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Abstract

Vision-language models (VLM) bring image and textual representations close1

together in a joint embedding space, which is useful for tagging and retrieval from2

content stores. However such associations are not very stable in that a synonymous3

textual query does not retrieve the same set of images or with a high degree of4

overlap. This is due to the absence of linkages between semantically related5

concepts in vision-language models. In contrast, the episodic memory store in the6

brain has linkages to the semantic conceptual memory subsystem which helps in7

both the formation and recall of memories. In this paper, we exploit this paradigm8

to link a VLM to a semantic memory thereby producing a new semantic vision-9

language model called SemCLIP. Specifically, we develop a semantic memory10

model for the language of object-naming nouns reflecting their semantic similarity.11

We then link a vision language model to the semantic memory model through a12

semantic alignment transform. This leads to a richer and more stable understanding13

of the concepts by bringing synonymous visual concepts and their associated14

images closer. Both the semantic memory model and the alignment transform15

can be learned from word knowledge sources thus avoiding large-scale retraining16

of VLMs from real-world image-text pairs. The resulting model is shown to17

outperform existing embedding models for semantic similarity and downstream18

tasks of retrieval on multiple datasets.19

1 Introduction20

More and more enterprises are opting for content stores for managing large collections of photos,21

video, audio, and documents [22, 2, 19]. In these, the content is stored as vectors, associated with22

textual tags in a vision-language model (VLM) and retrieved with vectors formed from textual queries23

[7, 15, 6, 29, 8]. However such associations are not very stable in that a synonymous textual query24

does not retrieve the same set of images or even those with a high degree of overlap. Figure 125

illustrates this problem, showing examples of the top 5 retrieved images from sets of similar queries26

prompted by “Images of X" where X is the phrase on top of each column. In Figure 1(a)-(b),27

synonymous terms “hamper" and “basket" retrieve different top 5 matches. This problem is also seen28

when more context is available as in the queries of Figure 1(c)-(d) where more terms are replaced by29

their synonymous phrases (overcoat→coat, frock→gown) or multiple objects are queried in different30

order (Figure 1(e)-(g)).31

This instability is an inherent limitation of the underlying textual embeddings used to build the32

VLMs which use self-supervised method of inferring meaning similarity based on use context. As33

an example, the fraction of the English language nouns that are near their synonyms in existing34

textual and VLM embeddings is shown in Table 1. Here 70,000 single sense nouns from the WordNet35

thesaurus [4] were projected into textual and VLM embedding spaces and their synonyms in the top36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) UniReps Workshop.
Do not distribute.



Figure 1: Illustration of retrieval instability to synonymous phrases in vision language models
(CLIP[15]). (a)-(b) Two synonymous queries retrieving different results. (c)-(d) Multi-word queries
with synonymous replaced terms. (e)-(g) Effect of order of terms in queries.

10 neighbors were noted. As can be seen from this table, there is at best a 50% overlap with their37

synonyms indicating missing linkages to their semantically related concepts.38

In contrast, the formation and recall of memories in the brain does utilize the linkage between episodic39

and semantic memory systems. It is now widely acknowledged that these two forms of memory40

interact during both encoding and retrieval[23]. Extensive behavioral, lesion, and functional imaging41

studies have demonstrated the existence of a semantic memory system in brain for organizing and42

interpreting episodic memories distributed throughout the cortex for representing distinct object43

categories such as people, animals, and tools[18]. Neurological evidence also exists for the inter-44

dependencies between semantic and episodic memory[5]. Semantic memory facilitates the acquisition45

of new episodic memories, and episodic memory facilitates the addition of new information to the46

semantic store. Similarly, episodic memories facilitate the retrieval of information from semantic47

memory, and semantic memories are the basic material from which complex and detailed episodic48

memories are constructed[5]. In this paper, we draw inspiration from this human memory paradigm49

to develop a new semantically-guided vision language model called SemCLIP. In doing so, we50

make three novel contributions. (1) First, we develop a new textual embedding (STE) as a semantic51

memory reflecting the similarity relations between all object-naming nouns in the English language.52

It is learned using multi-label supervised contrastive learning on data derived from a constrained53

traversal of the WordNet thesaurus to cover all English language nouns and their semantically similar54

concepts. (2) Next, we develop a semantic alignment transform to link VLM embeddings to the55

semantic memory. The alignment transform is a custom-designed neural network trained to map56

between textual embeddings projected in VLMS to those in semantic memory. It is learned from a57

vocabulary representing the diversity of language use across different domains as captured in the58

captions of multiple datasets. Image embeddings in the VLM can then be aligned using the transform59

of their nearest textual embedding. (3) Finally, we provide the training dataset for the STE embedding60

consisting of 114,000 linguists-curated similarity lists of words and over 600,000 pairs of synonyms61

terms derived from these similarity lists as contributions to open source, which can be valuable for62

other researchers for many downstream NLP tasks.63

The SemCLIP approach leads to a richer and more stable understanding of the concepts by bringing64

synonymous visual concepts and their associated images closer. Furthermore, the semantic memory65
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model and the alignment transform can be learned from textual knowledge sources thus avoiding66

large-scale retraining of VLMs from real-world image-text pairs. The resulting model is shown to67

outperform existing embedding models for semantic similarity and downstream tasks of retrieval on68

multiple datasets.69

2 Related Work70

To our knowledge, the paradigm of episodic-semantic memory interactions has not been used before71

to generate vision-language models. Further, insights into the stability aspects of retrieval or the72

limitations of textual embeddings in influencing VLM models haven’t been addressed in detail before.73

Other prior works, however, have pointed to issues with text to image retrieval and image tagging with74

CLIP with many variants of CLIP developed to address issues such as semantic inconsistencies[28],75

and augmenting CLIP training with knowledge graphs to allow a better understanding of the semantics76

in queries[14]. StructureCLIP [9] mentions that existing methods often perform poorly on image-77

text matching tasks that require a detailed semantic understanding of the text and recommended78

augmenting VLMs with scene graphs composed of objects, attributes, and relations. BLIP [13]79

and its variants are unified vision-language models using a multimodal mixture of encoder-decoder80

architectures trained with a language modeling loss to generate better captions given images. Sigmoid81

Loss for Language-Image Pre-training (SigLIP and SigLIP2) [30] introduced a pairwise sigmoid loss82

allowing the method to solely focus on the individual image-text pairs. The need for modeling coarse83

and fine-grained concepts was also emphasized in a recent work [27]. In all improvements proposed84

for VLM models such as CLIP, the textual embeddings were nevertheless still based on transformer85

models which infer semantic similarity primarily by use context. In our approach, we achieve the86

desired improvements by focusing at a different end, namely, improving the semantics in textual87

embedding and using an alignment transform to project from the original CLIP model to form a new88

space of semantically connected words and images.89

3 Developing a semantic memory model for VLMs90

Various knowledge graphs and thesaurus exist to capture different types of relationships between91

word concepts such as Wordnet[4], ConceptNet[20]. In Wordnet[4], lingusits curated related terms92

and defined synonyms, generalizations and specializations of concepts. Attempts have been made to93

use these thesauruses in conjunction with word embeddings acquired from distributional semantics94

such as Word2Vec or Glove through self-supervised learning on natural language sentences. However,95

such embeddings can cover broader relationships than synonymous concepts, and may even include96

antonyms.97

Our approach to building a semantic memory model embedding curates the knowledge graph relations98

to focus on semantic similarity. Specifically, focusing on the English language and their nouns, we99

assemble an initial list of semantically similar words by traversing the Wordnet thesaurus. We then100

curate the lists and uses this dataset to train a new embedding. We restricted to nouns both due to101

the use context of VLMs where we were applying this idea, and also due to the cost of curation by102

linguists. However, the process described below can be applied to other parts of speech.103

Development of a similarity list dataset:104

The initial similarity lists were obtained by directly traversing the Wordnet ontological tree gathering105

synonyms (called lemmas in WordNet) as well as hypernyms (generalizations) using the WU-Palmer106

similarity metric [24] which is given by:107

sim(Wi,Wj) = 2 ∗ depth[lcs(Wi,Wj)]/[depth(Wi) + depth(Wj)] (1)

where where lcs(Wi,Wj) is the least common ancestor of Wi and Wj and depth(·) stands for the108

depth of the concept in the ontology.109

Without a constraint on the depth differential (2 in our case), and a reasonably high threshold, the110

WUP similarity score alone can reveal several false positives in association and lead to undesirable111

wider expansion of meanings, particularly for words closer to the root of the WordNet hierarchy. For112

example, with a 4 level depth differential for a word such as ‘chair.n.05.chair’ , the WUP similarity113

to the word ‘device.n.01.device’ is high (0.823) which is not synonymous. Further, the metric does114

not give a complete picture of semantic distance since domain-specific ontologies were constructed115

before their planned uses in textual embeddings. Also, due to the nature of the English language,116

the shortest-path distances between nodes or ontological depth differences do not have a uniform117
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implication of similarity across words. For example, synsets ‘car.n.01’ and ‘van.n.01’ are 16 apart in118

shortest path length, while ‘car.n.01’ and ‘automobile.n.01’ are only 1 apart. Conversely, terms that119

are not so close in meaning could also end up having a high score. For example, similarity metrics120

using depth differences can give similar scores for vastly different meaning words, e.g. (dog.n.01,121

giant panda.n.01) and (dog.n.01, hound.n.01) pairs have about the same WUP score of 0.86. .122

Therefore, to normalize the notion of similarity, the initial lists produced by the automatic algorithm123

were curated by domain specialists. For WordNet, we used a team of 3 linguists from a nearby124

university to examine the similarity lists so that relationships other than similarity in meaning and125

sense were removed. Each linguists produced their own curated similarity lists. Triple consensus126

process was used to filter the lists so that those terms identified by all 3 linguists were retained in127

the final similarity list per anchor words. The original scores returned by the WUP metric were still128

retained for these pairs so that the linguists only filtered the irrelevant words from the lists but did129

not alter the WUP scores. For the WordNet ontology, we were able to address all valid nouns and130

their synonyms resulting in over 140,000 words. Note that this vocabulary already exceeds the token131

vocabulary of most transformer models. The whole curation process took over 1 year to complete.132

Developing the STE Embedding:133

We now develop a new textual embedding designed to capture the similarity relations reflected in134

these similarity lists such that only the word embeddings within a similarity list have high cosine135

similarity. Specifically, adopting the lemma notation of WordNet, we can characterize a word Wi as:136

Wi =< wi, pi, si, li > (2)

where wi is the multi-term word, li ∈ {Synonym(wi)} is a synonym, and pi ∈ {n, a, v, r, s} which137

stand for noun, adjective, verb, adverb, and adjective satellite respectively. Finally, si stands for the138

sense of the word and is a number from 1 to n.139

Let Si be the set of semantically similar words for each anchor word Wi as provided by the curated140

similarity lists. The semantic memory model uses these similarity lists to derive a neural encoding141

such that all words that mean the same or are semantically similar are pulled closer in the embedding.142

Thus pairs of anchor and target words from similarity lists are taken as positive examples, and all143

other pairings represent negative examples for the anchor class.144

Specifically, given a fully-specified 4-tuple anchor word Wi, we encode it by a 1-hot encoding145

Oi ∈ {0, 1}|V |, s.t.
∑|V |

i=1 Oij = 1 as an input to the network where V is the vocabulary. As146

a supervision label, we form a label vector in the real number space Yi = R|V |, s.t. Yij =147

sim(Wi,Wj) iff Wj ∈ Si and 0 otherwise. Here sim(Wi,Wj) is the similarity score returned from148

the similarity list generation. Thus each similarity list is characterized by a unique pattern label149

vector.150

Architecture-wise, we design the semantic memory model as a unimodal, multi-label supervised151

contrastively-learned encoder. Specifically, the semantic memory model consists of an embedding152

layer to handle the large one hot vectors, a dense fully connected layer with ReLU activation for an153

encoder, and a decoder/projection network as another fully connected layer with ReLU activation,154

which is discarded after the learning, retaining only the encoder. The cosine similarity matrix155

between the encodings of the words is non-diagonal as shown in Figure 2c with the cells colored156

in green indicating the members of the similarity list as positive examples and the red colored157

cells representing the negative examples. In this case, for the candidate word "basket", the positive158

examples are "hamper, kreel, pannier" while "window, and table" are negative examples.159

Specifically, the similarity between an anchor word Wi at index i in the vocabulary V , and a candidate160

word Wj ∈ Si be captured by the contrastive loss per similarity list as:161

ℓcontrast(Si) = −
∑

Wj∈Si

log
exp(zi · zj/τ)∑

a∈V

exp(zi · za/τ)
(3)

Here zi is the projected vector for word Wi and zj is the projected vector similarly for Wj ∈ Si.162

Finally, za is the projected vector for any word Wa either inside or outside the similarity list (i.e.163

ideally the entire vocabulary). In general, since the similarity lists are small in size, the number of164

negative samples to differentiate them need not take up the entire vocabulary V , so smaller batch165

sizes could be used. τ is the temperature to weigh the contribution from similar vectors. Also, since166
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there are multiple such similarity lists, one for each vocabulary term, we can train them in sequential167

fashion through batching using a cumulative contrastive loss as Lcontrast =
|V|∑
j

ℓcontrast(Sj).168

This type of non-diagonal similarity matrix formulation is unlike other self-supervised contrastively169

learned encoders such as CLIP[16]. Instead of a single positive image-text pair, we have several170

semantically similar words paired with an anchor word as positive examples. Further, we have171

additional supervision coming from the label given to a similarity list per word making it closer to172

supervised contrastive learning [10] but with multiple positive examples.173

Implementation Details: Overall, the designed network architecture had the following parameters:174

input and output vector sizes= 142, 989, for various encoding size = 300, 1024, 2048, 4096, and175

temperature= 0.05 in the loss function. We used a batch size of 800 and trained over a maximum of176

10 epochs or until the network error convergence was reached. We used the Adam optimizer for fast177

convergence with the learning rate as 0.001. Two NVIDIA P100 GPUs with 16 GB were used for178

training and training took 5 hours. The network overall had 43,666,800 parameters (for encoding size179

of 300) and scaled accordingly for higher size encodings.180

4 Developing the semantic alignment transform181

The semantic alignment transform creates a linkage between the VLM and the semantic memory182

using the textual data that can be projected in both embedding spaces. Once the language concepts183

have been aligned, the image embeddings can utilize the transform of their nearest language concept184

to be also aligned with the semantic memory concepts, so that the textual phrases and image pairings185

of synonymous words are close to each other.186

Modeling these desired transformations more formally, let fi(·) : Ximage→Rdi be the image encoder187

and ft(·) : Xtext→Rdt be the text encoder of a VLM model. Given a batch of Nimages, IN =188

{I1, I2, ..., IN} and Ncaptions, TN = {T1, T2, ..., TN}, we can project them into a common vector189

space C : Rd, Ct ∈ Rd of the VLM. In our notation, Ci, Ct denote the vector representation in the190

VLM space for an image I , and a linguistic caption T , respectively. Consider two textual queries q1191

and q2 which are synonymous of a query word q (for e.g. “kreel", and “hamper" to “basket"). Let192

their projected vectors in the VLM space be Cq1 , Cq2 , Cq and their nearest images be denoted by the193

vectors Ciq1 and Ciq2 , respectively. Our goal is to design a semantic alignment transform C
′

such194

that:195

|C
′

j − C
′

k| < δ,where the indexes j, k ∈ {q, q1, q2, iq1, iq2} (4)
and δ is a small neighborhood so that both images corresponding to the vectors Ciq1 and Ciq2 are196

pulled up to either query q1 or q2.197

Given a word Wi projected in the original VLM space, its encoding in the semantic memory model198

can be denoted by STE(Wi) such that199

|STE(Wj)− STE(Wk)| < min(γWj , γWk
),Wk ∈ Sj (5)

and δ where Wj ,Wk are words related by synonym relationship as defined in Wordnet, and Sj is the200

synonym list of word Wj and STE(Wj) is the semantic embedding of word Wj . γWj
is the distance201

over which semantic similarity holds for Wj . Note that the distance γWj is a function of Wj , since202

some words have more synonyms than others.203

The semantic alignment transform (Γt(·),Γi(·)) now projects the textual and image embeddings from204

VLM space such that205

C
′

t = Γt(Ct) and C
′

i = Γi(Ci) (6)

where Γi(·) : Rdi→Rd and Γt(·) : Rdt→Rd, where Rd is the dimension of the STE space.206

The alignment transform Γt(·) for text can be learned separately by mapping the embeddings of all207

words in a language from VLM space to the semantic memory space. However, we cannot train208

separately for Γi(·) because the STE embedding is only defined for text. To ensure that the image209

embeddings of synonymous words in VLM space are close to the synonymous words and their210

associated images in the STE space as well, we induce a transformation based on their nearest textual211

neighbors. Specifically, we can express Γi as212

Γi(Ci) = Γt(Cti) such that Cti = argmin
t′

d(Ci, Ct′) (7)
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(a) (b) (c)

Figure 2: Architecture of SemCLIP demonstrating the various stages of creating the joint text-image embedding.

where Cti is the nearest text to an image vector in the original VLM space in terms of distance d(.):213

the cosine distance between the image and text vectors. This results in the image vectors aligning214

directly on top of the textual embedding vectors in the STE space.215

Learning the alignment transform:216

To train the alignment transform, we form a ground truth dataset of pairs of embeddings derived from217

a VLM model and the STE model for candidate words or phrases. While this method could be applied218

to any VLM model, in our work, we derived this mapping for the original CLIP model [16]. Unlike219

the STE embedding which was derived from WordNet, the alignment mapping used additionally, a220

much larger vocabulary of nearly 800,000 captions accumulated across datasets such as MS-COCO,221

Visual Genome and other collections.222

For long captions, the correspondence was derived from the composed words in the caption and223

forming their average embeddings. For out-of-vocabulary words, we found the nearest match to their224

lexical variants in the vocabulary using an SBERT[17] encoding of the words/phrases. Since the nouns225

in the captions could be associated with multiple senses, an available word sense disambiguation226

(WSD) tool, ESC [1], was employed to resolve the sense of the constituent nouns before making the227

correspondence.228

The alignment transform Γt(·) is a three layered Multi-layered Perceptron (MLP) with input size229

512, output size 300 and intermediate layer width 4096 as shown in Figure 2. We use Layer Norm as230

the activation function. The network is trained using a Mean Squared Error (MSE) loss between the231

neural network outputs and the ground truth semantic embeddings. Equation 8 below captures the232

network details.233

Transform: Γt(·) = FC3(Φrelu(FC2(Φrelu(FC1((·))))) Loss: L = ||Γt(Ct)−C
′

t||
2

2 (8)

To train the network, we use the ADAM optimizer with weight regularization (AdamW) and initial234

learning rate as 0.001. We train for a total of 200 epochs and use a batch size of 512. Along with the235

decrease in training loss, we calculate the retrieval errors (i.e. training fit using a nearest neighbors236

matching) after projection and observe less than 4 percent error in recovering the target semantic237

embeddings post-projection after training. Once Γt(·) is learned, the images were mapped using their238

nearest text embedding as described above.239

By combining a VLM Model, the alignment transform, and the semantic memory model, the overall240

end-to-end architecture of SemCLIP is shown in Figure 2.241

Using SemCLIP for content stores:242

Using SemCLIP embedding, we can address the problem of semantic stability of retrieval in content243

stores as follows. All captions used to tag images along with the base vocabulary of the English244

language nouns are first projected into the SemCLIP space. During ingestion, the incoming images245

into the content store are projected into the new SemCLIP space using the transform of their nearest246

text embedding as given in Equation 7. Specifically, an incoming image file I is mapped to a vector247
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Table 1: Illustration of synonym recognition across text embeddings.
Embedding # Queries Synonyms in Top10 %age synonyms covered
CLIP [15] 71895 28070 49.27%
SBERT [17] 71895 37888 52.7%
Ours 71895 67309 87.7%

C
′

i = Γt(Cti) where ti = argmint′ d(Ci, Ct′) where d is the cosine distance between the image and248

text vectors in the original CLIP space C as explained in Section 4. During retrieval, a new query Q249

is projected into SemCLIP directly through the semantic text embedding of its composed entities as250

C
′

q . The nearest images to Q are then retrieved within the neighborhood of C
′

q using cosine similarity251

in the SemCLIP space.252

5 Results253

The SemCLIP model and its constituent embeddings were evaluated for semantic stability of image254

retrieval on a variety of datasets as well as for many relevant downstream tasks such as image-to-text,255

text-to-image retrieval, and text-to-text retrieval.256

Datasets: We compare the performance of STE embedding on 13 benchmark datasets as listed in257

Table 2. All datasets contain pairs of terms that are related in multiple ways ranging from synonyms258

to antonyms, to part-of relations and have been used in previous evaluations. For the joint embedding,259

we evaluated the performance of SemCLIP on 5 datasets, namely, Visual Genome [11], SUN [26],260

CUB [21], AWA2 [25], MS-COCO, and Flicker30k. In each case, we retained all the labels and261

the test image partition provided for these datasets. Each of the labels was processed using Spacy262

to extract all noun entities. We then resolved their sense to give a 4-part notation for the nouns as263

described earlier. The details of these datasets are described in Table 4 and Table 3.264

Comparison methods: The semantic text embedding was compared to 4 popular word embedding265

methods including, Word2Vec, Glove, BERT [3], and Path2Vec [12]. Since most image-text em-266

beddings are variants of CLIP [15], our comparisons for SemCLIP included all popular variants,267

namely, Open AI’s original CLIP [15], OpenCLIP [15], NegCLIP [28], BLIP [13] and SigLIP[30].268

In addition, we conducted ablation studies creating a variant of CLIP called PosCLIP by fine-tuning269

CLIP directly with synonymous captions.270

Recognition of synonyms: Since the STE model was trained with synonym similarity lists, we271

expect a high overlap with synonyms in its topK retrieval in comparison to other textual and VLM272

embeddings. To record this, we repeated the experiment described in Section 4 using SemCLIP273

embedding and the result is shown as the last row in Table 1 indicating nearly a doubling of274

performance over popular existing embeddings. Qualitatively, we found that due to the supervision275

provided by the similarity lists, the neighborhoods in the STE embedding consist of only synonymous276

or semantically related terms unlike other encodings like Word2Vec. For more quantitative results,277

we evaluated the performance of STE embedding on 13 textual benchmarks shown in Table 2. The278

resulting performance using the Spearman correlation coefficient to see the agreement of the similarity279

ranked lists produced for each word in comparison to human ranked lists, is shown in that table. Our280

Table 2: Illustration of comparative performance of semantic textual embeddings (STE) on benchmark
datasets. The last column shows the STE result for the similar subet.

Datasets Original
Word #

WordNet
Filtered Word2Vec Glove BERT Path2Vec STE STE

EM_SIMLEX_SYNS 297 297 0.285 0.240 0.145 0.301 0.265 0.570
EN-MC-30 30 30 0.789 0.702 0.410 0.782 0.650 0.650
EN-MEN-TR-3k 3000 2657 0.776 0.743 0.310 0.366 0.257 0.780
EN-MTurk-287 287 243 0.767 0.705 0.435 0.317 0.300 0.810
EN-MTurk-771 771 771 0.671 0.649 0.335 0.404 0.466 0.760
EN-RG-65 65 64 0.761 0.770 0.446 0.723 0.640 0.820
EN-RW-STANFORD 2034 910 0.492 0.341 0.226 0.194 0.217 0.590
EN-SIMLEX 666 666 0.452 0.397 0.233 0.505 0.398 0.670
EN-WS-353-REL 252 248 0.626 0.578 0.159 0.136 0 0
EN-WS-353-SIM 203 201 0.774 0.659 0.388 0.599 0.820 0.820
EN-YP-130 130 43 0.542 0.545 0.326 0.029 0.426 0.660
EW-WS-353-Syns 99 98 0.507 0.507 0.366 0.616 0.655 0.655
EN-WS-353-ALL 352 348 0.694 0.607 0.256 0.406 0.303 0.720
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Table 3: Results of average text-image retrieval overlap when querying using synonyms of nouns in
the respective datasets. For each query, we use ten synonyms to estimate the image retrieval overlap

Dataset Images/Queries Method Overlap@1 Overlap@5 Overlap@10 Overlap@50

Visual
Genome 7794 / 14513

SemCLIP 0.551 0.532 0.517 0.523
CLIP 0.119 0.056 0.038 0.026

OpenCLIP 0.129 0.055 0.040 0.025
BLIP 0.119 0.056 0.037 0.024

NegCLIP 0.109 0.063 0.038 0.024

CUB 11788 / 200

SemCLIP 0.812 0.783 0.732 0.715
CLIP 0.118 0.072 0.062 0.053

OpenCLIP 0.149 0.079 0.062 0.053
BLIP 0.181 0.084 0.066 0.053

NegCLIP 0.119 0.078 0.066 0.055

SUN 16657 / 567

SemCLIP 0.554 0.531 0.523 0.511
CLIP 0.092 0.048 0.034 0.025

OpenCLIP 0.070 0.039 0.028 0.021
BLIP 0.091 0.05 0.035 0.025

NegCLIP 0.095 0.045 0.032 0.023

AWA2 6985 / 10

SemCLIP 0.751 0.723 0.702 0.715
CLIP 0.086 0.051 0.038 0.028

OpenCLIP 0.139 0.067 0.046 0.032
BLIP 0.139 0.057 0.039 0.028

NegCLIP 0.101 0.046 0.034 0.025

method was expected to perform worse on the datasets where the relations are antonyms or other281

forms of relations besides meaning similarity, but should perform better when limited to the meaning-282

wise similar pairs in these benchmark datasets. As seen in Table 2, it significantly outperforms other283

embeddings in the case of the EN-WS-353-SIM dataset which focuses on similarity relations. If284

we restrict the analysis to only the similar words in all datasets, our method outperforms all other285

methods as shown in the last column. Finally, for datasets such as EN-WS-353-REL which capture286

antonyms and other relationships besides synonyms, our performance is the least, which is also a287

good result indicating it is able to focus on similarity relations only. Note that the values in Table 2288

are Spearman correlation coefficient where the values above 0.7 indicate strong correlation which our289

method achieves for most datasets.290

Evaluating stability in retrieval: We evaluated the stability of retrieval by measuring the overlap in291

the image lists returned in response to queries and their synonym variants. Specifically, we extracted292

nouns from each of the captions covered by the test partitions of the respective datasets. All text to293

image retrieval used a common prompt of “A photo of " before each noun flagged in a caption. We294

then recorded the pairwise overlap of the top K lists returned for a caption with the top K lists of295

images returned from their synonym replacements. The overlap was averaged across the synonym296

replacements to serve as a measure of the stability of retrieval. The experiments were performed for297

all CLIP variants. The result is shown in Table 3. As can be seen, by projecting the synonymous298

phrases to the SemCLIP embedding, the list of images returned show far higher overlap in SemCLIP299

in comparison to other CLIP variants.300

Due to the projection of synonymous phrases and their associated embedding close together, we301

expect an increase in the precision and recall for general text-to-image retrieval as well. We evaluated302

this using the popular measures of NDCG and mean average precision (MAP). To keep the comparison303

fair, all ground truth labels of images were augmented with their synonym equivalents. For example,304

images labeled with ‘clock frame’ were also augmented with the label ‘frame/clock’ from the same305

caption set as both these labels share the same entities and would be represented by the same average306

vector in SemCLIP space. For each dataset, our method achieves the highest NDCG@K as well as307

MAP across various datasets as shown in Table 4 (under the columns "t2i") except for AWA2 which308

had the fewest labels.309

Evaluating image-to-text retrieval: The image-to-text retrieval experiments results also showed310

similar performance as shown in Table 4 under the columns "i2t". Note that when there are large311

number of captions (visual genome, Flickr30k), our method’s performance is best seen due to the312

capturing of semantics of multiple noun phrases in the average vector embeddings used in the313

transformation. The COCO and Flickr30K labels were not used for training the alignment mapping314

of SemCLIP.315
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Table 4: Comparisons of text-to-image (t2i) and image-to-text (i2t) retrieval performance with
different models.

Dataset Images / Labels Model t2i: NDCG / mAP / Recall (@10) i2t: NDCG / mAP / Recall (@10)

Visual
Genome 7794 / 14513

SemCLIP 0.192 / 0.172 0.254 / 0.185
CLIP 0.053 / 0.060 / 0.065 0.050 / 0.129 / 0.028

OpenCLIP 0.066 / 0.075 / 0.081 0.061 / 0.159 / 0.035
BLIP 0.072 / 0.081 / 0.088 0.069 / 0.167 / 0.039

NegCLIP 0.063 / 0.072 / 0.077 0.060 / 0.150 / 0.035
PosCLIP 0.074 / 0.084 / 0.091 0.060 / 0.146 / 0.034

CUB 11788 / 200

SemCLIP 0.721 / 0.845 0.891 / 0.812
CLIP 0.513 / 0.621 / 0.084 0.619 / 0.554 / 0.826

OpenCLIP 0.669 / 0.744 / 0.111 0.777 / 0.726 / 0.935
BLIP 0.204 / 0.341 / 0.033 0.326 / 0.260 / 0.543

NegCLIP 0.406 / 0.535 / 0.065 0.472 / 0.403 / 0.694
PosCLIP 0.488 / 0.580 / 0.080 0.553 / 0.479 / 0.788

SUN 16657 / 567

SemCLIP 0.686 / 0.712 0.810 / 0.671
CLIP 0.414 / 0.562 / 0.191 0.458 / 0.415 / 0.595

OpenCLIP 0.549 / 0.664 / 0.260 0.514 / 0.476 / 0.634
BLIP 0.413 / 0.535 / 0.194 0.426 / 0.384 / 0.557

NegCLIP 0.429 / 0.553 / 0.201 0.425 / 0.380 / 0.567
PosCLIP 0.463 / 0.602 / 0.214 0.445 / 0.399 / 0.589

AWA2 6985 / 10

SemCLIP 0.967 / 0.987 0.995 / 0.989
CLIP 0.993 / 0.999 / 0.016 0.992 / 0.989 / 1.000

OpenCLIP 1.000 / 1.000 / 0.016 0.994 / 0.991 / 1.000
BLIP 1.000 / 1.000 / 0.016 0.991 / 0.988 / 1.000

NegCLIP 1.000 / 1.000 / 0.016 0.987 / 0.982 / 1.000
PosCLIP 1.000 / 1.000 / 0.016 0.983 / 0.977 / 1.000

COCO 5000 / 80

SemCLIP 0.940 / 0.91 0.895 / 0.923
CLIP 0.810 / 0.869 / 0.081 0.706 / 0.771 / 0.745

OpenCLIP 0.866 / 0.926 / 0.087 0.756 / 0.788 / 0.799
BLIP 0.897 / 0.942 / 0.089 0.774 / 0.852 / 0.781

NegCLIP 0.834 / 0.892 / 0.083 0.766 / 0.797 / 0.808
PosCLIP 0.919 / 0.946 / 0.088 0.807 / 0.834 / 0.843

Flickr30k 31014 / 158391

SemCLIP 0.571 / 0.523 0.580 / 0.572
CLIP 0.354 / 0.306 / 0.510 0.314 / 0.430 / 0.320

OpenCLIP 0.427 / 0.377 / 0.588 0.376 / 0.489 / 0.382
BLIP 0.562 / 0.510 / 0.725 0.475 / 0.587 / 0.480

NegCLIP 0.425 / 0.373 / 0.591 0.354 / 0.465 / 0.360
PosCLIP 0.323 / 0.279 / 0.468 0.273 / 0.367 / 0.283

Performance on classification: We evaluated SemCLIP also for the standard task of classification316

using the predicted labels. On the ImageNet classification, our zero shot classification accuracy for317

SemCLIP was at 88.3% in comparison to CLIP at 84.2%.318

Ablation studies: To explore the value of using the semantic alignment to a semantic memory model,319

we conducted an ablation study in which we fine-tuned CLIP on the visual genome dataset by directly320

providing the synonymous captions as positive examples and using binary cross-entropy loss to cover321

the multiple positive examples. The performance of the resulting model called POSCLIP can be322

seen in Table 4 which are not as impressive as doing an explicit transformation of the terms into the323

SemCLIP space, indicating the lack of similarity in the original textual embeddings of synonymous324

terms.325

6 Conclusions326

In this paper, we offered new approach to semantically enriching VLM models by drawing inspiration327

from the linkages of episodic and semantic memory in the brain. A simple model of semantic memory328

was developed covering all nouns in the English language. A linkage transform was developed to map329

from VLM space to semantic memory space. The resulting VLM model was shown to outperform on330

multiple tasks against multiple datasets. Performance variation was still seen across datasets due to331

their incomplete ground truth labeling, but SemCLIP was found to be better for larger vocabularies332

due to the better handling of synonymous terms. Future work will extend this paradigm to cover other333

parts of speech, and better address out-of-vocabulary words and word-sense disambiguation issues.334
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