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Figure 1: NeurIPS achieves remarkable personalization efficiency. NeurIPS adapts to a new
user with minimal data and training. This figure shows the results for a held-out subject after per-
sonalizing a 3-subject, pre-trained model. The personalization is remarkably efficient, using only
20% of the new subject’s data for just one epoch. (Left) High-fidelity reconstructions after a single
epoch demonstrate that the model quickly learns the new subject’s neural patterns, already outper-
forming baselines. (Middle & Right) Performance metrics confirm the rapid adaptation. With only
20% of the data, the personalized model (solid lines) nearly matches the performance of a reference
model trained on 100% of the data (dashed lines).

ABSTRACT

Generalizable fMRI decoding is hindered by the challenge of aligning signals
from anatomically unique brains. Prevailing methods treat this anatomical vari-
ation as noise, creating a false performance-fidelity trade-off where efficient 1D
encoders outperform geometrically faithful surface-based models. We argue this
trade-off is an artifact of two core mismatches: inefficient surface tokenization
and the failure to use anatomy as a predictive signal. We present NeurIPS, a
framework that improves surface-based decoding by reframing anatomical varia-
tion from a nuisance to a powerful inductive prior. NeurIPS unites two innova-
tions: a Selective ROI Spherical Tokenizer (SRST) for efficient geometric en-
coding, and a Structure-Guided Mixture of Experts (SG-MoE) that explicitly
models individual anatomy using cortical features. On the Natural Scenes Dataset,
NeurIPS establishes a new state-of-the-art for surface decoders and achieves per-
formance comparable to strong 1D baselines. This is achieved with unprecedented
efficiency, as the model converges dramatically faster (10 vs. 600 epochs). This
efficiency enables rapid adaptation to new subjects using only 20% of data and
ensures robust scalability as the training cohort is expanded. Ablations provide
causal evidence that these gains are driven by the model’s use of cortical features,
not by memorizing subject IDs. By leveraging anatomical priors, NeurIPS pro-
vides a principled and scalable path toward robust, generalizable brain decoding.1

1 INTRODUCTION
“Variation is the hard reality, not a set of imperfect measures for a central ten-
dency. Means and medians are the abstractions.”

— Stephen Jay Gould, The Median Isn’t the Message (1985)

What separates one mind from another? Is it noise to be averaged away, or is it the signal itself? We
argue the latter: that the precise brain geometry of our individual differences holds the key to map-
ping all minds onto a single, shared canvas. This question is central to the field of brain decoding.

1We will release all training and inference code, data, and model weights after acceptance.
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Reconstructing images from fMRI has become a key proving ground for neural representation learn-
ing, with the goal of building systems that can generalize across people (Takagi & Nishimoto, 2023;
Chen et al., 2023; Scotti et al., 2023). Such generalization is not merely an academic benchmark; it
is a prerequisite for a new generation of clinical and brain-computer interface (BCI) applications that
can be deployed robustly in the real world. However, the path to building such a universal decoder
is obstructed by a significant challenge.

We believe the field’s core obstacle should be viewed through the lens of representation alignment.
The fundamental task is to map the functionally and anatomically unique cortical surface of each
individual onto a common representational sphere, where the same stimulus evokes a consistent
neural code. From this perspective, the current landscape reveals a deep divide. On one hand,
computationally efficient 1D pipelines dominate benchmarks but achieve their speed by discarding
the brain’s native cortical geometry, thereby sacrificing the very structural information crucial for
principled alignment (Scotti et al., 2023; Huo et al., 2025). On the other hand, surface-based models,
which preserve this geometry, have historically lagged in performance, creating what is often framed
as an unavoidable performance-fidelity trade-off (Gu et al., 2023; Dahan et al., 2025; Yu et al.,
2025). This trade-off, we argue, is not fundamental but a byproduct of two concrete architectural
mismatches that prevent effective alignment: (i) inefficient surface tokenization, and (ii) treating
individual anatomical variation as noise.

These architectural mismatches manifest as specific limitations in prior work. Existing surface meth-
ods for fMRI (Gu et al., 2023; Yu et al., 2025) apply spherical convolutions across entire hemi-
spheres. For static visual decoding tasks, this allocates significant computation to non-visual re-
gions that may carry less stimulus-specific information, generating excessive tokens that destabilize
model training. Similarly, prior cross-subject frameworks tackle anatomical variance inefficiently.
They often condition their computations on subject IDs, which encourages the model to memorize
individual patterns rather than learn generalizable rules about how structure shapes function. The
root cause of these issues is a failure to leverage anatomical structure as a powerful inductive bias. A
principled solution must therefore directly correct these flaws by adhering to two design principles:
(1) efficient, geometry-aligned tokenization, and (2) anatomy-conditioned computation.

We implement these principles with two innovations, by introducing a hybrid architecture: a surface-
based encoder that strictly operates on visual cortical ROIs to preserve geometry, followed by a
compact latent transformer for efficient cross-subject modeling. The Selective ROI Spherical To-
kenizer (SRST) directly addresses the first principle by confining spherical convolutions to visual
ROIs, creating a stable, efficient token space that respects cortical geometry. The Structure-Guided
Mixture of Experts (SG-MoE) implements the second principle by gating experts based on an in-
dividual’s cortical thickness, curvature, and sulcal depth, rather than their ID, forcing specialization
along meaningful structure-to-function axes. This anatomy-guided architecture provides the strong
inductive bias that has been missing. Recent work on representation alignment (REPA) (Yu et al.,
2024) has shown that such biases enable models to achieve strong performance in remarkably few
epochs. This insight suggests that the slow convergence of existing methods is not fundamental but
a consequence of poor inductive biases, a problem our architecture is designed to solve.

Additionally, rather than aiming for zero-shot generalization, we evaluate what matters for deploy-
ment: fast adaptation and scalability, demonstrating that anatomy-conditioned representations en-
able data-efficient transfer to new subjects. Our anatomy-guided architecture confirms that strong
inductive biases unlock unprecedented learning speed. On the Natural Scenes Dataset (NSD) (Allen
et al., 2022), our model adapts to a new subject by achieving 90% of its full performance with
just 10 epochs of fine-tuning on only 20% of the subject’s data. This represents a dramatic accel-
eration compared to conventional methods that require 200-600 epochs to converge (Wang et al.,
2024). This rapid adaptation also translates to robust population-level scaling. As the training co-
hort grows, our model’s performance remains stable while baselines that ignore anatomy degrade.
This stability is a critical feature for building decoders that can be deployed reliably across diverse,
real-world populations. Under matched compute, our model achieves comparable peak performance
to competitive 1D pipelines while converging dramatically faster. A full suite of diagnostics and ab-
lations confirms that these gains are driven by our two core principles: efficient, geometry-aligned
tokenization and anatomy-conditioned computation.

Contributions. Our contributions are threefold, spanning technical innovation, empirical perfor-
mance, and mechanistic validation. (A) Technical Innovations. We introduce two modules that
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make surface-based decoding both efficient and anatomy-aware: the Selective ROI Spherical To-
kenizer (SRST), which uses learnable, ROI-restricted convolutions to preserve cortical topology
while controlling the token budget, and the Structure-Guided Mixture of Experts (SG-MoE), which
conditions on cortical features like sulcal depth and thickness to model cross-subject variability. (B)
Empirical Performance at Scale. On the NSD benchmark, NeurIPS sets a new state-of-the-art
among surface decoders while achieving compatible performance with strong 1D pipelines under
matched compute (Table 1). It demonstrates remarkable efficiency, adapting to new subjects with
just 20% of their data in a few epochs, and proves highly scalable, exhibiting the smallest perfor-
mance drop when the training cohort is expanded (Figure 4). (C) Mechanistic Evidence. Finally,
we provide interventional evidence that these gains are driven by our proposed design. Ablation
studies (Table 2) and attribution analyses (Figure 6) confirm that performance relies on our key
components and that the model systematically uses anatomical features for its computations, rather
than memorizing subject identities. Together, NeurIPS advances the line of geometry-aware fMRI
modelling by improving how geometry and anatomy are operationalised in a scalable encoder.

2 RELATED WORK

Modern fMRI-to-Image Pipelines. Reconstructing images from fMRI has rapidly advanced by
adopting a two-stage pipeline: an fMRI encoder maps brain activity to a pre-trained latent space,
which then conditions a powerful generative model, typically a diffusion model, for image synthesis
(Takagi & Nishimoto, 2023; Chen et al., 2023; Shen et al., 2024). Recent progress within this
framework has focused on enhancing reconstruction quality through multi-modal guidance, such
as using dual objectives with both semantic (e.g., CLIP) and perceptual (e.g., VAE) targets (Scotti
et al., 2023; 2024), or by incorporating spatial control mechanisms like ControlNet (Huo et al.,
2025). While the generative backend is crucial, the performance ceiling is largely determined by the
architectural choices made in the initial fMRI encoder, which is the primary focus of our work.

Surface-based fMRI decoders and the encoder dilemma. fMRI encoder design faces a trade-
off between efficient flat/1D representations (Beliy et al., 2019) that ignore cortical topology and
biologically faithful surface-based methods that suffer from high computational overhead. A grow-
ing family of fMRI decoders model brain activity directly on cortical manifolds: spherical CNNs
and U-Nets (Zhao et al., 2019; 2021; Gu et al., 2023) apply convolutions on spherical or surface
meshes, capturing local topology and geodesic neighborhoods; transformer-based surface models
such as SIM (Dahan et al., 2025; 2023; 2022) tokenize an icosahedral tessellation and learn patch-
level features; and prior work (Yu et al., 2025) uses a ResNet-style surface encoder equipped with
spherical convolution kernels derived from SphericalUNet (Zhao et al., 2019), together with cortical
metrics (thickness, curvature, sulcal depth), for image reconstruction. These approaches already
treat fMRI and anatomical measures as signals defined on cortical manifolds and explicitly encode
surface geometry, but their computational cost makes them challenging to scale to large cohorts
and cross-subject training. In parallel, cross-subject decoders either learn shared alignment spaces
(Wang et al., 2024) or condition MoE routing on subject IDs (Quan et al., 2024), which can improve
fit but scales linearly with the number of subjects and risks memorization. NeurIPS builds directly
on this foundation by developing an efficient surface-based encoder that (i) uses a selective ROI
spherical tokenizer (SRST) to restrict spherical convolutions to task-aligned visual ROIs, and (ii)
replaces ID-based conditioning with a principled, anatomy-guided routing mechanism (SG-MoE).

Inter-subject variability and registration. Anatomical and functional variability across subjects
has long been addressed using surface-based registration and multimodal alignment (Fischl, 2012;
Robinson et al., 2014; 2018; Glasser et al., 2016b). In this work we adopt the standard NSD pre-
processing pipeline, which maps each subject’s cortex to the fsaverage6 template via FreeSurfer’s
spherical registration. NeurIPS is designed to sit on top of these well-validated pipelines: regis-
tration provides a topology-preserving common space and a shared visual ROI mask, and SG-MoE
then models residual inter-subject variability by conditioning on cortical features instead of subject
IDs. Our contribution is thus not to replace registration, but to combine classical alignment with
anatomy-conditioned feature learning in a single encoder.

Representation Alignment as a Path to Efficiency. Recent results show that aligning internal
features to strong, frozen targets (e.g., REPA) can reach high quality in few epochs, suggesting
slow convergence often reflects weak inductive bias rather than task difficulty (Yu et al., 2024). This
principle of accelerated learning through alignment has been demonstrated across generative models
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(Chen et al., 2025), vision-language systems (Liu et al., 2023a), and large language models (Liu
et al., 2023b; Kong et al., 2024). These results suggest that the lengthy training of brain decoders
is not inevitable. By leveraging brain anatomy as a powerful prior, our model is better initialized to
quickly align neural activity with a shared semantic space, enabling highly efficient learning.

Neuroscientific and Geometric Foundations. Our approach is motivated by the topographical or-
ganization of the visual system on the 2D cortical surface (Felleman & Van Essen, 1991; Engel et al.,
1997). Geometric deep learning (Bronstein et al., 2017; 2021) provides the appropriate tools, namely
spherical CNNs, which respect the topology of the cortical hemispheres (Cohen et al., 2018; Esteves
et al., 2018). However, their significant computational cost has limited their use in neuroscience. Our
proposed SRST overcomes this barrier by restricting computation to the NSD-General visual ROI,
making these powerful geometric methods practical for large-scale neural decoding while remaining
consistent with prior NSD work that focuses on visual cortex for static image tasks.

3 METHODOLOGY

3.1 A CONDITIONAL INFORMATION BOTTLENECK VIEW OF CROSS-SUBJECT DECODING

We framed the challenge of cross-subject fMRI decoding through the lens of a Conditional Infor-
mation Bottleneck (C-IB). Let Xs be ROI-restricted surface fMRI for subject s, As be the subject’s
anatomy, and Y be the target representation (e.g., VAE or CLIP latents). The goal is to learn a
representation Z = Tθ(Xs, As) that is maximally informative about the target Y while suppressing
subject-specific information, all conditioned on the known anatomy:

max
θ

I(Z;Y |As) − β I(Z;ID |As). (1)

While we do not optimize this mutual information objective directly, the C-IB framework serves
as a core design principle. Our architecture is designed to address both terms of this objective:
an efficient, geometry-preserving tokenization scheme preserves and enhances task-relevant in-
formation (I(Z;Y |As)), while an anatomy-conditioned computational mechanism suppresses
identity-specific information (I(Z;ID |As)). This enables the model to learn a generalizable
structure-to-function mapping instead of memorizing individuals.

In our implementation, SRST and SG-MoE provide concrete approximations to the two terms in
Equation (1). SRST increases I(Z;Y |As) by restricting encoding to a geometry-aligned visual
ROI and preserving local neighborhoods and sulcal topology during spherical downsampling. SG-
MoE decreases I(Z;ID |As) by conditioning computation on anatomy rather than subject identity:
expert selection depends on cortical features shared across subjects, not on ID embeddings. The
empirical predictions from this C-IB are efficient, rapid adaptation, resilience to cohort scaling, and
systematic utilization of anatomical features, are validated by our experiments (see B.1).

3.2 PROBLEM DEFINITION AND ALIGNMENT-GUIDED PRINCIPLES

We study fMRI responses on the cortical surface within predefined visual ROIs (see Appendix Fig-
ure 9 for details), registered to the standard FreeSurfer fsaverage6 mesh (Fischl, 2012). Given
NSD’s static visual stimuli, we adopt a task-aligned strategy by restricting modeling to visual ROIs
(consistent with Scotti et al. (2023); Wang et al. (2024); Yu et al. (2025)). This contrasts with
full-cortex designs suited for multimodal paradigms (e.g., SIM (Dahan et al., 2025)); our analyses
(Fig. 6D,E) confirm that signal contributions for this task concentrate in the visual hierarchy. For
an image yimg, we utilize the GLM-estimated beta weights (which summarize the stimulus-locked
BOLD response) as our input. The ROI-restricted beta maps on the left and right hemispheres are
denoted as xL ∈ RNL and xR ∈ RNR . We reconstruct ŷimg while conditioning on structural features
cs,L and cs,R (thickness, area, sulcal depth, curvature), such that ŷimg = D(xL, xR | cs,L, cs,R). Our
framework is guided by two principles designed to solve the alignment mismatches:

Principle 1: Efficient, Topology-Preserving Tokenization for Geometric Alignment. Sur-
face/spherical operators preserve cortical neighborhoods and provide the correct inductive bias for
alignment (Bronstein et al., 2017; Cohen et al., 2018). To optimize the information density un-
der a fixed compute budget, our SRST concentrates surface modeling on task-relevant visual ROIs.
This avoids the O(T 2) burden of processing full hemispheres (which is necessary for multimodal
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tasks but less efficient for static image decoding) and generates multi-scale local and global tokens,
yielding a compact, topology-preserving space suitable for joint training.

Principle 2: Anatomy as a Conditional Prior for Functional Alignment. Neuroscientific evi-
dence shows anatomy predicts function, from V1 retinotopy to ventral stream organization (Engel
et al., 1997; Dumoulin & Wandell, 2008; Weiner et al., 2014; Natu et al., 2021). Instead of using
arbitrary subject IDs (Quan et al., 2024), we condition expert computation on anatomical features
cs. This approximates the conditional distribution p(Y |Xs, As) and reduces inter-subject hetero-
geneity, enabling a more generalizable functional alignment.
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Figure 2: The NeurIPS Framework. (Left) Following established methods (Scotti et al., 2023),
the overall pipeline is trained using a dual-decoder approach. The perception model maps fMRI to
a VAE latent space for low-level detail, while the semantic model (aligns fMRI with a CLIP space
for high-level content. During inference, both pathways jointly guide a frozen diffusion model to
synthesize the final image. (Right) The core contributions of NeurIPS. A Selective ROI Spherical
Tokenizer (SRST) first efficiently extracts features from both brain activity and anatomical structure.
These are then processed by a transformer backbone where the standard feed-forward network is
replaced by our Structure-Guided Mixture of Experts (SG-MoE), which uses anatomical information
to route tokens to specialized experts for improved cross-subject generalization.

3.3 THE NEURIPS FRAMEWORK OVERVIEW

To instantiate these principles, our NeurIPS framework (Figure 2) uses a dual-decoder architecture
to align fMRI signals with target representations. The pipeline includes a perceptual decoder DP

mapping to a semantic decoder DS mapping to a CLIP space (§3.4) and a VAE space (§3.5). We in-
tegrate our two innovations within the critical semantic path: the Selective ROI Spherical Tokenizer
(SRST) to solve the topology mismatch (§3.4), and the Structure-Guided Mixture of Experts (SG-
MoE) to solve the identity mismatch (§3.4). Finally, the outputs from both decoders are combined
to steer a versatile diffusion model for high-quality image reconstruction (§3.6). To further validate
the generalizability of our learned representations, we also present results on secondary tasks such
as brain captioning in Appendix Table 6 and Appendix Figure 10.

Information Flow. The overall pipeline proceeds as follows (Fig. 2): First, SRST extracts
geometry-aware tokens from the visual cortex (Fig. 3). These tokens are processed by the trans-
former backbone, where SG-MoE dynamically routes information based on anatomical structure.
The resulting representations simultaneously drive the Semantic Decoder (aligning with CLIP) and
the Perception Decoder (aligning with VAE). Finally, both outputs guide a frozen diffusion model
to generate the reconstruction.

3.4 SEMANTIC PATH: SRST + SG-MOE

The semantic model DS maps fMRI signals to the semantic space of CLIP (Radford et al., 2021).
For a given fMRI pair (xL, xR) and corresponding subject-specific structure features (cs,L, cs,R), DS

outputs the predicted CLIP image and text embeddings by êimage, êtext = D(xL, xR|cs,L, cs,R).
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Figure 3: Selective ROI Spherical Tokenizer (SRST) design and efficiency gains. The stan-
dard pipeline maps volumetric fMRI signals to a spherical surface where hexagonal convolution
kernels can preserve local topology. However, prior methods inefficiently processed all 40,962×2
hemisphere vertices (Yu et al., 2025). In contrast, our SRST restricts computation to only the 9,488
vertices within visual ROIs, yielding an 88.4% reduction in processed surface points, while pre-
serving local topology. From these selected vertices, SRST generates both spatially-detailed local
tokens and a semantically-rich global token. This efficiency is critical, making end-to-end training
of a deep transformer on surface-based fMRI data both practical and stable.
The ground truth eimage and etext are derived by passing the image and its caption into the CLIP
encoders Eimage and Etext, respectively. The model DS is then optimized using an MSE loss:
L = ||eimage − êimage||22 + ||etext − êtext||22.

Selective ROI Spherical Tokenizer (SRST). Our SRST implements this geometric efficiency prin-
ciple through selective computation. As illustrated in Figure 3, while prior methods apply spher-
ical convolutions uniformly across the hemisphere, SRST adopts a task-aligned approach, per-
forming computation on vertices within visual ROIs. For the NSD benchmark, this selective ap-
proach reduces the token budget by 88.7%, creating a compact token space suitable for stable joint-
optimization with a transformer backbone. To capture information at multiple scales, SRST gener-
ates two complementary representations: local tokens from the localized convolutions to preserve
fine-grained geometric patterns, and global tokens via flattening and pooling to provide overall
scene context. This dual-token design provides the transformer with both high-fidelity spatial de-
tails and high-level semantic information without resorting to destructive flattening.

Structure-Guided Mixture of Experts (SG-MoE). While prior frameworks often use subject em-
beddings or adapters, these scale linearly with cohort size and risk overfitting. Our SG-MoE replaces
identity-based routing with anatomy-conditioned expert selection. By gating experts based on lo-
cal cortical features rather than subject IDs, we force the model to learn generalizable structure-
to-function rules shared across individuals, rather than memorizing subject-specific patterns. A
standard Mixture of Experts (MoE) replaces a transformer’s feed-forward network (FFN) with N
parallel expert FFNs, and a router network R selects a sparse subset of these experts for each token.
Instead of conditioning this routing on a learned subject ID embedding as in prior work (Quan et al.,
2024), we implement a purely structure-guided router. The gating network receives only local corti-
cal features (thickness, curvature, sulcal depth, and location descriptors) as input; it does not receive
any subject-ID tokens or embeddings. This ensures that the MoE experts specialize based solely
on local cortical geometry rather than memorizing subject identity. The four cortical features (cs)
are first mapped into a structural embedding es,stru via a lightweight SRST tokenizer. The routing
decision for an input token e is then modified to be w = R(e|es,stru). We implement the SG-MoE
based on DeepSeek-V3 (Liu et al., 2024; Guo et al., 2025) MoE framework, with N = 16 experts
per layer and a top-k routing strategy (k = 6). This design forces experts to specialize based on
structural properties, allowing NeurIPS to learn a generalizable structure-to-function mapping and
thereby enhancing its cross-subject performance.

3.5 PERCEPTION PATH

The perceptual decoding model, DP, aims to project fMRI responses into the latent perceptual space
of a Variational Autoencoder (VAE) (Kingma et al., 2013). Unlike the semantic path, this auxiliary

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ground
Truth

NeurIPS
(Ours)

SIM
Dahan et al.

(2025)

Yu et al.
(2025)

Ground
Truth

20%

40%

60%

80%

100%

ep‐1 ep‐2 ep‐3 ep‐4 ep‐5 ep‐6 ep‐7 ep‐8 ep‐9 ep‐10

Figure 4: NeurIPS demonstrates superior reconstruction quality and rapid new-subject adaptation
on the NSD test set. (Left) Qualitative comparison on the standard within-subject benchmark,
where each model is trained on a single subject’s full dataset. NeurIPS reconstructions show higher
fidelity to object identity, layout, and fine details compared to prior surface-based models. (Right)
Demonstration of fast new-subject adaptation. The model is pretrained on a cohort of subjects and
then fine-tuned on a held-out subject using a limited data budget. Rows correspond to the percentage
of fine-tuning data (20-100%), and columns represent the number of training epochs (1-10). Even
with minimal exposure (one epoch on 20% of data), the model generates a semantically coherent
reconstruction, with quality progressively improving as the data and training budget increase.

branch prioritizes low-level visual fidelity over geometric interpretability. Therefore, we follow
Scotti et al. (2023) and flatten the ROI-masked fMRI signals into a 1D vector input, treating this
stream as a standard MLP-based mapping. Given an input fMRI pair (xL, xR), the model predicts
the corresponding VAE latent code ẑ = DP(xL, xR). We use the same pre-trained VAE as Stable
Diffusion (Rombach et al., 2022). The ground-truth perceptual latent for a given image yimg is
obtained via the VAE encoder, z = EVAE(yimg). The model DP is then optimized using a standard
MSE loss: L(z, ẑ) = ||z − ẑ||22.

3.6 IMAGE RECONSTRUCTION

The final image reconstruction is performed by a pre-trained, versatile diffusion model (Xu et al.,
2023). The model is guided by the outputs of both the perceptual and semantic decoders. The
predicted VAE latent ẑ from the perceptual decoder DP provides low-level structural information.
The predicted CLIP text embeddings êtext and image embeddings êimage from the semantic decoder
DS provides high-level semantic guidance. Both latents are injected into the diffusion model’s U-
Net architecture via separate cross-attention layers, allowing the model to synthesize an image ŷimg
that is faithful to both the perceptual details and the semantic content of the original stimulus.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Dataset and Preprocessing. We utilize the Natural Scenes Dataset (NSD) (Allen et al., 2022), a
large-scale fMRI–image paired benchmark. Four subjects (subj01, 02, 05, 07) completed the full
protocol, viewing 10,000 images from COCO (Lin et al., 2014) with three repetitions each. Among
these, 1,000 images were shared by all subjects and are designated as the common test set. The
remaining are partitioned into 8,500 for train and 500 for val. For scalability experiments,
train data from four additional subjects (subj03, 04, 06, 08) are included in the training set.

Evaluation Metrics. Following standard evaluation protocols, we assess reconstruction quality
using 8 metrics. For low-level visual fidelity, we use pixel-wise correlation (PixCor) and structural
similarity (SSIM) (Wang et al., 2004). For feature-level similarity, we use 2-way comparisons on
activations from AlexNet’s 2nd and 5th layer (Alex(2), Alex(5)) (Krizhevsky et al., 2012),
InceptionV3 (Incep) (Szegedy et al., 2016), and CLIP ViT-L/14 (CLIP) (Radford et al., 2021).
Last, we measure average correlation distance using EfficientNet-B1 (Eff) (Tan & Le, 2019) and
SwAV-ResNet50 (SwAV) (Caron et al., 2020).

Baseline Configuration and Parity. To ensure a fair comparison, we re-implemented the surface-
based baselines (SIM and Yu et al. (2025)) using their official code or reported settings, aligning
loss functions, data splits, and optimization schedules with our method. For SIM (Dahan et al.,
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Figure 5: NeurIPS achieves rapid new-subject adaptation and robust scalability. In all panels,
models were pretrained on 3 subjects and then fine-tuned on a held-out subject. We compared our
results with prior models (SIM (Dahan et al., 2025), MindBridge (Wang et al., 2024), and Yu et al.
(2025)). (Left) The adaptation curves plot performance over 10 fine-tuning epochs. With just 20%
of the new subject’s data (solid lines), NeurIPS (red) consistently outperforms baselines and rapidly
approaches its asymptotic performance (dashed line). (Right) The bar plot illustrates scalability by
showing the performance degradation when the training cohort is expanded from 4 to 8 subjects.
Taller bars indicate a larger drop (note: Eff/SwAV signs are inverted for consistency). NeurIPS
shows the smallest degradation across 7 out of 8 metrics, confirming its superior robustness.

2025), we specifically scaled its transformer to match our model’s width and depth, reporting this
stronger variant in Table 2. Crucially, all reconstruction results in this paper, including those for
MindBridge, SIM, and Yu et al., were generated using the exact same Versatile Diffusion backend
and identical inference hyperparameters (50 steps, guidance scale 7.5, text-image mixup 0.5).

4.2 DO GEOMETRY- AND ANATOMY-AWARE DECODERS REACH SOTA?

To answer this, we present a comprehensive quantitative comparison in Table 1. The results show
that NeurIPS attains a new state-of-the-art among surface-based decoders across all 8 metrics. For
instance, on the high-level CLIP metric, NeurIPS achieves 93.2%, significantly outperforming the
prior surface model, SIM (89.4%). Critically, this performance closes the long-standing gap with
1D pipelines. While computationally intensive 1D models like MindBridge reach a CLIP score of
94.7%, our model’s 93.2% achieves comparable under matched compute, demonstrating that incor-
porating biological fidelity no longer requires a performance trade-off. This quantitative strength is
supported by qualitative results in Figure 4 (Left), where NeurIPS reconstructions better preserve
object identity, layout, and fine-grained texture compared to prior surface models. We provide fur-
ther qualitative results in Appendix Figure 13, showcasing our model’s high-fidelity reconstructions
across a diverse range of visual categories, including animals, vehicles, and complex scenes.

4.3 HOW EFFICIENTLY DOES NEURIPS ADAPT TO NEW SUBJECTS?

NeurIPS adapts with unprecedented data and time efficiency. To test this, we pretrained a model
on three subjects and then fine-tuned it on a held-out subject (subj01) using only a fraction of their
available data. The adaptation curves in Figure 5 show that with just 20% of the new subject’s
data, NeurIPS (red curve) rapidly approaches its asymptotic performance within 10 epochs. After
just one epoch on this limited dataset, NeurIPS already produces a high-fidelity reconstruction,
capturing the core semantic content of the scene, as seen in Figure 4 (Right). Driven by its strong
anatomical inductive biases, the model achieves this rapid convergence and reaches a performance
level in a few epochs that conventional models require hundreds to achieve. Appendix Figure 14
provides a comprehensive set of qualitative examples, illustrating the progressive improvement in
reconstruction fidelity as the fine-tuning budget (both data percentage and epochs) increases.

4.4 DOES PERFORMANCE REMAIN STABLE AS THE COHORT SCALES?

Our model’s anatomy-conditioned routing provides superior scalability. To assess this, we compare
performance when training on four subjects versus all eight, evaluating on the same four-subject test
set. The results (Figure 5, Right) reveals superior robustness: when the training cohort expands from
4 to 8 subjects, SIM’s CLIP score drops by 2.0 points, whereas NeurIPS drops by only 0.6 points.
This suggests that anatomy-conditioned routing effectively treats increased subject variability as
signal rather than noise. Our model’s stability confirms that it effectively leverages this variability,
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Table 1: Quantitative comparison of cross-subject performance on the NSD (Allen et al., 2022)
test set. All methods were trained as a single model on four subjects 01, 02, 05, 07, and the results
shown are averaged across the shared test set. Performance is evaluated across eight standard
metrics (↑ higher is better), with the best result in each category (1D-vector and Sphere-based)
marked in bold. The Input size column clarifies the input dimensionality, distinguishing between
ROI voxels for 1D methods and surface tokens for sphere-based methods (where “×2” denotes
both hemispheres). The results show that our model, NeurIPS, establishes a new state-of-the-art
for surface-based decoders and achieves performance parity with top-tier 1D pipelines on high-level
semantic metrics. See related analysis in §4.2.

Method Trained
Voxels

Low-Level High-Level
PixCor ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓

1D-vector-based fMRI Methods
Mind-Vis (Chen et al., 2023) 13811 0.067 0.196 67.7% 74.2% 67.9% 69.3% 0.898 0.513
Takagi & Nishimoto (2023) 13811 0.246 0.410 78.9% 85.6% 83.8% 82.1% 0.811 0.504
MindEye (Scotti et al., 2023) 13811 0.129 0.255 84.2% 89.2% 84.1% 85.0% 0.812 0.487
MindBridge (Wang et al., 2024) 13811 0.151 0.263 87.7% 95.5% 92.4% 94.7% 0.712 0.418
UMBRAE (Xia et al., 2025) 13811 0.283 0.328 93.9% 96.7% 93.4% 94.1% 0.700 0.393
NeuroPictor (Huo et al., 2025) 13811 0.141 0.349 91.4% 95.7% 88.3% 88.9% 0.722 0.417

Sphere-based fMRI Methods
Gu et al. (2023) 32492×2 0.103 0.264 - - - - 0.892 0.508
Yu et al. (2025) 9548 0.165 0.305 78.2% 89.0% 85.1% 88.3% 0.733 0.398
SIM (Dahan et al., 2025) 40962×2 0.119 0.260 81.2% 90.4% 87.2% 89.4% 0.733 0.448
NeurIPS (w/o preception decoding) 9488 0.148 0.283 86.7% 94.5% 92.2% 92.9% 0.662 0.396
NeurIPS (Ours) 9488 0.248 0.370 90.7% 95.2% 92.3% 93.2% 0.663 0.404

Table 2: Ablation studies on the NSD (Allen et al., 2022) test set providing causal evidence for
our architectural design. Each row modifies a single component relative to the full model. Detailed
analysis is provided in Section 4.5.

# Setting
Low-Level High-Level

PixCor ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
1 w/o global token 0.236 0.370 87.7% 92.7% 87.7% 89.4% 0.723 0.441
2 subject ID gating 0.247 0.370 90.2% 94.9% 92.0% 92.7% 0.668 0.407
3 w/o perception decoding 0.148 0.283 86.7% 94.5% 92.2% 92.9% 0.662 0.396
4 w/o semantic decoding 0.369 0.512 69.5% 65.4% 53.3% 55.0% 1.004 0.651
5 Yu-style structure fusion 0.239 0.359 89.7% 94.2% 90.9% 91.7% 0.669 0.412
6 full brain 0.193 0.316 85.4% 91.7% 89.4% 91.0% 0.723 0.443
7 functional features gating 0.241 0.371 90.1% 94.9% 91.7% 92.7% 0.661 0.397
8 w/o left brain tokens 0.151 0.288 85.2% 93.3% 90.1% 91.5% 0.691 0.414
9 w/o right brain tokens 0.153 0.289 85.2% 93.5% 90.2% 91.6% 0.688 0.414

10 shuffle spherical position 0.159 0.292 86.5% 93.3% 90.6% 91.5% 0.686 0.419
11 convolution receptive field = 1 0.160 0.292 87.1% 93.6% 90.4% 91.7% 0.682 0.416

12 Full Model 0.248 0.370 90.7% 95.2% 92.3% 93.2% 0.663 0.404

enabling it to generalize robustly to larger, more realistic population sizes. For a complete, per-
subject breakdown, see Appendix Tables 4 and 5.

4.5 WHICH ARCHITECTURAL COMPONENTS DRIVE PERFORMANCE?
To isolate component contributions, we conducted the ablation studies in Table 2. Anatomy-Guided
Routing. Replacing dynamic routing with static Yu-style fusion (#5) significantly drops perfor-
mance, confirming the benefit of conditional computation. Moreover, anatomy-based gating out-
performs both functional statistics (#7) and subject IDs (#2), verifying anatomy as a superior stable
prior. Geometric Validity. Disrupting topology via spherical shuffling (#10) or restricting receptive
fields to 1 (#11) impairs performance, confirming SRST leverages cortical neighborhoods rather
than simple feature pooling. Removing left (#8) or right (#9) tokens further confirms hemispheric
information is non-redundant. Efficiency. A full-cortex tokenizer (#6) increases memory cost while
lowering CLIP scores, validating our task-aligned ROI efficiency. Dual Decoders. Finally, re-
moving the semantic (#4) or perception (#3) decoders leads to collapse in their respective metrics,
proving both are indispensable.

4.6 ARE THE LEARNED PATTERNS NEUROSCIENTIFICALLY PLAUSIBLE?
Our analyses reveal that NeurIPS’s cross-subject alignment stems from its ability to operate on a
geometrically appropriate coordinate system and to condition on the true source of inter-subject
variability. An analysis of the SG-MoE router (Figure 6A) shows that expert selection exhibits high
dependence on a token’s cortical origin but minimal dependence on the subject’s identity. This
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Perception
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Brain
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Figure 6: NeurIPS learns anatomy-aware representations on a geometry-preserving basis. (A)
Expert routing dependence maps show that computation is driven by a token’s cortical location (high
region dependence, right) rather than the subject’s identity (low subject dependence, left). Special
tokens are indicated: [CLS]=0–3, [global]=4–7. (B) Structural feature attributions confirm
a complementary use of all four anatomical features, ruling out single-feature shortcuts. (C) The
geometry-aligned tokenization of SRST is validated, as the NSD visual-ROI scheme outperforms
generic atlases on key high-level metrics. (D) An ROI-wise analysis reproduces the brain’s visual
hierarchy across all subjects, with performance improving from early (V1-V3) to higher-order ven-
tral areas. (E) Surface contribution maps confirm that decoding activity is concentrated in the visual
cortex, with semantic decoding extending further into the ventral stream than perception decoding.

demonstrates a progressive disentanglement of information: subject-specific signals are suppressed
from task-general tokens ([CLS]) with network depth, while being intentionally carried by the ded-
icated [global] tokens (See Appendix §D for detailed discussion). Furthermore, feature attribu-
tions (Figure 6B) confirm that the router systematically relies on a complementary set of anatomical
cues, a finding that is consistent across all subjects (see Appendix Figure 11 for individual results).
This rules out identity memorization or single-feature shortcuts.

The representations learned via this anatomy-aware mechanism are neuroscientifically plausible.
An ROI-wise performance analysis (Figure 6D) reproduces the known visual hierarchy across all
subjects, with decoding accuracy improving from early visual areas (V1-V3) toward the ventral
stream. Furthermore, contribution maps (Figure 6E) confirm that the model’s decoding activity
is correctly concentrated in the visual cortex. Crucially, we also validate our foundational design
choice. The superiority of our task-focused, topology-preserving tokenizer over generic atlases
(Figure 6C) provides direct evidence that an appropriate geometric basis is critical for effective
alignment (see Appendix Figure 12 for full results across all metrics). Together, these findings
provide a mechanistic explanation for our model’s empirical success: a stable geometric basis from
SRST combined with anatomy-aware computation from SG-MoE directly enables the rapid new-
subject adaptation and robust scalability demonstrated in our results.

5 DISCUSSION AND CONCLUSION

We demonstrate that the perceived trade-off between performance and biological fidelity in neural
decoding is an artifact of inefficient tokenization and a failure to model anatomical variance. Our
Selective ROI Spherical Tokenizer (SRST) enables efficient, stable training on cortical surfaces,
while our Structure-Guided MoE (SG-MoE) provides a principled approach to cross-subject gener-
alization by conditioning on anatomy. Together, these innovations achieve performance comparable
to strong 1D baselines while delivering superior scalability, evidenced by robust performance as
the training cohort grows and rapid adaptation to new subjects. We propose this combination of
geometry-aware tokenization and anatomy-conditioned computation as a robust recipe for the next
generation of neuro-AI models.

We explicitly clarify our scope: while restricting computation to visual ROIs maximizes effi-
ciency for vision-only datasets like NSD, full-cortex modeling remains preferable for multimodal
paradigms engaging distributed networks. We further acknowledge dependencies on upstream reg-
istration quality and the need for broader validation. Ethically, we rely exclusively on consented
data and advocate for strong safeguards as this technology matures.
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ETHICS STATEMENT

This work involves human participants, which may potentially give rise to ethical considerations.
All data employed in this study are derived from the NSD dataset (Allen et al., 2022). The dataset
authors have provided ethical statements, noting that all participants gave informed consent for the
use of their physiological data in scientific research. In addition, we open-source NeurIPS and
require that all users refrain from employing it for unethical or illegal purposes.

REPRODUCIBILITY STATEMENT

We provide detailed technical information in the Appendix §E to facilitate the reproduction of this
work. In addition, we will open-source all code, model weights, and preprocessed data related to
this work after the paper is accepted.
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A LLMS USAGE

In the preparation of this manuscript, we employed Large Language Models to support our research
process. Our primary tools were OpenAI’s GPT-4o and Gemini 2.5 Pro. The use of LLMs was
limited to assisting with code debugging, generating plotting scripts for statistical figures, and im-
proving the language and clarity of the text. All outputs were carefully reviewed and edited by the
authors, who are fully responsible for all content herein.

B AN INFORMATION-THEORETIC AND ANATOMICAL VIEW OF NEURIPS

The relationship between artificial intelligence (AI) and neuroscience has become a highly produc-
tive area of research. The “black-box” nature of both deep neural networks and the human brain has
motivated using AI frameworks to model and interpret neurological processes (Kriegeskorte, 2015).
Such efforts include capturing spatial encoding in the hippocampus (Whittington et al., 2021; Kim
et al., 2023; Ellwood, 2024), replicating semantic representations (Huth et al., 2016; Millet et al.,
2022; Caucheteux et al., 2023; Antonello & Huth, 2024), and reproducing visual representations in
the cortex (Wen et al., 2018; Ozcelik & VanRullen, 2023; Benchetrit et al., 2023; Tang et al., 2023).
Here, we provide a theoretical framework to explain why our proposed architecture, NeurIPS, is
inherently better suited for this task. We argue that the benefits of our two main contributions: the
Selective ROI Spherical Tokenizer (SRST) and the Structure-Guided Mixture of Experts (SG-MoE),
can be rigorously understood through the lens of information theory and neuroanatomy.

B.1 A CONDITIONAL INFORMATION BOTTLENECK FRAMEWORK FOR DECODING

Let Xs denote the ROI-restricted fMRI signals on the cortical surface of subject s (registered to a
common spherical chart), As be the corresponding anatomical fields (e.g., cortical thickness, area,
sulcal depth, and curvature), and Y be the target representation we aim to align with (e.g., SD-
VAE latents or CLIP embeddings (Kingma et al., 2013; Radford et al., 2021)). A decoder is a
transformation T that maps the brain data to a compressed representation Z = T (Xs, As).

The goal of cross-subject decoding can be formalized as a Conditional Information Bottleneck
(C-IB) problem. We seek a representation Z that is maximally informative about the target Y
while being minimally informative about the subject’s identity (ID), all conditioned on the known
anatomical features As. This can be expressed as:

max
T

I(Z;Y | As) − β I(Z;ID | As)

Here, I(Z;Y | As) is the task-relevant information we want to preserve, while I(Z;ID | As) is the
subject-specific ”nuisance” information we want to suppress. The hyperparameter β controls this
trade-off.

B.2 WHY SURFACE REPRESENTATIONS ARE INFORMATIONALLY SUPERIOR TO 1D
FLATTENING

The superiority of surface-based methods stems from how they handle the inherent geometry of the
cortex.

The Information Cost of Flattening. According to the Data-Processing Inequality (DPI), any
preprocessing step Xs → X̃s cannot increase information, i.e., I(X̃s;Y ) ≤ I(Xs;Y ). Flattening
fMRI data into a 1D vector is a destructive form of preprocessing that discards explicit geodesic
neighborhoods and sulcal topology. This overlooks the meaningful spatial auto-correlation of signals
across the cortex (Margulies et al., 2016; Bijsterbosch et al., 2018; Kong et al., 2019; Shinn et al.,
2023; Leech et al., 2023) and forces the network to implicitly relearn these fundamental spatial
relationships from the data.

SRST as an Efficient Information-Preserving Transformation. In contrast, our SRST is designed
to be a more efficient information processor. This is motivated by evidence that the spatial connec-
tivity features of the cortex are key to its function (Smith et al., 2013; Glasser et al., 2016a; Vidaurre
et al., 2017; Pervaiz et al., 2022), making surface modeling a more accurate representation that
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has long been employed in cortical analysis (Glasser et al., 2016b; Margulies et al., 2016; Gordon
et al., 2017a;b). By restricting computation to task-relevant visual ROIs, SRST removes a significant
source of noise (non-visual brain signals), thereby improving information efficiency. Crucially, by
using spherical convolutions, it explicitly preserves the local surface neighborhoods, retaining the
geometric information that 1D flattening discards.

B.3 WHY ANATOMY-CONDITIONING (SG-MOE) IS SUPERIOR TO ID-CONDITIONING

The core of cross-subject generalization lies in how a model handles inter-subject variability.

ID-Conditioning as Memorization. Prior MoE models that condition on a subject’s ID (Quan
et al., 2024) essentially learn a mixture of subject-specific experts. This encourages the model to
memorize “who” a subject is, which directly increases the nuisance information term I(Z;ID).

Anatomy-Conditioning as Principled Generalization. Our SG-MoE instead conditions the ex-
pert routing on anatomical features As. This leverages the well-established empirical link be-
tween cortical morphology and function (e.g., retinotopic organization follows sulcal patterns (En-
gel et al., 1997; Natu et al., 2021)). By doing so, SG-MoE approximates the conditional distribution
p(Y | Xs, As) rather than just p(Y | Xs). This allows the model to ”explain away” the portion
of variance in Xs that is attributable to anatomy As. This directly reduces the remaining subject-
specific information, lowering I(Z;ID | As) and leading to a more generalizable representation.
The expert selection for a token X

(i)
s with corresponding anatomy A

(i)
s can be modeled as:

Z(i) =

K∑
k=1

πk(X
(i)
s , A(i)

s ) · Expertk(X
(i)
s )

where the gating weights πk depend exclusively on the anatomical structure A
(i)
s , ensuring that

routing decisions generalize across subjects with similar local geometry.

B.4 EMPIRICAL CONFIRMATION OF THEORETICAL PREDICTIONS

Our theoretical framework leads to several testable predictions, all of which are confirmed by our
experiments in the main paper.

1. Prediction (Efficiency): SRST’s ROI restriction should reduce computational load with-
out sacrificing performance. Confirmation: This is validated in §4.5. Our ablation (Ta-
ble 2, #6) shows that a full-cortex tokenizer consumes significantly more memory (74GB
vs 61GB) while achieving lower accuracy than our visual-ROI SRST.

2. Prediction (Fast Personalization): A model that learns generalizable structure-function
rules should adapt to a new subject’s anatomy much faster. Confirmation: This is shown
in §4.4, where NeurIPS achieves high-fidelity results with just 20% of a new subject’s data
in a few epochs.

3. Prediction (Scaling Robustness): A model that explains away anatomical variance should
be more stable when the diversity of the training cohort increases. Confirmation: This is
demonstrated in §4.4, where NeurIPS exhibits the smallest performance degradation when
scaling from 4 to 8 training subjects.

4. Prediction (Anatomy Usage): The SG-MoE router should genuinely use anatomical in-
formation, and removing this information should harm performance. Confirmation: This
is proven by multiple ablations (Table 2): replacing anatomy with subject ID (#2) or func-
tional statistics (#7) both degrade performance. Furthermore, feature attribution analysis
(Fig. 6) confirms systematic reliance on sulcal depth and curvature.

C HOW NEURIPS DIFFERS FROM PRIOR SURFACE MODELS

NeurIPS integrates several key architectural innovations that distinguish it from prior surface-based
decoders, moving from static, full-hemisphere processing to a learnable, anatomy-aware, and ROI-
restricted framework. We summarize the differences in spherical operations in Table 3.
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Figure 7: Comparison with other surface-based fMRI decoders. This figure contrasts prior
methods with our proposed NeurIPS framework. Early approaches like Gu et al. (2023) used a
shallow spherical convolutional stack on the full hemisphere. Subsequent work incorporated deep
transformers but with key limitations: SIM (Dahan et al., 2025) selected surface patches with a fixed,
non-learnable heuristic, while Yu et al. (2025) used frozen, pretrained tokenizers. These models
either ignored anatomical structure or used it only as a static input feature. NeurIPS introduces
two key advances: (1) its Selective ROI Sphere Tokenizers (SRST) are fully learnable and restrict
computation to relevant visual areas, and (2) its Structure-Guided MoE (SG-MoE) uses cortical
anatomy to dynamically route information. This end-to-end, anatomy-aware design makes surface-
based decoding computationally efficient and robust to cross-subject differences.

Table 3: Comparison of spherical operations across surface-based fMRI decoders.
Method Spherical Operation Kernel/Projection Spatial Selection Training Status
Yu et al. (2025) SphericalUNet-style (Zhao et al., 2019) Learned Full Hemisphere Pretrained & Frozen
SIM (Dahan et al., 2025) Icosahedral Patches Learned Linear Proj. Fixed Grid (Unlearnable) Learned End-to-End
NeurIPS (Ours) SphericalUNet-style (Zhao et al., 2019) Learned Visual ROI (Task-Aligned) Learned End-to-End

C.1 TOKENIZATION: FROM BRUTE-FORCE TO SELECTIVE AND LEARNABLE

A major bottleneck in prior work has been inefficient tokenization. While prior surface decoders
utilize learned operations, they are often constrained by fixed grids or frozen weights.

Learnable vs. Fixed Spherical Operations. It is important to clarify the distinction between
learned kernels and fixed heuristics in prior work:

• Yu et al. (Yu et al., 2025) employ a ResNet-style spherical downsampling architecture
with SphericalNet-style (Zhao et al., 2019) convolutions. While their convolutional kernels
are indeed result of optimization (learned) rather than hand-crafted filters, these layers are
typically pretrained and subsequently frozen during the fMRI-to-image training phase.

• SIM (Dahan et al., 2025) uses a regular icosahedral tessellation to define a grid of surface
patches. While it applies a learned linear projection within each patch, the patch selection
itself is based on a fixed grid. We describe this as “unlearnable” because the grid locations
are predefined and not adapted to the task; the patch encoder is trainable, but the spatial
selection is not.

The NeurIPS Approach. In contrast, NeurIPS solves the issues of frozen representations and
excessive token counts. SRST uses SphericalUNet-style (Zhao et al., 2019) convolutions following
Yu et al. (2025) but learns all kernels end-to-end from scratch on the NSD dataset. Furthermore,
rather than processing the entire hemisphere (which incurs an O(T 2) complexity burden) (Yu et al.,
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Figure 8: Efficiency of Selective ROI Spherical Convolution. We contrast standard CNNs (A)
and Spherical Convolutions (D) with our proposed selective approach. While selective masking is
difficult in natural images due to shifting foregrounds (C), it is highly effective in brain decoding
where the visual cortex is anatomically consistent. By applying spherical convolutions exclusively
to the visual ROI (E), our SRST achieves an 88.42% reduction in computational cost compared to
processing the full cortical mesh, focusing the model capacity solely on task-relevant features.

2025) or using a fixed grid (Dahan et al., 2025), SRST restricts computation to functionally defined
visual ROIs. This makes the tokenization process both fully learnable and computationally efficient.

C.2 USE OF ANATOMY: FROM STATIC FEATURE TO DYNAMIC ROUTING

Previous models have either ignored cortical anatomy or included it as just another static feature
concatenated with brain activity. This fails to capture how anatomical differences shape functional
responses. Our Structure-Guided MoE (SG-MoE) represents a paradigm shift, using an individ-
ual’s anatomical features (e.g., sulcal depth, cortical thickness) to dynamically route information
through different expert pathways. This allows the model to learn a generalizable structure-to-
function mapping, rather than simply memorizing subject-specific patterns.

Table 4: Quantitative results for each subject on NSD test (4 subjects training).

Subject Method
Low-Level High-Level

PixCor ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
subj01 Yu et al. (2025) 0.172 0.314 78.6% 88.7% 84.8% 88.9% 0.736 0.396
subj01 SIM (Dahan et al., 2025) 0.125 0.262 82.0% 91.0% 88.2% 89.7% 0.728 0.447
subj01 NeurIPS (Ours) 0.271 0.375 91.8% 95.8% 93.0% 93.8% 0.656 0.398

subj02 Yu et al. (2025) 0.167 0.302 77.7% 89.0% 85.9% 88.2% 0.733 0.394
subj02 SIM (Dahan et al., 2025) 0.121 0.262 81.7% 90.9% 86.9% 88.7% 0.735 0.449
subj02 NeurIPS (Ours) 0.256 0.373 91.0% 94.9% 91.7% 92.2% 0.672 0.407

subj05 Yu et al. (2025) 0.163 0.305 78.6% 90.1% 86.4% 89.6% 0.717 0.393
subj05 SIM (Dahan et al., 2025) 0.119 0.262 81.9% 91.0% 88.6% 90.8% 0.720 0.437
subj05 NeurIPS (Ours) 0.239 0.368 90.6% 95.6% 93.9% 94.1% 0.645 0.395

subj07 Yu et al. (2025) 0.157 0.298 78.0% 88.3% 83.2% 86.7% 0.746 0.409
subj07 SIM (Dahan et al., 2025) 0.113 0.255 79.3% 88.8% 85.0% 88.4% 0.749 0.461
subj07 NeurIPS (Ours) 0.226 0.364 89.3% 94.4% 90.6% 92.6% 0.679 0.415
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Figure 9: Schematic diagrams of visual ROIs for three different parcellations.

Table 5: Quantitative results for each subject on NSD test (8 subjects training).

Subject Method
Low-Level High-Level

PixCor ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
subj01 Yu et al. (2025) 0.094 0.257 74.0% 83.5% 80.2% 83.0% 0.834 0.519
subj01 SIM (Dahan et al., 2025) 0.123 0.264 81.3% 90.0% 85.0% 87.9% 0.761 0.467
subj01 NeurIPS (Ours) 0.255 0.371 91.4% 95.4% 91.7% 93.3% 0.667 0.402

subj02 Yu et al. (2025) 0.095 0.261 75.6% 86.5% 80.8% 84.0% 0.836 0.518
subj02 SIM (Dahan et al., 2025) 0.109 0.258 79.2% 88.8% 83.8% 86.8% 0.771 0.472
subj02 NeurIPS (Ours) 0.242 0.370 90.0% 94.3% 90.5% 91.3% 0.686 0.417

subj03 Yu et al. (2025) 0.083 0.257 71.1% 80.2% 74.9% 77.7% 0.882 0.555
subj03 SIM (Dahan et al., 2025) 0.092 0.259 74.5% 81.7% 74.7% 77.3% 0.852 0.535
subj03 NeurIPS (Ours) 0.204 0.362 84.2% 90.1% 83.7% 86.4% 0.769 0.477

subj04 Yu et al. (2025) 0.072 0.256 71.8% 80.5% 75.6% 76.0% 0.856 0.548
subj04 SIM (Dahan et al., 2025) 0.080 0.256 72.8% 80.5% 76.1% 79.3% 0.841 0.533
subj04 NeurIPS (Ours) 0.200 0.360 84.2% 90.1% 83.7% 86.4% 0.769 0.477

subj05 Yu et al. (2025) 0.095 0.257 76.6% 88.7% 85.0% 87.7% 0.792 0.486
subj05 SIM (Dahan et al., 2025) 0.115 0.262 80.4% 89.5% 86.5% 88.7% 0.744 0.456
subj05 NeurIPS (Ours) 0.228 0.366 89.4% 95.6% 93.6% 94.1% 0.650 0.396

subj06 Yu et al. (2025) 0.082 0.254 71.6% 86.5% 78.3% 75.9% 0.857 0.545
subj06 SIM (Dahan et al., 2025) 0.089 0.250 72.6% 81.0% 76.1% 79.0% 0.843 0.533
subj06 NeurIPS (Ours) 0.201 0.360 84.5% 89.4% 84.6% 86.4% 0.763 0.473

subj07 Yu et al. (2025) 0.095 0.261 75.6% 86.5% 80.8% 84.0% 0.836 0.518
subj07 SIM (Dahan et al., 2025) 0.105 0.251 77.5% 87.1% 82.3% 86.1% 0.776 0.481
subj07 NeurIPS (Ours) 0.216 0.363 88.3% 93.7% 90.0% 91.7% 0.688 0.419

subj08 Yu et al. (2025) 0.070 0.255 70.0% 77.1% 68.4% 71.6% 0.886 0.551
subj08 SIM (Dahan et al., 2025) 0.074 0.247 70.6% 76.6% 69.1% 73.2% 0.887 0.571
subj08 NeurIPS (Ours) 0.194 0.361 81.5% 86.8% 78.4% 82.2% 0.814 0.504

C.3 SYNTHESIS: AN END-TO-END, ANATOMY-AWARE SYSTEM

In summary, NeurIPS is the first surface-based decoder to combine end-to-end learnable, ROI-
restricted tokenization with dynamic, anatomy-conditioned routing in a deep transformer. This prin-
cipled design directly addresses the core challenges of computational efficiency and cross-subject
heterogeneity, making surface-based decoding practically scalable and competitive with top-tier 1D
pipelines.

D AN ANALYSIS OF MOE: WHAT DETERMINES EXPERTS ROUTING?

Our analysis of the model reveals that two main factors influence experts routing: the brain region
(i.e., the model selects experts based on which brain region the current token belongs to) and the
subject (i.e., the model selects experts based on which subject the current token corresponds to). In
order to examine the dependence of experts routing on various factors, we compute the activated
experts count of the i-th token at the d-th layer of the Transformer for every subject and every
NSD test sample (∀i,∀d). The results are represented as a vector of length N , with each element
indicating the activation count for the corresponding expert. Here, N denotes the total number of
experts (as defined in §3.4). We ultimately obtain an array count ∈ N4×depth×T×N to record the
expert activation for each token in the Transformer for the 4 subjects.

Experts Routing Dependence on Brain Region. To study the degree of experts selection depen-
dence on brain regions, we compute the variance of the statistical results at the token level (ignoring
[CLS] and [global] tokens). Positions with higher variance indicate greater differences in ex-
perts activation across tokens, suggesting a higher dependency of experts selection on the brain
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region at those positions. As shown on the Figure 6A, the dependence on brain regions is higher
in the shallower layers (closer to the input). As the model progressively extracts and integrates
embeddings, the reliance on brain regions decreases in the deeper layers (closer to the output).

Experts Routing Dependence on Subject. Similarly, we compute the variance of the statistical
results across the 4 subjects to measure the extent to which expert routing is influenced by different
subjects, as shown on the Figure 6A. (1) For the [CLS] tokens, we find that experts selection
exhibits slight dependence on the subject in the shallower layers, but almost no subject dependence
in the deeper layers. This is because the [CLS] tokens in the final layer directly aligns with the CLIP
embeddings, which is a subject-independent target. (2) For the [global] tokens, we observe a
significant subject dependence in its experts routing overall, as the [global] tokens aggregates the
complete brain information from fMRI. Moreover, the subject dependence of the [global] tokens
increases layer by layer, whereas the subject dependence of regular tokens decreases across layers.
This indicates that the [global] tokens serves to capture subject-specific information. In the
cross-subject brain decoding task, as the model deepens, the subject specificity of the [CLS] tokens
and regular tokens is gradually eliminated to better generalize across subjects, while subject-specific
information is transferred to the [global] tokens via the attention mechanism. This observation
supports the rationale of our model design, demonstrating its effectiveness.

E IMPLEMENTATION DETAILS

Model Frameworks. For perception decoding (§3.5), we fully adopt the MindEye (Scotti et al.,
2023) approach, using our ROI-masked fMRI (i.e., voxels within the visual brain region) as a 1D
vector input to the network. For semantic decoding (§3.4), we employ the frozen pretrained CLIP
model, specifically OpenAI’s ViT-L/14. In the SRST (§3.4), the functional module gradually
downsamples the fMRI from the fsaverage6 space to the fsaverage3 space with the resolution at
each layer being [64, 128, 256, 512], while the structural module downsamples the spherical brain
structure from the fsaverage6 space to the fsaverage1 space with the resolution at each layer being
[16, 32, 64, 128, 256, 512]. In the SG-MoE (§3.4), the implementation of the MoE module is based
on DeepSeek-V3 (Liu et al., 2024; Guo et al., 2025). Our model consists of N = 16 routed experts
and 2 shared experts, with the number of activated experts set to 6 and the intermediate dimension
set to 512. The Transformer has an embedding dimension of 768, a depth of 12 layers, and 12
attention heads. Dropout is applied in the sphere tokenizer with a probability of 0.3 and in the
attention mechanism with a probability of 0.5.

Training Strategy. For perception decoding (§3.5), we train with a total batch size of 64 (in the
4-subject training case, 16 samples per subject per iteration). The model is trained for a total of 100
epochs. For semantic decoding (§3.4), the total batch size is 96 (with a batch size of 24 per subject
in the 4-subject training case). The model is trained for a total of 600 epochs. For both perception
and semantic decoding, the learning rate is set to 10−4, weight decay is 0.01, and the maximum
gradient norm is 0.1. The same settings are used for fine-tuning. All experiments are conducted on
an 80GB Nvidia A800 GPU.

Inference Strategy. We employ Versatile Diffusion (VD) (Xu et al., 2023) for image reconstruction.
Let the prediction of perception decoding (§3.6) be zfMRI. We mix it with Gaussian noise ε ∼
N (0,1) at intensity t to obtain the initial noise z for diffusion: z = t · zfMRI + (1 − t) · ε. We set
t = 0.1. The number of inference steps is set to 50, the text-image mixup ratio in VD is 0.5, and the
classifier-free guidance scale is set to 7.5.

ROI Parcellation. We use a total of 3 ROI parcellations: NSD-General (Allen et al., 2022), HCP-
MMP1.0 (Glasser et al., 2016a), and Yeo17 (Yeo et al., 2015). An analysis of the influence of dif-
ferent parcellations on brain decoding performance is provided in §4.6 and Figure 6. NSD-General
is the visual brain region ROI provided by the official NSD dataset (Allen et al., 2022), consisting
of 9,488 visual voxels (4,613 for left, 4,875 for right). NSD-General is used by default for all other
experiments. For HCP-MMP1.0 (Glasser et al., 2016a), we select the following brain regions as
visual ROIs, resulting in a final ROI containing 10,192 voxels (5,147 for left, 5,045 for right).

V1,V2,V3,V3A,V3B,V3CD,V4,V4t,V6,V6A,V7,V8,
IPS1,FFC,PIT,VMV1,VMV2,VMV3,VVC,FST,LO1,LO2,LO3,MST,MT,PH
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subj01: cars are driving down a street in a city with tall buildings
subj02: there are many cars driving down the street in this town
subj05: there are many buses that are driving down the street
subj07: cars driving down a street in a city with tall buildings
subj01: skier in black jacket sliding down a snowy slope on a cloudy day
subj02: skier in black jacket skiing down a steep slope with trees in the background
subj05: skier in black jacket skiing down a snowy slope with trees in background
subj07: skier in black and green gear skiing down a snowy slope
subj01: there are a lot of ripe bananas in a bowl on the table
subj02: there is a bowl of fruit that is sitting on a table
subj05: there is a bowl of fruit that is sitting on a counter
subj07: there is a bowl of green peas and carrots on a table
subj01: several people sitting at a table with plates of food and drinks
subj02: several women sitting at a table with plates of food and drinks
subj05: people sitting at a table with plates of food and drinks
subj07: several people sitting at a long table eating food and drinking

subj01: baseball player swinging a bat at a ball on a field
subj02: arafed baseball player in a red and white uniform swinging a bat
subj05: arafed baseball player swinging a bat at a ball during a game
subj07: there is a baseball player that is swinging a bat on the field
subj01: there are two giraffes that are standing in the grass
subj02: there are many giraffes and zebras standing in the wild
subj05: there are four giraffes walking in a line in the wild
subj07: there is a giraffe standing in the middle of a field
subj01: there is a computer and a laptop on a desk in a room
subj02: there is a computer desk with a monitor and keyboard on it
subj05: there is a computer on a desk with a keyboard and monitor
subj07: there is a computer monitor and keyboard on a desk
subj01: there is a bathroom with a sink, tub, and shower
subj02: there is a bathroom with a sink, mirror, and bathtub
subj05: there is a bathroom with a sink, toilet, and shower
subj07: there is a bathroom with a toilet, sink, and mirror

Stimuli StimuliBrain Caption (Ours) Brain Caption (Ours)

Figure 10: Qualitative examples of brain captioning. Our model accurately describes visual stimuli
for different subjects, validating its generalization ability in the brain captioning task.

For Yeo17 (Yeo et al., 2015), we chose Visual A and Visual B as visual ROIs, yielding a final
ROI consisting of 9,128 voxels (4,549 for left, 4,579 for right). In Figure 9, we present the visual
brain regions corresponding to the three different parcellations.

Brain Heatmaps and Importance Analysis. Figure 6 presents an analysis of the contribution and
importance of the input data, conducted using Grad-CAM (Selvaraju et al., 2017).

F MORE RESULTS

Brain Captioning. Although not our primary objective, we follow UMBRAE (Xia et al., 2025)
and conducted brain captioning experiments. Quantitative comparisons with sphere-based baselines
are reported in Table 6, while qualitative examples of brain captioning are shown in Figure 10,
demonstrating both the effectiveness of our model and its adaptability to different tasks.

Brain Retrieval. We follow MindEye’s (Scotti et al., 2023) pipeline for the brain retrieval task, with
quantitative results reported in Table 7. The results of the retrieval task corroborate and support our
claims alongside the outcomes of the image reconstruction task.

Comparison to Previous Work. We provide a detailed quantitative comparison against state-of-
the-art baselines in Table 1. Since the original SIM paper (Dahan et al., 2025) did not conduct
training on the NSD dataset (Allen et al., 2022), we rigorously reproduced their method using the
official open-source code. We trained it on NSD from scratch and report the corresponding metrics.
To ensure a strictly fair comparison, we aligned all other components—including loss functions,
training strategies, and the inference pipeline—to be identical to our NeurIPS framework. Further-
more, noting that the original SIM employed a relatively small Transformer backbone, we scaled up
its hyperparameters (width and depth) to match our model capacity. We observed that this scaled
version performed better than the original configuration, so we report this stronger ”Improved SIM”
variant in our tables to provide a competitive baseline. Similarly, since the code for Yu et al. (2025)
is not open-source, we meticulously reproduced their work based on the architectural details and

Table 6: Brain captioning results for each subject on NSD test (4 subjects training). Our model
surpasses the baselines, highlighting the applicability of our method across various tasks.

Subject Method BLEU1 ↑ BLEU2 ↑ BLEU3 ↑ BLEU4 ↑ METEOR ↑ ROUGE ↑ CIDEr ↑ SPICE ↑ CLIP-S ↑ RefCLIP-S ↑
subj01 Yu et al. (2025) 49.66 31.58 19.57 12.23 16.34 36.02 40.07 9.83 59.35 65.67
subj01 SIM (Dahan et al., 2025) 50.08 31.78 20.06 12.66 16.66 36.83 41.01 9.85 60.71 67.26
subj01 NeurIPS (Ours) 54.57 36.13 23.97 15.89 18.94 39.83 55.40 11.87 64.67 71.00

subj02 Yu et al. (2025) 49.37 30.92 19.22 12.17 15.99 36.07 39.48 9.38 59.08 65.59
subj02 SIM (Dahan et al., 2025) 49.55 31.05 19.48 12.50 16.46 36.33 40.08 9.86 60.27 66.85
subj02 NeurIPS (Ours) 52.58 34.31 22.24 14.48 18.05 38.53 50.53 11.47 63.19 69.47

subj05 Yu et al. (2025) 49.70 31.60 19.97 12.82 16.77 36.61 42.63 10.83 60.17 66.49
subj05 SIM (Dahan et al., 2025) 50.92 32.70 20.91 13.61 17.10 37.45 44.34 10.26 61.32 67.92
subj05 NeurIPS (Ours) 55.36 36.66 23.94 15.73 19.59 40.41 57.91 13.05 65.85 72.05

subj07 Yu et al. (2025) 48.61 30.09 18.43 11.47 15.97 35.87 37.38 9.33 58.05 64.45
subj07 SIM (Dahan et al., 2025) 49.77 31.43 19.68 12.33 16.30 36.21 39.15 9.39 59.67 66.48
subj07 NeurIPS (Ours) 53.36 35.11 22.88 15.11 18.36 39.40 51.06 11.82 63.25 69.72

Average Yu et al. (2025) 49.33 31.05 19.30 12.17 16.27 36.14 39.89 9.84 59.16 65.55
Average SIM (Dahan et al., 2025) 50.08 31.74 20.03 12.77 16.63 36.70 41.14 9.84 60.49 67.13
Average NeurIPS (Ours) 53.96 35.55 23.26 15.30 18.73 39.54 53.72 12.05 64.24 70.56
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Table 7: Quantitative results for brain retrieval on the NSD test. The brain retrieval pipeline
follows MindEye (Scotti et al., 2023). For each retrieval task, top-1 accuracy (Acc@1) and top-5
accuracy (Acc@5) are reported. The 95% confidence interval (CI) is also reported (mean±CI). The
results of the retrieval task align with those of image reconstruction, demonstrating the powerful
capability of our designed semantic decoder.

# Method
Brain-to-Image (%) Brain-to-Text (%) Image-to-Brain (%) Text-to-Brain (%)
Acc@1 ↑ Acc@5 ↑ Acc@1 ↑ Acc@5 ↑ Acc@1 ↑ Acc@5 ↑ Acc@1 ↑ Acc@5 ↑

Yu et al. (2025) 68.9±2.9 89.6±2.4 49.0±2.7 71.8±2.5 61.2±2.7 85.7±2.3 57.2±3.1 79.6±2.8

SIM (Dahan et al., 2025) 82.9±2.5 93.5±1.8 66.4±2.5 78.8±2.2 80.5±2.4 92.1±1.7 73.6±2.6 88.6±2.1

1 w/o global token 82.5±1.2 96.2±0.6 69.5±1.3 87.2±1.1 74.2±1.4 91.9±1.0 70.0±1.4 88.6±1.1

2 subject ID gating 89.8±1.0 99.3±0.3 77.8±1.2 97.5±0.5 81.5±1.2 99.0±0.3 76.4±1.2 98.0±0.4

5 Yu-style structure fusion 88.2±1.0 98.1±0.5 76.6±1.3 95.4±0.6 79.5±1.2 98.6±0.4 73.3±1.2 96.7±0.5

6 full brain 83.9±1.2 97.9±0.5 63.5±1.4 86.4±1.1 78.1±1.3 96.4±0.6 74.2±1.3 94.2±0.7

7 functional features gating 88.9±1.0 99.5±0.2 77.7±1.2 97.7±0.5 81.3±1.2 98.7±0.4 76.6±1.2 98.1±0.4

8 w/o left brain tokens 84.7±1.1 96.8±0.6 73.1±1.4 91.1±0.9 77.2±1.4 94.8±0.7 72.5±1.2 92.2±0.8

9 w/o right brain tokens 85.8±1.1 96.8±0.6 73.3±1.4 91.0±0.9 76.7±1.3 94.9±0.7 72.5±1.3 91.8±0.9

10 shuffle spherical position 86.7±1.1 97.4±0.6 74.3±1.3 91.2±0.8 76.5±1.4 95.0±0.7 71.1±1.4 92.2±0.8

11 convolution receptive field = 1 88.1±1.1 97.8±0.5 74.6±1.3 92.0±0.8 78.1±1.3 95.4±0.7 72.5±1.4 92.4±0.8

12 NeurIPS (Ours) (semantic decoding only) 91.1±0.9 99.7±0.2 78.9±1.3 97.8±0.4 82.2±1.2 99.1±0.3 77.0±1.1 98.4±0.4

guidelines provided in their paper. The results in Table 1 are reported as averages across subjects
in the multi-subject setting. For a more granular view, detailed metrics for individual subjects are
provided in Table 4 for the 4-subject training case and in Table 5 for the 8-subject scalability experi-
ment. Crucially, to eliminate any confounding factors from the generative model, all reconstructions
presented in this paper—including those for MindBridge (Wang et al., 2024), SIM (Dahan et al.,
2025), Yu et al. (2025), and NeurIPS (Figure 1, Figure 4)—were generated using the exact same
Versatile Diffusion backend and identical inference hyperparameters (see Appendix E). Therefore,
the performance gaps observed in Table 1 and the visual quality differences in our figures can be
attributed solely to the quality of the fMRI encoder representations.

More Reconstruction Results. We provide additional qualitative results to demonstrate the robust-
ness of our model across diverse semantic categories. In Figure 4 of the main text, we highlighted
the superior reconstruction quality of NeurIPS compared to sphere-based baselines. Here, Figure 13
expands on this by showcasing randomly selected reconstructions for multiple subjects. NeurIPS ex-
hibits strong cross-subject consistency, faithfully reconstructing complex scenes involving animals
(e.g., zebras, bears), human activities (e.g., skiing, baseball), and indoor settings (e.g., kitchens,
bathrooms). The model captures not only the high-level semantics but also fine-grained details
such as object orientation, texture, and background elements, further validating the efficacy of our
geometry-aware tokenization.

More New Subject Adaption Fine-tuning Results. A key advantage of our anatomy-guided archi-
tecture is its ability to rapidly adapt to new individuals with minimal data. To rigorously assess this,
we conducted extensive fine-tuning experiments simulating a ”new user” scenario with limited data
and compute budgets. Figure 1 in the main text displays the impressive reconstruction results after
fine-tuning for just one epoch on 20% of the data. Figure 5 quantifies this rapid adaptation, showing
steep learning curves that quickly approach asymptotic performance. For a more comprehensive
visual analysis, Figure 14 presents a grid of reconstructions under varying constraints (y-axis: 20%-
100% data; x-axis: 1-10 epochs). We observe that even under the most stringent constraint (20%
data, 1 epoch), NeurIPS produces semantically coherent images that capture the gist of the stimulus.
As data and training time increase, the reconstructions progressively refine, recovering sharper de-
tails and more accurate textures. This confirms that our model effectively leverages the pre-learned
structure-function mapping to accelerate personalization.

More Brain Structure Importance Results. To verify that our SG-MoE router genuinely utilizes
anatomical information, we analyzed the feature attribution scores for the gating mechanism. In
Figure 6B of the main text, we presented the importance scores for Subject 1. Figure 11 extends this
analysis to all four subjects in the training cohort. Consistently across all subjects, we observe that
the router relies on a balanced combination of all four anatomical features—sulcal depth, curvature,
cortical thickness, and surface area—rather than overfitting to a single metric. This consistency
across individuals strongly supports our claim that the model has learned a generalizable, anatomy-
based rule for routing information, rather than memorizing subject-specific identities.
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subj01 subj02 subj05 subj07

Figure 11: More analysis of cortical structural feature importance for different subjects.

Figure 12: Validation of the visual ROI parcellation scheme. This figure compares the perfor-
mance of our model when using three different visual Regions of Interest (ROIs) as the basis for the
tokenizer. We evaluate our primary scheme, the functionally-defined NSD-General mask, against
two standard anatomical atlases: HCP-MMP1.0 and Yeo17. The results show that the NSD-General
parcellation consistently yields superior performance across all eight evaluation metrics. This val-
idates our design choice and indicates that a task-aligned, functionally-defined ROI basis is more
effective for image reconstruction than generic anatomical atlases.
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Stimulus Stimulussubj01 subj01subj02 subj02subj05 subj05subj07 subj07

Figure 13: More visual reconstruction results for different subjects on NSD test.
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Ground Truth

Figure 14: More visual reconstruction results for fine-tuning on NSD test. We pretrain the
NeurIPS on three subjects (subj02, subj05, subj07) and fine-tune it on a completely new sub-
ject (subj01) under limited data (y-axis) and time constraints (x-axis). Overall, NeurIPS is able
to achieve satisfactory reconstruction results under stringent constraints, demonstrating its strong
cross-subject generalization ability and adaptability to new subjects.
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