outperform the original baseline,
showing a better sample efficiency for symmetry involved methods.
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Figure 4: Results of the baseline, our method 1 (enumration based), and our method 2 (canonization
based) on the hypergrid environment. We test with horizon = 16, dimension = 3, R0 = 0.001.

4.2 Experiments on action invariance

To test the effects of action invariance, we setup a simple environment with all possible graphs
of a maximum of 7 nodes, where the nodes can be one of two colors. We define three different
reward functions with varying difficulty. The hardest function, cliques, requires the model to identify
subgraphs in the state which are 4-cliques of at least 3 nodes of the same color. The second function,
neighbors, requires the model to verify whether nodes have an even number of neighbors of the
opposite color. Finally, the third function, counting, simply requires the model to count the number
of nodes of each color in the state.

This environment has a total of 72296 states, which allows us to compute the ground truth probability
p(x) and the learned probability pθ(x) relatively quickly. We compare three models, namely vanilla
GFlowNet, GFlowNet with isomorphism testing (ground truth), and GFlowNet with positional
encodings. The JS divergence between p(x) and pθ(x) are reported. We only report results on the
counting reward and defer full experiment results to Appendix A.

As shown in Figure 5, incorporating action invariance improves the accuracy of the learned flow
functions. Direct isomorphism testing and positional encodings achieve comparable performance,
but the former has a time complexity of O(n× n!) while the latter has a time complexity of O(n3).
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Figure 5: The JS divergence between p(x) and pθ(x) during offline GFlowNet training.
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Figure 6: The average reward during training.

We also report the average reward during train-
ing in Figure 6. As shown in Figure 6, both
direct isomorphism testing and positional en-
codings achieve better performance than vanilla
GFlowNet, indicating more accurate flow prob-
abilities indeed lead to higher rewards.

5 Conclusion

In this paper we propose to incorporate invari-
ance to the internal symmetries within the gen-
eration process into GFlowNet training. For
symmetric states, we propose enumeration-
based and canonization-based symmetrization
to achieve state invariance. For symmetric actions, we propose direct isomorphism testing and
positional encodings as an efficient alternative. Results on synthetic experiments validate the efficacy
of our proposed approaches.
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A Full experiment results

Results on the counting reward function are reported in Figure 7.
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Figure 7: Results on the counting reward function.

Results on the neighbors reward function are reported in Figure 8.
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Figure 8: Results on the neighbors reward function.

Results on the cliques reward function are reported in Figure 9.
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Figure 9: Results on the cliques reward function.
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