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Abstract
Consistency models, a new class of one-step gen-
erative models, have shown competitive perfor-
mance with multi-step diffusion models. The
most challenging part of consistency models is
the training process, which discretizes the contin-
uous diffusion process into K steps and trains a
one-step mapping function on these discretized
timepoints. Despite the empirical success, only
a few works focus on the discretization complex-
ity K, and their setting is far from that of em-
pirical works. More specifically, the current the-
oretical works analyze the variance preserving
(VP) diffusion process with a uniform stepsize,
while empirical works adopt a variance explod-
ing (VE) process with a decay discretization step-
size. As a result, these works suffer from large
discretization complexity and fail to explain the
empirical success of consistency models. To close
the gap between theory and application, we ana-
lyze consistency models with (1) VE process and
(2) decay stepsize and prove the state-of-the-art
discretization complexity for consistency mod-
els. This result is competitive with the results
of diffusion models and shows the potential of
consistency models. To balance the computation
and performance, previous empirical work fur-
ther proposes a 2-step consistency algorithm. In
this work, we also analyze the role of 2-step sam-
pling and show that it improves the discretization
complexity compared with one-step generation.

1. Introduction
Recently, diffusion models have shown impressive perfor-
mance in different areas such as image generation and video
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generation (Rombach et al., 2022; Esser et al., 2024; Ho
et al., 2022; Ma et al., 2024; Chen et al., 2024). The mathe-
matical mechanism of diffusion models is made up of two
processes: the forward and reverse process. The forward
process gradually injects noise into data till the marginal
distribution is close to pure noise. The reverse process is
an iterative sampling process, which sequentially removes
noise from data to generate samples. At each denoised step,
diffusion models only need to predict and remove a small
noise, making the training process more stable than Genera-
tive Adversarial Networks (GAN) (Goodfellow et al., 2014).
However, the iterative sampling process requires diffusion
models to evaluate a large neural network to predict noise
at each step, leading to a higher computational cost than
other one-step algorithms such as GAN, Variational Auto-
Encoder (Kingma and Welling, 2013), and Normalizing
Flow (Papamakarios et al., 2021).

To solve the computational issue, a series of works try to
accelerate the sampling process of diffusion models (Song
et al., 2020a; Zheng et al., 2023). One notable algorithm in
these works is Consistency Model (Song et al., 2023), which
tries to find a mapping function (a.k.a. consistency function)
to directly map any points at any time of the forward process
to the target data distribution. Consistency models have
shown state-of-the-art (SOTA) performance compared to
other one-step generative models in image generation (Song
et al., 2023; Kim et al., 2024; Lu and Song, 2024), video
generation (Wang et al., 2023) and music generation (Fei
et al., 2024). Furthermore, it is also widely used in other
areas, such as reinforcement learning (Ding and Jin, 2024)
and medical image segmentation (Zhang et al., 2024).

To obtain the consistency function, consistency models dis-
cretize the timeline into K discretization points and hope
the consistency function outputs similar results at two ad-
jacent points in the training phase. When the two adjacent
points are far away, the learned consistency function is far
away from the ground truth (Thm. 1, (Song et al., 2023)).
However, it is also necessary to avoid a large K since it
will make the training phase time-consuming. Hence, one
core of consistency models is the discretization number K
in the training phase, which is helpful in effectively training
a consistency function with great performance.
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Despite the empirical success of consistency models, no
existing works explain why consistency models achieve
comparable performance to diffusion models. Though some
impressive works analyze the discretization complexity of
consistency models (Lyu et al., 2024; Li et al., 2024a; Dou
et al., 2024), the setting is far away from the consistency
models with great performance in application:

• The forward process. Previous theoretical works
choose variance preserving forward process (VPSDE).
On the contrary, empirical consistency models adopt
the variance exploding forward process (VESDE) with
a specific noise schedule whose solution trajectory is
linear. As discussed in Karras et al. (2022) and Liu et al.
(2023a), a linear trajectory is important for a one-step
model (Details in Sec.D.1).

• The discretization scheme. The discretization scheme
of consistency models is EDM (Eq.5), which first uses
a large stepsize and gradually reduces the stepsize.
However, Lyu et al. (2024) and Dou et al. (2024) use
a uniform stepsize, and Li et al. (2024a) use a scheme
that relies heavily on VPSDE (Details in Sec. D.2).

Due to the mismatch between the theoretical and empirical
setting, the current discretization complexity results are
significantly worse than diffusion models (Table 1). Hence,
the following natural problem remains open:

Under a setting closer to empirical works, is it possible to
achieve a discretization complexity comparable to diffusion
models and explain the success of consistency models?

In this work, we answer this question by analyzing consis-
tency models with VE forward process and EDM stepsize.

Theorem 1. With mild assumptions on pre-trained score
function, consistency function, consistency models require1

K = O
(
Lf/ϵ

3+ 2
a

W2

)
discretization steps in the training phase to output a dis-
tribution which is Wasserstein-2 (W2) close to the target
distribution in the sampling phase, where Lf is Lipschitz
constant of consistency function and a is EDM parameter.

As shown in Table 1, this result is better than the previous
theoretical guarantee of consistency models, shows the bene-
fit of a suitable a, and achieves competitive results compared
to diffusion model results (Remark 4.9). The core step of
this result is to make full use of the time-dependent score
perturbation lemma instead of the previous uniform one.
More specifically, we first show that with a uniform one,
we achieve Lf/ϵ

9
W2

discretization complexity for any EDM
parameter a and does not match the empirical observation

1Here, we ignore data diameter R and dimension d for clarity.

(Karras et al., 2022). On the contrary, with a time-dependent
score perturbation lemma, we achieve SOTA complexity
Lf/ϵ

3+2/a
W2

for consistency models, where the influence of
a is highlighted (More details in Sec. 4.4).

To improve the sampling quality of consistency models,
Song et al. (2023) further provide a 2-step sampling algo-
rithm, which has been widely used in current works (Song
and Dhariwal, 2023; Lu and Song, 2024). The algorithm
first adds noise to clean samples generated by consistency
models and obtains the noised samples. Then, the algo-
rithm again maps the noised sample to the clean samples
(Eq. 6). The great performance of this method indicates that
the requirement of K can be relaxed if the 2-step sampling
method is used. Recently, Lyu et al. (2024) show that the
2-step sampling algorithm can reduce the W2 error. How-
ever, they do not obtain an improved K, which does not
match the empirical observation. In this work, we show
that with a VESDE process, the 2-step sampling algorithm
can effectively reduce K to O(Lf/ϵ

3+3/2a
W2

), which is better
than Thm 4.7 and explains the role of 2-step sampling.

In conclusion, we explain why consistency models have
competitive performance compared to diffusion models
from the theoretical perspective. More specifically,

• We close the gap between theory and application by an-
alyzing consistency models with the VESDE forward
process and EDM discretization scheme.

• Under the above setting, we achieve the SOTA dis-
cretization complexity for consistency models, which
is also competitive with the results of diffusion models.

• For the first time, we also show that the 2-step sampling
algorithm can effectively reduce the discretization com-
plexity of consistency models.

2. Related Work
Since the mathematical mechanism of consistency models is
close to diffusion models, we discuss the discretization com-
plexity of diffusion and consistency models. For diffusion
models, we summarize the results for reverse PFODE due
to the deterministic sample process of consistency models.

Before the discussion, we first discuss the log-concave as-
sumption, which is much stronger than our bounded support
assumption since it precludes the existence of multi-modal
real-world data. Furthermore, under log-concave distribu-
tion, ∇ log qT−t(·) dose not go to +∞ at the end of the
reverse process, which does not match the blow-up phe-
nomenon of score function in application (Kim et al., 2021).
As a result, Gao and Zhu (2025) ignore the influence of early
stopping parameter δ and an additional Poly(ϵW2) (Table 1).
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Model
Forward
Process Stepsize Complexity Reference

Diffusion
VESDE Uniform

1/ϵ4W2

1/(ϵ4W2
Poly(ϵW2)) (+) Gao and Zhu (2025)

VPSDE Uniform
1/ϵW2

1/(ϵW2
Poly(ϵW2

)) (+)
VPSDE

(Reverse SDE) Exponential Decay 1/ϵ4W2
Chen et al. (2023a)

Consistency VPSDE
Uniform Lf/ϵ

7
W2

Lyu et al. (2024)
Specific to VPSDE L3

f/ϵW1 Li et al. (2024a)

Uniform
L2
fL

2
score/ϵ

2
W1

L2
f/(ϵ

10
W1

) (*) Dou et al. (2024)

VESDE EDM (5), a ∈ [1,∞)
Lf/ϵ

3+ 2
a

W2
Theorem 4.7

Lf/ϵ
3+ 3

2a

W2

Corollary 4.12
(2-step Sampling)

Exponential Decay Lf/ϵ
3
W2

Corollary 4.8

Table 1: The discretization complexity for consistency and diffusion models with reverse PFODE in Wasserstein distance.
To make a thorough comparison, we also provide the SOTA discretization results for diffusion models with reverse SDE.
(+) means that we transform the log-concave distribution (discussed in Section 2) to our bounded support distribution. (*)
means that we transform the results with Lscore into the results under our setting. We present more detail in Appendix D.2.

Diffusion models with reverse PFODE. With strong as-
sumptions or additional components, a series of works
achieve polynomial complexity for reverse PFODE (Li et al.,
2023; Chen et al., 2023c; Gao and Zhu, 2025). More specif-
ically, Li et al. (2023) assume an accurate enough Jacobian
matrix, and Gao and Zhu (2025) assume the target data
distribution is log-concave. Without any strong assump-
tion, Chen et al. (2023c) introduce a predictor-corrector
algorithm, which switches between a Langevin corrector
and a PFODE predictor. Then, they prove a polynomial
discretization complexity for this algorithm.

Consistency models. Lyu et al. (2024) and Li et al. (2024a)
analyze the discretization complexity of consistency dis-
tillation and consistency training paradigm, respectively.
More recently, Dou et al. (2024) analyze the estimation er-
ror and discretization complexity of consistency distillation
and training paradigm at the same time. Though these works
deepen the understanding of consistency models, the setting
of these works is far away from consistency models in the
application and suffers from large discretization complexity
compared to SOTA results of diffusion models (Table 1).

3. Preliminaries
Since the training phase of consistency models relies heavily
on the diffusion process, we first introduce diffusion models
in Sec.3.1. After that, Sec.3.2 introduces how to train a
consistency model with a pre-trained diffusion model.

3.1. Diffusion Models

Diffusion models consist of two processes: the forward
process and the reverse process (Song et al., 2020b). The
forward process gradually converts data distribution to pure
noise. To generate samples, diffusion models reverse the
forward process and run the corresponding reverse process.

The forward process. Let q0 denote the data distribution.
The general forward process is

dXt = f(Xt, t) dt+ g(t) dBt, X0 ∼ q0 ,

where (Bt)t≥0 is a d-dimensional Brownian motion,
f(Xt, t) is a drift coefficient, and g(t) is a diffusion co-
efficient. Let qt be the density function of Xt at time t
and {βt}t∈[0,T ] be a non-negative non-decreasing sequence.
When f(Xt, t) = −βtXt and g(t) =

√
2βt, the general

forward process is instantiated as a widely used variance
preserving forward process (VPSDE) (Ho et al., 2020). We
note that though VPSDE plays an important role in develop-
ing diffusion models, the solution trajectory of VPSDE is
curved instead of linear, which prevents it from becoming
the basis of one-step generation models.

To obtain one-step generation models, consistency models
choose variance exploding (VESDE) forward process in the
training phase (Song et al., 2023; Song and Dhariwal, 2023),
which has a linear solution trajectory under a specific noise
schedule. Let {σ2

t }t∈[0,T ] be a non-decreasing sequence
and g(t) =

√
dσ2

t /dt. Then, VESDE is defined by:

dXt = g(t) dBt, X0 ∼ q0 . (1)
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As shown in Karras et al. (2022), when choosing σ2
t = t2,

the solution trajectory of VESDE is linear, which indicates
it is possible to generate samples with a single Euler step
(Detail in Sec.D.1) (Song et al., 2023; Liu et al., 2023b).
Hence, consistency models adopt VESDE (σ2

t = t2) as the
forward process, and we also choose VESDE with σ2

t = t2

as the forward process to match the empirical setting.

The reverse process. Let t′ = T − t be the reverse time
and (Yt′)t′∈[0,T ] = (XT−t′)t′∈[0,T ]. To generate samples,
the model reverses the forward process (Eq. 1) and obtains
the reverse process (probability flow ODE, PFODE) 2:

dYt′ =
1

2
g(T − t′)2∇ log qT−t′ (Yt′) dt

′ , Y0 ∼ qT . (2)

Since the ground truth score function ∇ log qt(·) and qT
contain the data information, we can not directly run the
above PFODE to generate samples. For the reverse begin-
ning distribution qT , we choose N (0, T 2Id) to approximate
it due to σ2

T = T 2. For ∇ log qt(·), Vincent (2011) propose
the following score matching objective function to learn an
approximated score function sϕ(Xt, t) ,∀t ∈ [0, T ]:

min
ϕ∈Φ

∫ T

0

EX0

[
EXt|X0

∥∇ log qt (Xt|X0)− sϕ (Xt, t)∥22
]
dt .

With the approximated score function sϕ(·), diffusion mod-
els discretize the reverse process and generate samples. Let
δ = t0 ≤ t1 ≤ · · · ≤ tK = T be the discretization
points in the forward time and hk := tk − tk−1 be the
stepsize. When considering the reverse process, we de-
fine by t′k = T − tK−k and h′k = hK−k the discretiza-
tion points and stepsize in the reverse process, respectively.
Since the score function ∇ log qT−t goes to +∞ at the
end of the reverse process, we adopt the early stopping
technique by setting t0 = δ to avoid this issue, which is
widely used in the application (Song et al., 2020b; Kim
et al., 2021). Then, starting from Ȳ0 ∼ N (0, T 2Id), dif-
fusion models run the following process in each interval
t ∈ [t′k, t

′
k+1], k ∈ [0,K − 1] to generate samples:

dȲt′ =
g(T − t′)2

2
sϕ

(
Ȳt′k , T − t′k

)
dt′ , t′ ∈ [t′k, t

′
k+1] .

3.2. Consistency Models

This part introduces how to obtain a consistency function to
directly map pure noise to the target distribution by using the
above PFODE process and pre-trained score function. As a
beginning, we first introduce the learning goal of consistency
models. Let v(Y, t′) = g(T−t′)2

2 ∇ log qT−t′ (Y ) be the

2We note that there are two kinds of the reverse process: (a)
SDE and (b) PFODE (Song et al., 2020b). Since the consistency
models adopt the PFODE process in the training phase, we only
present this process for simplicity.

exact vector field with the ground truth score function. Then,
the reverse PFODE (Equation (2)) has the following form:

dYt′ = v(Yt′ , t
′)dt′ , Y0 ∼ qT .

Let fv : Rd×R+ → Rd be the associate backward mapping
of the above PFODE. Then, we know that:

fv (Yt′ , t
′) = YT−δ = Xδ ,∀t′ ∈ [0, T − δ] ,

where δ is the early stopping parameter. The above equation
is equivalent to the following conditions:

fv (Yt′ , t
′) = fv (Yt′′ , t

′′) ,∀ 0 ≤ t′′, t′ ≤ T − δ ,

fv(Y, T − δ) = Y, ∀Y ∈ Rd .
(3)

The goal of consistency models is to train a consistency func-
tion fθ to approximate fv and do one-step generation. Let
Fθ(Y, t

′) be a free-form deep neural network. To satisfy the
boundary condition (the second equation of Equation (3)),
Song et al. (2023) parameter fθ with the following form:

fθ(Y, t) =

{
Y t′ = T − δ
Fθ(Y, t

′) t′ ∈ [0, T − δ)
.

There are two paradigms for consistency models: consis-
tency distillation (CD) and consistency training (CT), where
CD requires a pre-trained score function sϕ(Y, t′) and CT
trains independently (Song et al., 2023; Lu and Song, 2024).
Since CT can not take information from a pre-trained score
function, its hyperparameters need to be carefully selected to
achieve great performance (Song and Dhariwal, 2023). On
the contrary, the CD paradigm has a stable training process
(Song et al., 2023). Hence, we analyze the CD paradigm and
discuss the current results of CT paradigm in Remark 4.10.

Consistency Distillation Paradigm. Let Ŷ ϕ
t′k+1

be the out-

put by running one step PFODE from t′k to t′k+1 with initial
distribution Yt′k and approximated score function sϕ:

Ŷ ϕ
t′k+1

= Yt′k +
(2T − t′k − t′k+1)h

′
k

4
sϕ(Yt′k , T − t′k) .

Motivated by Eq. 3, Song et al. (2023) propose the following
consistency distillation objective function:

LK
CD

(
θ,θ−;ϕ

)
:=

EX0

[
EYt′

k
|X0

∥∥∥fθ(Yt′k , t
′
k)− fθ−(Ŷ ϕ

t′k+1
, t′k+1)

∥∥∥2
2

]
, (4)

where t′k is the time discretization points in the reverse pro-
cess and k is uniformly distributed over {0, 1, ...,K − 1}.
Since Yt′k is equal to XT−t′k

, we calculate Yt′k |X0 using
the forward process X0 + (T − t′k)Z, where Z is the stan-
dard Gaussian noise. To make the training process more
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stable, (Song et al., 2023) introduce an additional parameter
θ−, which is updated using an exponential moving average
(EMA) strategy θ− = stopgrad (µθ− + (1− µ)θ), where
µ ∈ [0, 1) is the decay rate. We also note that this objec-
tive function has already been adopted by many one-step
flow-based models, like InstaFlow (Liu et al., 2023b).

Recently, Dou et al. (2024) discretize the interval [t′k, t
′
k+1]

in M smaller intervals and run multi step PFODE to obtain
Ŷ ϕ
t′k+1

. We note that though this operation makes theoretical
analysis easier, it is far away from the real-world application
and time-consuming. Since our work aims to explain the
empirical success of consistency models in application, we
exactly follow the empirical operation, which does one-step
PFODE instead of multi-step PFODE.

The stepsize of consistency model. When training the con-
sistency model, Song et al. (2023) and Song and Dhariwal
(2023) use EDM stepsize

tk = (δ + kh)aand h = (T 1/a − δ)/K , (5)

with a = 7. As discussed in Karras et al. (2022), since
VESDE has a large variance at the end of the forward pro-
cess, it is more suitable for VESDE to use a large stepsize
at the beginning of the reverse process instead of uniform
stepsize (a = 1). When a goes to +∞, the EDM stepsize
becomes a theoretically friendly exponential decay stepsize
hk = rtk, where r is a small coefficient corresponding to
accuracy parameters ϵ. We note that the exponential decay
stepsize is widely used in theoretical works (Chen et al.,
2023a; Benton et al., 2024). In this work, we simultane-
ously analyze the EDM and exponential decay steps and
achieve state-of-the-art discretization complexity.

Notation. We denote by W1 and W2 the Wasserstein dis-
tance of order one and two, respectively. Note that W1

guarantee is weaker than W2 guarantee since W1(p, q) ≤
W2(p, q). The push-forward operator ♯ is associated with
a measurable map f : M′ → N . For any measure µ over
M′, we define the push-forward measure f♯µ over N by:
f♯µ(A) = µ

(
f−1(A)

)
, for any A be measurable set in N .

A complete notation part is provided in Appendix A.

4. Discretization Complexity of Consistency
Model

The goal of consistency models is to train a consistency func-
tion fθ (Y, t

′) to directly map pure noise Y ∼ N (0, T 2Id)
and t′ = 0 to target distribution q0. Let fθ,0 be the learned
consistency function at t′ = 0 and fθ,0♯N

(
0, T 2Id

)
be

the generated distribution. In the training phase, consis-
tency models discretize the continuous time t′ ∈ [0, T − δ]
into K intervals and use the CD objective function to
learn a consistency function (Eq.4). The goal of this
work is to determine the requirement of K in the train-

ing process (called discretization complexity) to guarantee
W2(fθ,0♯N

(
0, T 2Id

)
, q0) ≤ ϵW2 . This section provides

state-of-the-art discretization complexity for one-step con-
sistency models (Sec.4.2) and shows that the multi-step
(2-step) sampling algorithm proposed by Song et al. (2023)
can further reduce the discretization complexity (Sec.4.3).

4.1. Assumptions

Before showing our results, we introduce some suitable
assumptions on data distribution, pre-trained score function,
and consistency function.
Assumption 4.1. q0 is supported on a compact set M,
where 0 ∈ M and R = sup{∥x− y∥2 : x, y ∈ M} ≥ 1.

The bounded support assumption is naturally satisfied by
the image dataset and is widely used by theoretical works
(De Bortoli, 2022; Lyu et al., 2024; Yang et al., 2024).

For the approximated score, similar to previous works, we
assume it is L2-accurate (De Bortoli, 2022; Lyu et al., 2024).
Assumption 4.2. There exists a constant ϵscore such that
for any k ∈ [K],

EXtk
∼qtk

[
∥sϕ(Xtk , tk)−∇ log qtk(Xtk)∥

2
2

]
≤ ϵ2score/σ

2
tk
.

We also assume after the one-step reverse PFODE process,
the output of the learned consistency function are still close.
Assumption 4.3. There exists a constant ϵcm such that for
any k ∈ [K] and Yt′k ∼ qt′k

E
[∥∥∥fθ(Yt′k , t

′
k)− fθ(Ŷ

ϕ
t′k+1

, t′k+1)
∥∥∥2
2

]
≤ ϵ2cm

(
t′k+1 − t′k

)2
.

The above assumption is also used by Lyu et al. (2024). We
note that this assumption has the same form with LK

CD and
can be satisfied when LK

CD is small enough.

Similar with previous theoretical analysis, we also assume
fθ(Y, t

′) is Lipschitz.
Assumption 4.4. fθ(Y, t

′) is Lf -Lipschitz for t′ ∈ [0, T −
δ] and is Lf,0-Lipschitz with Lf,0 = R/T when t′ = 0.

The first part is a standard one used by all previous theo-
retical works on consistency models (Lyu et al., 2024; Li
et al., 2024a; Dou et al., 2024). We further assume the sec-
ond part for VESDE forward process. In the following two
paragraphs, we first provide empirical evidence to support
our additional assumption (Example 4.5). Then, we discuss
why the additional assumption is necessary for consistency
models with VESDE (Remark 4.6).
Example 4.5. As a start, we first provide fv for a 1-d Gaus-
sian target distribution q0 = N (µ, σ2):

fv(Y0, 0) = µ+
Y0 − µ√
σ2 + T 2

σ ,

5
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where Y0 ∼ qT = N (µ, σ2 + T 2). It is clear that the Lips-
chitz constant Lf,0 of fv is σ/

√
σ2 + T 2 ≤ R/T at t′ = 0

3. We note that this result also holds for high-dimension
multivariate Gaussian, as shown in Li et al. (2024b).

For the highly multi-modal target distribution, the consis-
tency function for these distributions does not have a closed
form. There are two choices to overcome this hardness.
The first choice is to run experiments to simulate the so-
lution and calculate the order of Lipschitz constant. In
Appendix F, we run simulation experiments on the multi-
modal Gaussian mixture distribution (3-modal and 4-modal
GMM) and verify the Lipschitz constant Lf,0 of fv has
an order of 1/T . The second choice is to add some as-
sumptions on the multi-modal target data to simplify the
PFODE process and then show the order of the Lipschitz
constant. In this part, we use 2-modal GMM target dis-
tribution X0 ∼ 1/2N(µ, σ2Id) + 1/2N(−µ, σ2Id) as an
example to support our discussion. The score of the target
distribution has the following form (Appendix A.2 of Shah
et al. (2023))

∇ log qt(Xt) = tanh

(
µ⊤Xt

σ2
t + σ2

)
µ

σ2
t + σ2

− Xt

σ2
t + σ2

.

Since f ex(Y0, 0) the associate backward mapping of the
following PFODE (in the following part, we ignore the
superscript of t′):

dYt =
(T − t)

(T − t)2 + σ2

(
tanh

(
µ⊤Yt

(T − t)2 + σ2

)
µ− Yt

)
dt,

we need to solve it to obtain f ex(Y0, 0). To simplify the
PFODE process, we assume µ is smaller enough to guaran-
tee tanh

(
µ⊤Yt

(T−t)2+σ2

)
can be approximated by µ⊤Yt

(T−t)2+σ2 ,
which simplify PFODE to a linear ODE (in fact, the distri-
bution gradually closes to Gaussian)

dYt =

(
µ⊤µYt(T − t)

((T − t)2 + σ2)
2 − Yt(T − t)

(T − t)2 + σ2

)
dt,

which have the following solution

Yt = Y0

(√
σ2 + (T − t)2

σ2 + T 2
×

exp

(
µ2

2

(
1

σ2 + (T − t)2
− 1

σ2 + T 2

)))
.

and indicate

YT = Y0

(√
σ2

σ2 + T 2
exp

(
µ2

2

(
1

σ2
− 1

σ2 + T 2

)))
.

3Since Gaussian is log-concave, the score does not blow-up
(Details in Sec.2), and we do not use early stopping technique here.

Taking the derivative of Y0, we know that the Lf,0 have
order 1/T . The intuition of Lf,0 = O(1/T ) is that the
variance of N (0, T 2I) is much larger than data variance.
Hence, one necessary step to map pure noise to the target
distribution is to remove large variance by multiplying a
1/T , which leads to an O(1/T ) Lipschitz constant.
Remark 4.6 (The necessity of Lf,0 = R/T ). As shown in
Eq. 7, one error term is W2

(
fθ,0♯N

(
0, σ2

T Id
)
,fθ,0♯qT

)
,

which corresponds to the forward process and is bounded
by Lf,0W2(N (0, σ2

T Id), qT ). For VPSDE forward process,
as shown in Lyu et al. (2024), W2(N (0, Id), qT ) ≤ (

√
d+

R) exp (−T ) since VPSDE converges to N (0, Id) with an
exponential convergence rate. On the contrary, for VESDE,
we know that W2

(
N
(
0, T 2Id

)
, qT
)

is bounded by

Eq0

[
∥X0 + (T − T )ξ∥22

]
≤ R2 ,

where ξ ∼ N (0, Id). It is clear that this term is independent
of T . As a result, we need Lf,0 depends on T and show that
Lf,0 has order of 1/T (Example 4.5).

We also note that even with Assumption 4.4, the polynomial
T = 1/ϵW2

for VESDE is much larger than the logarithmic
T = log(1/ϵW2

) for VPSDE. However, in Remark 4.15,
we show that VESDE has better order on early stopping
δ, which offsets the influence of large T . Furthermore, as
shown in Thm.4.7, the dependence of T is T 1/a, which
indicates EDM stepsize further reduces the influence of T .

4.2. Improved Results for Consistency Models

With these assumptions, we obtain the following results
under the VESDE and EDM stepsize.

Theorem 4.7. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds
and consider the EDM stepsize (5). Then, one-step genera-
tion error W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)

is bounded by

R2

T
+
LfR

2(R+
√
d)(T/δ)

1
a

Kδ2
+ LfTϵscore + Tϵcm +

√
dδ .

Furthermore, by choosing T ≥ R2/ϵW2
, δ = ϵW2

/
√
d,

ϵcm ≤ ϵW2
/T and ϵscore ≤ ϵ2W2

/(LfR
2), the output is

ϵW2
-close to q0 with discretization complexity

K = O

LfR
2+ 2

a (R+
√
d)d1+

1
2a

ϵ
3+ 2

a

W2

 .

Song et al. (2023) choose a = 7 for the EDM scheme, which
leads to O(Lf/ϵ

23/7
W2

) result. When considering exponential
decay stepsize, we improve the results as follows.

Corollary 4.8. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds
and consider the exponential decay stepsize hk = rtk,
where r = ϵ3W2

/
(
R2 log2(T/δ)

)
. Following T, δ, ϵcm in

6
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Thm. 4.7 and choosing ϵscore ≤ ϵW2
δ/(R2 log(T/δ)), the

output is ϵW2 -close to q0 with discretization complexity

K = O
(
LfR

2d(R+
√
d) log2(T/δ)/ϵ3W2

)
.

As shown in Table 1, the above discretization complexity
O(Lf/ϵ

3
W2

) for CD paradigm significantly improves the cur-
rent results O(Lf/ϵ

7
W2

) provided by (Lyu et al., 2024) (We
discuss current results for CT paradigm in Remark 4.10.).
Furthermore, as shown in Remark 4.9, this result achieves
competitive results with diffusion models in both reverse
SDE and PFODE settings by taking full use of the time-
dependent score perturbation lemma (Sec. 4.4), which
shows the potential of consistency models.
Remark 4.9 (The Diffusion Model Results). The SOTA
results for diffusion models underW2 distance isO(1/ϵ4W2

).
Coro. 4.8 achieve O(Lf/ϵ

3
W2

) discretization and will be
better than O(1/ϵ4W2

) if Lf ≤ O(1/ϵW2
). As shown in

Thm. 4.7, the early stopping parameter δ has order ϵW2
.

Hence, we require Lf ≤ 1/δ for ∀t′ ∈ [0, T − δ], which
can be satisfied if Lf grows slower than 1/(T − t′). As
shown in Example 4.5, the Gaussian distribution satisfied
this growth rate. For multi-modal real-world distributions,
as shown in Appendix F, the growth rate is much slower
than 1/(T − t′), which also satisfies our requirement.
Remark 4.10 (The CT Paradigm Results). Li et al. (2024a)
and Dou et al. (2024) analyze the discretization complexity
of CT paradigm. As shown in Table 1, their discretization
complexity results are worse than our results. More specif-
ically, Li et al. (2024a) achieve a L3

f/ϵW1
result, which

adopt a weaker W1 guarantee and has a worse Lf depen-
dence. Dou et al. (2024) also adopt the W1 guarantee and
achieve L2

f/ϵ
10
W1

results. More importantly, their paradigm
is different from the CT paradigm in application. Li et al.
(2024a) use an iterative consistency training method, which
trains a consistency function for each k ∈ [K] and is time-
consuming. To avoid this problem, Dou et al. (2024) only
train a consistency function. However, they run multi-step
PFODE in the training phase, which does not match the
operation (only run one-step PFODE) of the empirical con-
sistency models (Song et al., 2023; Song and Dhariwal,
2023). Hence, it is an interesting future work to explain
the empirical success of CT paradigm from the theoretical
perspective in the setting used by empirical works.
Remark 4.11. Recently, some works (Lyu et al., 2024; Li
et al., 2024a; Dou et al., 2024) assume the second moment
of data distribution E[∥q0∥22] is bounded, which is slightly
weaker than Assumption 4.1. The dependence of R comes
from our time-dependent score perturbation lemma, which
is an important part of making full use of EDM stepsize (Sec.
4.4). We also note that to achieve a refined analysis, Lemma
3.13 of Lyu et al. (2024) and Lemma D.2 of Dou et al. (2024)
also assume Assumption 4.1 to obtain the Lipshcitz constant
R2/σ4

T−t′ for the score function.

4.3. 2-step Sampling Further Reduce Complexity

To achieve better performance, a multi-step sampling
method is used by consistency models (Song et al., 2023;
Lu and Song, 2024). Let T = τ1 ≥ τ2 ≥ ... ≥ τN ≥ δ
be a sequence of time points, p1 be the one-step generated
distribution fθ,0♯N

(
0, T 2Id

)
and Xτ1 ∼ p1. The n-step

sampling process has the following procedure:

Xτn = fθ(X
τn−1 + στnZ, τn) , Z ∼ N (0, I) , (6)

which first adds noise to the (n − 1)-step sampling data
using the VESDE forward process and then generates Xτn .
Let pn be law (Xτn). Recently, Lyu et al. (2024) make
an important step in understanding the multi-step sampling
mechanism in consistency models and prove that this opera-
tion can reduce the W2 error with a suitable N . However,
as shown in Corollary 3.14 of Lyu et al. (2024), both the dis-
cretization complexity of one-step and multi-step sampling
are Õ(Lf/ϵ

7
W2

). This result means the multi-step sampling
can not reduce the requirement of discretization, which does
not match the empirical observation. Hence, it motivates us
to do a more refined analysis under a realistic setting and
show the role of multi-step sampling. Since n = 2 is enough
to generate high-quality samples in application (Song et al.,
2023; Lu and Song, 2024), we analyze the 2-step sampling
and improve discretization complexity 4.

Corollary 4.12. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds
and Lf,T/2 = Θ(R/T ). Choosing EDM stepsize and τ2 =
T/2 (2-step sampling), W2 (p2, q0) is bounded by

√
dδ +R3/(τ2T ) + LfR

2(R+
√
d)(T/δ)

1
a /(Kδ2)

+ (RT/τ2 + τ2) (Lf ϵscore + ϵcm) .

By choosing T ≥ R1.5/
√
ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤

ϵW2
/T and ϵscore ≤ ϵ2W2

/(LfR
2), the output is ϵW2

-close
to q0 with discretization complexity

K = O
(
LfR

2+ 3
2a (R+

√
d)d1+

1
2a /ϵ

3+ 3
2a

W2

)
.

The error bound comes from three sources: the early stop-
ping term, the previous error W2(p1, qδ) and the discretiza-
tion error at this sampling phase. The core observation is
that the multi-step sampling can reduce the requirement of
T due to the R3/(τ2T ) term, which further improves the
discretization complexity.

We note that compared to Thm. 4.7, we further assume
Lf,T/2 = Θ(R/T ), which is also supported by our simula-
tion experiments. The intuition is that since T/2 and T have
the same order and are both large, the Lipschitz constant at
T/2 also should have the same 1/T order with T .

4Our analysis can be directly extended to multi-step sampling.
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Remark 4.13 (N -step Sampling). We note that our analy-
sis can be extended to N -step sampling algorithm and can
achieve nearly Lf/ϵ

3+1/a
W2

(which is better than Thm. 4.7
and Coro 4.12) under the EDM stepsize. We use 3-step sam-
pling algorithm as an example (τ1 = T, τ2 = 3T/4, τ3 =
T/2. Here, we still further require Lf,3T/4 = Θ(R/T )).
Under this setting, the result becomes (here we ignore
ϵscore, ϵcm, R, d and focus on the dominated term)

δ + 1/T 3 ++Lf (T/δ)
1
a /
(
Kδ2

)
.

To guarantee the above term smaller than ϵW2
, we require

δ = ϵW2
and K ≥ LfT

1/a/(δ2+1/aϵW2
), which is the

same with the one-step and two-step sampling algorithms.
However, 3-step algorithm only require T ≥ 1/ϵ

1/3
W2

, which

is better than 1/ϵW2 of 1-step and 1/ϵ
1/2
W2

of 2-step. Hence,
the discretization complexity for 3-step sampling algorithm
is Lf/ϵ

3+4/(3a)
W2

, which is better than 2-step algorithm. The
above steps can be extended to N steps, and the influence of
T decreases, and finally, T does not affect the discretization
complexity, leading to Lf/ϵ

3+1/a
W2

results.

4.4. Proof Sketch and Technique Novelty

In this section, we first provide a proof sketch for Theo-
rem 4.7 to introduce the dependence of score perturbation
lemma. Then, we highlight our technique novelty to take
advantage of the time-dependent score perturbation.

Proof Sketch. We first decompose the target error term
W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)

as:

W2

(
fθ,0♯N

(
0, T 2Id

)
,fθ,0♯qT

)
+W2 (fθ,0♯qT , qδ)

+W2 (qδ, q0) , (7)

where the first term is due to the forward process, the sec-
ond term is the discretization error, and the third term is due
to the early stopping δ. The first term is discussed in Re-
mark 4.6, and the third term is smaller than

√
dδ. This part

focuses on the discretization term W2 (fθ,0♯qT , qδ), which
is controlled by the following inequality.(

E
[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])1/2
=
(
E
[∥∥K−1∑

k=0

(fθ(Yt′k , t
′
k)− fθ(Yt′k+1

, t′k+1))
∥∥2
2

])1/2
≤

K−1∑
k=0

(
E
[
∥fθ(Ŷ

ϕ
t′k+1

, t′k+1)− fθ(Yt′k+1
, t′k+1)∥22

])1/2
+

K−1∑
k=0

(
E
[
∥fθ(Yt′k , t

′
k)− fθ(Ŷ

ϕ
t′k+1

, t′k+1)∥22
])1/2

≤
K−1∑
k=0

Lf

(
E
[
∥Ŷ ϕ

tk+1
− Yt′k+1

∥22
])1/2

+ ϵcmT , (8)

where the expectation is taken over Y0 ∼ qT and the
first equality follows the fact that fv (Y0, 0) = Xδ =
fθ (YT−δ, T − δ). After that, we aim to control the er-
ror bound of one step PFODE, which relies heavily on
EXt∼qt [∥∂t∇ log qt (Xt)∥2]:

EY0∼qT

[
∥Ŷ ϕ

tk+1
− Yt′k+1

∥22
]
≤ h′2k ϵ

2
score

+

∫ t′k+h′
k

t′k

4(T − t)2h′3k

[
∥∂t∇ log qT−t (Yt)∥22

]
dt . (9)

In the following paragraph, we focus on the second term
and discuss why a time-dependent lemma is suitable and
necessary for EDM stepsize to achieve an improved results.

Time-dependent Score Perturbation Lemma. Following
previous works, we call the following lemma score pertur-
bation lemma. However, different from previous lemma
uniformly holds for t ∈ [δ, T ] (Lyu et al., 2024; Chen et al.,
2023c), we provide the following time-dependent score per-
turbation lemma, which leads to an improved results.

Lemma 4.14. For VESDE (Eq. 1), we have that

EXt∼qt [∥∂t∇ log qt (Xt)∥2] ≤ R3/t5 +R2
√
d/t4 .

With this lemma, we can control the one step PFODE error
(Eq. 9) and then the discretization error.

Before showing the advantage of the time-dependent lemma,
we first provide the result with the uniform score perturba-
tion lemma, which has large discretization error and does
not reflect the role of EDM. By setting t = δ in Lem. 4.14,
we obtain an uniform version lemma holds for t ∈ [δ, T ]:

EXt∼qt [∥∂t∇ log qt (Xt)∥2] ≤ R2(R+
√
d)/δ5 .

Combined with Eq. 8 and Eq. 9, we know that the first term
of Eq. 8 is smaller than

LfTR
2(R+

√
d)

δ5

K−1∑
k=0

h2k .

We know that

K−1∑
k=0

h2k ≍ h

K−1∑
k=0

hkt
a−1
a

k ≍ T 1/a

K

∫ T

δ

t
a−1
a ≍ T 2

K
, (10)

where the first equality follows the fact that hk/h ≍ t
a−1
a

k

and the equality comes from h = (T 1/a − δ)/K. To make
this term smaller than ϵW2

, we require K ≥ LfT
3/(ϵW2

δ5)
5. With T and δ in Thm. 4.7, we know that K has order of
Lf/ϵ

9
W2

, which has a large dependence on ϵW2
.

5Here, we only focus on ϵW2 and ignore R and d for clarity.
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More importantly, it is clear that the result with uniform
version lemma is not influenced by EDM parameter a. How-
ever, Karras et al. (2022) have shown that a suitable a = 7
can significantly improve the generation quality, and consis-
tency models adopt this setting (Song et al., 2023). In this
part, we show that with the time-dependent score perturba-
tion lemma, the discretization error can be well control to
achieve an improved complexity. More specifically, with
Lem. 4.14, we have that

K−1∑
k=0

Lf

(
EY0∼qT

[
∥Ŷ ϕ

tk+1
− Yt′k+1

∥22
])1/2

≤
K−1∑
k=0

Lfg(T − t)2h′2k

(
R3

(T − t′k)
5 +

R2
√
d

(T − t′k)
4

)

≤ LfR
2(R+

√
d)

δ2

K−1∑
k=0

h′2k
(T − t′k)

2 .

We know that

K∑
k=1

h2k
t2k

≍ h

K∑
k=1

hk

t
a+1
a

k

≍ h

∫ T

δ

1

t
a+1
a

dt ≍ hδ−
1
a ≍ (T/δ)

1
a

K
,

which has a better dependence on T and δ compared with
Eq. 10 and achieve an improved result Lf/ϵ

3+2/a
W2

.
Remark 4.15. To make a clearer discussion on the role of
VESDE, we choose a uniform stepsize (a = 1), which is
used by Lyu et al. (2024). Under this setting, the difference
between our work and Lyu et al. (2024) is the forward
process. Lyu et al. (2024) use the VPSDE forward process
and achieve Lf/(ϵW2

δ3) result. We adopt VESDE forward
process and achieveLfT/(ϵW2

δ3) = Lf/(ϵ
2
W2
δ3) 6. Under

the uniform stepsize, our better result is due to better δ of
VESDE. More specifically, to guarantee W2(qδ, q0) ≤ ϵW2

(the third term of Eq. 7), we require δ has order of ϵW2

for VESDE and ϵ2W2
for VPSDE. Hence, Lyu et al. (2024)

achieve Lf/ϵ
7
W2

result for VPSDE and we achieve Lf/ϵ
5
W2

for VESDE (uniform stepsize setting).

5. Conclusion
In this work, we make the first step to explain why con-
sistency models perform well from a theoretical perspec-
tive. More specifically, we bridge the gap between theory
and application of consistency models by analyzing the
discretization complexity of the consistency model with
VESDE forward process and EDM discretization scheme.
Under this realistic setting with great empirical performance,
we first show the state-of-the-art discretization complexity
O
(
Lf/ϵ

3+ 2
a

W2

)
by making full use of time-dependent score

perturbation lemma. Then, we analyze the 2-step sampling

6Here, we ignore the dependence on R and d.

algorithm proposed by Song et al. (2023) and show that
this algorithm further improves discretization complexity
to O

(
Lf/ϵ

3+ 3
2a

W2

)
, which explain the widely used of multi-

step sampling algorithm in application.

In conclusion, we achieve competitive results for consis-
tency models compared with diffusion models and show the
potential of consistency models.

Future work. In this work, we directly assume the score
and consistency function are accurate enough. For the score
function, some works analyze it learning process Chen et al.
(2023b); Yuan et al. (2023). For the consistency function,
Dou et al. (2024) analyze its estimation error. However, as
discussed in Sec. 3.2, they run multi-step PFODE instead
of one-step PFODE, which is time-consuming and does
not match the empirical operation. Hence, it is interesting
to analyze the learning process of consistency models un-
der a realistic setting and achieve an end-to-end analysis.
Very recently, Lu and Song (2024) train consistency mod-
els in a continuous time and achieve a great performance.
Since the continuous time models use dfθ− (Xt,t)

dt instead
of fθ−(Xt−∆t, t − ∆t)) (∆t is hk+1 − hk in our work.
Here we use the uniform stepsize for convenience), there
are not well-defined discretization complexity K = T/∆t
for continuous-time models, however, due to the absence
of ∆t, the training process of continuous time models is
less stable than discrete time consistency models, which
is the core problem for continuous time models. Hence, it
is also an interesting future work to analyze how to make
the training process of continuous time consistency models
more stable from the theoretical perspective.

Impact Statement
Our work aims to deepen the understanding of consistency
models from the theoretical perspective. Since consistency
models are a new class of one-step generative models, the so-
cietal impact is similar to general generative models (Mirsky
and Lee, 2021).
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Appendix

A. Notation
We denote byW1 andW2 the Wasserstein distance of order one and two, respectively. Note thatW1 guarantee is weaker than
W2 guarantee since W1(p, q) ≤W2(p, q). The push-forward operator ♯ is associated with a measurable map f : M′ → N .
For any measure µ over M′, we define the push-forward measure f♯µ over N by: f♯µ(A) = µ

(
f−1(A)

)
, for any A be

measurable set in N .

Before introducing our theoretical guarantee, we first introduce the notation for the diffusion and consistency models. Let q0
be the data distribution.

Diffusion models:

• Let (Xt)t∈[0,T ] be the random variable of the forward process (Equation (1)). We define by δ = t0 ≤ t1 ≤ · · · ≤ tK =
T and hk = tk − tk−1 the discretization points and stepsize.

• Let t′ = T − t be the reverse time and (Yt′)t′∈[0,T ] = (XT−t′)t′∈[0,T ] be the random variable of reverse process
(Equation (2)). We define by t′k = T − tK−k and h′k = hK−k the discretization points and stepsize in the reverse
process.

• Let pK be the distribution generated by running the discrete PFODE process (the last equation of Section 3.1) with sϕ,
the complexity of the sample is the requirement of K to guarantee W2(pK , q0) ≤ ϵW2

.

Consistency models:

• The goal of consistency models is to learn a consistency function fθ (Y, t
′) to directly map pure noise Y ∼ N (0, T 2Id)

and t′ = 0 (the start of the reverse process) to q0.

• We denote by fθ,0♯N
(
0, T 2Id

)
the generated distribution of the above operation. Since the consistency function is

one step, the discretization complexity is the requirement of K in the training process (Equation (4)) to guarantee
W2(fθ,0♯N

(
0, T 2Id

)
, q0) ≤ ϵW2

.

B. The Analysis for Consistency Model
Theorem 4.7. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds and consider the EDM stepsize (5). Then, one-step generation
error W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)

is bounded by

R2

T
+
LfR

2(R+
√
d)(T/δ)

1
a

Kδ2
+ LfTϵscore + Tϵcm +

√
dδ .

Furthermore, by choosing T ≥ R2/ϵW2 , δ = ϵW2/
√
d, ϵcm ≤ ϵW2/T and ϵscore ≤ ϵ2W2

/(LfR
2), the output is ϵW2-close

to q0 with discretization complexity

K = O

LfR
2+ 2

a (R+
√
d)d1+

1
2a

ϵ
3+ 2

a

W2

 .

Proof. We first decompose W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
:

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≤W2

(
fθ,0♯N

(
0, T 2Id

)
,fθ,0♯qT

)
+W2 (fθ,0♯qT , qδ) +W2 (qδ, q0) ,

where the first term is the reverse beginning error due to the forward process, the second term is the discretization error due
to the discretization training, and the third term is due to the early stopping technique. We first define a joint distribution
γ ∈ Γ

(
N
(
0, T 2Id

)
, qT
)

between N
(
0, T 2Id

)
and qT and take a couple of (Ȳ0, Y0) ∼ γ, which indicates∫

Rd

γ(·, Y0)dY0 = N
(
0, T 2Id

)
∫
Rd

γ(Ȳ0, ·)dȲ0 = qT .
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Then, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, qδ
)

≤
(
Eγ

[∥∥fθ

(
Ȳ0, 0

)
− fv (Y0, 0)

∥∥2
2

])1/2
≤
(
Eγ

[∥∥fθ

(
Ȳ0, 0

)
− fθ (Y0, 0)

∥∥2
2

])1/2
+
(
Eγ

[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])1/2
≤ Lf,0

(
Eγ

[
∥Ȳ0 − Y0∥22

])1/2
+
(
Eγ

[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])1/2
≤ R

T
W2(N (0, T 2Id), qT ) +

(
Eγ

[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])1/2
=
R

T
W2(N (0, T 2Id), qT ) +

(
EY0∼qT

[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])
.

where the first inequality follow the fact fv (Y0, 0) = Xδ when Y0 ∼ qT and the last inequality follows the fact that γ can
be any coupling between N (0, T 2Id) and qT .

The reverse beginning error. We first control the reverse beginning error term. When considering the W2 guarantee, we
have that

W2(N (0, T 2Id), qT ) ≤
(
Eq0

[
∥X0 + (T − T ) ξ∥22

])1/2
≤ R .

The discretization error. In this section, we control the discretization error:(
EY0∼qT

[
∥fθ (Y0, 0)− fv (Y0, 0)∥22

])1/2
=

EY0∼qT

∥∥∥∥∥
K−1∑
k=0

(
fθ

(
Yt′k , t

′
k

)
− fθ

(
Yt′k+1

, t′k+1

))∥∥∥∥∥
2

2

1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

=

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
+ fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

+

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

:= E1 + E2 ,

where the first inequality follows the fact that f ex (Y0, 0) = Xδ = fθ (YT−δ, T − δ). For term E1, since we assume the
learned consistency model is accurate enough (Assumption 4.3), then we have that:

E1 =

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

=

K−1∑
k=0

(
EYt′

k
∼qt′

k

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤ ϵcm

K−1∑
k=0

h′k = ϵcm (T − δ) .
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For term E2, we know that

E2 =

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤
K−1∑
k=0

Lf

(
EY0∼qT

[∥∥∥Ŷ ϕ
t′k+1

− Yt′k+1

∥∥∥2
2

])1/2

=

K−1∑
k=0

Lf

(
EYt′

k
∼qt′

k

[∥∥∥Ŷ ϕ
t′k+1

− Yt′k+1

∥∥∥2
2

])1/2

≲
K−1∑
k=0

Lf

(
h′2k

(
R3

(T − t′k)
4
+

R2
√
d

(T − t′k)
3

)
+ h′kϵscore

)
,

where the last inequality comes from Lemma C.2. When considering EDM stepsize

tk = (δ + kh)a, h =
T

1
a − δ

K
,

we know that hk

h ≍ t
a−1
a

k ,

K∑
k=1

h2k
t2k

≍ h

K∑
k=1

hk

t
a+1
a

k

≍ h

∫ T

δ

1

t
a+1
a

dt ≍ hδ−
1
a ≍ (T/δ)

1
a

K
.

Then, term E2 is control by the following inequality:

E2 ≤
K∑

k=1

Lf

(
R2(R+

√
d)h2k

t2kδ
2

+ hkϵscore

)

≤ LfR
2(R+

√
d)(T/δ)

1
a

Kδ2
+ LfTϵscore

For term W2(qδ, q0), by using Lemma E.3, it is smaller than
√
dσδ =

√
dδ.

Combined with the reverse beginning, discretization and early stopping term, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R2

T
+
LfR

2(R+
√
d)(T/δ)

1
a

Kδ2
+ LfTϵscore + ϵcmT +

√
dδ .

To make the above inequality smaller than ϵW2
, we choose T ≥ R2/ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤ ϵW2

/T , and guarantee

LfR
2(R+

√
d)T

1
a

Kδ2+
1
a

≤ ϵW2
,

which indicates that K ≥ LfR
2+ 2

a (R+
√
d)d1+ 1

2a

ϵ
3+ 2

a
W2

. After determining the discretization complexity K, we can also obtain the

requirement of the approximated score function ϵscore ≤ ϵ2W2
/(LfR

2). ■

Corollary B.1. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds and consider the exponential decay stepsize hk = rtk, where
r = ϵ3W2

/
(
R2 log2(T/δ)

)
. Following T, δ, ϵcm in Thm. 4.7 and choosing ϵscore ≤ ϵW2

δ/(R2 log(T/δ)), the output is
ϵW2 -close to q0 with discretization complexity

K = O
(
LfR

2d(R+
√
d) log2(T/δ)/ϵ3W2

)
.
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Proof. For the theoretical-friendly exponential decay stepsize, we have that

E2 ≤ Lf

K= 1
r log(T/δ)∑
k=1

(
R2(R+

√
d)h2k

t2kδ
2

+ hkϵscore

)

≲
LfR

2(R+
√
d) log2(T/δ)

Kδ2
+ LfTϵscore .

Combined with the reverse beginning term and discretization term, we know that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R2

T
+
LfR

2(R+
√
d) log2(T/δ)

Kδ2
+ LfTϵscore + ϵcmT +

√
dδ .

In order to guarantee the right hand of above inequality smaller than ϵW2
, we choose T ≥ R2/ϵW2

, δ = ϵW2
/
√
d,

ϵ2cm ≤ ϵ2W2
/T 2, and guarantee

R2(R+
√
d) log2(T/δ)

Kδ2
≤ ϵW2

,

which indicates the discretizaiton complexity is K ≥ R2d(R+
√
d) log2(T/δ)

ϵ3W2

. After obtaining the requirement of K, we can

also obtain the requirement of approximated score function ϵscore ≤ ϵ2W2
/(LfR

2). ■

At the end of this part, we provide the proof of multi-step sampling.
Corollary B.2. Assume Assumption 4.1, 4.2, 4.3, 4.4 holds and Lf,T/2 = Θ(R/T ). Choosing EDM stepsize and τ2 = T/2
(2-step sampling), W2 (p2, q0) is bounded by

√
dδ +R3/(τ2T ) + LfR

2(R+
√
d)(T/δ)

1
a /(Kδ2)

+ (RT/τ2 + τ2) (Lf ϵscore + ϵcm) .

By choosing T ≥ R1.5/
√
ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤ ϵW2

/T and ϵscore ≤ ϵ2W2
/(LfR

2), the output is ϵW2
-close to q0 with

discretization complexity

K = O
(
LfR

2+ 3
2a (R+

√
d)d1+

1
2a /ϵ

3+ 3
2a

W2

)
.

Proof. Take a couple of (Y ,Z) ∼ γ(y, z) where γ ∈ Γ (pn−1, qδ), take ξ ∼ N (0, Id), then we have

Ŷ = Y + τnξ ∼ µn,

Ẑ = Z + τnξ ∼ qτn .

Similar with Corollary 10 of Lyu et al. (2024), we have that

W2 (p2, q0)

≲W2(qδ, q0) + Lf,T−τ2W2 (µn, qτ2) +
LfR

2(R+
√
d)(τ2/δ)

1
a

Kδ2
+ Lfτ2ϵscore + ϵcmτ2

≲W2(qδ, q0) + Lf,T−τ2

(
Eγ∥Ŷ − Ẑ∥22

)1/2
+
LfR

2(R+
√
d)(τ2/δ)

1
a

Kδ2
+ Lfτ2ϵscore + ϵcmτ2

≲W2(qδ, q0) + Lf,T−τ2

(
Eγ∥Y −Z∥22

)1/2
+
LfR

2(R+
√
d)(τ2/δ)

1
a

Kδ2
+ Lfτ2ϵscore + ϵcmτ2

≲
√
dδ +

R

τ2

(
R2

T
+
LfR

2(R+
√
d)(T/δ)

1
a

Kδ2
+ LfTϵscore + ϵcmT

)

+
LfR

2(R+
√
d)(τ2/δ)

1
a

Kδ2
+ Lfτ2ϵscore + ϵcmτ2

where the first line of the last inequality is introduced by the previous sampling process, and the remaining term is the
discretization error of this phase.

■
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C. The Error of One Step PFODE for the VESDE Forward Process
As a beginning, we control EXt∼qt [∥∂t∇ log qt (Xt)∥2]. In previous work, the following lemma is named the score
perturbation lemma, which depends on the uniform Lipschitz constant Lscore for the score function. As discussed in
Section 4.4, a time-dependent results is important for better results for the EDM and exponential decay stepsize.

Lemma C.1. For VESDE (Eq. 1), we have that

EXt∼qt [∥∂t∇ log qt (Xt)∥2] ≤ R3/t5 +R2
√
d/t4 .

Proof. For the VESDE forward process, we know that (here, we use the forward process notation):

Ẋt = −t∇ log qt (Xt) ,

which indicates

∂t∇ log qt (Xt) = [∂t∇ log qt(y)]|y=Xt
− t∇2 log qt (Xt)∇ log qt (Xt)

Hence, the following inequality holds

∥∂t∇ log qt (Xt) ∥ ≤ ∥ [∂t∇ log qt(y)]|y=Xt
∥2 + t∥∇2 log qt (Xt) ∥2∥∇ log qt(X2)∥2

≤ R3 +R2∥Xt∥2
t5

+ t
R2

t4
∥Xt∥2 +R

t2

≤ R3

t5
+
R2

√
d

t4
,

where the second inequality follows Lemma E.1 and Lemma E.2 and the last inequality follows Lemma E.4. ■

When considering the consistency distillation training paradigm, we need to run a one-step reverse PFODE starting from
Yt′k to obtain Ŷ ϕ

t′k+1
. Hence, we need to control one step starting from the same distribution q.

Lemma C.2. Suppose Assumption 4.1 and Assumption 4.2 hold and assuming σ2
s−σ2

t

σ2
t

≤ 1
2d for any 0 ≤ t ≤ s ≤ T , then

for the small interval t ∈ [t′k, t
′
k+1] for ∀k ∈ [0,K − 1], we have that

W 2
2

(
qQ

t′k,h
′
k

ODE , qP̂
t′k,h

′
k

ODE

)
≲ h′4k

(
R6

(T − t′k)
8
+

R4d

(T − t′k)
6

)
+ h′2k ϵ

2
score .

where qP̂ t′k
ODE means the output of one-step PFODE with fixed approximated score starting from q.

Proof. For t ∈ [t′k, t
′
k+1], the reverse PFODE is

Ẏt =
g(T − t)2

2
∇ log qT−t (Yt) ,

˙̂
Y t =

g(T − t)2

2
sϕ

(
Ŷt′k , T − t′k

)
,

for t′k ≤ t ≤ t′k+1, with Yt′k = Ŷt′k ∼ q, Yt′k+h′
k
∼ qQODE, and Ŷt′k+h′

k
∼ qP̂ODE. Then, we have that

∂t

∥∥∥Yt − Ŷt

∥∥∥2 = 2
〈
Yt − Ŷt, Ẏt −

˙̂
Y t

〉
= 2

〈
Yt − Ŷt,

g(T − t)2

2

(
∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

))〉
≤ 1

h′k

∥∥∥Yt − Ŷt

∥∥∥2
2
+
h′kg(T − t)4

4

∥∥∥∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

)∥∥∥2
2

As the next step,we use the Grönwall’s inequality to control the one-step discretization error.
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Grönwall’s inequality. Let η(·) be a nonnegative, absolutely continuous function on [0, h′k], which satisfies for a.e. t the
differential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are nonnegative, summable function on [0, h′k]. Then

η(t) ≤ e
∫ t
0
ϕ(s)ds

[
η(0) +

∫ t

0

ψ(s)ds

]
.

By setting η(t) =
∥∥∥Yt − Ŷt

∥∥∥2
2

and ψ(t) = h′
kg(T−t)4

4

∥∥∥∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

)∥∥∥2
2
. We note that Yt′k = Ŷt′k ∼ q

starts from the same distribution, η(0) = 0. Then, we can obtain that

E
[∥∥∥Yt′k+h′

k
− Ŷt′k+h′

k

∥∥∥2
2

]
≤ exp (

∫ h′
k

0

1

h′k
dt)

∫ t′k+h′
k

t′k

g(T − t)4h′k
4

E
[∥∥∥∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

)∥∥∥2
2

]
dt

≤
∫ t′k+h′

k

t′k

g(T − t)4h′kE
[∥∥∥∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

)∥∥∥2
2

]
dt ,

Then, by using Lemma 4.14, we have that

E
[∥∥∥Yt′k+h′

k
− Ŷt′k+h′

k

∥∥∥2
2

]
≤
∫ t′k+h′

k

t′k

g(T − t)4h′kE
[∥∥∥∇ log qT−t (Yt)− sϕ

(
Ŷt′k , T − t′k

)∥∥∥2
2

]
dt

≲
∫ t′k+h′

k

t′k

g(T − t)4h′k

[∥∥∥∇ log qT−t (Yt)−∇ logT−t′k

(
Ŷt′k

)∥∥∥2
2

]
+
h′kg(T − t)4ϵ2score

σ2
T−t

dt

≲
∫ t′k+h′

k

t′k

g(T − t)4h′3k

[
∥∂t∇ log qT−t (Yt)∥22

]
dt+ h′2k ϵ

2
score

≲ h′4k

(
R6

(T − t′k)
8
+

R4d

(T − t′k)
6

)
+ h′2k ϵ

2
score ,

where the last inequality follows Lemma 4.14.

■

D. The Discussion on the Previous Work
D.1. The Linear Solution Trajectory of VESDE (σ2

t = t2)

In this part, we show why it is possible for VESDE (σ2
t = t2) to generate samples with a single Euler step. In this part, we

use the forward process notation Xt and t to keep consistent with empirical works (Karras et al., 2022; Song et al., 2023).
We first provide the exact form of ∇ log qt(·). As shown in Karras et al. (2022) and Benton et al. (2024), we have that

∇ log qt (Xt) =
E [X0 | Xt]−Xt

t2
,

where E [X0 | Xt] is the posterior mean given Xt.
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By choosing VESDE (σ2
t = t2) as the forward process, the reverse process becomes 7

dXt = −t∇ log qt (Xt) dt,XT ∼ qT .

With the exact form of ∇ log qt(·), we have that

dXt =
Xt − E [X0 | Xt]

t
dt,XT ∼ qT .

Then, starting from XT , if doing one-step Euler, we have that (we denote the generated samples as X̄0)

X̄0 = XT + (0− T )
XT − E [X0 | XT ]

T
= E [X0 | XT ] .

As discussed in Karras et al. (2022) and Liu et al. (2023a), a linear trajectory indicates it is possible to generate samples with
a single Euler step and is the basis of a one-step model. Hence, consistency models adopt VESDE (σ2

t = t2) as the forward
process (Song et al., 2023; Song and Dhariwal, 2023).

D.2. The Detail Calculation of Previous Consistency Models Results

In this part, we show current discretization complexity results and discuss the reason why the noise schedule of Li et al.
(2024a) relies heavily on the VPSDE forward process.

The results of Lyu et al. (2024). As shown in Corollary 8 of Lyu et al. (2024), the discretization complexity of consistency
distillation (under the bounded support) is

Õ

(
d1/2R3

(
R6 ∨ d3

)
Lf

ϵ7W2

)
.

The results of Li et al. (2024a). In this part, we first show the noise schedule of Li et al. (2024a) and discuss the reason
why this schedule depends heavily on VPSDE. Li et al. (2024a) describe the VPSDE in a discrete perspective instead of a
continuous forward process:

X0 ∼ q0,

Xk =
√
1− βkXk−1 +

√
βtBk, 1 ⩽ k ⩽ K .

Let

αk := 1− βk, ᾱk :=

k∏
k′=1

αk′ , 1 ⩽ k ⩽ K .

Then, we know that Xk =
√
ᾱkX0 +

√
1− ᾱkW̄k for some W̄k ∼ N (0, Id), which indicates XK is approximately

N (0, Id) (VPSDE) with suitable noise schedule. Li et al. (2024a) choose a specific noise schedule

β1 = 1− α1 =
1

Kc0
,

βk = 1− αk =
c1 logK

K
min

{
β1

(
1 +

c1 logK

K

)k

, 1

}
, 2 ⩽ k ⩽ K ,

where c0, c1 > 0 are large enough numerical constants. We note that when K goes to +∞, βk will goes to 0. It is quietly
different from VESDE forward process since σ2

t = t2 would goes to +∞ when T goes to +∞ (K → +∞). Hence, this
noise schedule heavily depends on the form of VPSDE.

With the above specific noise schedule for VPSDE, Li et al. (2024a) show the discretization complexity of consistency
training paradigm with VPSDE forward process:

K = Õ

(
L3
fd

5/2

ϵW1

)
.

7Note that the coefficient of the above PFODE is negative, which is slightly different with Eq. 2. This is because we use the forward
process notation and the generation timeline is XT → X0.
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The results of Dou et al. (2024).
(a) Consistency Distillation Paradigm.

As shown in Theorem 4.1 of Dou et al. (2024), when considering W1 distance, the total error has the following form 8

LfLscore√
M

+
√
δ ,

where M is the step number discussed in Section 3.2. To make the above term smaller than ϵW1 , we require

M ≥
L2
fL

2
scored

ϵ2W1

and δ ≤ ϵ2W1
.

As shown in (Chen et al., 2023d), we know that σ2
δ = δ for VPSDE forward process. Furthermore, as shown in Lemma E.1,

we need to choose Lscore = R2/σ4
δ = R2/δ2, which finally requires

M ≥
L2
f

ϵ10W1

.

(b) Consistency Training Paradigm.

As shown in Remark 4.5 of Dou et al. (2024), they choose ϵW1
= n−1/d, where n is the size of the training dataset and

M = n10/d. Hence, the discretization complexity of the CT paradigm is M ≥ 1/ϵ10W1
.

E. Auxiliary Lemmas
In this section, we first prove some regularity results for ∇ log qt(·) under the VESDE setting. The following two results
come from Yang et al. (2024) (Lemma E.1, E.2 and E.4) and are used to control EXt∼qt

[
∥∂t∇ log qt (Xt)∥22

]
, which is

useful in controlling the one-step error W 2
2

(
qQ

t′k,h
′
k

ODE , qP̂
t′k,h

′
k

ODE

)
.

Lemma E.1. Assume Assumption 4.1. Then for any t ∈ (0, T ] and X ∈ Rd we have that

⟨∇ log qt(X), X⟩ ≤ −∥X∥22/σ2
t +R∥X∥2/σ2

t .

In addition, we have

∥∇ log qt (X) ∥2 ≤ 2∥X∥22/σ4
t + 2R2/σ4

t ,

and ∥∥∇2 log qt (X)
∥∥
2
≤
(
1 +R2

)
/σ4

t .

Lemma E.2. Assume Assumption 4.1. Then for any t ∈ (0, T ] and X ∈ Rd we have

∥∂t∇ log qt (X) ∥2 ≤ g(t)2

σ6
t

R2(R+ ∥X∥2).

Lemma E.3. Suppose Assumption 4.1 holds. Let ϵW2
> 0. (1) If considering VESDE with σ2

t = t2, we choose the early
stopping parameter δ = ϵW2√

d
, (2) If consider VPSDE, we choose δ = ϵ2W2

/(
√
d(R ∨

√
d)) then we have W2 (qδ, q0) ≤ ϵW2

.

Proof. For the VESDE forward process Equation (1), we know that Xt := X0 + σtz, where z ∼ normal (0, Id) is
independent of X0. Hence, for δ ≲ 1,

W 2
2 (q0, qδ) ≤ E

[
∥σδz∥22

]
= σ2

δd .

Then, for the setting σ2
t = t2, we can take δ ≤ ϵW2√

d
.

For the VPSDE forward process, we directly use Lemma 20 of Chen et al. (2023d) to obtain the final results.

■
8Here, we only discuss the dependence on ϵW1 and ignore R, d.
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Lemma E.4. Suppose that Assumption 4.1 hold. Let (Xt)t∈[0,T ] denote the forward process Equation (1). Then, for all
t ≥ 0,

E
[
∥Xt∥22

]
≤ dσ2

t +R2

Proof. We know that Xt = X0 + σtZ, where Z ∼ N (0, I). Hence, we have

E
[
∥Xt∥22

]
= E

[
∥X0∥22

]
+ σ2

t d ≤ dσ2
t +R2 .

■

F. Simulation Experiments and Simplified PFODE discussion
In this section, we support our Assumption 4.4 by using the simulation experiments. Since we do not have the closed-form
consistency function for highly multi-modal target distribution, we simulate the consistency function fv by running the
following process starting from N (0, T 2Id) (We choose T = 50 in our experiments):

dȲt′ =
g(T − t′)2

2
sϕ

(
Ȳt′k , T − t′k

)
dt′ , t′ ∈ [t′k, t

′
k+1] .

In this part, we use multi-modal Gaussian Mixture distribution as the target distribution. Since the ground-truth score
function of Gaussian Mixture Distribution can be calculated, we directly use the ground-truth score function ∇ log qt(·)
(where the target consistency function fv is also determined with the ground-truth score function) to run the above process
to approximate fv (In Figure 1, f ex is fv in the main content).

For the Lipschitz constant of fv at a fixed time t′, we calculate fv(Y1,t
′)−fv(Y2,t

′)
Y1−Y2

as an approximation.

Baseline. Since we want to show that the Lipschitz constant of fv(·, t′) has order 1/(T − t′) at the beginning of the
reverse process (t′ is small, t is large), we provide a reference line (brown line in Figure 1) with 1/t Lipschitz constant. More
specifically, after obtaining the Lipschitz constant Lf,0 of fv(·, t′)|t′=0 (which is always the smallest one), we calculate the
points at reverse time t′ (forward time T − t′) on the brown line by times T/(T − t′) on Lf,0.

Observation and Discussion. In this experiment, we use 3-modal and 4-modal Gaussian mixture distribution as the target
distribution. As shown in Figure 1, the brown and the blue lines are almost the same at the beginning of the reverse process
(the forward diffusion time t is large). Hence, the simulation experiments support our Assumption 4.4.

(a) 3 modes GMM (b) 4 modes GMM 
Figure 1: Simulation Experiments on the Lipschitz Constant.
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