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Abstract
Open-vocabulary models like CLIP achieve high accuracy across many image
classification tasks. However, there are still settings where their zero-shot perfor-
mance is far from optimal. We study model patching, where the goal is to improve
accuracy on specific tasks without degrading accuracy on tasks where performance
is already adequate. Towards this goal, we introduce PAINT, a patching method
that uses interpolations between the weights of a model before fine-tuning and
the weights after fine-tuning on a task to be patched. On nine tasks where zero-
shot CLIP performs poorly, PAINT increases accuracy by 15 to 60 percentage
points while preserving accuracy on ImageNet within one percentage point of the
zero-shot model. PAINT also allows a single model to be patched on multiple
tasks and improves with model scale. Furthermore, we identify cases of broad
transfer, where patching on one task increases accuracy on other tasks even when
the tasks have disjoint classes. Finally, we investigate applications beyond common
benchmarks such as counting or reducing the impact of typographic attacks on
CLIP. Our findings demonstrate that it is possible to expand the set of tasks on
which open-vocabulary models achieve high accuracy without re-training them
from scratch.

1 Introduction
Open-vocabulary models are characterized by their ability to perform any image classification task
based on text descriptions of the classes [56]. Thanks to advances in large-scale pre-training, recent
examples of open-vocabulary models such as CLIP and BASIC have reached parity with or surpassed
important task-specific baselines, even when the open-vocabulary models are not fine-tuned on
task-specific data (i.e., in a zero-shot setting) [57, 31, 56, 88, 1, 86]. For instance, the largest CLIP
model from Radford et al. [57] used in a zero-shot setting matches the ImageNet accuracy of a
ResNet-50 trained on 1.2 million ImageNet images [14, 24].

Nevertheless, current open-vocabulary models still face challenges. The same CLIP model that
matches a ResNet-50 on ImageNet has lower MNIST accuracy than simple logistic regression in
pixel space [57]. Moreover, even when zero-shot models achieve good performance, they are usually
still worse than models trained or fine-tuned on specific downstream tasks.

To address these issues, several authors have proposed methods for adapting zero-shot models to a task
of interest using labeled data [82, 91, 21, 89, 37, 73]. A common practice is to fine-tune the zero-shot
model on the task of interest [82, 56]. However, fine-tuned models can suffer from catastrophic
forgetting [48, 76, 20, 33], performing poorly on tasks where the zero-shot model initially performed
well [2, 82, 56]. Additionally, fine-tuning typically produces a task-specific classification head,
sacrificing the flexible text-based API that makes open-vocabulary models so appealing. Whereas
an open-vocabulary model can perform any classification task in a zero-shot fashion, a fine-tuned
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Figure 1: Patching open-vocabulary models by lin-
early interpolating weights. We wish to improve ac-
curacy on tasks where a model performs poorly (patching
tasks), without degrading performance on tasks where
accuracy is already adequate (supported tasks). When
interpolating weights of fine-tuned models and zero-
shot (unpatched) models, there are intermediate solu-
tions where accuracy improves on the patching task
without reducing accuracy on supported tasks. Results
are shown for CLIP models [57], averaged over nine
patching tasks (Stanford Cars, DTD, EuroSAT, GTSRB,
KITTI distance, MNIST, RESISC45, SUN397 and SVHN
[35, 11, 25, 71, 22, 39, 7, 12, 84, 53]) and five supported
tasks (ImageNet, CIFAR-10, CIFAR-100, STL-10 and
Food101 [14, 36, 12, 5]). We apply PAINT separately
on each patching task and average results across experi-
ments. The dashed lines illustrate vertical movement from
the unpatched models and horizontal movement from the
fine-tuned models.

model with a task-specific head can only process the specific task that it was fine-tuned on. This
specialization can prevent knowledge obtained by fine-tuning on one task from transferring to other
related tasks with different classes.

Another approach to adapting zero-shot models would be to add data from the downstream task to
the pre-training dataset and train a new open-vocabulary model from scratch. The resulting model
could still perform any classification task, and zero-shot performance may improve on related tasks.
However, training large image-text models from scratch can require hundreds of thousands of GPU
hours [57, 56, 86], which makes this approach practically infeasible in most settings.

In this paper, we study patching open-vocabulary models, where the goal is to increase accuracy
on new target tasks while maintaining the flexibility of the model and its accuracy on other tasks.1
Patching aims to combine the benefits of fine-tuning and re-training from scratch: improved perfor-
mance on the task of interest, maintaining the flexibility of an open vocabulary, transfer between
tasks, and fast adaptation time. Motivated by these goals, we extend existing fine-tuning techniques
[82] to open-vocabulary settings, where the class space is not fixed. We introduce Patching with
Interpolation (PAINT), a simple, two-step procedure for patching models: first, fine-tune the model on
the patching task without introducing any task-specific parameters; then, linearly interpolate between
the weights of the model before and after fine-tuning. Linearly interpolating neural network weights
[52, 19, 54] has been previously used to improve accuracy on a single task [28, 81] or robustness to
distribution shift [82]. Indeed, averaging network weights has been explored in continual learning
contexts, although for closed-vocabulary models [40].

With PAINT, accuracy can improve on new tasks without degrading accuracy on unrelated tasks, as
illustrated in Figure 1. For instance, applying PAINT to a CLIP ViT-L/14 [57] independently on nine
image classification tasks [35, 11, 25, 71, 22, 39, 7, 84, 53] improves accuracy by 15 to 60 percentage
points compared to the unpatched model, while accuracy on ImageNet [14] decreases by less than
one percentage point. We also observe a promising trend: patching becomes more effective with
model scale (Section 4.1).

Beyond single tasks, we show that models can be patched on multiple tasks (Section 5). When patch-
ing on nine image classification tasks simultaneously, a single CLIP ViT-L/14 model is competitive
with using one specialized model for each task—the average accuracy difference is less than 0.5
percentage points.

Moreover, PAINT enables broad transfer (Section 6): accuracy on related tasks can increase, even
when the class space changes. For instance, we partition EuroSAT [25], a satellite image dataset, into
two halves with disjoint labels. Patching a ViT-L/14 model on the first half improves accuracy on the
second half by 7.3 percentage points, even though the classes are unseen during patching.

1The term patching is borrowed from software development terminology, drawing inspiration from recent
work which conceptualizes developing machine learning models like open-source software [58, 62, 47, 72].
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Finally, we investigate PAINT on case studies including typographic attacks [23], counting [32], and
visual question answering [4] (Section 7). For instance, applying PAINT using synthetic typographic
attacks leads to a model that is less susceptible to typographic attacks in the real world, improving its
accuracy by 41 percentage points.

In summary:

• Even the best pre-trained models are not perfect. We introduce PAINT, a method designed to
improve accuracy on new tasks without harming accuracy elsewhere.

• PAINT incurs no extra computational cost compared to standard fine-tuning, neither during
fine-tuning itself nor at inference time.

• PAINT can also be applied with multiple tasks, providing a single model that is competitive
with many specialized models.

• Applying PAINT with one task can improve accuracy on a related task, even when they do not
share the same classes.

• PAINT improves with model scale, indicating a promising trend for future models.

2 Patching with interpolation (PAINT)
This section details our method for patching models on a single and multiple tasks.

Patching on a single task. Given an open-vocabulary model with weights θzs and a patching task
Dpatch, our goal is to produce a new model θpatch which achieves high accuracy on Dpatch without
decreasing model performance on tasks where accuracy is already acceptable. We let Dsupp denote a
representative supported task where model performance is adequate, and later show that the method
is stable under different choices of Dsupp (Section 4.2). The two-step procedure we explore for
producing θpatch is given below.

Step 1. Fine-tune θzs on training data from Dpatch to produce a model with weights θft.
Step 2. For mixing coefficient α ∈ [0, 1], linearly interpolate between θzs and θft to produce
θpatch = (1− α) · θzs + α · θft. The mixing coefficient is determined via held-out validation
sets for Dsupp and Dpatch. We refer to the resulting model as θpatch.

In our experiments, we do not introduce any additional task-specific parameters when fine-tuning, as
discussed in Section 3 and Appendices B and C.

Patching on a multiple tasks. In practice, we often want to improve model accuracy on multiple
patching tasks D(1)

patch, ...,D
(k)
patch, which can be accomplished with straightforward modifications to

the procedure above. We explore three alternatives and examine their relative trade-offs in Section 5:

• Joint patching, where we merge all the patching tasks D(i)
patch into a single task Dpatch before

running the patching procedure;
• Sequential patching, where we iteratively repeat the patching procedure above on each new task
D(i)

patch and let θzs ← θpatch after each completed iteration;
• Parallel patching, where we apply the first step on each task in parallel to produce fine-tuned

models with weights θ
(1)
ft , ..., θ

(k)
ft . Then, we search for mixing coefficients αi to produce

θpatch = (1−
∑k

i=1 αi) · θzs +
∑k

i=1 αi · θ(i)ft .

For joint and parallel patching we assume access to held-out validation sets for all tasks, while in
sequential patching we only assume access to held-out validation sets from the tasks seen so far.
Unless mentioned otherwise, we pick the mixing coefficient α that optimizes average accuracy on the
held-out validation sets from the supported and patching tasks.

3 Experimental setup
Tasks. We consider a diverse set of image classification tasks from Radford et al. [57]. In most
experiments, we use ImageNet [14] as a representative supported task, although we explore other
supported tasks in Section 4.2. We categorize tasks into patching tasks or supported tasks based on
the accuracy difference between the zero-shot model and a model specialized to the task. A large
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accuracy difference indicates that the task is a relevant target for patching because the zero-shot
model is still far from optimal. Specifically, we consider a subset tasks from Radford et al. [57],
categorizing tasks where the linear probes outperform the zero-shot model by over 10 percentage
points as patching tasks: Cars [35], DTD [11], EuroSAT [25], GTSRB [71], KITTI [22], MNIST
[39], RESISC45 [7], SUN397 [84], and SVHN [53]. We use the remaining tasks as supported tasks:
CIFAR10 [36], CIFAR100 [36], Food101 [5], ImageNet [14], and STL10 [12]. We investigate
additional patching tasks as case studies in Section 7 and provide further details in Appendix A.

Models. We primarily use CLIP [57] pre-trained vision transformer (ViT) models [15]. Unless other-
wise mentioned our experiments are with the ViT-L/14 model, while Section 4.2 studies ResNets [24].

Fine-tuning on patching tasks. Unless otherwise mentioned, we fine-tune with a batch size of 128
for 2000 iterations using learning rate 1e-5 with 200 warm-up steps with a cosine annealing learning
rate schedule and the AdamW optimizer [43, 55] (weight decay 0.1). When fine-tuning, we use the
frozen final classification layer output by CLIP’s text tower so that we do not introduce additional
learnable parameters. This design decision keeps the model open-vocabulary and does not harm
accuracy, as discussed in in Appendices B and C.

Evaluation. We use accuracy as the evaluation metric unless otherwise stated. We refer to the
average of the mean accuracy on the patching tasks and the mean accuracy on the supported tasks as
combined accuracy.2

4 Patching models on a single new task
As shown in Figure 1, when patching a model on a single task, we interpolate the weights of the
zero-shot and fine-tuned model, producing a model that achieves high accuracy on both the patching
task and the supported task. On the nine tasks, PAINT improves the accuracy of ViT-L/14 by 15 to 60
percentage points, while accuracy on ImageNet decreases by less than one percentage point. PAINT
also allows practitioners to control the accuracy trade-off on the patching and supported tasks without
re-training a new model, by varying the mixing coefficient α.

4.1 The effect of scale
We consistently observe that PAINT is more effective for larger models. Our findings are aligned with
those of Ramasesh et al. [59], who observed that larger models are less susceptible to catastrophic
forgetting. This section formalizes and provides insights for these observations.

Measuring the effectiveness of patching. We measure the effectiveness of patching via the accuracy
difference between the single patched model and two specialized models with the same architecture
and initialization. For both the supported task and patching task, we take specialized models that
maximize performance on the task, considering the set of all interpolations between the zero-shot
and fine-tuned models. We refer to this measure as accuracy distance to optimal. Formally, accuracy
distance to optimal is given by

1

2

[
max
α

Acc(θα,Dsupp) + max
α

Acc(θα,Dpatch)
]
− 1

2
max
α

[Acc(θα,Dsupp) + Acc(θα,Dpatch)] , (1)

where Acc(θ,D) represents the accuracy of model θ on task D. In Figure 2 (left), we show that
accuracy distance to optimal decreases with scale, indicating that patching becomes more effective
for larger models.

Model similarity. Fine-tuning modifies overparameterized models less [9], which provides insights
on why larger models are easier to patch: less movement is required to fit new data. We demonstrate
this by evaluating representational similarity using Centered Kernel Alignment (CKA) [34] (see
Appendix D for details). As shown in Figure 2 (center), the representations of the unpatched and
fine-tuned models become more similar as models grow larger, indicated by larger CKA values.
Moreover, Figure 2 (right) shows that the cosine similarity between the weights of the unpatched and
fine-tuned models, cos(θzs, θft) = ⟨θzs, θft⟩/(||θzs|| ||θft||), increases with scale.

2In other words, (EDsupp [Acc(θ,Dsupp)]+EDpatch [Acc(θ,Dpatch)])/2, where Acc(θ,Dsupp) and Acc(θ,Dpatch)
are accuracies on supported tasks and patching tasks, respectively.
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Figure 2: Larger models are easier to patch (left). For larger models, the unpatched and fine-tuned
model are more similar with respect to their representations (center) and weights (right). Model scale
is measured in Giga Multiply-Accumulate operations (GMACs).
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Figure 3: The frontier of accuracy trade-offs can be recovered by linearly interpolating weights.
Interpolating the unpatched and fine-tuned models recovers the accuracy trade-off of early stopping,
regularization towards the initialization, and changes in hyperparameters. Additional details and
comparisons can be found in Appendix E.

4.2 Baselines and ablations
Baselines. There are many alternatives which enable a trade-off between accuracy on the supported
and patching tasks. These methods include early stopping during fine-tuning, applying a regularization
term which penalizes movement from initialization, or training with different hyperparameters
including a smaller learning rate. Unlike interpolation, these methods do not enable navigating the
accuracy trade-off without fine-tuning the model again many times. Moreover, Figure 3 demonstrates
that the accuracy trade-off frontier for early stopping, regularization, or varying hyperparameters
can be recovered by interpolating weights with different mixing coefficients. Appendix E provides
additional baselines and discussion, including EMA [74], EWC [33], LwF [41], re-training a model
with data from the patching task, and mixing the pre-training and fine-tuning objectives.

Additional supported tasks. In Figure 1, we use ImageNet as a representative supported task. This
section demonstrates that PAINT is stable under different choices of the supported task. Instead
of ImageNet, we use CIFAR10, CIFAR100, Food101 and STL10. Figure 4 displays representative
results, where performance is averaged over the nine patching tasks (see Appendix F for additional
results). We observe consistent results across supported tasks, and that the optimal mixing coefficients
are stable across different choices of supported tasks (Figure 4, right).

Additional models. In addition to the CLIP ViTs used in the majority of our experiments, we study
four ResNet models [24] from Radford et al. [57] in Appendix G. We find that patching is less
effective for ResNets compared to ViTs of similar size, which corroborates the findings of Ramasesh
et al. [59] that ResNets are generally more susceptible to catastrophic forgetting. However, similarly
to ViTs, we still observe improvements with scale. Finally, we show that patching is also effective for
closed-vocabulary models in Appendix H.
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Figure 4: Results are consistent across supported tasks. For multiple supported tasks, we observe
similar accuracy improvements on patching tasks, without substantially decreasing supported task
accuracy. Additional results for the supported tasks Food101, STL10 and ImageNet are in Appendix
F. Moreover, choosing the mixing coefficients using a different supported task does not substantially
decrease combined accuracy on patching and supported tasks (right).

5 Patching models on multiple tasks
This section details experimental results for patching on multiple datasets. Recall from Section 2
that there are various strategies for extending PAINT to multiple datasets, which we briefly revisit.
For joint patching we merge all the datasets into a single fine-tuning task and apply our patching
procedure as before. For sequential patching we iteratively perform our procedure once per task,
using the patched model at each step as the initialization for the next step.3 We also explore parallel
patching, for which we have an unpatched model θzs and independently fine-tune on each of the tasks
in parallel. We then search for mixing coefficients to combine the resulting models. For tasks 1, ..., k,
let θ(1)ft , ..., θ

(k)
ft denote the fine-tuned models for each task. Since it is impractical to exhaustively

search over each αi, we instead search over a one-dimensional scalar α ∈ [0, 1], which interpolates
between θzs and the average of all fine-tuned solutions 1

k

∑k
i=1 θ

(i)
ft .4 Appendix J provides further

experimental details.

These methods have various trade-offs and may be applicable for different scenarios. Joint patching
is only possible when data from all tasks you wish to patch is available. On the other hand, sequential
patching is appropriate when the tasks are observed one after another. Finally, parallel patching can
leverage distributed hardware.

Figure 5 displays experimental results when patching on all nine tasks from Section 4. We observe
that joint patching is the best-performing method on average. This is perhaps unsurprising since
joint patching has simultaneous access to all patching datasets, unlike other patching strategies.
Nevertheless, it is still interesting that for ViT-L/14, joint patching yields a single model with only 0.5
percentage points worse combined accuracy than using multiple specialized models.5 Joint patching
also achieves a 15.8 percentage points improvement over the unpatched model. Moreover, patching a
ViT-B/32 model with the joint strategy achieves a combined accuracy 6.1 percentage points higher
than a ViT-L/14 unpatched model, which requires 12x more GMACs.

The accuracy of sequential patching approaches that of joint patching, especially for larger models.
Note that, unlike in joint patching, forgetting can compound since the patching procedure is applied
multiple times in sequence. In sequential patching, weight interpolations do not completely eradicate
forgetting, but greatly mitigate it. This is most noticeable for smaller models: sequentially fine-tuning
a ViT-B/32 without interpolation reduces the combined accuracy by 4.6 percentage points compared
to the unpatched model, as shown in Appendix J. This is compared to a combined accuracy increase
of 11 percentage points when using sequential patching. Additional results, including experiments on
SplitCIFAR [61], can be found in Appendix J.

Finally, parallel patching underperforms other patching strategies. Like sequential patching, parallel
patching is in the challenging setting where data from all patching tasks is not available simultaneously.

3The results are averaged over three random seeds that control the order in which tasks are seen.
4We also explored adaptive black-box optimization algorithms to choose the mixing coefficients αi [60], but

observed little improvement (0.3 to 0.4 percentage points on average).
5Recall from Section 3 that combined accuracy weight patching and supported tasks equally.
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Figure 5: Contrasting various strategies for patching on multiple tasks. On all experiments,
ImageNet is used as the supported task while the other nine datasets are used for patching. When
data from all patching tasks is available, joint patching yields a single model that is competitive with
using ten different specialized models. Weight interpolations greatly mitigate catastrophic forgetting
on the sequential case, but do not completely eradicate it. Finally, parallel patching underperforms
other patching strategies, but still provides improvements over the unpatched model.

Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN

Unpatched accuracy 86.2 64.9 79.9 51.7 43.4 82.6 73.4 76.9 72.8

Patched accuracy 87.0 66.1 87.2 71.1 60.4 91.3 74.2 79.3 88.9
(+0.8) (+1.2) (+7.3) (+19.4) (+17.0) (+8.7) (+0.8) (+2.4) (+16.1)

Table 1: PAINT can generalize to unseen classes. We randomly partition each dataset into tasks A
and B with disjoint class spaces of roughly equal size. This table reports how patching on task A
affects accuracy on task B for the ViT-L/14 model. In all cases, accuracy on task B improves when
patching on task A even though the classes are unseen during patching.

Moreover, unlike in joint or sequential patching, no model is optimized on data from all patching
tasks. Using a black box optimization algorithm for finding the mixing coefficients did not yield large
improvements over using the same mixing coefficient for all models. However, it is possible that
more sophisticated search methods could yield better results. In Appendix J, we present additional
experiments for a subset of the tasks where exhaustively searching the space of mixing coefficients is
tractable, finding headroom for improvement in most cases.

6 Broad transfer
An alternative to our patching approach is to introduce parameters which are specific to each new
task. By contrast, PAINT always maintains a single model. This section describes an additional
advantage of the single model approach: patching the model on task A can improve accuracy on task
B, even when task A and B do not share the same classes. We refer to this phenomenon as broad
transfer. Note that we are able to study this phenomenon because the single patched model remains
open-vocabulary throughout the patching procedure. This is a key advantage of PAINT compared to
maintaining a collection of task-specific models.

We now describe two experiments to measure the effects on a task B when patching the model on a
task A. First, we explore broad transfer by randomly partitioning datasets into disjoint sets with no
class overlap. For a dataset D we partition the class space Y into two disjoint sets of roughly equal
size YA and YB . We build task A with the examples (x, y) ∈ D where y belongs to YA, and task B
with examples (x, y) where y belongs to YB . Table 1 shows how patching a model on task A affects
the accuracy on task B for nine datasets D. The accuracy improvements on task B range from 0.8 to
19.4 percentage points, even though the classes from task B are not seen during patching.

To further understand transfer, we consider additional task pairs A and B, which are now different
datasets. While some pairs A, B share classes, there are still instances of broad transfer. Concretely,

7



Task A MNIST SVHN EuroSAT RESISC45 MNIST FashionMNIST GTSRB MTSD
Task B SVHN MNIST RESISC45 EuroSAT FashionMNIST MNIST MTSD GTSRB

Unpatched accuracy 58.6 76.4 71.0 60.2 67.7 76.4 19.3 50.6

Patched accuracy 68.9 93.2 69.7 70.4 70.8 77.5 30.8 69.8
(+10.3) (+16.8) (-1.3) (+10.2) (+3.1) (+1.1) (+11.5) (+19.2)

Table 2: Patching on task A can improve accuracy on a related task B. For a pair of tasks A and
B, we report accuracy of the ViT-L/14 on task B, after patching on task A, finding improvements on
seven out of eight cases.

Figure 6: Guarding against real-world typographic attacks by patching on synthetic data. (a) A
sample from our real-world typographic attacks test set. A CLIP ViT-L/14 is “tricked” into classifying
this image as a dog instead of a cat. (b) Sample of synthetic typographic attack data. (c) Performance
on real-world data with unseen classes after patching on only synthetic typographic attacks (curves
produced by interpolating between the unpatched and fine-tuned model). (d) Analogous curves for
the test set of the synthetic data used for patching.

Table 2 examines i) MNIST and SVHN, two digit recognition tasks with shared classes; ii) EuroSAT
and RESISC45, two satellite imagery recognition tasks where there are unshared classes but some
overlap; iii) GTSRB and MTSD [17], two traffic sign recognition datasets where there are unshared
classes but some overlap; and iv) MNIST and FashionMNIST [83], which do not share any classes
but appear visually similar. In seven out of eight experiments, patching on task A improves accuracy
by 1.1 to 19.2 percentage points on task B. The exception is when A is EuroSAT and B is RESISC45,
where accuracy decreases by 1.3 percentage points.

In all experiments, when patching on task A we choose the mixing coefficient α by optimizing the
held-out validation accuracy on task A and a supported task (in this experiment we use ImageNet).
While it is possible for a method that introduces new parameters for each task to exhibit broad transfer
to new data, this also requires knowing which parameters to apply for the new data. This is not
necessary in the single model approach.

7 Case studies
We further examine the performance of PAINT in three additional settings, which highlight weak-
nesses of the zero-shot CLIP model and showcase broad transfer (Section 6).

Typographic attacks. Goh et al. [23] find that CLIP models are susceptible to typographic attacks,
where text superimposed on an image leads to misclassification. For example, in Figure 6 (a), the
text on the pink note saying “dog” leads a CLIP to misclassify the image of a cat as a dog. To fix
this vulnerability, we procedurally generate typographic attack data by adding text with incorrect
class names to SUN397 [84], as seen in Figure 6 (b). We then collect a test set of 110 real world
images by placing notes on objects and taking photos.6 After applying PAINT using the synthetic
data, we evaluate on the real-world images (Figure 6 (c)) and synthetic test set (Figure 6 (d)). We
observe that while larger models are more susceptible to typographic attacks, they are also more
amenable to patching. Furthermore, we see an example of broad transfer between the synthetic and
real-world data: when patching ViT-L/14 on synthetic data, its accuracy on real-world typographic
attacks improves 41 percentage points even though the real-world classes are unseen. The cost is

6Data available at https://github.com/mlfoundations/patching.
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a reduction of less than 1 percentage point on ImageNet. We present details on the task and data
collection in Appendix K.

Counting. Radford et al. [57] find that CLIP models struggle to count the number of objects in
CLEVR [32]. Here, the task is to choose an integer between 3 and 10 for each image, corresponding
to the number of visible objects. While a straightforward way to patch such a task is to fine-tune on it
directly, we investigate if applying PAINT using a subset of the classes allows the patched model
to generalize to other numbers. Specifically, we patch on images with 4, 5, 6, 8, or 9 objects. To
evaluate broad transfer, we test on images with 3, 7, and 10 objects (7 for understanding interpolation
and 3 and 10 for extrapolation). We find that PAINT improves accuracy from 59% to over 99% on
unseen classes with less than half a percentage point decrease in ImageNet accuracy. For more details
see Appendix L.

Visual question answering. As shown by Shen et al. [68], zero-shot CLIP models perform poorly
on visual question answering [4]. Using CLIP for VQA typically involves additional parameters—for
instance, Shen et al. [68] trains a transformer [77] on CLIP features. In contrast, our procedure for
patching CLIP on VQA does not introduce new parameters. Following Shen et al. [68], we contrast
images with a series of text prompts, where each prompt corresponds to an option in multiple-choice
VQA, formed by both the question and a candidate answer using the following template: “Question:
[question text] Answer: [answer text]”. We evaluate on multiple-choice VQA v1 [4], where each
question is associated with 18 candidate answers. Our results, further detailed in Appendix M, show
that patching is effective for visual question answering: PAINT improves the accuracy of a ViT-L/14
model by 18 percentage points, while accuracy drops by less than one percentage point on ImageNet.

8 Related work
Continual learning and catastrophic forgetting. Learning tasks sequentially remains a challenge
for neural networks. When a neural network learns a new task, the accuracy on other tasks often
decreases, a phenomenon known as catastrophic forgetting [48, 76, 20, 33]. While forgetting in
neural networks may actually aid learning [90], researchers have proposed various approaches for
alleviating catastrophic forgetting, including: i) Regularization-based approaches such as elastic
weight consolidation (EWC) [33] and synaptic intelligence (SI) [87] which penalize the movement of
parameters and are related to weight-interpolation by Lubana et al. [44]; ii) Replay methods [61, 69,
42, 6, 64, 50], which incorporate data or gradient information from previous tasks when learning a
new task; and iii) Introducing task-specific parameters [65, 85, 46, 8, 78, 80].

In contrast to these approaches, PAINT requires no modification to the standard fine-tuning process
besides the later weight interpolation step. Moreover, unlike regularization or replay based methods,
PAINT requires no extra computational cost during training. In contrast to methods with task specific
parameters, we maintain a single model. Having a single model is beneficial when there is new data
which is similar to one of the tasks which have already been patched. Even without explicitly knowing
which task the new data is similar to, we can observe accuracy improvements (see Section 6).

Similar to our work is that of Mirzadeh et al. [50], who observe high accuracy on task A on the linear
path between a model which achieves high accuracy on task A and a model which is fine-tuned jointly
on task A and B. Moreover, they observe high accuracy on task B on the linear path between a model
fine-tuned on task B, and the jointly fine-tuned model. Therefore, there exists a path between a model
which achieves good performance on task A and a model fine-tuned on task B along which accuracy
is high on both tasks. However, in Mirzadeh et al. [50] this combined path can be non-linear, leading
them to propose a regularization and replay based method. In our work, we find that examining
models on a linear path between the unpatched model (which has high accuracy on task A) and the
model fine-tuned on task B is often sufficient for obtaining a model which achieves high accuracy
on both tasks (Figure 1). We speculate that this is due to scale and model architecture: in contrast
to Mirzadeh et al. [50], we initialize with a model pre-trained on a large dataset consisting of 400
million images [57], and primarily use vision transformers [15]. As shown in Section 4.2, our method
performs substantially worse with ResNets [24], which are used by Mirzadeh et al. [50].

Finally, Ramasesh et al. [59] and Mehta et al. [49] also observed that catastrophic forgetting is less
problematic for large and pre-trained models. In addition, Ramasesh et al. [59] found—similar to our
results—that vision transformers are less susceptible to forgetting than ResNets of the same size.

Linear mode connectivity and robust fine-tuning. Linearly interpolating neural network weights
is a key step in PAINT. Because of the many nonlinear activations in a neural network, it is not clear
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a priori that linearly interpolating between two sets of weights can result in a high accuracy solution.
However, researchers have observed that interpolating neural network weights can achieve high
accuracy when training on MNIST from a common initialization [52] or when part of the optimization
trajectory is shared [19, 28, 54, 18, 82, 47, 16, 81, 10]. The term linear mode connectivity was coined
by Frankle et al. [19]: two networks exhibit linearly mode connectivity if the accuracy does not
decrease when using weights on the linear path between them [52, 19]. Weight averaging for continual
learning has also been studied by Lee et al. [40] for closed-vocabulary models.

While Nagarajan and Kolter [52] and Frankle et al. [19] focused on accuracy on a single task, Worts-
man et al. [82] use linear mode connectivity to fine-tune models while preserving their robustness to
natural distribution shifts. By interpolating the weights of a zero-shot and fine-tuned model, they find
a solution which performs well both on the fine-tuning task and under distribution shift. In contrast to
Wortsman et al. [82], we do not modify any task-specific parameters when fine-tuning, preserving the
open-vocabulary nature of the models we patch. Unlike Wortsman et al. [82], we examine accuracy
trade-offs across different tasks with little or no class overlap and adapt a model to multiple tasks.

In addition, closely related to our work is that of Matena and Raffel [47], who use Fisher-weighted
averaging of language models before and after fine-tuning on downstream tasks. Unlike Fisher-
weighted averaging of Matena and Raffel [47], we do not use different mixing coefficients for each
parameter, and thus require no extra compute when patching. Moreover, we explore new strategies
for patching on multiple tasks (see Section 5), and focus on open-vocabulary image classifiers.

Interventions to change the behavior of a trained model. Several authors have studied the problem
of updating a model to locally alter its behavior on certain inputs without external disruptions on
other inputs [70, 13, 51, 66, 63, 62]. Previous literature uses various terms to refer to this process,
including model editing, patching or debugging. A popular use case is to update trained language
models to reflect changes in the world (for instance, facts like who is the current president of Brazil)
[29, 45, 38, 30]. Moreover, inspired by software engineering practice, previous work explored
“debugging” language models through user interaction [63, 62], including providing corrective
feedback to the models via natural language [3]. Mitchell et al. [51], De Cao et al. [13] propose
training auxiliary networks to perform local edits on pre-trained models. Santurkar et al. [66]
introduce a method for rewriting the prediction rules of a classifier, focusing on specific failure modes
such as reliance on spurious correlations. In contrast with previous literature, our work explores
patching models at the task level, aiming to systemically improve accuracy on a dataset—for instance,
enabling a model to recognize dozens of satellite imagery classes with a single patch.

9 Limitations and conclusion
Limitations. When applying PAINT, accuracy on supported tasks can still decrease, especially for
smaller models. This limitation is perhaps best reflected in the case of sequential patching: patched
models underperform using multiple specialized models when many tasks are added sequentially.
Using larger models and weight interpolations can alleviate this issue, but do not completely resolve
it. Finally, better understanding on which datasets patching is more effective is an exciting direction
for future research.

Conclusion. In this work, we explore several techniques for patching open-vocabulary models with
the goal of improving accuracy on new tasks without decreasing accuracy elsewhere. PAINT is
effective in several scenarios, ranging from classifying digits to defending against typographic attacks.
PAINT becomes more effective with scale, and can be applied on multiple tasks sequentially or
simultaneously. Our findings demonstrate that in many circumstances it is possible to expand the
set of tasks on which models achieve high accuracy, without introducing new parameters, without
re-training them from scratch, and without catastrophic forgetting.
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