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ABSTRACT

Cryogenic electron microscopy (cryo-EM) of membrane proteins often requires
extracting them from their membrane to simplify downstream image processing.
While this step reduces the influence of membranes on 3D reconstruction, it also
prevents proteins from being observed in their natural state. To overcome this
limitation, we propose a two-step machine learning framework that avoids protein
extraction: (1) membrane detection, which identifies the bilayer membrane, and
(2) membrane subtraction, which digitally removes the detected membrane from
the cryo-EM micrograph. Recent work has introduced supervised algorithms for
membrane detection, but membrane subtraction remains relatively underexplored.
Here, we present a novel unsupervised approach to membrane subtraction that
models membranes using a general representation and computes a smooth esti-
mate, which can then be subtracted from the original cryo-EM micrograph. Exper-
imental results show that our method outperforms existing membrane subtraction
alternatives and enables reliable 3D reconstruction of membrane proteins using
cryo-EM without protein extraction.

1 INTRODUCTION

In structural biology, cryogenic electron microscopy (cryo-EM) is a popular structure determination
technique for identifying the three-dimensional (3D) atomic structure of isolated protein complexes
(i.e., single particle analysis [SPA] (Henderson, |[2017)). Cryo-EM has led to a rapid increase in the
number of proteins with solved structures (PDB)).

A significant challenge in cryo-EM (and structural biology) is the determination of membrane pro-
tein structures and understanding the relation of their structures and functional states (e.g., open
or closed states of an ion channel). Membrane proteins have hydrophobic regions that traverse the
lipid bilayer membrane of a cell or a vesicle, and imaging membrane proteins while they are in-
serted in the membrane is critical to understanding their native structure. Consequently, in SPA
experimental practice, membrane proteins are often isolated from their membranes before imaging.
However, membrane proteins can be imaged in their biologically native cellular or vesicle mem-
brane, or imaged after insertion into a synthetic vesicle membrane. Figure[I|a)-(c) show portions of
SPA cryo-EM micrographs containing different vesicles and their embedded membrane protein.

A cryo-EM micrograph (or image) can be thought of as a tomographic projection of 3D objects in
the specimen followed by the action of the point spread function of the electron microscope (Frankl,
2006). When membrane proteins are imaged while embedded in a bilayer membrane, the bilayer
membrane (~ 50A in thickness) contributes a strong signal when oriented parallel to the electron
beam. This contribution can be significantly larger than that of the protein embedded in the mem-
brane (50-100A in size). The strong membrane signal can cause SPA reconstruction to fail in the
so-called “alignment phase” of the 3D reconstruction.

If the bilayer membrane can be detected and subtracted from the micrograph, then standard SPA
reconstruction software can be used and the structure of the membrane protein elucidated. Since
bilayer membranes are clearly visible in micrographs, they can be manually outlined to create a
training dataset that will enable automated membrane detection by supervised learning. As dis-
cussed in Section [2]below, a number of software packages have recently been reported for automatic
membrane detection. However, membrane subtraction remains a challenge for two reasons. First,
membrane subtraction is not easily amenable to supervised learning. There is no manual technique
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Figure 1: Portions of SPA cryo-EM micrographs of vesicles with embedded membrane proteins
(a)-(c). Results of membrane detection (d)-(f) and membrane subtraction (g)-(i). See SectionElfor

a more detailed description.
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of producing a mask of the micrograph with the membrane subtracted. Second, membrane subtrac-
tion is required to leave the protein intact. This is a complex problem since the structure of the
protein, and hence its contribution to the image, is unknown.

The goal of this paper is to demonstrate an unsupervised approach to membrane subtraction in SPA
cryo-EM micrographs. The key idea of our algorithm is to propose a general model for the appear-
ance of the membrane in a micrograph. This model is used to create a set of basis functions which
are capable of accurately representing the membrane. Projecting the image onto the span of these
basis functions gives a smooth estimate of the membrane in the micrograph. This process can then
be iterated — smooth estimates of the membrane can give even smoother basis functions, and pro-
jecting on these bases improves the membrane estimate. Subtracting this estimate from the original
micrograph produces a membrane-subtracted micrograph. As we show below, the membrane esti-
mate produced by our method surpasses the estimates produced by other methods, including deep
learning-based denoising methods. In addition, the membrane subtracted images produced by our
method resulted in membrane protein 3D reconstructions where the transmembrane domain of the
protein is clearly visible.

Innovation: There are two key innovations in this paper: (1) the mathematical framework for rep-
resenting and estimating membranes in an image. (2) the iterative unsupervised estimation of a
membrane in a micrograph. As will become clear below, our definition of a membrane is quite gen-
eral, and it and the membrane subtraction algorithm, can be used with other image features which
appear membrane-like but are not a lipid bilayer membrane.

2 RELATED WORK

Multiple deep-learning algorithms for membrane detection in cryogenic electron tomography (cryo-
ET) (Baumeister| (1999); [Luci¢ et al.| (2005)) have recently been developed, including Mem-
Brain Lamm et al.| (2022) (here referred to as MemBrain v1), MemBrain v2 Lamm et al.| (2025),
and TARDIS Kiewisz et al.| (2025). These membrane detectors are developed using a supervised
learning paradigm with manually labeled 3D tomograms (not 2D micrographs). TARDIS has also
been applied to SPA cryo-EM micrographs and is integrated into the CZI CryoET Data Portal Ermel
et al.|(2024) for automated membrane segmentation of cryo-ET datasets.

MemBrain v1 and v2 both use the U-Net architecture (Ronneberger et al.,[2015]) for tomogram seg-
mentation, with MemBrain v2 further incorporating active learning to allow expert users to refine
detector training. TARDIS uses an FNet architecture (a custom designed dual-decoder U-Net) com-
bined with point cloud generation to achieve instance segmentation of membranes. According to
the MemBrain authors’ most recent preprint|Lamm et al.[(2025), segmentation accuracy for mem-
brane detection is comparable between MemBrain v2 and TARDIS. However, TARDIS provides a
more generalized framework that extends beyond membranes to additional cellular structures such
as microtubules. To the best of our knowledge, none of these models currently perform membrane
subtraction in either SPA cryo-EM micrographs or cryo-ET tomograms.

In a series of papers, Sigworth and colleagues [Wang et al.| (2006)); |[Liu & Sigworth| (2014); Jensen
et al.[(2016bza) developed a semi-automatic algorithm for membrane detection and membrane sub-
traction of vesicles in micrographs. This algorithm is available at: (https://github.com/
fsigworth/aEMCodeRepository/tree/master/VesicleML). Below we refer to this
algorithm as the semi-automatic (SA) algorithm. Briefly, SA works as follows: An initial vesicle
detection is carried out by correlating the micrograph with circular templates (2D projections of
spherical membrane vesicles) and identifying local maxima. Then, the detected vesicles are chosen
individually for further processing, which allows a more detailed modeling of the membrane appear-
ance. However, both the detection step and the modeling step allow only small deviations from a
circular shape, and model-fitting is very compute-intensive, and requires some manual interaction.

In principle, a possible solution to membrane subtraction is via image denoising, using either sta-
tistical methods such as Block-Matching and 3D-filtering (BM3D) (Mikinen et al.| 20205 [Dabov
et al., 2007)) or deep-learning methods such as SwinIR (Liang et al., 2021). Potentially, denoising
algorithms can filter out high-frequency signals, such as noise and proteins, leaving a bare image
of membranes. This denoised image can be subtracted from the micrograph. One limitation of
these algorithms is that they are generic, i.e. they do not have an explicit understanding (model)
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of a lipid bilayer membrane and it is possible that the denoised estimate of the membrane is not
membrane-like.

3 THEORY

3.1 WHAT IS A MEMBRANE?

Suppose C' is a smooth curve in a plane with a finite curvature (Figure [2[a)), called the generating
curve. Let ) be the set of points that are a fixed distance A away from C. Assume that A is small
enough so that normals from any two points of the curve C' do not intersect within 2. Under that
condition, there exists a curvilinear coordinate system in {2 with coordinates w1, us (see Figure a))
such that u; = constant are lines normal to the curve, and us = constant are curves parallel to
C (i.e. at a fixed distance from C'). Given any point x € (2, let x be the “change of coordinate”
function from the image coordinates to the curvilinear coordinates, i .e. x(z) = u = (u1, uz), and
X" 1(u) = x. A membrane image, or simply a membrane, is function M : Q — R defined by

M(z) = ((m2(x(2))), (D
where z is a point in , 7o ((u1,u2)) = wue is the projection on the second coordinate of u =
(u1,u2), and ¢ is the membrane profile function (Figure a)). The membrane profile function
is essentially a normal “cross-section” of the membrane image. Typically, the membrane profile
function is not a constant function. It demonstrates multiple local extrema. Of course, an image
may contain one or more membranes.

This membrane model has a useful property: The contours of M are curves corresponding to
ug =const. Thus, the gradients of M (x) in a small neighborhood of any x € (2 either point along
the +us or —us direction. This observation gives a simple criterion for evaluating how membrane-
like an image I is in a region Q. If n(x) = VI(x)/||VI(z)]| is the direction of the gradient, then
0y(z) = n(z)H(x)n(x), where H(x) is the Hessian of I at x, is the component of the derivative
of the gradient in the direction of the gradient. Similarly 8, (z) = n” (z)H (x)n(x), where n (z) is
n(x) rotated by 90°, is the derivative of the gradient in the direction perpedicular to the gradient. For
a membrane, J,,(x) should be zero, or close to zero. whereas 0, (z) should be significantly non-zero,
reflecting the non-constant nature of the membrane profile function. Thus

rms(0,)
V/tms2(0;) + rms2(0,)
where rms is the root mean square value over €2, serves as an index of how membrane-like 7 is in €.

This membrane similarity index takes values between 0 and 1, with higher values indicating that [
is more membrane-like in €.

2

v=1

3.2 MEMBRANE ESTIMATION

Given a noisy image containing membranes, suppose that we have a membrane segmentation algo-
rithm which segments the image into membrane and non-membrane regions. We take the membrane
region to be €2, and hold it fixed. We do not require €2 to be the precise support of the membrane, only
that (2 contain the membrane. Our task is to smooth the image content in €2 so that a good estimate
of the membrane is obtained. This estimate is subtracted from the image to get the membrane-
subtracted image.

Ideally, we would like to smooth the image in {2 along the u; coordinate of the membrane (Fig-
ure [2(a)). But this is difficult because we do not know the generating curve C. Instead we
use the following strategy for smoothing: We impose a grid in  (Figure 2[b)) with N vertices
vg, k =1,---, N. Ateach vertex vy we find a function By, called the basis function at vj, which is
a tangentially smoothened estimate of the local membrane profile near vy, (Figure 2(b)). Projecting
the image onto the span of the Bj’s gives a smooth version of the membrane, where the smoothing
has the same spatial extent as that of the By’s (which is small). For increased smoothing, we re-
estimate the By,’s from the projected image, and re-project the image onto their span. This is carried
on iteratively till the image is sufficiently smoothed. Mathematically, the iteration is

(Bt = @), 3)
jn+1 — H,L(I),nzl,“' 4)
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Equation (3) represents the creation of the set of basis functions {B}'} from I", the smoothened
image at iteration n, by an operator ®. Equation represents the projection of I, the original
image (micrograph), onto the span of { B} }. The iterations in Equations l) are initialized with
I' = I. The details of the operator ® and the projection II,, are as follows:

The operator ®: Suppose that at vertex v; we have an estimate of the direction normal to the
membrane. Then, we choose a coordinate system at v; such that its x-axis is tangential to the
membrane and y-axis is normal to the membrane (shown in green in Figure 2(b)). We call this
the aligned coordinate system, and denote its coordinates as z7, zo. Let ék be the angle between
the image coordinate system and the aligned coordinate system (Figure EFb)), and let R be the
rotation matrix that converts a vector from the image coordinate system to the aligned coordinate
system. Suppose 7 is a function which projects a pair of coordinates onto the second coordinate
i.e. ma([21,22]7) = 29, then TRy, (a — vy,) gives the second coordinate of a € 2 in the aligned

coordinate system. Suppose CA,Q" is a function that estimates the membrane profile at vy, then the
basis function B} is
o MNa—v1 112 /202
Bji(a) = (i (m2Ry, (a — vy))e~lemenl/2e, 5)

. . 2 /952 L . .
where the Gaussian function e~/1*=vII"/20" makes B}, significant only in a neighborhood of vy.

The estimate of the membrane profile é,? at the coordinate 29 in the aligned coordinate system is
obtained by the tangential weighted average:

L

&) = / we) (R, (21, 22]T))dan, ®)

-L

were w is a weighting function described shortly below. The function B}} a smooth approximation
to the membrane at local to vy,. The operator ® in Equation (3)) is the calculation of all B}'’s from

n according to Equations -@).

The projection II,,: The projection I onto the span of B}}’s is obtained by minimizing the following
objective function:

J = /(I(u) - ZakB,?(u))Qdu, whose solution is 7
o P’
dy} = argminJ, and " (u) =Y &, B (u). 8)
{cir} g min (u) ;kk<) (

In the above equations, I is the image (micrograph), &y, are the basis coefficients obtained by mini-
mizing J, and I is the smoothed membrane image.

It remains to describe how we estimate 6, and what we use as the weight w in Equation (EI)

Estimating 0r: In principle, we can estimate the 0)’s by minimizing the objective function J of
Equation (7) with respect to the 6;’s as well as the «;,’s. However, this minimization is quite com-

plex. Instead we use a heuristic for estimating 6, which works well in practice. The heuristic
depends on the observation that B;} is a good local approximation to the membrane at the correct

angle ék. Thus, we estimate one 6y, at a time by:

0, = arg min / (I"(a) — B} (a))?da. 9)
ko Jo .

The weight w: The weight w influences how close (j' approximates

the profile ¢ of I™ at vi. The relation between the two is given by the

following proposition (a detailed discussion of the propositions given

below and their proofs can be found in the supplementary material). 1
We suppress the superscripts below:

z 05
Proposition 1: For f and ( as defined above:
’ \/
2 L 1 C/(R + 22) L 2 5 0.5
C(Zg) = C(ZQ)/ w(ZI)d21+§T22/ w(zl)zldzl—i-O(L ), "4 05 0 05 1
—L —L X

(10)
Figure 3: The optimal
weight function w ().
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where R is radius of curvature of the membrane at vy. Thus ((z3) can
be a good approximation to (z2) for small L if LLL w(z1)dz; = 1
and f_LL w(21)2}dz1 = 0. Further, we require the weight w to be smooth (to combat noise), i.e. to

have a small value for ffL w’ 2(zl)dzl. And we require w to be even, and to go to zero at L. A w
satisfying these criteria is available as:

Proposition 2: Amongstall w € C?[—L, L] (the space of twice differentiable functions on [~ L, L)),
the even w that minimizes f_LL w'*(z)dz subject to f_LL w(z1)dz = 1, f_LL w(z1)23dz = 0.,
w(L) = w(—L) = 01is given by

1

w(z) = Zwl(%), where w1 (z) = ¢ + cox? + cqx?, (11)

and the coefficients ag, as, aq satisfy

+c2+ 0,co + L + L L1 + L + ! 0 (12)
cotcat+ca=0,c0+-co+-ca=—,cco+ —ca+ -ca=0.

0+ C2+Cy G0t gl t pC= 0y gt pC Tt i

Numerically solving Equation gives cg = 1.40625,c0 = —4.6875, and ¢, = 3.28125. The
optimal weight function w with these coefficients is shown in Figure[3]

To summarize, the entire algorithm is: Iterative smoothing and subtraction:

0. Input: I (micrograph), €2 (membrane region)
1. Initialize: Setn =1, I' = micrograph.
2. Iterate:

(a) At each vertex in 2, estimate ék via Equation (@), and the basis functions B} via
Equation (3).

(b) Estimate ay’s and "1 via Equations -.

) n+<n+1.

Finally, subtract I™ from the micrograph.

4 EXPERIMENTS

Data: The data we use consists of micrographs for three membrane proteins: (1) the Kv1.2 ion
channel (Long et al.,2005), (2) human KCNQI voltage-dependent ion channel (Mandala & MacK-
innon, 2023)), and (3) Membrane vesicles rich in the (Na,K) ATPase ion pump, derived from dog
kidney outer medulla (Forbush., |1982). Micrographs were obtained by request from the authors of
the publications mentioned. Sample micrographs are shown in Figure [I[(a)-(c).

The Kv1.2 ion channel preparation was created by removal of detergent from a mixture of detergent-
solubilized synthetic lipids and purified Kv1.2 ion channel protein (Wu et al.| [2025). The vesicle
suspension was applied to a graphene substrate film and rapidly frozen for cryoEM analysis. For
the KCNQ1 ion channel, the ion channel protein was purified, reconstituted in a similar fashion, and
imaged suspended in vitreous ice (Mandala & MacKinnon, 2023). The (Na,K) ATPase preparation
was obtained from homogenization of dog kidney tissue, followed by density-gradient enrichment,
and sonication to reduce the vesicle size. In these vesicles the Na-K ATPase constitutes about 50%
of the membrane protein. The vesicles were imaged in vitreous ice.

All micrographs were obtained with Titan Krios microscopes operating at 300 kV using Gatan K3
cameras producing micrographs of 5760x4092 pixels. The Kv1.2, KCNQI, and Na-K ATPase mi-
crographs have pixel sizes of 1.06, 1.09, and 0.825, respectively. All micrographs were downsam-
pled by a factor of 4 to increase processing speed.

Two datasets were created from the micrographs. Data set 1: This dataset was used to train a
membrane detection model using supervised learning (described below), and also to assess the per-
formance of the membrane subtraction algorithm. This dataset contained 72 Kv1.2 micrographs, 61
KCNQI1 micrographs, and 48 ATPase micrographs. Vesicles in these micrographs were manually
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outlined. 5 and 10 micrographs from each membrane protein set were left out as validation and test-
ing micrographs, and the remaining micrographs (N = 136) as training. Data set 2: This dataset
contained a separate 5,000 Kv1.2. micrographs that the trained membrane detection model and the
unsupervised membrane subtraction algorithm were applied to. After membrane subtraction, these
micrographs were then used to reconstruct the structure of the Kv1.2 ion channel with a standard
cryo-EM image processing pipeline.

Membrane detection: Inspired by existing cryo-ET membrane detectors (Lamm et al.,[2022;2025;
Kiewisz et al., 2025), a U-Net model was trained to segment membranes in SPA cryo-EM micro-
graphs (using Data Set 1 mentioned above). The default U-Net architecture implemented in Pad-
dleSeg v2.4.2 (PaddlePaddlel 2019; |Liu et al.| [2021) (without pretrained weights) was trained to
detect two target pixel classes: (1) background and (2) membrane. Training examples were gen-
erated by randomly cropping paired micrographs and membrane mask images into 256x256 pixel
patches. Input patches were standardized by applying Gaussian smoothing (standard deviation of
24 pixels), subtracting the smoothed patch to zero-center pixel intensities, and scaling by division
by the standard deviation of the resulting patch. These standardized patches underwent further data
augmentation, including random horizontal and vertical flips, random brightness, contrast, and sat-
uration distortions. Model training was conducted with a batch size of 4 over 500,000 iterations.
The AdamW optimizer (61 = 0.9, 52 = 0.999, weight decay= 0.01) was used with a polynomial
learning rate decay schedule, starting at 0.005 and decaying to 0 with a power of 2.0. The objective
function used during model training was Dice loss (Sudre et al., |2017). The model was trained on
one NVIDIA Titan Xp GPU. The trained U-Net successfully segments membranes (Figure[I{d)-(f)).
Segmentation performance was evaluated using the Dice coefficient. The model achieved a Dice
score of 0.81 (training) and 0.79 (testing). Note that we regard membrane detection as a standard
image pre-processing step, and do not make any claims of novelty for this approach. The novel part
of our algorithm is membrane subtraction; its results are described below.

Membrane subtraction: The algorithm described at the end of Section [3] was implemented using
PyTorch v2.7.1 Paszke et al.| (2019) and Kornia v0.8.1 [E. Riba & Bradski| (2020). The algorithm
parameters were set at follows: the grid spacing for v, was set to 4 pixels, the basis functions
By, had a radius of 13 pixels. The optimizing coefficients oy, were calculated by gradient descent
with a learning rate of 0.025 and 30 iterations. A total of 3 iterations (Step 2 in the algorithm)
were sufficient for a good membrane estimate. Figure [T[g)-(i) show the results of subtracting the
membrane from Figure Eka)-(c).

Other methods: For comparison with our method, we used the SA membrane subtractor (https:
//github.com/fsigworth/aEMCodeRepository/tree/master/VesicleML), two
denoising algorithms: statistical collaborative filtering algorithm BM3D (Mékinen et al., 2020;
Dabov et al.| 2007), and the transformer-based deep learning algorithm SwinIR (Liang et al.|[2021).
For these algorithms, input image pixel intensities were normalized to [0, 1] before the denoising.
Then the denoised images within the {2 region were treated as membrane estimates. For the BM3D
algorithm we used the constant-level noise standard deviation of 0.15. For SwinIR we used the mod-
els pre-trained to denoise images corrupted by zero mean and 25 and 50 std Gaussian noise from the
original paper (Liang et al.,[2021). The denoising from the 50-noise-level model was observed to be
inferior to the denoising from the 25-noise-level, and we discarded the 50-noise-level model.

Evaluation: Evaluating membrane subtraction requires some care. Recall that the goal of mem-
brane subtraction is to eliminate the membrane signal from the micrograph, but to leave behind any
contribution to the micrograph from the membrane protein. In light of this, we evaluate membrane
subtraction in two steps. In the first step, we evaluate how membrane-like the estimate of the mem-
brane is for each algorithm. This is done by using the membrane similarity index of Section [3.1]
(Equation (2)). As we show below, BM3D and SwinIR have poor membrane similarity indices. Vi-
sual examination of their membrane estimates confirm that the estimates do not look membrane-like.
Based on this, we eliminate these two methods from further consideration. We then evaluate the re-
maining two methods (SA and our method) using an index called the membrane subtraction fraction
which measures the degree to which a membrane is subtracted from the micrograph. This index is
based on the empirical observation that the bilayer membrane in a micrograph responds strongly
to a difference-of-gaussians (DoG) filter whose width is approximately the width of the membrane.
See Supplementary Text for details. Letting d, denote the DoG filter kernel, and I and I, denote the
original micrograph and the subtracted micrograph, we define the membrane subtraction fraction as
n = ||Is % dgl||/||I * dg||. The smaller this index is, the better the membrane subtraction.
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Table[T[a) shows the average membrane similarity index for Data Set 1. BM3D and SwinIR consis-
tently produce poor membrane-like estimates. Further insight into the behavior of these algorithms
can be obtained by the example in Figure ] The top row of this figure shows a vesicle in a Kv1.2
micrograph and the membrane estimates from SwinIR, BM3D, the SA-algorithm, and our algo-
rithm. The bottom row shows the result of subtracting the estimates from the micrograph. Note that
the SwinIlR membrane estimate has a bead-like appearance and there are several places where noise
seems to span the bilayer, or the the bilayer contrast is lost. Note also that the SwinIR subtracted
image displays a donut shaped halo where the pixel statistics seem to be different than the noise in
the rest of the micrograph. Any membrane protein is unlikely to survive the SwinIR subtraction.
The BM3D membrane estimate (top row) does not appear to capture the entire membrane; there is a
residual membrane in the subtracted image (bottom row). The SA-algorithm membrane estimate is
very membrane-like (top row), but it appears to miss the part of the vesicle near 7 o’clock where the
vesicle departs from strict circularity.

Method Kvl.2 KCNQI1 ATPase Method Kvl.2 KCNQI ATPase
SA-algorithm  0.85 0.84 0.81 SA-algorithm  0.81 0.89 0.99
BM3D 0.63 0.64 0.59 Our method 0.66 0.63 0.83
SwinIR 0.60 0.76 0.55

Our method 0.78 0.78 0.77

(a) Membrane similarity index v (larger is better) (b) Subtraction Fraction n (smaller is better)

Table 1: Performance indices for membrane subtraction algorithms

Vesicle SwinIR BM3D SA Ours

Figure 4: Membrane estimates and membrane subtraction for a Kv1.2 vesicle.

As mentioned above, because of their
poor membrane estimates SwinIR .
and BM3D are discarded from further Vesicle SA
analysis. Table [T[b) shows the sub-
traction fraction for the SA-algorithm
and our method. The subtraction
fraction of our method is significantly
superior to that of the SA-method.

Figure [3] illustrates why. The top
row of Figure [5]shows a vesicle from
an ATPase micrograph. Below the
vesicle is shown the output of the
membrane detector (to aid the reader
in identifying where the membranes
are). The rest of the top row shows
membrane estimates from the SA-
algorithm and our algorithm. The

Figure 5: Membrane estimates and membrane subtraction
for ATPase vesicles.
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strong imposition of circularity by the SA algorithm is quite obvious. It is this constraint that results
in the poor subtraction fraction for the SA-algorithm. For completeness, the bottom row also shows
the result of membrane subtraction.

Reconstruction: The ultimate test of successful membrane subtraction is whether the membrane
protein can be reconstructed. We used Data set 2 mentioned above to evaluate this. Downsampled
(pixel size of 4.3 A) micrographs were used with our trained membrane detection model (U-Net)
and our algorithm to detect and estimate the membrane. Downsampling was used to shorten the
processing time. The membrane estimate was then upsampled and subtracted from the original
micrographs.

(b)

Figure 6: Reconstruction of the Kv1.2 ion channel. (a) 2D projection of the reconstructed Kv1.2
ion channel from membrane-subtracted particle images. (b) 2D projection of the reconstruction
from original particle images. (c) 3D rendering of the reconstruction in (b). The membrane protein
complex is 150 A tall.

After membrane subtraction a geometry-aware particle picker [Liu & Sigworth| (2014) was used to
identify the particles (membrane proteins). This yielded a preliminary set of 180,000 particle im-
ages. Subsequent processing and reconstruction used the RELION single-particle pipeline (Scheres,
2012)), with some dedicated MATLAB scripts. After a round of 3D classification, the right-side-out
particles were selected based on a comparison of the psi (in-plane) angles assigned in RELION and
the vesicle-location-based psi angles estimated by the particle picker. This yielded 31,800 particles.
Further 3D classification resulted in a final selection of 16,700 particles. Using the same set of par-
ticle coordinates, a corresponding set of unsubtracted particle images was also extracted from the
original micrographs.

The RELION 3D auto-refine program was used to create a C4-symmetric membrane-subtracted
map with a nominal FSC resolution (Harauz & van Heel, [1986) of 3.7 A. A 2D projection of
this map is shown in Figure [f[a); the transmembrane (TM) part of the protein complex (the upper
1/3 of the complex) shows low density due to the subtraction of the model membrane density, but
subtraction also removes almost all signal from the curved membranes. Despite the distortion due
to subtraction, the TM region alone has sufficient signal to allow alignment to be performed. The
alignment parameters (rotations and translations of the individual particle images) were then used for
a 3D reconstruction from unsubtracted particle images. This reconstruction shown in Figure [f[b)
contains the true membrane and protein signals, and demonstrates the strong membrane density.
Figure[6]c) shows the reconstructed protein and a cutaway view of the membrane density.

5 CONCLUSIONS

Here, we report a new unsupervised membrane subtraction algorithm for SPA cryo-EM. Our al-
gorithm depends on a membrane model and optimal local filtering for an estimate of the mem-
brane. This estimate is subtracted from the original micrograph to obtain a membrane-subtracted
micrograph. The reported algorithm outperforms previously reported algorithms as well as generic
denoising algorithms. Furthermore, the membrane-subtracted micrograph can be used in a stan-
dard SPA cryo-EM reconstruction pipeline (i.e., RELION). Reconstruction with real-world images
shows that the transmembrane domain is preserved by the algorithm. Our method facilitates 3D re-
construction of membrane proteins in membranes, better enabling studies of their native states using
cryo-EM imaging.
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A APPENDIX

A.1 DETAILS OF PROPOSITIONS 1 AND 2 OF THE MAIN TEXT

This section of supplementary text contains details of the theory in Section [3|of the main manuscript.
Our main goal here is to establish Propositions 1 and 2. We ask the reader to review Section
before proceeding.

Without any loss of generality suppose that the normal to the membrane at vy, (Figure[7), is in the
vertical direction, so that the tangent to the membrane is horizontal. Further assume that the vesicle
is circular with radius R (Figure[7). The circle assumption is not as restrictive as it might seem at
first glance, because our analysis is local to the vertex v,. Any curve can be locally approximated
as a circle.

Fix a point a at a distance z, above vy, (Figure[7). and consider a horizontal line through the point.
The coordinate along the horizontal line is z;. Assume that the true profile function of the membrane
is a function of the distance from the center of curvature. Then the value of the true profile function
at a is (R + z2). The tangentially smoothed estimate of the profile at a is

L
SR+ ) = [ w5+ (R+ ) (13)

where w is the weight function.

z
2 Zl2+(R+22)2

Center of
curvature

Figure 7: Analysis of tangential smoothing.

What we want to do is to compare the smoothed estimate ¢ (R + z2) with ((R + z3). The relation
between the two is given by the following proposition:

Proposition S.1: For é and ( as defined above:

L 1 L

. 1 (R+ =

(Rt z) = (R +2) [ e+ 3 S0 [ we)din +ord). as
L 2 R + Z9 —L

Proof: For a fixed 29, expanding the true profile {(1/2? + (R + 22)?) in a Taylor series in z; around

2 = 0 gives (/22 + (R + 22)%) = ((R + 29) + L B2 .2 4 O(24) Substituting this series

2 R+zo
into Equation (13)) gives the desired result. ]

Proposition S.1 suggests something interesting: if we require that the weight function w satisfy
LLL w(z1)dz; = 1 and ffL w(z1)22dz; = 0, then (R + 22) ~ C(R + 23) up to fifth order in L.
For small L this is a very accurate approximation.

Because w gives a weighted average as z; varies from —L to L, we would additionally like w to be
even and smooth. And that it be zero at —L, L. This leads to the following calculus of variations

12
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problem:

L
min / w’z(zl)dzl, subject to the following conditions (15)
woJ-L

L L
wis even,w(L) = w(—L) = 0,/ w(z1)dz = 1,/ 22w (z)dz = 0.
-L L

The objective function forces w to be smooth, while the constraints force w to have the properties
we want. Note that the above problem is convex in w, hence if a solution exists, it is unique. Note
also that any solution to this problem depends on L. The dependence on L is characterized by the
following proposition:

Proposition S.2: If w; is the solution to the above minimization problem for L = 1, and wy, is the
solution for a general L, then wy,(z1) = $wi(21/L).

Proof: Suppose Wi, is the set of all functions w which satisfy the constraints of the minimization
problem in Equation (1] for a given value of L. Further for any w € W, let J,(w) be the functional

being minimized, i.e. J,(w f LW w'? (z1)dz1.

LetT': Wi — Wy, be a map which takes f; € Wi to f, € Wy, according to fr(z1) = %fl(zl/L).
It is straightforward to show that I" is a bijection. In addition, for any w; € W,

L L
TP = [ (g Chrda = [ (Guiyn = g

Similarly for any w, € Wy, Jp(wr) = £5J1(D"!(wy)). That is, under T', the two functionals
differ by a fixed scalar multiple. Hence the minimizing functions in W; and W, are related by I'.

From now on we assume L = 1, and for simplicity of notation replace the variable z; with x. For
L = 1, the solution to the problem of Equation (I3) is:

Proposition S.3: For L = 1, solution to the problem of Equation for w € C%[—1, 1] (the space
of twice differentiable functions on [—1, 1]) is

wi(x) = a,+ agx® + agx*, where ag, as, ay satisfy
1 1

1 1 1 1
ap+az+aq4 = O,a0+§a2+ga4 2 3a0+5a2+?a4:0. (16)

Proof: Assuming L = 1, ignoring the first two constraints of Equation (15)(we will impose them
later), and using Lagrangian multipliers for the equality constraints gives the unconstrained problem:

1 1 1
min / w'2(:c)d:17 + M / w(x)dx + Ao / z?w(x)dx (17)
w -1 -1 -1

The corresponding Euler- Lagrange equation is w”(z) = $A; + X222, the solution of which is
wi(x) =co+ 1z + A41 z? —1— 522", Requiring that w; be even gives, ¢; = 0. Thus the general form

of the function is wy (z) = ¢ + 2122 + 222* which can be written as w(x) agp + a2x + agzt
(ap = co, a2 = M1 /4, a4 = /\2/24). Imposmg the constraints wq(1) = 0, fll wi(z)dr = 1, and
f_ll x2wq (x)dx = 0 gives the equations for ag, az, a4 in Equation lb |

Propositions S.1 and S.3 are Propositions 1 and 2 in the main text.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 EFFECT OF THE DIFFERENCE-OF-GAUSSIAN (DOG) FILTER

This section demonstrates that the output of the DoG filter is sensitive to the presence of the bilayer
membrane. Figure[§|a) shows a portion of the micrograph with vesicles (Kv1.2 ion channel). Fig-
ure [§[(b) shows the output of our algorithm with the membrane subtracted for the same portion of
the micrograph. Figure [§|c) and (d) show the output of the DoG filter when applied to Figure [§]a)
and (b) respectively (the contrast in Figure Ekc)—(d) has been enhanced to aid visibility). This figure
demonstrates clearly that the DoG filter responds strongly to the presence of the membrane.

(a) Portion of micrograph (b) After membrane subtraction
showing vesicle membranes

(c) Output of DoG for (a) (c) Output of DoG for (b)

Figure 8: Response of the DoG filter for micrgraph with vescile membrane and with membrane
subtracted.
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