
Under review as a conference paper at ICLR 2022

SHIFTADDNAS: HARDWARE-INSPIRED SEARCH FOR
MORE ACCURATE AND EFFICIENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks (NNs) with intensive multiplications (e.g., convolutions and
transformers) are powerful yet power hungry, impeding their more extensive de-
ployment into resource-constrained edge devices. As such, multiplication-free
networks, which follow a common practice in energy-efficient hardware imple-
mentation to parameterize NNs with more efficient operators (e.g., bitwise shifts
and additions), have gained growing attention. However, multiplication-free net-
works in general under-perform their vanilla counterparts in terms of the achieved
accuracy. To this end, this work advocates hybrid NNs that consist of both power-
ful yet costly multiplications and efficient yet less powerful operators for marry-
ing the best of both worlds, and proposes ShiftAddNAS, which can automatically
search for more accurate and more efficient NNs. Our ShiftAddNAS highlights
two enablers. Specifically, it integrates (1) the first hybrid search space that in-
corporates both multiplication-based and multiplication-free operators for facili-
tating the development of both accurate and efficient hybrid NNs; and (2) a novel
weight sharing strategy that enables effective weight sharing among different op-
erators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs.
Laplacian for add operators) and simultaneously leads to a largely reduced super-
net size and much better searched networks. Extensive experiments and ablation
studies on various models, datasets, and tasks consistently validate the effective-
ness of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9
better BLEU score as compared to state-of-the-art expert-designed and neural ar-
chitecture searched NNs, while leading to up to 93% or 69% energy and latency
savings, respectively. All the codes will be released upon acceptance.

1 INTRODUCTION

The unprecedented performance achieved by neural networks (NNs), e.g., convolutional neural net-
works (CNNs) and Transformers, requires intensive multiplications and thus prohibitive training
and inference costs, contradicting the explosive demand for embedding various intelligent function-
alities into pervasive resource-constrained edge devices. In response, multiplication-free networks
have been proposed to alleviate the prohibitive resource requirements by replacing the costly mul-
tiplications with lower-cost operators for boosting hardware efficiency. For example, AdderNet
(Chen et al., 2020) utilizes mere additions to design NNs; and ShiftAddNet (You et al., 2020a)
follows a commonly used hardware practice to re-parameterize NNs with both bitwise shifts and
additions. Despite their promising performance in hardware efficiency, multiplication-free NNs in
general under-perform their CNN and Transformer counterparts in terms of task accuracy for both
computer vision (CV) and natural language processing (NLP) applications.

To marry the best of both worlds, we advocate hybrid multiplication-reduced network architectures
that integrate both multiplication-based operators (e.g., vanilla convolution (Krizhevsky et al., 2012)
and attention (Vaswani et al., 2017)) and multiplication-free operators (e.g., shift and add (You
et al., 2020a)) to simultaneously boost task accuracy and efficiency. Thanks to the amazing success
of neural architecture search (NAS) in automating the process of designing state-of-the-art NNs,
it is natural to consider NAS as the design engine of the aforementioned hybrid NNs for various
applications and tasks, each often requiring a different performance-efficiency trade-off. However,
there still exist a few challenges in leveraging NAS to design the hybrid NNs. First, existing NAS
methods mostly consider the search for either efficient CNNs (Wan et al., 2020), Transformers (Chen
et al., 2021b), or hybrid CNN-Transformers (Ding et al., 2021; Li et al., 2021), and there still is a
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lack of a seminal work that searches for multiplication-reduced hybrid networks, especially for the
hardware-inspired networks that incorporate both bitwise shifts and additions. Second, a hybrid
search space could make it more challenging to achieve effective NAS and further aggravate the
search burden, due to the enlarged search space imposed by the newly introduced multiplication-
free operators. It is worth noting that existing weight sharing strategies of NAS do not directly
apply to the target hybrid search space, because weights of different operators follow heterogeneous
distributions, leading to a dilemma of either inefficient search or inconsistent architecture ranking.
Specifically, weights in convolutional and adder layers follow Gaussian and Laplacian distributions,
respectively, as also highlighted by (Chen et al., 2020; Xu et al., 2020). As such, forcing weight
sharing among heterogeneous operators could hurt the capacity and thus the achieved accuracy of
the resulting NNs, while treating them separately could explode the search space and make it more
difficult to achieve effective NAS, i.e., the dilemma mentioned above.

To tackle the aforementioned challenges towards more accurate and efficient NNs, this work makes
the following contributions:

1. We propose a generic NAS framework dubbed ShiftAddNAS, which for the first time can
automatically search for efficient hybrid NNs with both superior accuracy and efficiency.
Our ShiftAddNAS integrates a hybrid hardware-inspired search space that incorporates
both multiplication-based operators (e.g., convolution and attention) and multiplication-
free operators (e.g., shift and add), and can serve as a play-and-plug module to be applied
on top of SOTA NAS works for further boosting their achievable accuracy and efficiency.

2. We develop a new weight sharing strategy for effective search with hybrid search spaces,
which only incurs a negligible overhead when searching for hybrid operators with het-
erogeneous (e.g., Gaussian vs. Laplacian) weight distributions as compared to the vanilla
NAS with merely multiplication-based operators, alleviating the dilemma mentioned above
regarding either inefficient search or inconsistent architecture ranking.

3. We conduct extensive experiments and ablation studies to validate the effectiveness of Shif-
tAddNAS against state-of-the-art (SOTA) works. Results on multiple benchmarks demon-
strate the superior accuracy and hardware efficiency of its searched NNs as compared to
both (1) manually designed multiplication-free networks, CNNs, Transformers, and hybrid
CNN-Transformers, and (2) SOTA NAS works, on both CV and NLP tasks.

2 RELATED WORKS

Multiplication-free NNs. Many efficient NNs aim to reduce their intensive multiplications that
dominate the time/energy costs. One important trend is to replace the multiplications with lower-
cost operators: BNNs (Courbariaux et al., 2016; Juefei-Xu et al., 2017) binarize both the weights
and activations and reduce multiplications to merely sign flips at non-negligible accuracy drops;
AdderNets (Chen et al., 2020; Xu et al., 2020; Wang et al., 2021b) fully replace the multiplications
with lower-cost additions and further develop an effective backpropagation scheme for efficient
AdderNet training; Shift-based NNs leverage either spatial shift (Wu et al., 2018) or bit-wise shift
operations, e.g., DeepShift (Elhoushi et al., 2021), to reduce the amount of multiplications; and
ShiftAddNet (You et al., 2020a) draws inspirations from efficient hardware designs to reparamatize
NNs with mere bitwise shifts and additions. While multiplication-free NNs under-perform their
vanilla NN counterparts in terms of achieved accuracy, ShiftAddNAS aims to automatically search
for multiplication-reduced NNs that incorporate both multiplication-based and multiplication-free
operators for marrying the best of both worlds, i.e., boosted accuracy and efficiency.

Neural architecture search. NAS has achieved an amazing success in automating the design of
efficient NN architectures. For searching for CNNs, early works (Tan & Le, 2019; Tan et al., 2019;
Howard et al., 2019) adopt reinforcement learning based methods that require a prohibitive search
time and computing resources, while recent works (Liu et al., 2018; Wu et al., 2019a; Wan et al.,
2020; Yang et al., 2021) utilize differentiable search to greatly improve the search efficiency. More
recently, SOTA works adopt one-shot NAS (Guo et al., 2020; Cai et al., 2019; Yu et al., 2020;
Wang et al., 2021a) to decouple the architecture search from supernet training and then evaluates
the performance of sub-networks whose weights are directly inherited from the pretrained supernet.
For searching for Transformers, recently emerging works (Wang et al., 2020a; Su et al., 2021; Chen
et al., 2021b;a) adopt one-shot NAS and an evolutionary algorithm to search for optimal Transformer
architectures for both NLP and CV tasks. Additionally, BossNAS (Li et al., 2021) and HR-NAS
(Ding et al., 2021) further search for hybrid CNN-Transformer architectures.
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Nevertheless, little effort has been made to exploring NAS methods especially their search strategies
for multiplication-reduced NNs that incorporate both multiplication-based and multiplication-free
operations. Furthermore, it is not clear whether existing efficient NAS methods are applicable to
searching for such multiplication-reduced NNs. Specifically, prior weight sharing strategies may
not work since weights and activations in CNNs and AdderNets follow a different distribution (Chen
et al., 2020). As such, it is highly desirable to develop NAS methods, e.g., ShiftAddNAS, dedicated
for hardware-inspired multiplication-reduced NNs to increase achievable accuracy and efficiency.

Transformers. Transformers (Vaswani et al., 2017) were first proposed for NLP tasks, which has
inspired many interesting works. Some advance Transformer design by improving the attention
mechanism (Chen et al., 2018), training deeper Transformers (Wang et al., 2019), and replacing the
attention with convolutional modules (Wu et al., 2019b); and others strive to reduce Transformers’
computational complexity by adopting sparse attention mechanisms (Zaheer et al., 2020), low-rank
approximation (Wang et al., 2020b), or compression techniques (Wu et al., 2020). Recently, there
has been a growing interest in developing Transformers for CV tasks: Vision Transformer (ViT)
(Dosovitskiy et al., 2021) for the first time successfully applies pure Transformers to image classi-
fication and achieves SOTA task accuracy, which yet relies on pretraining on giant datasets (Hinton
et al., 2015); following works including DeiT (Touvron et al., 2021) T2T-ViT (Yuan et al., 2021) de-
velop new training recipes and tokenization schemes, for achieving comparable accuracy without the
necessity of costly pretraining; and another trend is to incorporate CNN modules into Transformer
architectures for better accuracy and efficiency tradeoffs (Wu et al., 2021; Xiao et al., 2021; Graham
et al., 2021). In contrast, we advocate hybrid multiplication-reduced NNs and develop an automated
search framework that can automatically search for such hardware inspired hybrid models.

3 THE PROPOSED SHIFTADDNAS FRAMEWORK

In this section, we first introduce the hybrid search space from both algorithmic and hardware
costs perspectives, providing high-level background and justification for motivating ShiftAddNAS;
Sec. 3.2 elaborates the one-shot search method of ShiftAddNAS by first analyzing the dilemma of
either inefficient search or inconsistent architecture ranking and then introducing the proposed novel
heterogeneous weight sharing strategy tackling the aforementioned dilemma.

3.1 SHIFTADDNAS: HYBRID SEARCH SPACE

Candidate blocks. The first step of developing ShiftAddNAS is to construct a hybrid search space
incorporating suitable building blocks that exhibit various performance-efficiency trade-offs. Specif-
ically, we hypothesize that integrating both multiplication-based and multiplication-free blocks into
the search space could lead to both boosted accuracy and efficiency, and consider blocks from two
trends of designing NNs: (1) capable NNs, e.g., vanilla CNNs and Transformers, leverage either
convolutions (Conv) or multi-head self-attentions (Attn) that comprise of intensive multiplica-
tions to capture local or global correlations, achieving a SOTA accuracy in both CV and NLP tasks;
and (2) efficient multiplication-free NNs, e.g, ShiftAddNet, draw inspirations from hardware design
practices to incorporate two efficient and complementary blocks, i.e., coarse-grained Shift and
fine-grained Add, for favoring hardware efficiency, while maintaining a decent accuracy. While our
constructed general hybrid search space for both NLP and CV tasks are shown in Fig. 2, we next
analyze the building blocks from both algorithmic and hardware costs perspectives.

• Attn is a core component of Transformers (Vaswani et al., 2017), which consists of a num-
ber of heads H with each capturing different global-context information by measuring pairwise
correlations among tokens as defined below:

OAttn=Concat(H1, · · · ,Hh) ·WO, where Hi=Softmax(
QWQ

i · (KWK
i )T√

dk
) · VWV

i , (1)

where h denotes the number of heads,Q,K, V ∈ Rn×d are the query, key, and value embeddings
of hidden dimension d obtained by linearly projecting the input sequence of length n. For each
head, WQ

i ,W
K
i ,WV

i ∈ Rd×dk are learned projection weight matrices where dk = d/h is
the embedding dimension of each head. In this way, the Attn block first computes dot-products
between key-query pairs, scales to stabilize the training, uses Softmax to normalize the resulting
attention scores, and then computes a weighted sum of the value embeddings corresponding to
different inputs. Finally, the results from all heads are concatenated and further projected with a
weight matrix WO ∈ Rd×d to generate the outputs.
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• Conv is a key operator of CNNs, which models the local-context information of high-
dimensional inputs such as images through sliding kernel weights W on top of inputs X to mea-
sure their similarity (Gu et al., 2018), as defined in Eq. (2). Its translation invariant and weight
sharing ability leads to various SOTA CNNs (He et al., 2016) or hybrid CNN-Transformer mod-
els (Xiao et al., 2021). However, the computational complexities of CNNs can be prohibitive
due to their required intensive multiplications. For example, one forward pass of ResNet-50 (He
et al., 2016) requires 4G floating point multiplications.

OConv =
∑

XT ∗W ; OShift =
∑

XT ∗ (S · 2P ); OAdd = −
∑
‖X −W‖1, (2)

• Shift is a well-known efficient hardware primitive, motivating the recent development of shift-
based efficient NNs. For example, DeepShift (Elhoushi et al., 2021) parametrizes NNs with bit-
wise shifts and sign flips, as formulated in the middle of Eq. (2), with W = S · 2P denoting
weights in the shift blocks, where S ∈ {−1, 0, 1} are sign flip operators and the power-of-two
parameter for P represents the bitwise shifts. However, NNs built with shift blocks and quan-
tized weights are observed to be inferior to multiplication-based NNs in terms of expressiveness
(accuracy) as validated in (You et al., 2020a).

• Add is another efficient hardware primitive which motivates recent works (Chen et al., 2020;
Wang et al., 2021b; Song et al., 2021) to design efficient NNs using merely additions to measure
the similarity between kernel weights W and inputs X , as shown in the right part of Eq. (2).
Such add-based NNs (Chen et al., 2020; Xu et al., 2020) in general have a better expressive
capacity than their shift-based counterparts. For example, AdderNets (Chen et al., 2020) achieve
a 1.37% higher accuracy than DeepShift under similar or even lower FLOPs on ResNet-18 with
the ImageNet dataset. However, add-based operators (i.e., repeated additions) are not parameter-
efficient as compared to bitwise shift operations (You et al., 2020a). While NNs combining shfit
and add achieve a boosted accuracy, efficiency, and robustness than NNs using merely either of
them, their accuracy still compares unfavorably as compared with vanilla CNNs or Transformers.

Based on the above introduction, the search space in ShiftAddNAS incorporates all the four different
types of blocks (i.e., Attn, Conv, Shift, and Add), aiming to push forward both NNs’ accuracy and
efficiency. Note that we refer to all operators as blocks, and adopt block based search space because
it has been evidenced and proven that block based ones can reduce the search space size and lead to
more accurate architecture ranking/rating (Li et al., 2020b;a).

31x

196x

Figure 1: Unit energy comparisons.

Hardware cost analysis. As mentioned, multiplication-
based operators (e.g., Attn and Conv) favor a superior ac-
curacy yet is not hardware efficient, while multiplication-free
operators (e.g., Shift and Add) favors a better hardware ef-
ficiency yet can hurt the achievable accuracy. Specifically, as
shown in Fig. 1, bitwise shifts can save as high as 196× and
24× energy costs over multiplications, when implemented in
a 45nm CMOS technology and SOTA FPGA (Xilinx Inc.), re-
spectively; with a 16-bit precision, bitwise shifts may achieve
at least 9.7× and 1.45× average power and area savings than
multipliers (Elhoushi et al., 2021); and similarly, additions
can save up to 196× and 31× energy costs over multipli-
cations in 32-bit fixed-point (FIX32) formats, and 47× and
4.1× energy costs in 32-bit floating-point (FP32) formats,
when implemented in a 45nm CMOS technology and SOTA FPGA (Xilinx Inc.), respectively, while
aggressively leading to 1.84×, 25.5×, and 7.83× area savings than multiplications in a 45nm CMOS
technology with FP32, FIX32, and FIX8 formats, respectively (Chen et al., 2021c).

Supernet for NLP tasks. Based on the above search space, we construct a supernet for the con-
venience of search following SOTA one-shot NAS methods (Cai et al., 2018; Guo et al., 2020) by
estimating the performance of each candidate hybrid model (i.e., subnet) without fully training it. As
shown in Fig. 2 (a), each macro-block in the supernet includes all the aforementioned four candidate
blocks and three multi-branch combinations (e.g., Attn+Conv) along the channel dimension for cap-
turing both global and local context information following (Wu et al., 2020), where the candidate
blocks in the same layer are isolated with each followed by two-layer MLPs and enabling elastic
embedding dimension, head numbers, and MLP hidden dimension for fine-grained search for effi-
cient NNs as (Wang et al., 2020a). Overall, our supernet for NLP tasks contains about 1014 subnet
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Figure 2: Supernets for NLP and CV tasks: (a) For NLP, we adopt a multi-branch structure for each
block of the supernet, where Attn+Conv represents the channel-wise concatenation of these two
blocks, and (b) for CV tasks, we consider a multi-resolution pipeline for each block of the supernet.

Table 1: The search space for NLP tasks.
Encoder block types [Attn, Attn+Conv, Attn+Shift]

[Attn+Add, Conv, Shift, Add]

Decoder block types [Attn, Attn+Conv]
[Attn+Shift, Attn+Add]

Num. of decoder blocks [6, 5, 4, 3, 2, 1]
Elastic embed. dim. [1024, 768, 512]
Elastic head num. [16, 8, 4]
Elastic MLP dim. [4096, 3072, 2048, 1024]

Arbitrary Attn [3, 2, 1]

candidates, and the searchable choices are
listed in Tab. 1. During training, all possi-
ble subnets are uniformly sampled and only one
path is activated for each layer at run-time con-
sidering the practical concern on memory con-
sumption for supernet training. For ease of
evaluation, we incorporate common treatments
of NAS in our suppenet design. First, for the
elastic dimensions mentioned above, all sub-
nets share the front portion of weights or heads of the largest dimension. Second, all decoder blocks
can take the last one, two, or three encoder blocks as inputs for abstracting both high-level and low-
level information (Wang et al., 2020a). Note that the number of decoder blocks are also searchable
and the conv, shift and add operators are disabled for decoder blocks, as they are observed to be
sensitive and activating those paths might hurt the accuracy (You et al., 2020a; Wu et al., 2019b).

Table 2: The search space for CV tasks.
Block types [Attn, Conv, Shift, Add]

Num. of 562×128 blocks [1, 2, 3, 4]
Num. of 282×256 blocks [1, 2, 3, 4]
Num. of 142×512 blocks [3, 4, 5, 6, 7]
Num. of 72×1024 blocks [4, 5, 6, 7, 8, 9]

Supernet for CV tasks. Different from the com-
monly used elastic hidden dimension design for
NLP tasks, various spatial resolutions or scales are
essential for CV tasks. As such, to ensure more
capable feature description of the searched NNs,
we adopt a multi-resolution supernet design. As
shown in Fig. 2 (b), the supernet incorporates flexible downsampling options, where the spatial
resolution for each layer can either stay unchanged or be reduced to half of its previous layer’s scale
until reaching the smallest resolution. In this way, the four candidate blocks can work collabora-
tively to deliver the multiscale features required by most CV tasks. Overall, our supernet contains
about 109 subnets, for which the detailed searchable choices are summarized in Tab. 2. Note that the
Attn block is followed by two-layer MLPs and we also include a residual connection for each block
as inspired by (Srinivas et al., 2021). During training, the supernet performs uniform sampling and
only activates one path of the chosen resolution and block type for each layer as for the NLP tasks.

3.2 SHIFTADDNAS: SEARCH METHOD

3.2.1 BACKGROUND AND FORMULATION OF ONE-SHOT NAS
We adopt one-shot NAS for improved search efficiency, i.e., assuming that the subnet candidates
can directly inherit their weights from the supernet, following SOTA NAS works. Such a strategy is
commonly referred as weight sharing. Specifically, the supernetN with parameters W is trained to
obtain the weights for all subnets within the search space S. Since the supernet training and archi-
tecture search are decoupled in one-shot NAS, it usually requires two-level optimization: supernet
training and architecture evaluation as defined below:

WS = argmin
W

Ltrain(N (S,W )), (3)

a∗ = argmax
a∈S

ACCval(N (a,WS(a))). (4)

whereN (S,W) represents all possible candidate subnets within the search space. We first train the
supernet by uniformly sampling different subnets a from S as formulated in Eq. (3), after which
all subnet candidates a directly inherit their corresponding weights WS(a) from the supernet WS .
Finally, we evaluate the accuracy ACCval(.) of each path on the validation set and search for the
best subnet with the highest accuracy as formulated in Eq. (4).
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Figure 3: Heterogeneous weight distributions.

Dilemma of vanilla ShiftAddNAS. The target
hybrid search space of ShiftAddNAS inevitably
enlarges the supernet due to the newly considered
operators. As such, activating all block choices
without weight sharing as (Gong et al., 2019;
Cai et al., 2018) can easily explode the mem-
ory consumption of NAS. On the other hand, di-
rectly sharing weights among different operators
as (Chen et al., 2021b) will lead to biased search,
especially for our hardware-inspired hybrid search space where weights and activations of different
operators follow heterogeneous distributions, e.g., weights of the Conv and Add blocks follow a
Gaussian and Laplacian distribution, respectively, as shown in Fig. 3 and also highlighted in (Chen
et al., 2020). Specifically, if we follow the existing weight sharing strategy to enforce a homo-
geneous weight distribution among different operators during training the supernet, the resulting
weights will not match the heterogeneous weight distributions of independently trained optimal hy-
brid subnets. That is to say, for NAS with the target hybrid search space, there exists an optimization
gap between the goals of weight sharing optimization and individual subnet optimization, where the
former is approximated while the latter is accurate (Xie et al., 2020). Hence, naively adopting the
homogeneous weight sharing strategy can lead to inconsistent architecture ranking, which is a major
issue associated with one-shot NAS as pointed out by (Chu et al., 2019; You et al., 2020b).

Proposed solution: heterogeneous weight sharing. To tackle the aforementioned dilemma, we
propose a heterogeneous weight sharing strategy that can simultaneously reduce the supernet size
corresponding to the target hybrid search space and allow weights of different blocks to follow
heterogeneous distributions. Specifically, the learning objective for the supernet includes both the
traditional cross-entropy loss and a KL-divergence loss that is to regularize weight distributions to
be close to either a standard Gaussian distribution N (0, I) or Laplacian distribution Lp(0, λ), (Xie
et al., 2020; Chen et al., 2020), where I is the identity matrix and λ = 1, dedicated for the Conv and
Add blocks, respectively, to reduce the aforementioned optimization gap as formulated in Eq. (5):

LS = LCE + LKL = − 1

N

N∑
i=1

P (yi|xi) log(P (ŷi|xi))

+DKL(PConv(WS) || N (0, I)) +DKL(PAdd(T (WS)) || Lp(0, λ)),

(5)

where {(xi, yi)}Ni=1 are training data, ŷ denotes the output prediction, and DKL(p||q) =

−
∫
p(z)p(z)q(z)dz measures the KL-divergence between two distributions. During training, we main-

tain a shared weight pool for each layer to share weights across all the Conv, Add, and Shift
blocks, as illustrated in Fig. 4 (a). Meanwhile, weights of the Conv blocks directly leverage the
corresponding ones in the shared weight pool for both forward and backpropagation, while being
encouraged to follow a Gaussian distribution by the objective function; weights of the Shift blocks
quantize the shared weights of Gaussian distribution to powers of two before multiplying with the
input features; and for the Add blocks, we make use of a learnable transformation kernel T (·) to
map the shared weights of Gaussian distribution to a Laplacian distribution. For the learnable trans-
formation kernel as captured by Eq. (6), the core idea is to apply a piece-wise linear transformation
after flattening and sorting the weights in a descending order, and then to reshape and rearrange the
transformed weights back to their positions before sorting.
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T (W ) =

d−1∑
i=0

αi ×W[s×i:s×(i+1)], (6)

where {αi}di=1 denote the learnable parameters in T (·), {Wi}ni=1 represent the sorted weights (a
total of n) in the pool, s = n/d denotes an interval within which the transformation is linear, as
illustrated in Fig. 4 (b). As validated in our experiment (e.g., Fig. 3), such a transformation kernel
can successfully transform the shared weights of Gaussian to the desired Laplacian distribution,
which is consistent with previous observations about kernel learning via linear transformation (Jain
et al., 2012). In our design, each layer has its own learnable kernel T (·) with a dimension d of
200 throughout all the experiments as we observed that such a dimension is adequate to learn the
transformation across all the models and datasets, leading to over 40% supernet size reduction while
only incurring a negligible (< 0.01% of the supernet size and computational costs) search overhead.
After the supernet is well trained, evolution search is applied to find the optimal subnets.

4 EXPERIMENT RESULTS

In this section, we first describe our experiment setups, and then benchmark ShiftAddNAS over
SOTA CNNs, Transformers, and previous NAS frameworks on both NLP and CV tasks. After that,
we conduct ablation studies regarding ShiftAddNAS’s heterogeneous weight sharing strategy.

4.1 EXPERIMENT SETUPS

Datasets, baselines, and evaluation metrics. For NLP tasks, we consider two machine translation
datasets, WMT’14 English to French (En-Fr) and English to German (En-De), which consist of
36.3M and 4.5M pairs of training sentences, respectively. The train/val/test splits follow the tra-
dition as in (Wang et al., 2020a; Gehring et al., 2017). We consider five baselines: Transformer
(Vaswani et al., 2017), Lightweight Conv (Wu et al., 2019b), Lite Transformer (Wu et al., 2020),
and two previous NAS works including Evolved Transformer (So et al., 2019) and HAT (Wang et al.,
2020a). We evaluate in terms of five evaluation metrics: the number of parameters/FLOPs, achieved
BLEU, and hardware energy and latency measured on a SOTA accelerator Eyeriss (Chen et al.,
2016) clocked at 250MHz, where the BLEU is calculated with case-sensitive tokenization following
(Wang et al., 2020a). For CV tasks, we consider the ImageNet dataset and four kinds of SOTA base-
lines: four multiplication-free CNNs (Chen et al., 2020; Xu et al., 2020; Courbariaux et al., 2016;
Elhoushi et al., 2021), two CNNs (He et al., 2016; Hu et al., 2018), five Transformers (Dosovitskiy
et al., 2021; Touvron et al., 2021; Yuan et al., 2021; Han et al., 2021; Srinivas et al., 2021), and four
NAS works (i.e., HR-NAS (Ding et al., 2021), BossNAS (Li et al., 2021), AutoFormer (Chen et al.,
2021b), and VITAS (Su et al., 2021)). Similar to those for the NLP tasks, we adopt five evaluation
metrics: the number of parameters/MACs, achieved accuracy, and hardware energy and latency.

Search and training settings. For NLP tasks, after training the supernet for 40K steps, we adopt an
evolutionary algorithm (Wang et al., 2020a) to search for subnets with various latency and FLOPs
constraints ranging from 1.5G to 4.5G for 30 steps with a population of 125, a crossover population
of 50, and a mutation population of 50 with a probability of 0.3. During search, measuring latency
for each chosen subnet can be time-consuming. Instead, we estimate the latency using a three-
layer NN trained with encoding architecture parameters as features and measured latency as labels
following (Wang et al., 2020a). The latency predictor is accurate with an average prediction error of
< 5%. The searched subnets are then retrained from scratch for another 40K steps with an Adam
optimizer and a cosine learning rate (LR) scheduler, where the LR is linearly warmed up from 10−7

to 10−3 and then annealed (same for training supernets). For CV tasks, we conduct an evolutionary
search with FLOPs constraints for 20 steps with a population of 50, a crossover population of 25,
and a mutation population of 25 with a probability of 0.2 following (Chen et al., 2021b). We train
both the supernet and searched subnets using the same recipe and hyperparameters as DeiT (Touvron
et al., 2021). Note that the position encoding in the attention blocks is replaced with a depthwise
convolution following (Li et al., 2021) for reducing the computational complexity.

4.2 SHIFTADDNAS VS. SOTA ON NLP TASKS

We compare ShiftAddNAS with SOTA language models on two NLP tasks to evaluate its effective-
ness. Fig. 5 shows that ShiftAddNAS consistently outperforms all the baselines in terms of BLEU
scores and FLOPs. Specifically, ShiftAddNAS with full precision achieves 11.8%∼ 73.6% FLOPs
reductions while offering a comparable or better BLEU score (-0.3 ∼ +1.1), over all the full preci-
sion baselines. To benchmark with Lite Transformer (8-bit) which is dedicated for mobile devices,
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Figure 5: BLEU scores vs. FLOPs of ShiftAddNAS over SOTA baselines on NLP tasks.

Table 3: ShiftAddNAS vs. SOTA baselines in terms of accuracy and efficiency on NLP tasks.
WMT’14 En-Fr WMT’14 En-De

Params FLOPs BLEU Latency Energy Params FLOPs BLEU Latency Energy
Transformer 176M 10.6G 41.2 130ms 214mJ 176M 10.6G 28.4 130ms 214mJ
Evolved Trans. 175M 10.8G 41.3 - - 47M 2.9G 28.2 - -
HAT 48M 3.4G 41.4 49ms 81mJ 44M 2.7G 28.2 42ms 69mJ
ShiftAddNAS 46M 3.0G 41.8 43ms 71mJ 43M 2.7G 28.2 40ms 66mJ
HAT 46M 2.9G 41.1 42ms 69mJ 36M 2.2G 27.6 34ms 56mJ
ShiftAddNAS 41M 2.7G 41.6 39ms 64mJ 33M 2.1G 27.8 31ms 52mJ
HAT 30M 1.8G 39.1 29ms 48mJ 25M 1.5G 25.8 24ms 40mJ
ShiftAddNAS 29M 1.8G 40.2 16ms 45mJ 25M 1.6G 26.7 24ms 40mJ
Lite Trans. (8-bit) 17M 1G 39.6 19ms 31mJ 17M 1G 26.5 19ms 31mJ
ShiftAddNAS (8-bit) 11M 0.2G 41.5 11ms 16mJ 17M 0.3G 28.3 16ms 24mJ
Lite Trans. (8-bit) 12M 0.7G 39.1 14ms 24mJ 12M 0.7G 25.6 14ms 24mJ
ShiftAddNAS (8-bit) 10M 0.2G 41.1 10ms 15mJ 12M 0.2G 26.8 9.2ms 14mJ

we refer to a SOTA quantization technique (Banner et al., 2018) for quantizing ShiftAddNAS to 8-bit
fixed point: ShiftAddNAS (8-bit) achieves +1.8∼ +4.9 BLEU scores improvements over Lite Trans-
former (8-bit), while offering 5.0% ∼ 82.7% FLOPs reductions, and aggressively reduces 91.6% ∼
98.4% FLOPs as compared to all the full-precision baselines with comparable BLEU scores (-0.1
∼ +0.3). Note that for quantized models, we follow (Zhou et al., 2016) to use FLOPs × (Bit/32)2
for calculating the effective FLOPs which is proportional to the number of bit-operations. We fur-
ther compare various aspects of ShiftAddNAS with all baselines in Tab. 3. As illustrated in this
Table, ShiftAddNAS consistently outperforms the baselines, e.g., achieves up to +2 BLEU scores
improvement when comparing ShiftAddNAS (8-bit) with Lite Transformer on WMT’14 En-Fr and
69.1% and 69.2% energy and latency savings when comparing ShiftAddNAS with Transformer on
WMT’14 En-De, with a comparable or even fewer model parameters and FLOPs.

4.3 SHIFTADDNAS VS. SOTA ON CV TASKS

-64.4%

-93.0% Energy 

+4.7 Acc.

Figure 6: Accuracy vs. energy costs of Shif-
tAddNAS over baselines.

We further compare ShiftAddNAS over SOTA base-
lines on ImageNet to evaluate its effectiveness
on the image classification task. As shown in
Tab. 4, ShiftAddNAS outperforms a wide range
of baselines. Here we refer MACs as Multi-
ply–accumulate or Shift-accumulate operations. For
example, ShiftAddNet-T0 (searched with a 4.5G
MACs constraint) with 3.7G MACs achieves an im-
proved top-1 accuracy of (1) +5.3% ∼ +26.3%
over SOTA multiplication-free CNNs, (2) +0.7%
∼ +6.0% over SOTA CNNs, (3) +0.4% ∼ +7.6%
over SOTA Transformers, (4) +1.3% ∼ +4.8% over
SOTA CNN-Transformers, and (5) +1.3%, +4.7%,
and +0.4% over previous SOTA NAS baselines
BossNAS, VITAS, and Autoformer, respectively, under a comparable or even less MACs. More-
over, considering looser MACs constraints, we follow BossNAS to remove the downsampling in the
last stage, resulting in ShiftAddNAS-T1 with a accuracy of 82.7% and 6.4G MACs that surpasses
T2T-ViT and BoTNet-S1-59 by +0.8% and +1.0% at even less MACs. By directly testing on larger
input resolutions without finetuning, ShiftAddNAS-T1↑ (w/ 2562 input resolution) offers an accu-
racy of 83.0%, surpassing BossNAS-T1 and Autoformer-B by +0.8% and +0.6% with comparable
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Table 4: Comparison with SOTA baselines on ImageNet classification task.
Model Top-1 Acc. Top-5 Acc. Params Res. MACs #Mult. #Add #Shift Model Type
BNN 55.8% 78.4% 26M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
AdderNet 74.9% 91.7% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
AdderNet-PKKD 76.8% 93.3% 26M 2242 3.9G 0.1G 7.6G 0 Mult.-free
DeepShift-Q 70.7% 90.2% 26M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
DeepShift-PS 71.9% 90.2% 52M 2242 3.9G 0.1G 3.9G 3.8G Mult.-free
ShiftAddNet 72.3% - 64M 2242 10G 0.1G 16G 3.9G Mult.-free
ResNet-50 76.1% 92.9% 26M 2242 3.9G 3.9G 3.9G 0 CNN
ResNet-101 77.4% 94.2% 45M 2242 7.6G 7.6G 7.6G 0 CNN
SENet-50 79.4% 94.6% 26M 2242 3.9G 3.9G 3.9G 0 CNN
SENet-101 81.4% 95.7% 45M 2242 7.6G 7.6G 7.6G 0 CNN
ViT-B/16 77.9% - 86M 3842 18G 18G 17G 0 Transformer
ViT-L/16 76.5% - 304M 3842 64G 64G 63G 0 Transformer
DeiT-T 74.5% - 6M 2242 1.3G 1.3G 1.3G 0 Transformer
DeiT-S 81.2% - 22M 2242 4.6G 4.6G 4.6G 0 Transformer
VITAS 77.4% 93.8% 13M 2242 2.7G 2.7G 2.7G 0 Transformer
Autoformer-S 81.7% 95.7% 23M 2242 5.1G 5.1G 5.1G 0 Transformer
BoT-50 78.3% 94.2% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
BoT-50 + SE 79.6% 94.6% 21M 2242 4.0G 4.0G 4.0G 0 CNN + Trans.
HR-NAS 77.3% - 6.4M 2242 0.4G 0.4G 0.4G 0 CNN + Trans.
BossNAS-T0 80.5% 95.0% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
BossNAS-T0 + SE 80.8% 95.2% 38M 2242 3.5G 3.5G 3.5G 0 CNN + Trans.
ShiftAddNAS-T0 82.1% 95.8% 30M 2242 3.7G 2.7G 3.8G 1.0G Hybrid
ShiftAddNAS-T0↑ 82.6% 96.2% 30M 2562 4.9G 3.6G 4.9G 1.4G Hybrid
T2T-ViT-19 81.9% - 39M 2242 8.9G 8.9G 8.9G 0 Transformer
TNT-S 81.3% 95.6% 24M 2242 5.2G 5.2G 5.2G 0 Transformer
Autoformer-B 82.4% 95.7% 54M 2242 11G 11G 11G 0 Transformer
BoTNet-S1-59 81.7% 95.8% 28M 2242 7.3G 7.3G 7.3G 0 CNN + Trans.
BossNAS-T1 82.2% 95.8% 38M 2242 8.0G 8.0G 8.0G 0 CNN + Trans.
ShiftAddNAS-T1 82.7% 96.1% 30M 2242 6.4G 5.4G 6.4G 1.0G Hybrid
ShiftAddNAS-T1↑ 83.0% 96.4% 30M 2562 8.5G 7.1G 8.5G 1.4G Hybrid

Table 5: Ablation study of ShiftAddNAS w/ (1) naive and (2) heterogeneous weight sharing.
ShiftAddNAS Kendall τ Pearson R Spearman ρ Top-1 Acc. Params Energy Latency
w/ Naive WS 0.49 0.67 0.69 81.3% 30M 440mJ 387ms
w/ HWS 0.54 0.75 0.74 82.7% 30M 413mJ 252ms

or even less MACs, respectively. Finally, we compare ShiftAddNAS with representative baselines
of various model types in terms of accuracy and energy cost in Fig. 6, where each line represents
a series searched/designed models with various FLOPs constraints. We can see that ShiftAddNAS
consistently outperforms all the baselines, on average offering a +0.8% ∼ +7.7% higher accuracy
and 24% ∼ 93% energy savings. Specifically, our ShiftAddNAS on average achieves a +0.8%
higher accuracy and 30% energy savings against the competitive NAS baseline BossNAS.

4.4 ABLATION STUDIES OF SHIFTADDNAS
We conduct ablation studies on ShiftAddNAS’s heterogeneous weight sharing (HWS) strategy, as
shown in Tab. 5. First, for searching on ImageNet, we use three ranking correlation metrics: Kendall
τ , PearsonR, and Spearman ρ, to measure the ranking correlation between ShiftAddNAS w/ and w/o
HWS and find that the former leads to a higher ranking correlation than the naive WS. Second, the
proposed HWS leads to more accurate searched subnets. Specifically, the searched subnet achieves
a +1.4% higher accuracy than that of naive WS, at comparable or even smaller energy and latency
costs. Also, HWS effectively reduces the supernet size from 615M (w/o WS) to 364M (41% sav-
ings). This set of ablation studies validate the effectiveness of our proposed HWS strategy.

5 CONCLUSION

We propose ShiftAddNAS for searching for multiplication-reduced NNs incorporating both pow-
erful yet costly multiplications and efficient yet less powerful shift and add operators for marrying
the best of both worlds. ShiftAddNAS is made possible by integrating: (1) the first hybrid search
space that incorporates both multiplication-based and multiplication-free operators for searching for
more accurate and efficient NNs; and (2) a novel heterogeneous weight sharing strategy that allows
different operators to follow heterogeneous distributions for alleviating the dilemma of either inef-
ficient search or inconsistent architecture ranking when applying NAS for hybrid NNs. Extensive
experiments on both NLP and CV tasks demonstrate the superior accuracy and energy efficiency of
ShiftAddNAS’s searched NNs over various SOTA baselines. Our ShiftAddNAS has opened up a
new perspective in searching for more accuracy and efficient NNs.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. arXiv preprint arXiv:1805.11046, 2018.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen Lin, Ming Sun, Junjie Yan, and
Wanli Ouyang. Glit: Neural architecture search for global and local image transformer. volume
abs/2107.02960, 2021a. URL https://arxiv.org/abs/2107.02960.

Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Addernet:
Do we really need multiplications in deep learning? The IEEE Conference on Computer Vision
and Pattern Recognition, 2020.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster,
Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit,
Lukasz Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds:
Combining recent advances in neural machine translation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 76–
86. Association for Computational Linguistics, July 2018. doi: 10.18653/v1/P18-1008. URL
https://aclanthology.org/P18-1008.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers
for visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021b.

Peng Chen, Jing Liu, Bohan Zhuang, Mingkui Tan, and Chunhua Shen. Aqd: Towards accurate
quantized object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 104–113, 2021c.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits,
52(1):127–138, 2016.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of
weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Mingyu Ding, Xiaochen Lian, Linjie Yang, Peng Wang, Xiaojie Jin, Zhiwu Lu, and Ping Luo.
Hr-nas: Searching efficient high-resolution neural architectures with lightweight transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2982–2992, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, and Joey Yiwei Li. Deepshift: To-
wards multiplication-less neural networks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, pp. 2359–2368, June 2021.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1243–1252. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.press/v70/gehring17a.html.

10

https://arxiv.org/abs/2107.02960
https://aclanthology.org/P18-1008
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.mlr.press/v70/gehring17a.html


Under review as a conference paper at ICLR 2022

Chengyue Gong, Zixuan Jiang, Dilin Wang, Yibo Lin, Qiang Liu, and David Z Pan. Mixed precision
neural architecture search for energy efficient deep learning. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–7. IEEE, 2019.

Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and
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A EVALUATE THE SEARCH COST

We further supply the total search cost of ShiftAddNAS on both NLP tasks and CV tasks to Table
6 and 7, respectively. For NLP tasks, with one Nvidia V100 GPU, ShiftAddNAS uses on average
9.3 GPU days (Gds) for searching which is comparable to HAT (Wang et al., 2020a) and 9,821×
less than the Evolved Transformer (So et al., 2019); For CV tasks, ShiftAddNAS uses on average
8.9 Gds for searching which is 11% and 82% less than DARTS (Liu et al., 2018) and BossNAS (Li
et al., 2021), respectively. In addition, we provide a concrete breakdown analysis of ShiftAddNAS
search cost in Table 8. For NLP tasks, ShiftAddNAS uses on average 8.5 Gds for supernet training
and 0.8 Gds for architecture searching; For CV tasks, ShiftAddNAS uses on average 7.7 Gds for
supernet training and 1.2 Gds for architecture searching.

Table 6: Search cost on NLP tasks.
Methods Search Cost
Evolved Trans. 91,334 Gds
HAT 9.3 Gds
ShiftAddNAS 9.3 Gds

Table 7: Search cost on CV tasks.
Methods Search Cost
DARTS 50 Gds
BossNAS 10 Gds
ShiftAddNAS 8.9 Gds

Table 8: Breakdown analysis of the
search cost of ShiftAddNAS.

NLP CV
Supernet Train 8.5 Gds 7.7 Gds
Arch. Search 0.8 Gds 1.2 Gds

B VISUALIZATION OF THE HETEROGENEOUS WEIGHT DISTRIBUTIONS

For better understanding of the proposed heterogeneous weight sharing strategy, we further supply
the visualization of the heterogeneous weight distributions in Conv/Add/Shift layers, respec-
tively, as shown in the Fig. 7.

(a) Weights in Conv (b) Weights in Add (c) Weights in Shift

Gaussian Laplacian Discrete

Figure 7: Visualization of the heterogeneous weight distributions in Conv/Add/Shift layers.

C VISUALIZATION OF THE SEARCHED ARCHITECTURE

For better understanding of the searched architecture, we supply the visualization of the searched
architecture by ShiftAddNAS in Fig. 8. The searched architecture contains two adder blocks and
one shift block, and achieves 82.8% top-1 test accuracy on ImageNet with 8.4G MACs (Mult: 7.4G;
Add: 9.1G; Shift: 0.5G). Also, the searched architecture prefers Conv as early blocks while consider
Attn as later blocks, which is also consistent with the previous empirical observation that early
convolutions help the overall performance (Xiao et al., 2021).
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1 1 1 1

3 1 0 2 2
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Figure 8: Visualization of the searched architecture with 82.8% top-1 test accuracy on ImageNet.
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