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ABSTRACT

Artificial Intelligence (AI)-generated content (deepfake content) is considered to
be a major threat that can lead to fraud and the spread of incorrect information.
The focus of generative AI research has largely been on advancements in content
generation, with less attention given to detection of AI generated content, particu-
larly for AI generated audio content. Although foundation models offer powerful
representations for detecting spoofed audio, they suffer from limitations in ex-
plainability and slow extraction speeds, which affect scalability. Prior research has
integrated sociolinguistic expertise to identify phonetic and phonological cues in
spoken English for spoofed audio detection. This approach, while successful, was
limited in scale as it relied on the labeling of linguistic features by domain experts.
In this paper we propose a novel model to auto-label expert-informed phonetic and
phonological cues through deep-learning based representations fine tuned with
domain expert input. As such, using the fine-tuning method with expert-informed
features, we scale this interdisciplinary approach and demonstrate its benefits in
enhancing explainability and optimizing resource utilization (consumed time) for
utilizing foundation models in large-scale applications. For example, when con-
sidering XLSR-Wav2vec-ResNet18 as one of the most recent baselines, findings
indicate that our method has decreased the Equal Error Rate of this baseline model
in audio deepfake detection with at least 7% (effectiveness). In our proposed cost
efficient ensemble setup, we have 31% time reduction in audio deepfake detection
(scalability). Additionally, the algorithmically encoded linguistic features enhance
the explainability via reverse engineering (explainability). Our proposed method
is a multi-view approach as it takes advantage of not only deep representations, but
also human expert-informed phonetic and phonological aspects of natural speech.

INTRODUCTION

With the rapid progress of generative AI, producing highly realistic fake content has become both
quick and effortless Khanjani et al. (2022). Among various forms of synthetic media, fake audio
is especially concerning due to its potential to disseminate misinformation and facilitate fraudulent
actions. Although AI generated voices can have positive applications, like voice reconstruction for
people with advanced motor neuron disease who can no longer speak, there are many recent cases
of deepfakes as threats to people’s privacy and online security, such as: Stupp (2019); Nikki Main
(2023); Smith (2021). For example, AI-generated robocalls have been utilized to cause confusion in
political elections, solely through audio messages Verma & Kornfield (2024). Thus, there is strong
motivation to advance Audio Deepfake Detection (ADD). Despite recent progress, baseline ADD
models continue to struggle with generalizability, explainability, and detection speed, affecting their
scalability potential. Representation learning is a key approach to addressing these challenges, as
more informative input features can improve classification performance, enhance explainability, and
directly reduce detection time.

Different representations are used for ADD including: 1) Hand-crafted acoustic representations:
Researchers utilize hand-crafted audio acoustic features, which are used to train deep learning mod-
els for binary classification tasks. While this approach is very common in ADD, a recent study shows
these features’ performance drops significantly when faced with out-of-domain datasets Yang et al.
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(2024), and their generalizability is under question. Another recent study Zhang et al. (2025a) cre-
ates a multi-view approach across different acoustic features to enhance their ability to capture fake
audio; however, their approach is not evaluated against popular speech foundation-based models
such as Yang et al. (2024). 2) Deep Neural Network (DNN)-based Features and foundation models:
offers another type of representation that has shown strong ability in ADD. DNN-based features can
be trained with fake and real audio data (such as RawNet2 end to end model Tak et al. (2021)) or
using pre-trained, usually self supervised large DNNs (foundation models), to obtain the final repre-
sentation (such as Zhang et al. (2023); Tak et al. (2022)). DNN based features’ performance drop is
much less than in the case of acoustic features Yang et al. (2024) when faced with an out-of-domain
dataset. According to Yang et al. (2024), three pretrained models that had the least performance drop
and most generalizability are: Wav2Vec-XLSR Babu et al. (2021)1 (pre-trained on 128 languages),
HuBERT Hsu et al. (2021) (pre-trained on LibriSpeech Panayotov et al. (2015)) and WavLM Chen
et al. (2022) (trained on Libri-Light, GigaSpeech, and VoxPopuli datasets). These representations
have great potential to act as the most recent baselines for recently developed ADD models. Whis-
per is another common audio pretrained DNN based representation, developed by OpenAI Radford
et al. (2023). While Whisper model works well in not out-of-domain datasets Pham et al. (2024),
in comparison of generalizability, it is not as successful as the other mentioned foundation models,
as shown by results in Yang et al. (2024), therefore, we do not consider this model as one of the
baselines.3) Expert-in-the-loop Representations: Recent research has demonstrated novel represen-
tations for detecting spoofed audio. A study utilized principles from articulatory phonetics and fluid
dynamics to determine whether a speech sample in question could originate from the human vocal
tract Blue et al. (2022). Yet, this approach frequently involves extracting particular phoneme sets
tailored to each dataset, which makes it time-intensive and limits its generalizability Zhang et al.
(2025b). Moreover, it often emphasizes individual phonemes while overlooking the temporal struc-
ture of the entire phoneme sequence Zhang et al. (2025b). Another study Zhang et al. (2025b) tried to
fill the gaps in the aforementioned research ”by focusing on phoneme-level speech features” . They
converted the frame level attributes to a sequence of phoneme level features. They demonstrated that
”inconsistencies in phoneme-level features between real and fake samples” can be a distinguishing
characteristic for ADDZhang et al. (2025b). A recent approach Zahra Khanjani (2023) demonstrated
how incorporating manually extracted phonetic features can enhance the standard baselines estab-
lished by the ASVspoof 2021 Challenge Yamagishi et al. (2021) across a hybrid dataset (containing
multi-type of attacks). These studies introduced Expert Defined Linguistic Features (EDLFs), which
are linguistic features selected by sociolinguists with domain knowledge of features unique to human
speech. EDLFs were integrated into the training datasets used to develop various machine learning
models aimed at ADD. Their findings indicated that a Logistic Regression (LR) model trained on
EDLFs surpassed multiple baseline systems from the ASVspoof 2021 challenge Zahra Khanjani
(2023); Yamagishi et al. (2021); Anonymous (2024) across their hybrid dataset. More recent studies
Boumber et al. (2024); Khanjani et al. (2025); Mallinson et al. (2024) have demonstrated the strong
potential of multidisciplinary approaches and expert-in-the-loop representations in the field of de-
ception detection and combating spoofed audio.
Although audio deepfake detection has been a hot topic recently, ADD models still struggle with the
generalization issue AlAli & Theodorakopoulos (2023); Pham et al. (2024). Those models that have
been shown to be generalizable tend to suffer from a lack of explainability and scalability. Their abil-
ity to be used as a real-time scalable approach is still under question and has not been investigated
adequately for ADD. Most foundation models require a time-consuming feature extraction phase
threatening the capacity for scalability crucial for detection at scale. In the current study, inspired
by Zahra Khanjani (2023), we leverage the potential of expert-in-the-loop representations in audio
deepfake detection as one of the views in our proposed multi-view approach. We demonstrate how
this multi-view approach can fill the gap (explainability and scalability) while maintaining models’
effectiveness by fine tuning based on domain experts’ inputs to foundation models. Our contributions
are as follows:

• Designing an explainable expert-in-the-loop representation learning approach: Consider-
ing the best-performing foundation models (Wavw2vec-XLSR, HuBERT and WavLM) as
our baselines, we demonstrate how we can add explainability to the deep models through
our expert-in-the-loop representations and reverse engineering to discover the features that
are indicative of deepfake behavior. We call our expert-in-the-loop representation learning

1https://huggingface.co/facebook/wav2vec2-xls-r-300m
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approach ALiRAS: Auto-labeled Linguistic Representations for Audio Spoofing detection.
ALiRAS provides explainability while detecting spoofed audio. To the best of our knowl-
edge, this research is the first work on explainability of ADD models using an expert-in-
the-loop approach.

• Scalable solution: We question the foundation models used in terms of consumed resources
and the potential to be utilized in real-time scenarios at scale. We show ALiRAS can help
in saving resources through the proposed cost-efficient ensemble method that led to a 31%
reduction in the consumed time in our experiments. To the best of our knowledge, this study
is the first in ADD investigating the detectors based on consumed time, while leveraging
the benefits of the existing foundation models. We also make the previously introduced
linguistic approach scalable through the linguistic auto-labeling process.

• Effectiveness: In addition to explainability and resource efficiency, the ALiRAS model
when combined with the bseline foundation models has shown maintained ADD perfor-
mance (in terms of ROC AUC and EER).

We call our ALiRAS approach a multi-view representation learning as we utilize multiple views in
ADD: a baseline model view and the phonetic and phonological linguistic view. The rest of the paper
is organized as follows. Section discusses the problem formulation as well as the overall method-
ology. In section we demonstrate the dataset, experimental details and results, then we continue to
the conclusion and future steps in section .

METHODS

Figure 1 illustrates our overall methodology. Audio datasets were provided to linguistic experts to
build upon the approach introduced in Zahra Khanjani (2023). Our linguistic team employed the
same linguistic labeling methodology described in Zahra Khanjani (2023) to extract phonetic and
phonological features that differentiate between genuine and spoofed audio. These features were
subsequently used to train machine learning models via the auto-labeling module, as depicted in
Figure 1. The auto-labeling module generates the Auto-labeled Linguistic Representations for Au-
dio Spoofing detection (ALiRAS), which are then integrated into the ADD system. These features
serve as inputs to the ADD system augmenting the existing popular representations such as foun-
dation models and bringing the advantage of explainability through reverse engineering. Therefore,
for each audio that is labeled spoofed, we know the auto-labeled linguistic features explaining why
this label is chosen by the classifier, which are based on the expert-in-the-loop representations, and
provides us with semantic meaning of the classifier’s decision. We also show how this model aug-
mentation saves resources compared to foundation models alone, which are resource carving and
time-consuming. In our proposed cost-efficient ensemble method, we use ALiRAS-MLP as the first
layer of classification. Instead of passing the whole dataset, only the audio clips that are not la-
beled as spoofed by the ALiRAS-based model (true and false negative samples) continue to the sec-
ond layer of classification which is one of the baselines (XLSR-ResNet18, HuBERT-ResNet18, and
WavLM-MLP). In our dataset, this method led to processing 31% less data for the time-consuming
extraction of the large foundation models.
We next describe each step demonstrated in Figure 1.
Experts’ Extracted Representations (mr): Three linguistic features were extracted by sociolin-
guistic experts, following the methodology outlined in Zahra Khanjani (2023). These features in-
clude: (1) audible intake or outtake of breath (presence = 1, absence = 0), (2) anomalous pitch
production (true = 1, false = 0), and (3) anomalous audio quality (true = 1, false = 0). Equation 1
defines the extracted linguistic features. The details of the linguistic labeling process are consistent
with prior work in this domain Zahra Khanjani (2023).

Definition 1: Given an audio clip ai , with the linguistic feature set where:

a
linguistic features
i = [a

presence-of-breath
i , a

pitch-anomaly
i , a

audio-quality-anomaly
i ] (1)

The feature apresence−of−breath
i means that experts identified an audible presence of breath in an au-

dio. For anomalous pitch (apitch−anomaly
i ), if sociolinguistic experts identified any instances where

the pitch appeared anomalous—such as being markedly higher or lower than expected, or exhibiting
irregular fluctuations—the sample was labeled with a value of 1. Conversely, samples in which the
pitch was consistently perceived as typical and within the expected range of variation for spoken
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Figure 1: Overall Methodology to utilize our proposed expert-in-the-loop representations in
ADD. CV: Cross Validation, Conv: Convolutional layer. FC: Fully connected layer. ResNet: Resid-
ual Neural Network.

English were assigned a value of 0 Zahra Khanjani (2023). For audio quality, a sample is labeled as
1 if the experts perceived any anomalies in the overall audio quality—such as distortion, compres-
sion, or characteristics like tinny or robotic-sounding audio. In contrast, samples with audio quality
that was consistently judged to be typical and within the expected range of natural English speech
were assigned a label of 0 Zahra Khanjani (2023). Various classification algorithms were trained
using these linguistic features for the task of ADD, including Support Vector Machines (SVM), LR,
Random Forests (RF), and Multi-layer Perceptrons (MLP). Among these, LR demonstrated the most
notable performance in ADD when fed by the manually extracted linguistic features.
Auto-labeling: The demands of large-scale deployment highlight the importance of developing
auto-labeling processes that leverage AI models while still incorporating domain expert input for
effective model training and validation. Prior work has addressed the role of breath features in
spoofed audio detection, such as the Breathing-Talking-Silence encoder Doan et al. (2023). How-
ever, these approaches did not involve collaboration with linguistic experts, limiting the depth of
linguistic feature analysis and potential extensions Anonymous (2024). Furthermore, these studies
did not evaluate the impact of their methods on resource efficiency when integrated with standard
baseline systems, leaving the benefits of the interdisciplinary approach largely unexplored. We cre-
ated an automated process to achieve ALiRAS, which is designed to use AI models for labeling
data with linguistic features for ADD. We fine tuned classification algorithms (SVM, Convolutional
Neural Networks (CNN), LR, MLP, RF, and XGboost) using the experts’ extracted representations.
Also, various embeddings were used to auto-label linguistic features including: a) Acoustic Features:
sharpness, loudness, average roughness of audio, mel-spectrograms, and Mel Frequency Cepstral
Coefficients (MFCCs); this group of features failed significantly in capturing the aforementioned
linguistic features in our setup. b) Deep and Foundation Features: foundation models such as Hu-
BERT Hsu et al. (2021), WavLM Chen et al. (2022), Wav2Vec-XLSR Babu et al. (2021), and a
deep CNN-based model called VGGish Hershey et al. (2017) are also evaluated to auto-label the
linguistic features as the results are demonstrated in the section . We also experimented with multi-
ple setups including: a: Both multi-label classification and binary setup were tried; with the better
performance seen for binary classification for the purpose of auto-labeling the linguistic features. b:
For large embeddings, both encoded (to 64 dimension) and non-encoded were tried, and not much
difference in performance was captured.
Based on the described ALiRAS methodology, we pre-trained VGGish-based models (better than
other input features in auto-labeling Receiver Operating Characteristic - Area Under the Curve -
ROC AUC) using the experts’ extracted representations, and developed three binary classifiers, each
dedicated to automatically labeling one of the three specified linguistic features. These pre-trained
models are relatively lightweight, making them computationally efficient and suitable for deploy-
ment on CPU resources with minimal overhead. The final classifier algorithm is CNN for all of the
aforementioned models. Each auto-labeling model contains the following number of parameters:
1,442,305 for detecting breath presence, 721,217 for identifying pitch anomalies, and 14,817 for
detecting audio quality anomalies.
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Baselines and ensemble Modeling: We leverage the full advantages of ALiRAS by integrating it
into ensemble models alongside established baseline systems. As our primary baseline, we adopt
the three top-performing models identified in the literature Yang et al. (2024). One baseline employs
Wav2Vec-XLSR embeddings as input to a ResNet18 classifier. Another uses HuBERT representa-
tions with the same ResNet18 architecture. The third baseline leverages WavLM representations fed
into an MLP classifier, which demonstrated superior detection performance compared to ResNet18
for WavLM. We demonstrate that incorporating ALiRAS into ensemble with these baselines not
only maintains performance but also results in resource/time savings. Additionally, we are able to
improve the explainability of these methodsThe ensemble configurations evaluated in our study are
as follows: a) We use each type of representation separately (ALiRAS and baseline or deep fea-
ture). Then, we create an ensemble model based on weighted-voting, for which the best performing
weights are received empirically. Thus, all possible ensemble models can be derived from the equa-
tion 2. Given
ai

ALiRASp

, aiF
∗
, pi as the predicted probability of the class to be spoofed, then:

p
ensemble
i = [(weight1)(p

F∗
i )] + [(weight2)(p

ALiRASp

i )]. (2)

Where ai
F∗

= ai
deep−feature and pensemble

i is the final probability of audio clip ai to be spoofed,
and weight1 + weight2 = 1. Figure 2 presents a toy example to clarify the steps of the ensemble
model. b) Cost-efficient Ensemble Modeling: To optimize resource usage, including computational

Figure 2: Toy example of the ensemble model. pF
1

i refers to the probability of the audio clip i being
spoofed when F 1

i is given to a classifier as one of the input deep features (baselines). The best performing
weights (W1 and W2) , which determine the contribution of deep features and ALiRAS-based model, are
chosen empirically using the validation set.

time, we implemented an alternative ensemble strategy. In this setup, the ALiRAS model is first
used to classify audio clips as either genuine or spoofed. Based on empirical evaluation, a threshold
of 0.55 was selected as the optimal decision boundary for the ALiRAS-based model. If a sample
is classified as genuine (label = 0) by ALiRAS, it undergoes a second stage of classification using
the baseline model. As a result, the computationally intensive feature extraction of large foundation
models is performed only on a subset of the data, those initially labeled as genuine by ALiRAS—
thereby reducing overall processing cost and time. Based on this ensemble setup, the decision func-
tion f(x) for an audio sample x is defined as depicted in equation 3.

f(x) =
{

ALiRAS-MLP(x), if ALiRAS-MLP(x) = 1,

Wav2Vec-XLSR-ResNet18(x), if ALiRAS-MLP(x) = 0
(3)

Explainability: For extracting explainability or semantic meaning) of the predictions of the model,
we use SHapley Additive exPlanations (SHAP) method Lundberg & Lee (2017). SHAP helps to
understand individual predictions by assigning an importance score to each auto-labeled linguistic
feature. It acts like a reverse engineering process, which interprets the decision of the model for the
classification task. SHAP framework unifies multiple model interpretation methods strengthening
its ability, and with ALiRAS , SHAP helps us interpreting the models’ decisions. SHAP treats each
auto-labeled linguistic feature like a player in a cooperative game. For every individual prediction,
SHAP reveals how much each feature (player) contributed to the model’s outputTrevisan (2022).
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Scalability: Although foundation models offer automated feature extraction and are therefore inher-
ently scalable, their slow processing speed limits their practical scalability. To address this limitation,
we propose the expert-in-the-loop representation learning module that accelerates the feature extrac-
tion process by 31% on our large-scale dataset. Furthermore, we demonstrate that our approach is
not constrained to manually extracted expert features like previous related studies Zahra Khanjani
(2023); it generalizes effectively to large-scale scenarios through the aforementioned auto-labeling
process.
Effectiveness: Now we explain the effectiveness evaluation methodology. One of the most popular
metrics for anti-spoofing audio systems is Equal Error Rate (EER) which is also called Crossover
Error Rate (CER) Conrad et al. (2017). The False Acceptance Rate (FAR) refers to the proportion of
cases where the system incorrectly identifies an audio deepfake as genuine (equivalent to the False
Negative Rate). Conversely, the False Rejection Rate (FRR) denotes the percentage of genuine sam-
ples that are wrongly classified as spoofed audio (equivalent to the False Positive Rate). The Equal
Error Rate (EER), also referred to as the Crossover Error Rate (CER), is the point at which the FAR
and FRR curves intersect or where they are very close Conrad et al. (2017) (finding the threshold).
EER serves as an indicator of the overall performance of the ADD system. As system sensitivity
increases, FRR tends to rise while FAR decreases, and vice versa Conrad et al. (2017). The mean of
FAR and FRR at that threshold is usually preferred as EER: EER = (FAR+ FRR)/2

Also, the final detection is a binary classification task, in an imbalance dataset, we use ROC AUC
metric as well.

EXPERIMENTS

In this section, we describe datasets used, implementation details, as well as results and analysis.

DATASETS

Table 1 demonstrates the datasets used and their properties.

Table 1: Summary of the datasets utilized in this study.

Dataset Number of samples Properties References Purpose
Expert-
labeled
Dataset

840 audio samples Attack types: Replay, Text-
to-Speech, Voice Conversion.
Balanced between spoofed and
genuine samples. Linguistic
features extracted manually by
experts. English language; average
duration: 4 seconds. 15% held out
for evaluation/test

Reimao & Tzerpos
(2019); Yamagishi
et al. (2021); Wu et al.
(2015); Kinnunen et al.
(2017); Zahra Khanjani
(2023); Kumar et al.
(2019)

Root of ALiRAS; used for
fine-tuning the auto-labeling
model

Large
Scale
Dataset

14,000 total
(7,000 from ASVspoof
2021 DF evaluation
set + 7,000 from
ASVspoof 2019 LA
training set)

Focus on AI-generated audio
(Deepfake), Test set: 7,000 DF
clips and Training set: 7,000 LA
clips

Yamagishi et al. (2021;
2019)

Used for ADD research

FINDING APPROPRIATE EMBEDDINGS FOR ALIRAS

To auto-label the linguistic features we evaluated different front-ends including acoustic features as
well as deep and foundation models. While the acoustic features, mentioned in the methodology,
failed to capture the linguistic features with mostly low and less than chance accuracy, the deep
features showed promising performance. Table 2 indicates different deep front-ends fine tuned with
the manually extracted linguistic features, and their performance on the test set of the Expert-labeled
Dataset.
As Table 2 indicates, VGGish shows better performance in auto-labeling the linguistic features.
Therefore, the front-end chosen in ALiRAS is VGGish, as the model is fine tuned with the manually
extracted Linguistic Features.

6
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Table 2: ROC AUC Scores for Different Front-ends Fine-tuned with Manually Extracted Lin-
guistic Features to Label Audio Files with Binary Linguistic Features (Expert-labeled Dataset)

Front-end + Fine-tuned on Average Test ROC AUC
Wav2vec-XLSR Babu et al. (2021) + manually extracted Linguistic Features 0.57
HuBERT Hsu et al. (2021) + manually extracted Linguistic Features 0.59
WavLM Chen et al. (2022) + manually extracted Linguistic Features 0.59
VGGish Hershey et al. (2017) + manually extracted Linguistic Features 0.71

EXPLAINABILITY

As we mentioned in the methodology section , we can use SHAP values in a reverse engineering
process to investigate how much each attribute contributed to the model’s decision for each indi-
vidual clip. Figure 3b shows for this specific example of audio clips, the values of input features
are 0.43 for audio quality, 0.51 for breath, 0.02 for anomalous pitch, and a base value is 0.81. Base
value means the expected model output (i.e., the average prediction across the training data) before
involving any features (initial prediction probability). These SHAP values represent the individual
contributions of each feature in shifting the model’s output from the base value: For example, audio
quality (-0.0433) slightly decreased the spoof prediction (negative contribution) to the model’s de-
cision, slightly increasing the likelihood that the model predicts class as 0 (genuine). Breath for this
particular audio clip increased the prediction towards Spoof label (1) by a value of (+0.0967), while
pitch also increased the prediction towards class 1 by (+0.1367).
Figure 3a shows the mean of SHAP values for each feature across the Large-scale dataset. All three
features are contributing meaningfully to the model’s decision — their normalized (softmax) impor-
tance scores are fairly close indicating Balanced Importance; Audio Quality is the most influential,
responsible for about 34% of the total impact. The differences between the importance scores are
small, which implies that the ALiRAS-based model is not overly reliant on any single feature, and
all three features are informative and relevant to the prediction task. The softmax function takes a
list of values (like SHAP importance scores) and rescales them to a probability-like distribution, so
can be especially useful for interpreting relative importance of each feature.

(a) Mean of SHAP values in Large-scale dataset (b) SHAP values for an individual audio clip

Figure 3: Explainability using SHAP values. (a) Mean SHAP values across the large-scale dataset.
(b) SHAP values for one random audio clip.

SCALABILITY AND RESOURCE COMPARISON

Table 4 demonstrates time consumed for feature extraction when using a single GPU 2. Even the
fastest foundation model (HuBERT) is substantially more time-consuming than ALiRAS. ALiRAS
completes extraction in approximately 15 seconds. This efficiency difference informed the design of
our cost-effective ensemble. We aimed to leverage the speed of the ALiRAS method while simulta-
neously incorporating the benefits of the foundation models’ architecture. As illustrated in Table 3,
this approach resulted in a 31% reduction in extraction time without compromising the Equal Error
Rate (EER) performance, as depicted in Table 5.

2NVIDA L40S GPU
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Table 3: Cost-efficient ensemble helped with the consumed time

Model Processing Time (↓)

XLSR-ResNet18 55:47:21
ALiRAS-MLP|XLSR-ResNet18 38:33:15

HuBERT-ResNet18 29:54:10
ALiRAS-MLP|HuBERT-ResNet18 20:38:07

WavLM-MLP 43:59:13
ALiRAS-MLP|WavLM-MLP 30:21:09

Table 4: Resource Comparison for Different Representations

Representation Number of GPUs
Used

Extraction Time

VGGish 1 44 minutes
Fastest Baseline (HuBERT) 1 29 hours, 54 minutes, 10 seconds
ALiRAS 0 15 seconds

EFFECTIVENESS

In this section, we evaluate the models in terms of their ability to ADD. As mentioned in Section
, as the ADD evaluation metrics, we consider accuracy for Expert-labeled Dataset, and ROC AUC
and EER for Large-scale dataset.
Expert-labeled Dataset: Expert-labeled Dataset was utilized to fine-tune the auto-labeling model
and output ALiRAS (auto-labeled linguistic features). As Table 2 indicates, manually extracted lin-
guistic features are provided in Expert-labeled Dataset.

Large-scale Dataset: Graph 4 shows how the ROC AUC score changes for different tried methods.
Our proposed ensemble method with the XLSR-based model has ROC AUC 0.84, and the cost-
efficient corresponding ensemble method has reduced this score to 0.78. However, both ensemble
setups offer the same EER metric (0.27) as depicted in Table 5. HuBERT achieves the lowest EER
(0.171), and incorporating it into the ensemble with ALiRAS does not lead to any increase in this
error rate. The cost-efficient ensemble with ALiRAS yields a slightly different EER (0.184) while
significantly reducing the resource and time demands of the feature extraction process as depicted
in Table 3.

Figure 4: ROC Comparison for Different Methods

Type of Attack Analysis: We also explored how the methods work in terms of capturing differ-
ent types of audio deepfake (VC, TTS, VC-TTS and unknown attacks). For Large-scale dataset,
as depicted in Table 6, in ensemble modeling with XLSR, for all of the types of attacks, XLSR-
ResNet18—ALiRAS-MLP, has shown a stronger performance; only for VC-TTS is slightly lower
than for the XLSR-based model alone. For HuBERT and WavLM based models, the performance
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Table 5: EER (↓) Comparison for Different Methods on Large-scale Dataset

Model EER (↓)
VGGish-MLP 0.302
ALiRAS-MLP 0.319
XLSR-ResNet18 0.400
HuBERT-ResNet18 0.171
WavLM-MLP 0.277
AliRAS-MLP—VGGish-MLP 0.300
AliRAS-MLP|XLSR-ResNet18 0.274
AliRAS-MLP|HuBERT-ResNet18 0.171
AliRAS-MLP|WavLM-MLP 0.277
AliRAS-MLP|XLSR-ResNet18 (cost efficient) 0.279
AliRAS-MLP|HuBERT-ResNet18 (cost efficient) 0.184
AliRAS-MLP|WavLM-MLP (cost efficient) 0.284

is the same across different types of attacks when ensemble with ALiRAS is applied. However,
even for HuBERT and WavLM based models, the benefits of ALiRAS in terms of speeding feature
extraction process by 31% and explainability still exist.

Table 6: Type of attack analysis for Large-scale Dataset

Model ROC AUC ↑

Type: TTS
VGGish-MLP 0.799
ALiRAS-MLP 0.755
XLSR-ResNet18 0.781
ALiRAS-MLP | VGGish-MLP 0.794
ALiRAS-MLP | XLSR-ResNet18 0.82
HuBERT-ResNet18 / ALiRAS-MLP | HuBERT-ResNet18 0.926
WavLM-MLP / ALiRAS-MLP | WavLM-MLP 0.781

Type: VC
VGGish-MLP 0.661
ALiRAS-MLP 0.631
XLSR-ResNet18 0.65
ALiRAS-MLP | VGGish-MLP 0.659
ALiRAS-MLP | XLSR-ResNet18 0.696
HuBERT-ResNet18 / ALiRAS-MLP | HuBERT-ResNet18 0.793
WavLM-MLP / ALiRAS-MLP | WavLM-MLP 0.694

Type: VC-TTS
VGGish-MLP 0.821
ALiRAS-MLP 0.701
XLSR-ResNet18 0.861
ALiRAS-MLP | VGGish-MLP 0.794
ALiRAS-MLP | XLSR-ResNet18 0.857
HuBERT-ResNet18 / ALiRAS-MLP | HuBERT-ResNet18 0.908
WavLM-MLP / ALiRAS-MLP | WavLM-MLP 0.785

Type: Unknown
VGGish-MLP 0.822
ALiRAS-MLP 0.779
XLSR-ResNet18 0.806
ALiRAS-MLP | VGGish-MLP 0.813
ALiRAS-MLP | XLSR-ResNet18 0.852
HuBERT-ResNet18 / ALiRAS-MLP | HuBERT-ResNet18 0.931
WavLM-MLP / ALiRAS-MLP | WavLM-MLP 0.785

CONCLUSION

Current deepfake detection methods are increasingly challenged by rapid advancements in deepfake
audio generation. In response, our work introduces a novel approach to deepfake speech detec-
tion by focusing on auto-labeling expert-in-the-loop representations with a phoneme-level view of
speech. Experimental results demonstrate that our method consistently outperforms state-of-the-art
baselines across multiple audio deepfake detection aspects: time (increasing the ability for real-time
scenarios and scalability) and explainability (the ability to explain model decisions with tangible
attributes and semantic meaning). For equal error rate (the ability to better detect spoofed samples),
it either maintains or increases the performance of the state-of-the-art methods. More research will
be important to explore the promising potential of this and similar expert-informed strategies.
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