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Abstract

Recently, Zhang and Chen [25] have proposed the Diffusion Exponential Integrator
Sampler (DEIS) for fast generation of samples from Diffusion Models. It leverages
the semi-linear nature of the probability flow ordinary differential equation (ODE)
in order to greatly reduce integration error and improve generation quality at low
numbers of function evaluations (NFEs). Key to this approach is the score function
reparameterisation, which reduces the integration error incurred from using a fixed
score function estimate over each integration step. The original authors use the
default parameterisation used by models trained for noise prediction – multiply the
score by the standard deviation of the conditional forward noising distribution. We
find that although the mean absolute value of this score parameterisation is close
to constant for a large portion of the reverse sampling process, it changes rapidly
at the end of sampling. As a simple fix, we propose to instead reparameterise
the score (at inference) by dividing it by the average absolute value of previous
score estimates at that time step collected from offline high NFE generations. We
find that our score normalisation (DEIS-SN) consistently improves FID compared
to vanilla DEIS, showing an improvement at 10 NFEs from 6.44 to 5.57 on
CIFAR-10 and from 5.9 to 4.95 on LSUN-Church (64×64). Our code is available
at https://github.com/mtkresearch/Diffusion-DEIS-SN.

1 Introduction

Diffusion models [4, 20] have emerged as a powerful class of deep generative models, due to
their ability to generate diverse, high-quality samples, rivaling the performance of GANs [8] and
autoregressive models [19]. They have shown promising results across a wide variety of domains and
applications including (but not limited to) image generation [2, 17], audio synthesis [12], molecular
graph generation [6], and 3D shape generation [16]. They work by gradually adding Gaussian noise
to data through a forward diffusion process parameterized by a Markov chain, and then reversing
this process via a learned reverse diffusion model to produce high-quality samples.

The sampling process in diffusion models can be computationally expensive, as it typically requires
hundreds to thousands of neural network function evaluations to generate high-quality results. More-
over, these network evaluations are necessarily sequential, seriously hampering generation latency.
This has motivated recent research efforts to develop acceleration approaches that allow the gener-
ation of samples with fewer function evaluations while maintaining high sample quality. Denoising
Diffusion Implicit Models (DDIM) [21] is an early but effective acceleration approach that proposes a
non-Markovian noising process for more efficient sampling. Song et al. [22] show that samples can be
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Figure 1: Generations at 5 NFEs with a CIFAR-10 model. Top: DEIS-SN (ours). Bottom: DEIS
[25]. It can be seen that DEIS-SN is often able to better generate details (such as wheels on cars).
More generation results are shown in Fig. 4 of Appendix D.

quickly generated by using black-box solvers to integrate a probability flow ordinary differential equa-
tion (ODE). Differentiable Diffusion Sampler Search (DDSS) [24] treats the design of fast samplers
for diffusion models as a differentiable optimization problem. Diffusion model sampling with neural
operator (DSNO) [27] accelerates the sampling process of diffusion models by using neural operators
to solve probability flow differential equations. Progressive Distillation [18] introduces a method
to accelerate the sampling process by iteratively distilling the knowledge of the original diffusion
model into a series of models that learn to cover progressively larger and larger time step sizes.

Recently, a new family of fast samplers, that leverage the semi-linear nature of the probability flow
ODE, have enabled new state-of-the-art results at low numbers of function evaluations (NFEs) [13, 25,
26]. In this work we focus on improving the Diffusion Exponential Integrator Sampler (DEIS) [25],
specifically the time-based Adams-Bashforth version (DEIS-tAB). Our contributions are as follows:

1. We show that DEIS’s default score parameterisation’s average absolute value varies rapidly
near the end of the reverse process, potentially leading to additional integration error.

2. We propose a simple new score parameterisation – to normalise the score estimate using
its average empirical absolute value at each timestep (computed from high NFE offline
generations). This leads to consistent improvements in FID compared to vanilla DEIS.

2 Preliminaries

Forward Process We define a forward process over time t∈ [0,1] for random variable xt∈RD,

p(xt|x0)=N (xt; atx0,σ
2
t I) (1)

for x0 drawn from some unknown distribution p(x0). Here, at and σt define the noise schedule.2
The following stochastic differential equation has the same conditional distributions as Eq. (1) [9],

dxt=ftxtdt+gtdwt, x0∼p(x0), (2)
where wt∈RD is the Wiener process and

ft=
dat
dt

1

at
, g2t =

dσ2
t

dt
−2ftσ

2
t . (3)

Probability Flow ODE Song et al. [22] show that the following ODE,
dxt

dt
=ftxt−

1

2
g2t∇xt

logp(xt), x1∼p(x1), (4)

shares the same marginal distributions p(xt) as the stochastic differential equation in Eq. (2). Given
a neural network that is trained to approximate the score sθ(xt,t)≈∇xt

log p(xt), Eq. (4) can be
exploited to generate samples approximately from p(x0) using blackbox ODE solvers [22]. This
approach tends to produce higher quality samples at lower NFEs vs stochastic samplers [22]. We note
that in the domain of diffusion models, neural networks tend to be trained to predict a parameterisation
of the score, e.g. sθ(xt,t)=−ϵθ(xt,t)/σt (noise prediction) [4] or sθ(xt,t)=(atxθ(xt,t)−xt)/σ

2
t

(sample prediction) [18], as this leads to better optimisation and generation quality [4].
2Note that we restrict ourselves to the case of isotropic noising as it applies to the vast majority of cases,

although it is easy to generalise Eq. (1) by replacing at,σ
2
t with matrices At,Σt.
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Figure 2: Left: average absolute per-pixel score estimate value s̄θ and the conditional forward standard
deviation σt plotted over the reverse process. Right: the product of the previous two values – we see
that this is constant for most of the reverse process, but it changes rapidly near t=0. The noising
schedule is the Linear β schedule [4], the training data is CIFAR-10 and we average 256 samples.

Exponential Integrator Recently, a number of different approaches have exploited the semi-linear
structure of Eq. (4), solving the linear part, ftxt, exactly [13, 14, 25, 26]. This has lead to impressive
generation quality at low NFEs (≤20). One such approach is the Diffusion Exponential Integrator
Sampler (DEIS)3 [25] that uses the following iteration over time grid {ti}Ni=0 to generate samples:4

xti−1
=Ψ(ti−1,ti)xti +

r∑
j=0

Cij(−Kti+j
)sθ(xti+j

,ti+j)︸ ︷︷ ︸
score reparameterisation

, (5)

Cij=

∫ ti−1

ti

1

2
Ψ(ti−1,τ)g

2
τK

−1
τ

∏
k ̸=j

[
τ−ti+k

ti+j−ti+k

]
dτ,

where Ψ(t,s) satisfies ∂Ψ(t,s)
∂t = ftΨ(t,s),Ψ(s,s) = 1, Kt is a function used to reparameterise the

score estimate and r is the order of the polynomial used to extrapolate said score reparameterisation.
We note that Cij and Ψ(t,s) can be straightforwardly calculated offline using numerical methods.

3 The Importance of Score Reparameterisation

The key to reducing integration error in Eq. (5) is the score reparameterisation. DEIS approximates
an integral over τ ∈ [ti−1,ti], over which −Kτsθ(xτ ,τ) should vary, using fixed estimates from finite
ts. This approximation will be more accurate the less −Kτsθ(xτ ,τ) varies with τ . Zhang and Chen
[25] choose the default parameterisation for noise prediction models, Kt = σt, where ϵθ(xt,t) =
−σtsθ(xt,t). Fig. 2 shows that this reparameterisation (right) is roughly constant in average absolute
pixel value (s̄θσt) for the majority of the generation process,5 whilst the score estimate varies
considerably more. By reducing the variation over time of the score estimate via reparameterisation,
DEIS is able to achieve much lower integration error and better quality generations at low NFEs [25].

4 Score Normalisation (DEIS-SN)

Fig. 2 also shows, however, that near t=0 there is still substantial variation in s̄θσt. Thus we propose
a new score reparameterisation, where we simply set Kt=1/s̄θ(t). That is to say, at inference, we
normalise the score estimate with the empirical average absolute pixel value at t of previous
score estimates. The aim of this is to further reduce the variation in the reparameterisation near t=0.

s̄θ(t) can be found using offline generations at high NFEs. We use linear interpolation to accom-
modate continuous t. Our approach can be directly plugged into DEIS, so we refer to it as DEIS-SN.

3Note that we focus only on the time-based version of DEIS, tAB.
4Note that we simplify notation compared to [25] by restricting ourselves to the case of isotropic noise.
5This is corroborated in Fig. 4a of [25]
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Figure 3: Left: FID 50K for CIFAR-10 against NFEs for different samplers on the same trained model.
Right: zoomed in view of the left figure. DEIS-SN consistently outperforms DEIS at low NFEs.

We note that gDDIM [26] is another extension to DEIS, however this approach is specifically
applicable to data distributions that are well modelled by a single Gaussian (such as the velocity
of Critically-Damped Langevin Diffusion [3]), which is not the case for image datasets like CIFAR.

5 Experimental Results

We train the UNet architecture from [15] on CIFAR-10 [10] using the linear β schedule [4] on
noise prediction.6 We compare our approach to Euler integration of Eq. (4), DDIM [21] and
DEIS-tAB3 (polynomial order r=3) [25]. DEIS-SN is identical to DEIS-tAB3 other than the choice
of Kt = 1/s̄θ(t) over Kt = σt. The average absolute score estimate s̄θ(t) is measured offline on
a batch of 256 generations. For Euler and DDIM we use trailing linear time steps [11], whilst for
DEIS we use trailing quadratic time i∈ {0,...,N}, ti = (i/N)2. For full experimental details see
Appendix A. A similar protocol was followed for LSUN-Church (64×64) experiments.

Fig. 3 shows for CIFAR-10, that at low NFEs, DEIS-SN provides a consistent FID improvement over
vanilla DEIS. For higher NFEs, when the width of the intervals [ti−1,ti], and thus the integration
error, is reduced, the benefit of DEIS-SN gradually disappears and DEIS-SN performs almost
identically to vanilla DEIS. Both DDIM and Euler significantly underperform both DEIS approaches.
Experimental results for LSUN-Church are shown in Appendix E.

Fig. 1 shows visual comparisons of vanilla DEIS and DEIS-SN at 5 NFEs.7 We see that DEIS-SN
can better generate details (such as vehicle wheels). We note that generally generations are visually
similar on a high level. This is because the difference between vanilla DEIS and DEIS-SN only
occurs for t near 0 (Fig. 2), i.e. the end of the generation/reverse process.

6 Conclusion

In this work we propose to extend the Diffusion Exponential Integrator Sampler (DEIS) with empirical
score normalisation (DEIS-SN). Through our novel score-reparameterisation, we aim to further reduce
integration error towards the end of the generation process by normalising the score estimate with the
empirical average absolute value of previous score estimates. We validate our approach empirically on
CIFAR-10 and LSUN-Church, showing that DEIS-SN is able to consistently outperform vanilla DEIS
for low NFE generations in terms of FID 50k. We also show visual examples of DEIS-SN’s superiority.

In the future it would be interesting to extend this work to cover non-isotropic cases, where the
score reparameterisation Kt is performed by a matrix, possibly in a transformed space such as the
frequency domain [1, 5], to see if additional performance gains are to be had. Another possibility
would be to parameterise Kt and directly optimise it for better image quality at low NFEs.

6Note this is smaller than the architecture used in [22, 25] so the baseline high NFE FIDs are slightly worse.
7We select examples with clear visual differences, as many generations are visually indistinguishable.

(Nevertheless, the FID 50K results indicate there is a difference in generation quality on aggregate.)
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A Additional Experimental Details

In order to perform sampling with our proposed method, and for comparison purposes, we trained
a model to approximate the true score ∇xt

log p(xt) with a standard architecture and training
procedure. We purposefully use a model with relatively small capacity to segregate the effects of
sampling procedure and better score estimation [7, 22]. We train our score estimator in a discrete
DDPM Ho et al. [4] setup with time-discretization granularity N =1000, i∈{0,...,N}, ti = i/N ,
which is considered to be a standard in diffusion literature. As suggested by Ho et al. [4], we train the
score estimator with the “simple loss” which is proven to be better at generation quality, as opposed
to the true variational bound [9]. Again, as per Ho et al. [4], we do not directly estimate the score
sθ, but instead estimate the “noise-predictor” ϵθ. Concretely, We optimize the following objective,

Ex0∼p(x0), xt∼p(xt|x0), i∼U{1,N}, ϵ∼N (0,I)

[
||ϵθ(xti ,ti)−ϵ||22

]
, (6)

where p(x0) is the data distribution realized using our dataset, the forward noising conditional
p(xt|x0) is from Eq. (1) and ti are timesteps. We use the standard “positional embeddings” for
incorporating ti into the noise-estimator neural network. The (at,σt) in Eq. (1) are chosen to be
the standard “linear schedule” and variance-preserving formulation [22], i.e.

a2t =
∏t

t′=1(1−βt′), and σt=
√
1−a2t (7)

where βt=βmin+(βmax−βmin)·t with βmin=10−4 and βmax=2×10−2. To obtain continuous
time at we employ simple linear interpolation as in [25]. We use the AdamW optimizer with
learning rate 10−4 and no gradient clipping. We also use the standard process of using Exponential
Moving Average (EMA) while training the network ϵθ using Eq. (6). We used a minibatch size of
128 on each of 4 GPUs, making the effective batch size 512. We trained for 2000 epochs on both
CIFAR-10 (32×32) [10] and LSUN-Church (64×64) constituting 196k iterations and simply chose
the final checkpoint. For faster training, we used mixed-precision training, which did not degrade
any performance as per our experiments. The architecture of the U-Net used as ϵθ is taken exactly to
be the standard architecture proposed in iDDPM [15], with a dropout rate of 0.3. All our experiments
are implemented using the diffusers library [23].8

When generating samples for evaluation, we set the random seed to be the same value across all
experiments. This allows a better comparison between different ODE sampling methods as different
samplers will still follow similar trajectories (see Fig. 1).

B Mathematical Simplifications

We note that a number of simplifications/analytic results can be leveraged for DEIS, when applied
specifically to the variance preserving process [4, 25],

σ2
t =1−a2t , g2t =−2ft, Ψ(t,s)=at/as. (8)

C DEIS-SN Implementation Details

We follow Zhang and Chen [25]’s DEIS implementation9 closely for the most part. One minor
difference is that we set t0=0 rather than a small value such as 10−4. We find that for the samplers
that we use this does not lead to any discontinuities/divide-by-zero errors, since no function is
actually evaluated at t=0 (Eq. (5) uses a one-sided Riemann sum for numerical integration).

We find empirically that performance is improved by truncating s̄θ(t) slightly, close to t = 0.
This is possibly due to numerical instability from its rapid increase as σt → 0. We simply set
s̄θ(t)= s̄θ(0.005) for t<0.005. We calculate s̄θ(t) by measuring the average absolute pixel values
of sθ(xt,t) at each time step using DEIS-tAB3 with 1000 NFEs (1000 uniform time steps) over

8https://github.com/huggingface/diffusers/tree/main
9https://github.com/qsh-zh/deis/tree/main/th_deis
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a batch of 256 generations. This is done using a different random seed to the generations used for
evaluation. We then use linear interpolation to obtain values over continuous time.

D More generation results

NFE=5 NFE=10 NFE=20

NFE=5 NFE=10 NFE=20

NFE=5 NFE=10 NFE=20

NFE=5 NFE=10 NFE=20

Figure 4: Visual comparison of unconditional samples for CIFAR10 generated (with same seed)
at relatively low NFE for (top to bottom) DEIS-SN (Ours), DEIS, DDIM & Euler sampler.
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E Results on LSUN-Church 64×64

We follow exactly same protocol except the UNet architecture, which in this case is adapted from [2].
The UNet in question has an attention resolution of only 16 (unlike 16,8 in CIFAR-10 model) and 2
ResNet blocks (unlike 3 in CIFAR-10 model). We also use a dropout of 0.1 while training our LSUN-
Church model. Below, in Fig. 5, we present the FID-vs-NFE curves similar to Fig. 1 in the main paper.

0 20 40 60 80 100
NFEs

4

6

8

10

12

14

FI
D 

50
K

DDIM
DEIS-tAB3
DEIS-SN (Ours)

101 2 × 101 3 × 101 4 × 101

NFEs

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

FI
D 

50
K

Figure 5: Left: FID 50K for LSUN-Church 64×64 against NFEs for different samplers on the same
trained model. Right: zoomed in view of the left figure. DEIS-SN consistently outperforms DEIS
at low NFE regime.
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