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ABSTRACT

Time series forecasting is essential across various sectors, including finance,
transportation, and industry. In this paper, we propose FastTF, a powerful yet
lightweight model in Time-Frequency domain for long-term time series forecast-
ing. Our aim is to push the boundary of model lightweighting and facilitate the
deployment of lightweight model on resource-constrained devices. Leveraging the
global nature and information compressibility of the time series in frequency do-
main, we introduce patch-wise downsampling, Sparse Frequency Mixer (SFM),
and patch predictor to capture the temporal variations of frequency components
across different patches. Experimental results on five public datasets demonstrate
that FastTF with very few parameters outperforms several state-of-the-art mod-
els and demonstrates a strong generalization capability. Notably, on the ETTh1
dataset, FastTF with only 4 parameters achieves a performance that is close to
the DLinear and FITS in the horizon-96 forecasting. Furthermore, we deployed
our model on a FPGA development board (Zynq UltraScale+ RFSoC ZCU208
Evaluation Kit), where the corresponding resource usage statistics illustrate that
our model has a very low computational overhead and latency, making it easily
implemented on hardware devices.

1 INTRODUCTION

“Less is more” —— Ludwig Mies van der Rohe

Time series forecasting, a technique used to predict future data based on historical observations
and has found extensive applications in various fields such as finance, transportation, energy, and
meteorology. With the development of deep learning technologies, neural network-based models,
including MLP (Zeng et al., 2023; Xu et al., 2023; Liu et al., 2024; Yi et al., 2024; Wang et al., 2024),
CNN (Wu et al., 2022; Wang et al., 2023; Luo & Wang, 2024), and Transformer (Zhou et al., 2021;
2022; Nie et al., 2022), have gradually supplanted traditional models like ARIMA (Shumway et al.,
2017) and have become mainstream. However, these models often face significant challenges: on
one hand, their complexity makes them difficult to deploy on computationally constrained devices
such as FPGAs or other embedded systems. On the other hand, as black-box models, they generally
lack interpretability.

From the perspective of signal sequence characteristics, models only based on time-domain-based
are effective at capturing trend information but fail to leverage the global nature and information
compression capabilities of the frequency domain, leading to shortsightedness and high complexity.
Conversely, models that only based on frequency domain are adept at capturing the inherent periodic
characteristics within sequences but struggle to handle the sequential order of data, resulting in
ambiguity in temporal information. To address these issues, we model the time series forecasting
problem as one of intra-patch information fusion and inter-patch trend prediction. Specifically, the
proposed FastTF model segments the time series into patches in the time domain and employs a
downsampling strategy within patches, designed based on the Nyquist sampling theorem, to achieve
efficient weight sharing across subsequences. Additionally, a Sparse Frequency Mixer (SFM) is
introduced to address spectral leakage inherent in the discrete Fourier transform and to exploit the
naturally sparse correlations between frequency points for intra-patch information fusion. The patch
predictor is then used for inter-patch frequency trend prediction. This approach not only results in
an exceptionally lightweight model that can be deployed on resource-constrained edge devices but
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also provides a certain degree of interpretability. The contribution of this paper can be summarized
as follows:

• We propose FastTF, a powerful yet extremely lightweight model for long-term time series
forecasting.

• Based on the Nyquist sampling theorem, FastTF performs patch-wise downsampling and
sub-sequence rFFT on time series data after dividing it into patches, maximizing weight
sharing while minimizing information loss.

• Observing the sparse correlation between frequency points, we design SFM (Sparse Fre-
quency Mixer), a linear mapping layer with a block diagonal weight matrix to facilitate
information fusion between frequency points. The patch predictor then predicts the tempo-
ral variations of different frequency points and transform them back to the time domain.

• Experiments on five public datasets demonstrate that FastTF achieves superior performance
compared to most mainstream models with remarkably low parameter counts and training
overhead. Deployment results on an FPGA development board confirm that it can run with
minimal resource and time overhead.

2 RELATED WORK

Transformer Based Models Transformers (Vaswani, 2017) stand out in time series forecasting
due to their strong ability to capture long-range dependencies. For instance, Informer (Zhou et al.,
2021) and Autoformer (Wu et al., 2021) capture the temporal dependencies of time series, while
FEDformer (Zhou et al., 2022) models the frequency domain of time series. Recent study, like
PatchTST (Nie et al., 2022), showed the effectiveness of patch-based processing in time series
forecasting. However, these models are computationally expensive and suffer from a potential in-
formation loss due to the attention mechanism (Zeng et al., 2023).

MLPs and CNNs The latest research shows that simple linear models, like MLP and CNN, can
achieve competitive performance in time series forecasting. For example, DLinear (Zeng et al.,
2023), FITS (Xu et al., 2023) are two representative models that use single linear layers to capture
the time and frequency characteristics of time series. ModernTCN (Luo & Wang, 2024), a CNN-
based model that originated from modern convolution, also shows strong generalizability in time
series forecasting.

3 PRELIMINARIES AND MOTIVATION

DFT & FFT & rFFT Given a discrete time sequence x(n) with n ranging from 0 to N − 1, the
Discrete Fourier Transform (DFT) converts this time-domain sequence into its frequency-domain
representation. The DFT is defined as:

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N (1)

where X(k) is the value of the sequence at frequency index k, N is the total number of samples
in the sequence, and e−j2πkn/N is the complex exponential factor used to extract the frequency
components of the sequence. FFT is a fast algorithm for computing the DFT which reduces the
computational complexity from O(N2) to O(N log2 N), making it feasible to compute the DFT for
large sequences (Cooley & Tukey, 1965).
Property 1. The DFT of a real-valued sequence x(n) is Hermitian symmetric, i.e., X(k) = X∗(N−
k), where X∗ denotes the complex conjugate of X .

Property 1 (with the proof given in the Appendix A.1) indicates that only around half of the fre-
quency points are unique, and the other half can be obtained by taking the complex conjugate of
the first half. Therefore, we use rFFT (Ziegler, 1972; Sorensen et al., 1987), which only computes
around half of the frequency points to further reduce computational overhead. Frequency domain
analysis is widely applied to time series and has the following characteristics:
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• Global Perspective: As seen in equation 1, each frequency component in the DFT of a time series
is related to all time indices, meaning each frequency component integrates information from the
entire sequence.

• Information Compression: As illustrated in Figure 1, most time series in nature and daily life,
after applying the DFT, exhibit characteristics of high and low-frequency components (shown in
Figure 2). Most of the energy is concentrated in the low-frequency part, allowing us to filter out
high-frequency noise and focus on the main components of the time series.

Figure 1: Original Time Se-
ries from weather dataset

Figure 2: The result of rFFT
for time series in Figure 1

Figure 3: The structure of the Com-
plex Linear Layer

On one hand, the global perspective of the frequency domain blurs time information, which drives
us to seek a method that captures the variation of frequency over time. Specifically, this involves
dividing the entire time series into several patches and predicting the changes in frequency points
between different patches. On the other hand, the compression of information in the frequency
domain inspires us to perform down-sampling and filtering within each patch, which will be detailed
in Section 4.

Complex Linear Layer The Complex Linear Layer (Trabelsi et al., 2017) is a linear transformation
layer that operates on complex numbers. Just as the linear layer in real-valued neural networks, given
an n-dimensional input x and an m-dimensional output y, the Complex Linear Layer is defined as
y = Wx+ b, where x ∈ Cn,y ∈ Cm,W ∈ Cm×n, b ∈ Cm is the complex weight matrix, input,
output, and bias, respectively (as shown in Figure 3). The complex linear layer has already been
integrated into PyTorch implementations.

4 METHODOLOGY

Figure 4: The architecture of FastTF

Channel Independent Time Series Forecasting Given a multivariate time series X =
[x(1),x(2), . . . ,x(N)], where each x(i) is a univariate series, the goal is to predict future values
for each series independently. For each x(i), given a historical window x

(i)
t−L+1:t ∈ RL, we predict

the future horizon x̂
(i)
t+1:t+H ∈ RH . For simplicity, we use x to represent x(i)

t−L+1:t in the following
sections.
The goal of this paper is to design a lightweight and efficient time series forecasting model. To
achieve this, our approach is primarily based on three key ideas:
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1. Weight Sharing: We promote weight sharing by splitting the complete sequence into multiple
subsequences and applying the same operations to each subsequence or to the frequency points
in parallel.

2. Weight Sparsification: The spectral leakage and the natural correlation (see Section 4.2) be-
tween frequency points in time series indicate sparse correlations between these frequency points,
leading us to apply group sparsification to the weight matrix in the frequency domain.

3. Patch-Scale Prediction: To reduce the number of parameters, while at the same time capturing
the temporal variations of frequency components, we predict the frequency points over an interval
at the patch scale.

The architecture of our model, FastTF, is shown in Figure 4. FastTF first accepts a single-channel
sequence x ∈ RL and divides it into P patches, each of length L/P . Each patch is then down-
sampled by a factor of M and each subsequence is transformed into the frequency domain using
rFFT, yielding XrFFT ∈ CP×fc×M , where fc is the cut off frequency. The properly designed SFM
(Sparse Frequency Mixer) is then applied to XrFFT to capture the sparse correlations between fre-
quency points in each subsequence, obtaining XSFM ∈ CP×fc×M . The patch predictor gets XSFM

as input and predicts the future frequency components of each patch, yielding X̂ ∈ CHP
L ×fc×M .

Finally, the inverse rFFT (irFFT) and the reshape operation is applied to X̂ to obtain the predicted
time series x̂ ∈ RH . We now detail each component of FastTF in the following sections.

4.1 PATCH-WISE DOWNSAMPLING AND RFFT

Theorem 1. Given a continuous-time signal x(t) with a maximum frequency component fmax, sam-
pling the sequence at a rate fs to get a descrete sequence x(n) and downsampling it by a factor of
M . To avoid spectral aliasing, the sampling frequency fs should satisfy the following condition:

M ≤ fs
2fmax

,

Proof. See Appendix A.2.

After patch division, a patch-wise downsampling strategy with a factor of M is applied to each patch.
Although Theorem 1 provide the necessary conditions to ensure that no information loss occurs
during sampling, it must be noted that, in practice, signals (or sequences) that meet these criteria
are virtually nonexistent. From a technical perspective, the sequence should first undergo low-pass
filtering before downsampling to completely prevent spectral aliasing. However, considering that
the high-frequency components of most sequences are negligible (as illustrated in Figure 2), and the
additional computational cost associated with low-pass filtering (discussed in detail in Apppendix
B), FastTF omits the filtering step and relies on empirical methods to select the value of M in
practice. Given downsampled sequences Xsamp ∈ RP× L

PM ×M , we apply the rFFT to each patch
and empirically select the cut-off frequency fc to obtain XrFFT ∈ CP×fc×M . The overall process
can be expressed as follows:

XrFFT = Cut (rFFT(Downsample(x))) (2)

where Cut(·) is a function that selects the first fc frequency points of the rFFT result.

4.2 SPARSE FREQUENCY MIXER (SFM)

The SFM (Sparse Frequency Mixer) is designed to integrate information between frequency points
in the frequency domain. Specifically, the SFM is motivated by two key observations:

• Spectral Leakage: Proposition 1 (with the proof given in the Appendix A.3) and Figure 5a
illustrate that even for a single frequency signal, the sampled time sequence’s energy can spread
to surrounding frequency points due to the mismatch of FFT frequency points.
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(a) (b) (c)
Figure 5: Sparse correlation between frequency points: (a) Spectral leakage phenomenon due
to misalignment with DFT bins, the number of sampling points is 120 and the sampling rate is set
to 100; (b) Higher harmonics generated by a base frequency; (c) The pattern of the weight matrix
learned in the Sparse Frequency Mixer without sparsification.

• Natual Correlation: The frequency components of a time sequence can be naturally correlated,
for example, the harmonics generated by a base frequency, as introduced in Proposition 2 (with
the detailed explanation given in the Appendix A.4) and illustrated in Figure 5b.

Proposition 1 (Spectral Leakage due to Misalignment with DFT Bins). Let x[n] be a discrete-time
signal of length N , sampled at a rate fs. The Discrete Fourier Transform (DFT) computes frequency
components at specific frequency bins given by:

fk =
kfs
N

, k = 0, 1, . . . , N − 1.

If the signal x[n] contains a sinusoidal component of frequency f0, such that f0 does not exactly
match any of the DFT frequency bins fk, i.e.,

f0 ̸= fk for any k,

then the energy of the sinusoidal component at f0 will leak into adjacent frequency bins. This
phenomenon is known as spectral leakage.
Proposition 2 (Harmonics). Let x(n) be a time series that is a periodic or quasi-periodic signal,
possibly containing non-linearities or sharp transitions (e.g., discontinuities or sudden changes).
The presence of such non-linearities or sharp transitions in x(n) leads to the generation of higher
harmonics in its frequency spectrum.

These observations suggest that the frequency points in a time series are correlated, but the cor-
relation is sparse, meaning that most frequency points only interact with a few nearby ones. This
is further confirmed by a learned weight matrix of the frequency domain linear layer, which shows
a sparse pattern. Specifically, weights connecting distant frequency points are nearly zero, as il-
lustrated in Figure 5c. Based on these facts, we design the SFM to capture the sparse correla-
tions between frequency points. For simplicity, we assume that the correlation between frequency
points is block-diagonal, so that the weight matrix of the SFM can be also represented as a block-
diagonal matrix, which is equivalent to a grouped linear layer. Specifically, given the input XrFFT,
the SFM first reshapes the fc frequency points into K groups, each containing fc/K frequency
points, and then applies a linear transformation to each group for PM rFFT sequences in parallel.
Given SFM : CP×fc×M → CP×fc×M , the operation of SFM can be formulated as:

XSFM = SFM(XrFFT) (3)

= Concat(L1(X
(1)
rFFT), . . . ,LK(X

(K)
rFFT)), k = 1, 2, . . . ,K (4)

where Lk(·) is the linear transformation applied to the k-th group of frequency points, i.e.,
Lk : CP× fc

K ×M → CP× fc
K ×M . Concat(·) is a function that concatenates the results of the lin-

ear transformations, and X
(k)
rFFT ∈ CP× fc

K ×M denotes the k-th group of frequency points in XrFFT.

4.3 PATCH PREDICTOR AND POST-PROCESSING

The patch predictor is a linear layer that maps the mixed frequency components XSFM to the future
frequency components of each patch X̂ (CP×fc×M → CHP

L ×fc×M ), and the weight is shared

5
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across different frequency components. The predicted frequency components are then zero-padded
to their original length

(⌊
L

2PM

⌋
+ 1
)

and transformed back to the time domain using irFFT followed
by a reshape operation to obtain the final prediction x̂ ∈ RH :

X̂ = PatchPredictor(XSFM) (5)

X̂irFFT = irFFT
(

ZeroPad(X̂)
)

(6)

x̂ = Reshape(X̂irFFT) (7)

where ZeroPad(·) is a function that zero-pads the frequency dimensioin, and Reshape(·) reshapes
the irFFT result to obtain the final prediction (CHP

L × L
PM ×M → RH ).

5 EXPERIMENTS

Table 1: The statistics of the used forecasting
datasets.

Dataset Traffic Electricity Weather ETTh1 & ETTh2

Channels 862 321 21 7
Sampling Rate 1 hour 1 hour 10 min 1 hour
Total Timesteps 17,544 26,304 52,696 17,420

In this section, we first validate the perfor-
mance of FastTF on five commonly used pub-
lic datasets, followed by a detailed complexity
analysis of FastTF, where we present a configu-
ration framework with only 4 parameters. Next,
we conduct a series of hyperparameter searches
to analyze the performance under different hy-
perparameter settings. Moreover, experiments
were conducted to verify the generalizability of FastTF on different datasets and horizons. Finally,
we deployed FastTF on an FPGA development board and provided corresponding resource usage
statistics to demonstrate its feasibility for deployment on hardware devices.

Table 2: Comparison of different methods across various datasets and horizons. The best 3
results are highlighted red, blue, green, respectively. Please note that all the results are reported
after fixing the code bug (See Appendix D).

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

FEDformer (2022b) 0.375 0.427 0.459 0.484 0.340 0.433 0.508 0.480 0.188 0.197 0.212 0.244 0.573 0.611 0.621 0.630
TimesNet (2023) 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640
PatchTST (2023) 0.385 0.413 0.440 0.456 0.274 0.338 0.367 0.391 0.129 0.149 0.166 0.210 0.366 0.388 0.398 0.457
DLinear (2023) 0.384 0.443 0.446 0.504 0.282 0.350 0.414 0.588 0.140 0.153 0.169 0.204 0.413 0.423 0.437 0.466
FITS (2024) 0.382 0.417 0.436 0.433 0.272 0.333 0.355 0.378 0.145 0.159 0.175 0.212 0.398 0.409 0.421 0.457
U-Mixer(2024) 0.370 0.423 0.470 0.500 0.290 0.366 0.423 0.446 0.151 0.163 0.179 0.210 0.451 0.458 0.477 0.520
Koopa (2024) 0.375 0.421 0.451 0.445 0.298 0.356 0.370 0.392 0.154 0.193 0.199 0.215 0.401 0.403 0.432 0.464
MICN (2023) 0.398 0.430 0.440 0.491 0.299 0.422 0.447 0.442 0.164 0.177 0.193 0.212 0.519 0.537 0.534 0.577
FastTF (ours) 0.350 0.388 0.419 0.416 0.268 0.330 0.351 0.376 0.132 0.149 0.165 0.200 0.387 0.400 0.410 0.446

5.1 EXPERIMENTAL SETUP

Datasets The five datasets used in our experiments follows Zhou et al. (2021). The statistics of the
datasets are summarized in Table 1 and the detailed information are shown in Appendix E.

Table 3: Weather dataset results.

Dataset Weather

Horizon 96 192 336 720

FEDformer (2022b) 0.217 0.276 0.339 0.403
TimesNet (2023) 0.172 0.219 0.280 0.365
PatchTST (2023) 0.149 0.194 0.245 0.314
DLinear (2023) 0.176 0.218 0.262 0.323
FITS (2024) 0.145 0.188 0.236 0.308
TimeMixer (2024) 0.147 0.189 0.241 0.310
ModernTCN (2024) 0.149 0.196 0.238 0.314
Koopa (2024) 0.154 0.193 0.245 0.321
MICN (2023) 0.161 0.220 0.278 0.311
FastTF (ours) 0.140 0.180 0.232 0.301

Baseline We compare FastTF with transformer-based
models include FEDformer, and PatchTST, CNN-based
models include TimesNet, MICN and ModernTCN,
MLP-based models include DLinear, FITS, Koopa, U-
Mixer (Ma et al., 2024) and TimeMixer. The baseline
models are set to its best performance on each dataset.
Please note that the look-back window for FastTF is set
to 720. We use MSE (Mean Squared Error) as the evalua-
tion metric and each model was evaluated on four differ-
ent forecasting horizons: 96, 192, 336, and 720.

Environment We implement FastTF using PyTorch and
train the model on a single NVIDIA RTX 4090 GPU.
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5.2 MAIN RESULTS

Table 2 and Table 3 present the experimental results of FastTF and the baseline models on the five
datasets. FastTF achieves competitive performance compared to the baseline models, with a sig-
nificantly lower number of parameters. Specifically, FastTF achieved a nealy 10% of performance
improvement compared to the MLP-based models like DLinear and FITS on horizon-96 forecasting
on the ETTh1 dataset. This is due to the fact that ETTh1 dataset exhibits stronger seasonality and pe-
riodicity, which can be better captured by the Time-Frequency domain analysis of FastTF. Moreover,
compared to complex models like FEDformer and TimesNet, FastTF achieves better performance,
because the model better analized simple frequency shift and variation in the time series. Notably,
FastTF performed well on both mid-term (like horizon-96 and horizon-192) and long-term forecast-
ing tasks, which can be attributed to its patch prediction strategy. The hyperparameter settings and
the additional results are provided in Appendix C.

5.3 COMPLEXITY ANALISYS

Theorem 2 (parameter count). Given the look-back window length L, the number of patches P , the
output horizon H , and the cut-off frequency fc, the number of frequency group K in SFM, the total
number of parameters in FastTF can be calculated as:

Parameters =
fc

2

K
+

HP 2

L
(8)

Specifically, without cutting off the frequency points, given the the down sampling factor M , the
number of parameters in FastTF can be calculated as:

Parameters =
(
⌊ L

2PM
⌋+ 1

)2

/K +
HP 2

L
(9)

Proof. The proof is provided in Appendix A.5 and the detailed parameter table is shown in Appendix
G. The detailed complexity analysis can be found in Appendix H.

Table 4: The parameter count of DLinear (2023), FITS (2024), and FastTF (ours) under different
Horizon and Look-back settings on ETTh1 dataset, where the patch size L/P is set to 48 and the
downsampling factor is set to 24.

model DLinear (2023) FITS (2024) FastTF (ours)

Horizon
Look-back 96 192 336 720 96 192 336 720 96 192 336 720

96 18624 37056 64704 138K 840 1,218 2,091 5,913 4 9 15 31
192 37248 74112 129K 277K 1,260 1,624 2,542 6,643 9 17 29 61
336 65184 130K 226K 484K 1,890 2,233 3,280 7,665 15 29 50 106
720 140K 278K 485K 1.04M 3,570 3,857 5,125 10,512 31 61 106 226

Table 5: Comparison of various models in terms
of parameters, maximum GPU memory usage,
and inference batch time (with batch size 256 on
cpu) on the weather dataset. For fair compari-
son, we set the look-back window to 720 and
the predict horizon to 720.

Model Parameters Max GPU Mem Batch Time (cpu)

FEDformer (2022b) 16.80 M 6.05 G 18.55s
MICN (2023) 73.45 M 4.97 G 7401.7ms
ModernTCN (2024) 176.18 M out of memory –
PatchTST (2023) 8.7 M 11.21 G 2234.3ms
Koopa (2024) 2.14 M 12.614 G 60.81ms

DLinear (2023) 21.80 M 660.80 M 84.48ms
FITS (2024) 951 K 401.89 M 68.16ms
FastTF (Ours) 3.8 K 223.17 M 46.16ms

400 600 800 1000 1200 1400
Training Time (ms/epoch)

0.40

0.42

0.44

0.46

0.48

0.50

M
SE

FastTF (ours)
0.092GB, 432ms

DLinear
0.112GB, 444ms

FITS
0.16GB, 496ms

Koopa
0.222GB, 810ms

ModernTCN
3.484GB, 1261ms

PatchTST
1.083GB, 1217ms

MICN
4.939GB, 18120ms FEDformer

5.193GB, 94000ms
0.1GB 0.3GB
Memory Footprint

Figure 6: The memory footprint and train-
ing speed of different models on the ETTh1
dataset. The look-back window and the pre-
dict horizon are both set to 720.

Theorem 2 provides the calculation of the number of parameters in FastTF. We then explore the limit
of the number of parameters in FastTF by comparing the performance (MSE loss) with DLinear and
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FITS on the ETTh1 dataset, a small dataset with 7 similarly behaved channels. The result shown in
Table 4 indicates that FastTF is able to conduct 96-96 forecasting with as few as 4 parameters, which
is 210 times fewer than DLinear and 4000 times fewer than that of FITS. When it comes to 720-
720 forecasting, FastTF achieves a comparable performance with only 226 parameters, which is
nearly 5000 times fewer than DLinear. As shown in memory footprint Figure 6, FastTF achieves
the best performance while significantly reducing the memory usage and training time compared to
other baselines. Specifically, FastTF is 38 times more memory efficient and 3 times faster than
ModernTCN on the ETTh1 dataset.

Furthermore, Table 5 shows the parameter count, GPU memory usage, and cpu inference time of
FastTF and other models on the weather dataset, a dataset with 21 different behaved channels.
Please note that a individual configuration is used for each model (See Appendix F for detailed
information). Astonishingly, FastTF achieves the best performance with only 3.8K parameters,
which is up to 4400 times smaller than the transformer-based models, and 46,400 times smaller
than the recent CNN-based models, ModernTCN. In short, FastTF is lighter, faster, and better.

5.4 4 PARAMETERS ARE ALL YOU NEED–A CASE STUDY ON THE ETTH1 DATASET

Proposition 3 (The ability to capture statistical property drift). The rFFT operation can natually
capture drift of statistical property in the time series, i.e., the variance of the mean value of the time
series between different patches, bacause recall Equation 1 we have:

X(0) =

N−1∑
n=0

x(n) = N · mean(x), (10)

which is also called the DC component of a spectrum. Table 6: The performance comparison
of FastTF with only 4 and 8 parameters
on the ETTh1 dataset.

Model (look-back length) Param. count MSE

FastTF (96) 4 0.383
FastTF(192) 8 0.371

FITS (720) 5.9K 0.382
DLinear (720) 138K 0.384
FEDformer (96) 16.30 M 0.380

We now give a configuration framework on the ETTh1
dataset for FastTF with only 4 parameters. Given the
look-back window length L = 96, the number of patches
P = 2, the cut-off frequency fc = 1 (so that the 1 param-
eter in SFM can be omitted), the down sampling factor
M = 24, and the number of frequency group K = 1, the
performance of FastTF on the ETTh1 dataset is shown in
Table 6. This framework achieves a competitive perfor-
mance compared to the baseline models, and reduced the number of parameters by 4,000,000 times
compared to FEDformer. Beneath this result lies an interesting coincidence: The points obtained
by downsampling within a patch happen to be at the same position across two cycles (with the ma-
jor cycle of ETTh1 being 24). Proposition 3 indicates that when fc = 1, the model captures the
shift of mean value across patches by averaging each subsequence, essentially capturing the trend
information on the scale of the entire cycle. The prediction results is shown in Figure 7.

5.5 DETAILED DISCUSSION
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Figure 7: The prediction results of
FastTF with only 4 parameters on the
ETTh1 dataset.

The effect of downsampling The downsampling within
patches facilitates weight sharing, as subsequent SFM op-
erates independently on each subsequence. However, the
downsampling process lowers the maximum frequency
that the rFFT can represent. Consequently, the high-
frequency components of the original sequence’s spec-
trum are aliased back into the low-frequency range, which
results in irreversible information loss within individual
sequences. Fortunately, since the set of all subsequences essentially retains all the information
from the original sequence, this information loss is partially compensated. We explore the extent to
which this operation impacts the final model performance by varying the downsampling factor M ,
with the results presented in Table 7. The results indicates that although the performance usually
decreases as the downsampling factor increases, the degradation is relatively marginal, which fur-
ther demonstrates the robustness of FastTF. Interestingly, on the weahter dataset, the performance
even improves when the downsampling factor is set to 24, which is consistent with the fact that the
weather dataset has a relatively low frequency and is less sensitive to the downsampling operation.
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Figure 8: Detailed study on hyperparameters. (a) The effect of the number of frequency groups
K in SFM on the traffic dataset. (b) The effect of the number of frequency groups K in SFM on the
ETTh1 dataset. (c) The effect of the cut-off frequency fc on the traffic dataset. (d) The effect of the
cut-off frequency fc on the ETTh1 dataset. (e) The effect of the patch size on the ETTh1 dataset.

The effect of SFM The sparse grouping of frequency points in SFM reduce the number of param-
eters of the weight matrix linearly with the number of frequency groups K, but it also omits the
potential long-range connections between frequency points. Therefore, we futher explore the ef-
fect of the number of frequency groups K on the model performance on ETTh1 and traffic, and
the results are shown in Figure 8a and Figure 8b. The results imply that the increase in K does
not necessarily harm the model performance. In fact, the sparse grouping strategy can be seen as a
form of regularization, which can prevent overfitting and improve the model’s generalization ability.
Moreover, the selection of cut-off frequency fc is also crucial. The results in Figure 8c and Figure
8d show that the model performance is relatively stable when fc is closed to L

2PM and start to de-
teriorate rapidly when fc becomes too small. This is because most of the information in the time
series is concentrated in the low-frequency range, and the information loss become significant when
the cut-off frequency gets close to the main frequency of the time series. The result of the ablation
study about the SFM is given in Appendix C.2.

Table 7: Results obtained by varying the
downsampling factor M on three datasets,
with the look-back window set to 672, and
the patch size set to 48.

Dataset ETTh1 Weather Electricity

Horizon 96 720 96 720 96 720

M = 24 +0.012 +0.007 +0.009 +0.004 -0.004 +0.002
M = 8 +0.009 +0.007 +0.005 +0.001 +0.001 +0.003
M = 4 +0.003 +0.002 +0.003 +0.002 +0.002 +0.002
M = 2 +0.001 -0.002 +0.002 +0.000 +0.001 +0.003
M = 1 0.350 0.418 0.144 0.306 0.145 0.204

The effect of patch size We explore the effect of the
patch size on the model performance on the ETTh1
dataset, and the results are shown in Figure 8e. The
results suggest that a larger patch size is more ad-
vantageous for ultra-long-term forecasting, while a
moderate patch size is beneficial for relatively short-
term predictions. On the other hand, setting the
patch size to an integer multiple of the data’s inher-
ent periodicity also facilitates cross-period feature
learning, thus improving the model’s performance.

5.6 GENERALIZABILITY

The generalization capability of a model, i.e., its ability to perform inference on other similar
datasets after being trained on a specific dataset, is a crucial metric for evaluating the effectiveness
of a method. Therefore, we evaluated FastTF on two transfer paths, ETTh2→ ETTh1 and Electricity
→ ETTh1, and presented the results in Table 8. The results demonstrate that FastTF significantly
outperforms baseline models in both horizon of 96 and 720. Specifically, in 96 step, the Electricity
dataset proves more suitable for transfer learning compared to ETTh2, while the opposite holds true
for 720 step forecasts. This is because, in terms of long-term trends, ETTh2 shares greater similarity
with ETTh1 (Lin et al., 2024). These findings indicate that FastTF can be effectively transferred
to other datasets with minimal performance degradation, particularly for long-term predictions on
ETTh2.

5.7 TRAINING DETAIL
Table 8: The generalizability of FastTF on
the ETTh2 → ETTh1 and Electricity →
ETTh1 transfer paths.

Dataset ETTh2 → ETTh1 Electricity → ETTh1

Horizon 96 720 96 720

PatchTST 0.452 0.478 0.405 0.473
Koopa 0.411 0.449 0.401 0.477
DLinear 0.422 0.526 0.390 0.469
FITS 0.414 0.446 0.388 0.452
FastTF 0.385 0.423 0.380 0.444

In the final part of our experimental analysis, we fo-
cus on the training details. Figure 9 presents various
training specifics of FastTF on the ETTh1 dataset.

Figures 9a and 9b illustrate the training loss and val-
idation loss curves of FastTF, along with a compar-
ison to DLinear and FITS. The results indicate that
FastTF converges more rapidly and with greater sta-
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bility, with a significantly lower convergence value on the validation set compared to DLinear and
FITS. In contrast, FITS and DLinear both exhibit unstable fluctuations during the early stages of
training.

Figure 9c shows the predictive performance of FastTF. FastTF is able to better capture the peaks,
troughs, and inherent periodicity within the sequence, demonstrating a significantly superior perfor-
mance compared to DLinear and FITS.

Figure 9d visualizes the SFM weight matrix under the condition of K = 3. The three weight
matrices are concatenated in a block-diagonal form, with the remaining parts displayed as zeros.
Comparing this figure with Figure 5c, it can be observed that the primary portions of the weight
matrix are preserved, while the less important weights at the edges are ignored. This linear reduction
in the size of the weight matrix effectively retains the most critical information, consistent with the
discussion in Section 5.5.
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Figure 9: Training detail and visualization of FastTF on the ETTh1 dataset. (a) Training loss curve,
where learning rate is set to 0.008. (b) Validation loss curve. (c) Prediction results. (d) Visualization
of the sparse weight matrix in SFM.

6 DEPLOYMENT ON FPGA DEVELOPMENT BOARD

FPGA (Field-Programmable Gate Array) is a versatile integrated circuit that enables users to pro-
gram hardware according to specific requirements, facilitating the implementation of targeted func-
tionalities. Owing to its advantages of low power consumption and low latency, FPGA is extensively
utilized in digital signal processing applications. However, its limited storage and computational re-
sources present challenges for the independent deployment of large neural network models. This
paper focuses on the Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit as a representative example
to demonstrate the exceptional hardware deployability of FastTF. We conduct on-chip deployments
of three algorithms—FastTF, DLinear, and FITS—comparing their resource consumption and la-
tency in a 720-720 inference task. For FastTF, we set parameters at M = 3, K = 2, fc = 8, and
a patch size of 48, while the truncation frequency for FITS is set to 200. The results, summarized
in Table 9, reveal that FastTF significantly conserves storage and computational resources while
delivering faster predictions and lower operational power. Notably, both DLinear and FITS utilize
more BRAM blocks and DSPs, which may be impractical for lower-configured FPGAs. Moreover,
the inference time of FITS seems to be unreasonably high, which is due to its adoption of a serial
computation scheme during the FFT stage, as the resource consumption of parallel algorithms far
exceeds the limits of the development board. Please note that the results may vary depending on the
implementation details. Additional details can be found in Appendix J.

7 CONCLUSION

Table 9: Resource Usage and Infer-
ence Time on FPGA. Mul denotes the
number of real number multiplications
(without considering rFFT).

Metric FastTF DLinear FITS

BRAMs 5.5 722.5 407
DSP Blocks 810 2893 2410

Power 4.9W 5.1W 5.9W
Cycles 353 750 21851

Mul 20.5K 1054.8K 240.0K

In this paper, we proposed FastTF, a time series forecast-
ing model that operates in the Time-Frequency domain.
The model employs downsampling and inter-patch pre-
diction to enable weight sharing, while frequency-domain
weight sparsification further minimizes both parameter
count and computational overhead. Through explanations
and experimental results, we demonstrate that FastTF of-
fers seven key advantages: simple, lightweight, fast, effective, robust, generalizable, and de-
ployable. These strengths strongly position FastTF as a highly competitive model for time series
forecasting tasks, particularly on resource-constrained devices.
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A PROOF

A.1 PROOF OF PROPERTY 1

Proof. We want to prove that the Discrete Fourier Transform (DFT) of a real-valued sequence x(n)
is Hermitian symmetric, i.e., X(k) = X∗(N − k).

The DFT of the sequence x(n) is defined as:

X(k) =

N−1∑
n=0

x(n)e−j 2π
N kn

where k = 0, 1, 2, . . . , N − 1.

The complex conjugate of X(k), denoted as X∗(k), is:

X∗(k) =

(
N−1∑
n=0

x(n)e−j 2π
N kn

)∗

Since the sum of the conjugates is equal to the conjugate of the sum, and e−jθ is conjugated to ejθ,
we have:

X∗(k) =

N−1∑
n=0

x∗(n)ej
2π
N kn

Given that x(n) is a real-valued sequence, x∗(n) = x(n). Thus:

X∗(k) =

N−1∑
n=0

x(n)ej
2π
N kn

Now, let’s express X(N − k) using the definition of the DFT:

X(N − k) =

N−1∑
n=0

x(n)e−j 2π
N (N−k)n

Simplifying the exponent:

X(N − k) =

N−1∑
n=0

x(n)e−j 2π
N Nnej

2π
N kn

Since e−j 2π
N Nn = e−j2πn and e−j2πn = 1 for any integer n, we have:

X(N − k) =

N−1∑
n=0

x(n)ej
2π
N kn

Notice that:

X∗(k) =

N−1∑
n=0

x(n)ej
2π
N kn
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and:

X(N − k) =

N−1∑
n=0

x(n)ej
2π
N kn

Thus, we conclude:
X(N − k) = X∗(k)

We have shown that:
X(k) = X∗(N − k)

This result confirms that the DFT of a real-valued sequence x(n) is Hermitian symmetric, complet-
ing the proof.

A.2 PROOF OF THEOREM 1

Proof. We begin by considering the original discrete-time sequence x(n) which is sampled at a
frequency fs. The sequence x(n) has a maximum frequency component fmax.

The Nyquist sampling theorem states that to avoid aliasing, the sampling frequency fs must satisfy:

fs ≥ 2fmax.

This ensures that the highest frequency component in the signal is adequately captured by the sam-
pling process.

Now, consider downsampling the sequence x(n) by a factor of M . Downsampling is the process
of reducing the sampling rate by keeping every M -th sample and discarding the others. The new
sequence after downsampling is denoted by xd(n) = x(Mn).

When we downsample by a factor of M , the effective sampling frequency after downsampling
becomes:

f ′
s =

fs
M

.

To avoid aliasing in the downsampled sequence, the new sampling frequency f ′
s must satisfy the

Nyquist condition:
f ′
s ≥ 2fmax.

Substituting f ′
s =

fs
M into the inequality, we get:

fs
M
≥ 2fmax.

Multiplying both sides by M , we obtain:

fs ≥ 2M × fmax.

This inequality indicates that for the downsampling process to avoid aliasing, the original sampling
frequency fs must be at least 2M times the maximum frequency component fmax of the sequence
x(n).

Hence, the theorem is proved.

A.3 PROOF OF PROPOSITION 1

Proof. The phenomenon of spectral leakage occurs when a sinusoidal component within a signal
does not align perfectly with the frequency bins of the Discrete Fourier Transform (DFT). The
DFT calculates the frequency content of a discrete-time signal x[n] over a finite interval, producing
frequency components at specific frequencies fk = kfs

N , where k ranges from 0 to N − 1 and fs is
the sampling frequency.

When the frequency of a sinusoidal component f0 in the signal does not coincide with any of these
discrete DFT frequency bins fk, the DFT cannot represent f0 as a single frequency component.

13
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Instead, the energy that should ideally be concentrated at f0 is distributed among several neighboring
frequency bins, a phenomenon known as spectral leakage.

To understand why this occurs, consider the DFT of a sinusoidal signal x[n] = A cos(2πf0n + ϕ).
If f0 aligns perfectly with one of the DFT bins fk, the DFT will represent this component as a peak
at fk, with no energy in the other bins. However, if f0 does not align with any fk, we can express
f0 as f0 = fk +∆f , where ∆f is the mismatch between f0 and the nearest DFT bin frequency fk.
The sinusoid can no longer be represented by a single complex exponential at fk, and instead, its
energy spreads across multiple bins.

Mathematically, this is due to the finite length of the signal. The DFT implicitly assumes that the
signal is periodic with a period equal to the length of the signal N . When f0 does not match any
fk, the assumption of periodicity introduces discontinuities at the boundaries of the signal, creating
artifacts in the frequency domain. These artifacts manifest as energy in frequency bins that are not
directly associated with f0, leading to the appearance of spectral leakage.

To illustrate, consider the DFT of the signal x[n] = A cos(2π k0+δ
N n), where k0 is an integer, and

δ is a small fractional frequency component such that f0 = (k0+δ)fs
N . The DFT will show a peak

not only at k0 but also in adjacent bins k0 ± 1, k0 ± 2, . . ., depending on the value of δ. The energy
spreads over several bins, reducing the sharpness of the spectral peak, which would otherwise be
concentrated if δ = 0.

In practice, spectral leakage can be mitigated by techniques such as windowing, where the signal
is multiplied by a window function that tapers the signal to zero at the boundaries, reducing the
discontinuities and therefore the leakage. However, even with windowing, some degree of leakage
is typically unavoidable when f0 does not exactly match a DFT bin.

A.4 EXPLANATION OF PROPOSITION 2

The phenomenon of harmonics is a fundamental concept in signal processing, particularly when
dealing with signals that exhibit non-linearities or discontinuities. Consider a periodic signal x(n)
with a fundamental frequency f0. The fundamental frequency is the inverse of the period T of the
signal, i.e., f0 = 1

T . For a perfectly sinusoidal signal, the frequency spectrum would ideally consist
of a single peak at f0. However, when x(n) contains non-linearities or sharp transitions, these
irregularities introduce additional frequency components into the spectrum, known as harmonics.
These harmonics are integer multiples of the fundamental frequency, occurring at frequencies 2f0
(second harmonic), 3f0 (third harmonic), and so on.

Non-linearities in a signal can arise due to various causes, such as amplitude clipping, rectification,
or the presence of sharp corners or edges. When a signal with such characteristics is analyzed
in the frequency domain, the Fourier transform reveals not only the fundamental frequency but
also its harmonics. For example, consider a signal x(n) = A cos(2πf0n) that undergoes a non-
linear transformation, such as squaring. The resulting signal y(n) = x2(n) = A2 cos2(2πf0n)
can be expressed using the trigonometric identity cos2(θ) = 1

2 + 1
2 cos(2θ), leading to y(n) =

A2

2 + A2

2 cos(4πf0n). The frequency spectrum of y(n) now includes a DC component (at f = 0)
and a component at 2f0, the second harmonic.

Discontinuities or sharp transitions in a time series, modeled as abrupt changes in the signal’s ampli-
tude, also introduce a wide range of frequency components, particularly higher harmonics. A square
wave, for example, alternates between two levels, and its Fourier series expansion reveals that it
consists of the fundamental frequency and all odd harmonics (3rd, 5th, 7th, etc.). This behavior is
due to the sharp transitions between the high and low states of the square wave.

In practical applications, the presence of harmonics can have significant implications. In audio
signals, harmonics can add richness or distortion, depending on whether they are desired or not. In
communication systems, harmonics can cause interference, necessitating the use of filters to remove
them. In power systems, harmonics can lead to inefficiencies and potential damage to equipment.
Therefore, understanding the source of harmonics and how they manifest in a signal’s spectrum is
crucial for effective signal processing and analysis.
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A.5 PROOF OF THEOREM 2

Proof. The parameter count can be divided into two parts: the number of parameters in the SFM
and the patch predictor. Given the input sequence length L, the number of patches P , and the output
horizon H , the SFM can be viewed as a mapping from fc frequency components to fc frequency
components (i.e., Cfc → Cfc ) with each sparse group conducting a linear transformation from fc

K

to fc
K frequency components. The number of parameters in the SFM can therefore be calculated as:

ParametersSFM =
fc
K
× fc

K
×K =

f2
c

K
(11)

The output number of patches can be calculated as PH
L , so that the patch predictor can be viewed as

a mapping from CP to CPH
L , and the number of parameters in the patch predictor can be calculated

as:

ParametersPatchPredictor = P × PH

L
=

P 2H

L
(12)

Therefore, the total number of parameters in FastTF is the sum of the parameters in the SFM and
the patch predictor:

Parameters =
f2
c

K
+

P 2H

L
(13)

Specifically, after downsampling we get PM subsequences with length Lsub = L
PM , and then the

rFFT operation is applied to each subsequence, yielding another PM subsequences with length⌊
L

2PM

⌋
+ 1. By setting fc =

⌊
L

2PM

⌋
+ 1, the number of parameters in the SFM can be calculated

as:

ParametersSFM =
f2
c

K
=

(⌊
L

2PM

⌋
+ 1
)2

K
, (14)

and therefore the total number of parameters in FastTF is:

Parameters =

(⌊
L

2PM

⌋
+ 1
)2

K
+

P 2H

L
. (15)

B THE REASON FOR NOT FILTERING THE ORIGINAL TIME SERIES

Low-pass filtering before downsampling is essential to prevent spectral aliasing, a phenomenon
where higher frequency components of a signal are incorrectly interpreted as lower frequencies.
This occurs because downsampling reduces the sampling rate, which can cause the signal’s fre-
quency content to exceed the new Nyquist limit (half the new sampling rate). If the original sequence
contains frequency components higher than this limit, they can fold back into the lower frequency
range, leading to distortion and loss of information. By applying a low-pass filter, these higher
frequency components can be effectively removed, ensuring that the downsampled sequence accu-
rately represents the original signal within the new bandwidth. This process preserves the integrity
of the signal and prevents aliasing artifacts, which could otherwise compromise the quality of the
downsampled data.

However, in FastTF, we do not explicitly filter the original time series before downsampling. This
decision is mainly based on the following considerations:

• Additional Complexity: Incorporating a low-pass filter before downsampling would introduce
additional computational complexity to the model. Specifically, an extra rFFT and irFFT oper-
ation would be required to implement the filtering process, increasing the overall computational
load. Given that FastTF aims to be a lightweight and efficient model, minimizing unnecessary
complexity is crucial to maintain its simplicity and speed.

• Potential Information Loss: On the one hand, From a time domain perspective, the single-
sequence downsampling process itself acts as a low-pass filter, effectively removing high-
frequency components that exceed the new Nyquist limit. This operation dicarded many point
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Table 10: Hyperparameters for different datasets and prediction horizons. Here, cnt represents the
total number of parameters for the configuration. Here PS denotes the patch size.

Dataset 96 192 336 720

PS M fc K cnt PS M fc K cnt PS M fc K cnt PS M fc K cnt

ETTh1 48 2 12 2 102 48 2 12 2 132 48 2 12 2 177 48 2 12 2 297
ETTh2 6 1 4 2 1928 6 1 4 2 3848 6 1 4 2 6728 6 1 4 2 14408
Electricity 4 1 3 1 4329 4 1 3 1 8649 4 1 3 1 15129 4 1 3 1 32409
Traffic 24 2 6 2 138 24 2 6 2 258 24 2 6 2 438 24 2 6 2 918
Weather 12 2 4 2 648 12 2 4 2 1128 12 2 4 2 1848 12 2 4 2 3768

in the original time series, which will result in severe information loss. However, in FastTF, the
downsampling process was repeatedly applied for M times, which actually maintained all the in-
formation in the original time series. Therefore, the distortion caused by aliasing can be somehow
alleviated. On the other hand, the filter operation before downsampling may also remove some
useful information in the original time series, which is not conducive to the subsequent time series
forecasting task.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TRAINING SETTINGS

In this section, we provide additional details on the training settings used in the experiments. The
training process was conducted on a single NVIDIA RTX 4090 GPU with 24GB memory. The
optimizer used was Adam with a learning rate of 0.008, a batch size of 256, and a maximum epoch
of 100. The model was implemented using PyTorch and trained using the Mean Squared Error
(MSE) loss function. The hyperparamter table for each dataset is shown in Table 10. Specifically,
the MSE loss was calculated as:

MSE =
1

N

N∑
i=1

(yi − x̂i)
2, (16)

where N is the number of samples, yi is the true value (ground truth), and x̂i is the predicted value.

During Training, we adopt an early stop strategy based on the validation loss. Specifically, the train-
ing process will be terminated if the validation loss does not decrease for 6 consecutive epochs. The
model parameters at the epoch with the lowest validation loss are saved as the final model. Besides,
we also adopt the learning rate decay strategy. Specifically, the learning rate will be reduced by a
factor of 0.6 for every 10 epochs.

C.2 ABLATION STUDY

The ablation study result is shown in Table 11. The ablation study is conducted on different datasets
and prediction horizons to evaluate the impact of different components of FastTF. The FastTF de-
notes the full model, while FastTF-SFM and FastTF-rFFT represent the models without the SFM
and rFFT components, respectively. The results show that transforming the input sequence into
the frequency domain using rFFT and applying SFM to mix the frequency information can greatly
improve the performance of FastTF across different datasets and prediction horizons.

C.3 HYPERPARAMETER SEARCHING DETAILS

We searched for the optimal hyperparameters for FastTF on the ETTh1, ETTh2, Traffic, and Weather
datasets, and the results are shown in Tables 12, 13, 14, and 15, respectively. It must be noted that,
although the results vary across different hyperparamters, the performance of FastTF is generally ro-
bust with respect to hyperparameters, as the model consistently achieves competitive results across
different settings. This robustness is a key advantage of FastTF, making it easy to deploy in prac-
tice without extensive hyperparameter tuning. Specifically, for resource constrained environments,
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Table 11: Ablation study results for different datasets and prediction horizons. FastTF denotes the
full model, while FastTF-SFM represents the model without the SFM component.

Dataset Ablation Horizon

96 192 336 720

ETTh1 FastTF 0.350 0.388 0.419 0.416
FastTF-SFM 0.396 0.425 0.448 0.439

ETTh2 FastTF 0.268 0.330 0.351 0.376
FastTF-SFM 0.292 0.346 0.364 0.387

Electricity FastTF 0.132 0.149 0.165 0.200
FastTF-SFM 0.202 0.198 0.242 0.270

Traffic FastTF 0.387 0.403 0.410 0.435
FastTF-SFM 0.464 0.473 0.476 0.542

Weather FastTF 0.140 0.182 0.232 0.301
FastTF-SFM 0.191 0.232 0.272 0.335

the model can be deployed with a relatively small number of parameters while maintaining strong
forecasting performance.

Table 12: Parameter search results for ETTh1. The number in the paratheis represents the corre-
sponding parameter count. Here the patch size PS is set to 48.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.350(655) 0.350(318) 0.352(222) 0.351(126) 0.418(850) 0.416(513) 0.417(417) 0.416(321)
2 0.351(199) 0.350(102) 0.353(78) 0.355(54) 0.416(394) 0.416(297) 0.420(273) 0.419(249)
4 0.353(79) 0.355(48) 0.369(42) – 0.421(274) 0.420(243) 0.433(237) –
8 0.359(46) 0.362(38) – – 0.425(241) 0.417(233) – –

Table 13: Parameter search results for ETTh2. Here the patch size PS is set to 6.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.268(1936) 0.268(1928) – – 0.376(14416) 0.376(14408) – –
2 0.270(1924) – – – 0.378(14404) – – –
4 – – – – – – – –
8 – – – – – – – –

C.4 RESULTS ON MORE DATASETS

In this section we provide additional experimental results on ETTm1, ETTm2, and Exchange
datasets. The introduction of these datasets can be found in Section E, and the results are sum-
marized in Table 17.

C.5 CRITICAL DIFFERENCE DIAGRAM

The critical difference diagram is a statistical tool used to compare multiple methods across dif-
ferent datasets and horizons. It is based on the Friedman test, a non-parametric statistical test that
determines whether there are significant differences between the methods’ performance. The criti-
cal difference diagram visualizes the average ranks of the methods and indicates which methods are
significantly different from each other based on the critical difference value. The critical difference
value is calculated using the Nemenyi test, which takes into account the number of datasets and
methods being compared. The result is shown in Figure 10.
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Table 14: Parameter search results for Traffic. Here the patch size PS is set to 24.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.390(289) 0.388(192) 0.390(168) 0.389(156) 0.447(1069) 0.446(972) 0.448(948) 0.456(924)
2 0.389(169) 0.387(138) 0.393(132) – 0.447(949) 0.446(918) 0.449(912) –
4 0.391(136) 0.393(128) – – 0.451(916) 0.452(908) – –
8 0.396(124) – – – 0.455(904) – – –

Table 15: Parameter search results for Weather. Here the patch size PS is set to 12.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.142(529) 0.141(498) 0.143(492) – 0.302(3649) 0.301(3618) 0.306(3612) –
2 0.142(496) 0.140(488) – – 0.303(3616) 0.301(3608) – –
4 0.145(484) – – – 0.306(3604) – – –
8 – – – – – – – –

C.6 ADDITIONAL PREDICTION RESULTS

Additional prediction results in the training set are shown in Figures 11, 12, 13, 14, 15, 16, 17,
18, 19, 20. The results show that FastTF can effectively capture the underlying patterns in the time
series data and make accurate predictions across different datasets and prediction horizons.

D THE CODE BUG

In Dec. 2023, an anonymous researcher pointed out a long existing bug in the source code of a
series of time series forecasting models. The bug can be traced back to the implementation of In-
former (Zhou et al., 2021), and has already affected a series of subsequent works, including DLinear,
Autoformer, Fedformer, PatchTST, Koopa, FITS, and TimeMixer, etc. The bug is related to the cal-
culation of the settings of the test dataloader, where the drop last parameter is incorrectly set to
True by default. This setting causes the last incomplete batch of the test dataloader to be dropped,
leading to incorrect evaluation results. Empirically, the bug significantly improved the performance
of the models on the ETT datasets, and the impact on other datasets is relatively marginal (Qiu et al.,
2024). The bug has been fixed in the latest version of the source code, and the corrected results are
presented in this paper.

E DETAIL OF THE PUBLIC DATASETS

1. Weather: This dataset contains 21 meteorological indicators such as humidity and air tempera-
ture for the year 2020 in Germany.

2. Traffic: Contains road occupancy rates measured by 862 different sensors across San Francisco
Bay Area freeways over a span of two years. The data is sourced from the California Department
of Transportation.

3. Electricity: Comprises hourly electricity consumption data of 321 clients, recorded between
2012 and 2014.

4. Exchange: Includes daily exchange rates of eight different countries from 1990 to 2016. patient
data in the United States from 2002 to 2021. The dataset includes seven indicators such as the
number of ILI patients across different age groups and the ratio of ILI patients to the total number
of patients. Data is provided by the Centers for Disease Control and Prevention (CDC).

5. ETT (Electricity Transformer Temperature): Contains data collected from electricity trans-
formers using seven sensors, capturing variables such as load, oil temperature, etc. The dataset is
split into two sub-datasets labeled as 1 and 2, corresponding to two different electric transform-
ers from separate counties in China. Each sub-dataset includes two different time resolutions: 15
minutes and 1 hour, denoted as m and h respectively. Thus, there are four ETT datasets: ETTh1,
ETTh2, ETTm1, and ETTm2.
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Table 16: Complete form of statistical information for the datasets used in the experiments.

Dataset Weather Traffic Exchange Electricity ETTh1 ETTh2 ETTm1 ETTm2
Dataset Size 52696 17544 7207 26304 17420 17420 69680 69680
Variable Number 21 862 8 321 7 7 7 7
Sampling Frequency 10 mins 1 hour 1 day 1 hour 1 hour 1 hour 15 mins 15 mins

Table 17: Comparison of different methods across various datasets and horizons. The best 3
results are highlighted red, blue, green, respectively.

Dataset ETTm1 ETTm2 Exchange

Horizon 96 192 336 720 96 192 336 720 96 192 336

FEDformer (2022b) 0.326 0.365 0.392 0.446 0.180 0.252 0.324 0.410 0.139 0.256 0.426
TimesNet (2023) 0.338 0.371 0.410 0.478 0.187 0.249 0.321 0.497 0.107 0.226 0.367
PatchTST (2023) 0.290 0.332 0.366 0.416 0.165 0.220 0.274 0.362 0.093 0.192 0.350
DLinear (2023) 0.299 0.335 0.369 0.425 0.167 0.224 0.281 0.397 0.081 0.157 0.305
U-Mixer(2024) 0.317 0.369 0.395 0.443 0.178 0.243 0.331 0.434 0.087 0.171 0.285
Koopa (2024) 0.294 0.337 0.380 0.426 0.171 0.226 0.283 0.394 0.083 0.184 0.331
MICN (2023) 0.314 0.359 0.398 0.459 0.178 0.245 0.295 0.389 0.102 0.172 0.272
FastTF (ours) 0.302(4th) 0.334 0.372 0.415 0.162 0.215 0.266 0.349 0.080 0.167 0.304

F THE INDIVIDUAL CONFIGURATION

In practical applications, time series datasets are often multi-channel. Let C denote the number of
input channels, then a look-back window of data can be represented as X ∈ RC×L. For channel-
independent models like FITS and DLinear, there are generally two training strategies:

1. Train a separate single-channel model for each channel, with independent weights across chan-
nels, referred to as the Individual configuration.

2. Use a shared set of weights across all channels.

For FastTF, we also employ the Individual configuration on the weather dataset, but with a key dif-
ference: we train a SFM for each channel independently, while the patch predictor shares weights
across channels. The motivation behind this strategy is to reduce the model’s parameter count and
mitigate overfitting. Specifically, the SFM integrates frequency information over short time inter-
vals, where different channels exhibit varying short-term behavior in the weather dataset. Con-
versely, the patch predictor captures long-term trend changes across patches, which tend to be con-
sistent across different channels.

G PARAMETER TABLE FOR FASTTF

The detailed parameter table of patch predictor and SFM in FastTF is shown in Table 18 and Table
19, respectively. The parameter count of the patch predictor is calculated based on the patch size,
prediction horizon, and look-back window, while the parameter count of the SFM is determined by
the patch size, downsampling factor, and sparse group number.

Table 18: The parameter count of patch predictor in FastTF with different patch sizes, prediction
horizons and look-back windows.

patch size L/P = 12 L/P = 24 L/P = 48

Horizon
Look-back 96 192 336 672 720 96 192 336 672 720 96 192 336 672 720

96 64 128 224 448 480 16 32 56 112 120 4 8 14 28 30
192 128 256 448 896 960 32 64 112 224 240 8 16 28 56 60
336 224 448 784 1568 1680 56 112 196 392 420 14 28 49 98 105
720 480 960 1680 3360 3600 120 240 420 840 900 30 60 105 210 225
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1 2 3 4 5 6 7

FastTF (ours) (1.2)

PatchTST (2023) (2.8)

FITS (2024) (2.8)

Koopa (2024) (4.4)

(7.1) FEDformer (2022b)

(7) TimesNet (2023)

(5.7) MICN (2023)

(5) DLinear (2023)

Critical Difference Diagram of Average Score Ranks

Figure 10: Critical difference diagram for the comparison of different methods across various
datasets and horizons. The methods are ranked based on the average rank across all datasets and
horizons.
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Figure 11: Additional prediction results on the ETTh1 dataset with H = 96.

H DETAILED COMPLEXITY ANALYSIS

In main text, we focus on calculating the parameter count of FastTF, which is a key indicator of
model complexity. However, the computational complexity of FastTF is also an important aspect
to consider, as it directly affects the model’s training and inference efficiency. Here, we provide a
detailed analysis of the computational complexity of FastTF, focusing on the forward pass of the
model.
Lemma 1. One complex multiplication requires at least 3 real multiplications.

Proof. for z1 = a+ bj, z2 = c+ dj, z = z1 + z2, let p = (a+ b)(c− d), q = ac, r = bd, then the
real part of z is q− r, and the imaginary part of z is p− q+ r. To calculate p, q and r, we need 3 real
multiplications, therefore one complex multiplication requires at least three real multiplications.

Theorem 3 (The number of multiplications in FastTF). Given the input sequence length L, the
number of patches P , the downsampling factor M , the cut-off frequency fc, the number of sparse
groups K, the number of multiplication operations in N-point rFFT (denoted as MN

rFFT) and N-point
irFFT (denoted as MN

irFFT), the total number of multiplication operations in FastTF (to process a
single channel input sequence x ∈ RL) can be calculated as:

Mul = PM ×M
L/PM
rFFT +

MHP

L
×M

L/PM
irFFT + PMf2

c /K + fcMP 2H/L (17)

Specifically, the number of real-valued multiplication operations is 3 times the number of complex-
valued multiplication operations, so the total number of real-valued multiplication operations in
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Figure 12: Additional prediction results on the ETTh1 dataset with H = 192.
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Figure 13: Additional prediction results on the ETTh2 dataset with H = 96.
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Figure 14: Additional prediction results on the ETTh2 dataset with H = 192.
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Figure 15: Additional prediction results on the weather dataset with H = 96.
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Figure 16: Additional prediction results on the weather dataset with H = 192.
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Figure 17: Additional prediction results on the Electricity dataset with H = 96.
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Figure 18: Additional prediction results on the Electricity dataset with H = 192.
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Figure 19: Additional prediction results on the Traffic dataset with H = 96.
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Figure 20: Additional prediction results on the Traffic dataset with H = 192

Table 19: The parameter count of SFM in FastTF with different patch sizes, downsampling factors
and sparse group numbers. Note that the values in parentheses represent the corresponding cut-off
frequency.

patch size L/P = 12 L/P = 24 L/P = 48

K
M 1 2 4 6 1 2 4 6 8 12 1 2 4 8 12 24

1 49(7) 6(4) 4(2) 4(2) 169(13) 49(7) 16(4) 9(3) 4(2) 4(2) 625(25) 169(13) 49(7) 16(4) 9(3) 4(2)
2 18(6) 8(4) – – 72(12) 18(6) 8(4) – – – 288(24) 72(12) 18(6) 8(4) – –
3 12(6) – – – 48(12) 12(6) – – – – 192(24) 48(12) 12(6) – – –
4 – – – – 36(12) – – – – – 144(24) 36(12) – – – –
6 – – – – 24(12) – – – – – 96(24) 24(2) – – – –

FastTF can be calculated as:
Mulreal = 3×Mul

= 3(PMM
L/PM
rFFT +

MHP

L
M

L/PM
irFFT + PMf2

c /K + fcMP 2H/L)
(18)

If we omit the rFFT and irFFT operations and only consider the multiplication operations in the
neural network part, the number of multiplication operations in FastTF can be simplified as:

Mulnn,real = 3PMf2
c /K(SFM) + 3fcMP 2H/L(Patch Predictor) (19)

Proof. The number of multiplication operations in the rFFT and irFFT operations can be calculated
based on the input sequence length L, the downsampling factor M , and the cut-off frequency fc.
Specifically, the rFFT operation is applied to PM subsequences with length Lsub = L

PM , and the
irFFT operation is applied to PM subsequences. The number of multiplication operations in the
rFFT and irFFT operations can be calculated as PM×M

L/PM
rFFT and MHP

L ×M
L/PM
irFFT , respectively.

The number of multiplication operations in the SFM and patch predictor can be calculated based on
the number of sparse groups K, the cut-off frequency fc, the number of patches P , and the prediction
horizon H . Specifically, the SFM applies Cfc → Cfc transformations to each subsequence, results
in Mf2

c /K complex-valued multiplication operations. And similarly, the number of multiplication
operations in the patch predictor is fcMP 2H/L. The total number of multiplication operations in
FastTF is the sum of the multiplication operations in the rFFT, irFFT, SFM, and patch predictor,
which gives the formula for Mul.

The number of real-valued multiplication operations is 3 times the number of complex-valued multi-
plication operations, as each complex multiplication operation can be decomposed into 4 real-valued
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Table 20: The number of multiplication operations in FastTF, DLinear, and FITS with different
prediction horizons and look-back windows. The kernel size in DLinear is set to 25, the cut-off
frequency for FITS is set to half of the rFFT sequence length, the patch size is set to 48, the fc is set
to 12, the downsampling factor M is set to 2, and the sparse group number K is set to 3.

patch size DLinear FITS FastTF

Horizon
Look-back 96 192 336 672 720 96 192 336 672 720 96 192 336 672 720

96 20.8K 41.7K 72.9K 145.8K 156.2K 3.5K 10.4K 27.2K 96.8K 110.2K 864 1728 3024 6048 6480
192 39.3K 78.5K 137.4K 274.8K 294.5K 5.2K 13.8K 33.3K 108.9K 123.1K 1152 2304 4032 8064 8640
336 66.9K 133.8K 234.2K 468.4K 501.8K 7.8K 19.0K 42.3K 127.0K 142.6K 1584 3168 5544 11088 11880
720 140.6K 281.3K 492.2K 984.5K 1054.8K 14.7K 32.9K 66.5K 175.4K 194.4K 2736 5472 9576 19152 20520

multiplication operations. Therefore, the total number of real-valued multiplication operations in
FastTF is 3 times Mul, which gives the formula for Mulreal.

If we omit the rFFT and irFFT operations and only consider the multiplication operations in the
neural network part, the number of multiplication operations in FastTF can be simplified as the
sum of the multiplication operations in the SFM and patch predictor, which gives the formula for
Mulnn,real.

Theorem 4 (The number of multiplications in DLinear and FITS). We only consider the multiplica-
tion operations in the neural network part, so that given the input sequence length L, the prediction
horizon H , and the cut-off frequency fFITS

c , the length ratio η and the kernel size for the average
pooling Kavg, the number of multiplication operations in DLinear can be calculated as:

MulDLinear = 2LH +KavgL (20)

The number of multiplication operations in FITS can be calculated as:

MulFITS,nn,real = 3fFITS
c ⌊fFITS

c η⌋ (21)

Proof. The proof is trivial and omitted here.

The comparison of the number of multiplication operations in FastTF, DLinear, and FITS is shown in
Table 20. The results show that FastTF has a significantly lower number of multiplication operations
compared to DLinear and FITS. Specifically, for 720-720 prediction horizon and look-back window,
FastTF reached only around 2% and 10% of the multiplication operations in DLinear and FITS,
respectively.

I TRAINING ACCELERATION

To further reduce the training time of FastTF, a preprocessing step can be applied to the input data
to accelerate the training process. Specifically, the input data can be downsampled and transformed
using the rFFT operation in advance, and the resulting data can be stored for training. This prepro-
cessing step can significantly reduce the computational cost of the rFFT operation during training,
as the rFFT operation is computationally intensive and can be a bottleneck in the training process.
The detailed algorithm for preprocessing and training with FastTF is shown in Algorithm 1.

J DEVELOPMENT ON FPGA CHIPS

J.1 BRIEF INTRODUCTION TO FPGA CHIPS

FPGA, or Field-Programmable Gate Array, is a type of integrated circuit that allows users to con-
figure hardware functionality after manufacturing. This versatility enables the implementation of
custom digital circuits tailored to specific applications, making FPGAs ideal for tasks such as signal
processing, data processing, and system control. FPGAs feature a matrix of programmable logic
blocks, interconnections, and input/output pins, allowing for high parallel processing capabilities
and real-time operation. They are widely used in various industries, including telecommunications,
automotive, and aerospace, due to their low latency, low power consumption, and adaptability to
changing requirements.
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Algorithm 1 Preprocess and Train with FastTF

Require: Training data X = {x(1),x(2), . . . ,x(N)}, Downsample factor M , cut-off frequency fc,
Batch size B

Ensure: Trained model θ
1: Preprocessing:
2: for i = 1 to N do
3: x

(i)
downsampled ← Downsample(x(i),M)

4: X
(i)
rFFT ← rFFT(x(i)

downsampled)

5: X
(i)
preprocessed ← Cut(X(i)

rFFT, fc)
6: end for
7: Store preprocessed data Xpreprocessed
8: Training:
9: for each training epoch do

10: for each mini-batch of size B do
11: Sample a batch Xbatch ⊂Xpreprocessed

12: Forward pass: Predict X̂ ← FastTF(Xbatch)

13: Compute loss L(X̂,Y )
14: Backpropagate gradients
15: Update model parameters θ
16: end for
17: end for

J.2 ZYNQ ULTRASCALE+ RFSOC ZCU208 EVALUATION KIT

The Zynq™ UltraScale+™ RFSoC ZCU208 Evaluation Kit is an ideal platform for out-of-the-box
RF evaluation and cutting-edge application development. It features the Zynq UltraScale+ RFSoC
ZU48DR, which integrates eight 14-bit 5GSPS ADCs, eight 14-bit 10GSPS DACs, and eight soft-
decision forward error correction (SD-FEC) cores, making it suitable for RF-class applications. The
key features of the ZCU208 Evaluation Kit are shown in Table 21.

Table 21: Key Parameters of Zynq UltraScale+ RFSoC ZCU208

Parameter Value
14-bit, 5.0 GSPS RF-ADC Count 8
14-bit, 10.0 GSPS RF-DAC Count 8

SD-FEC Cores 8
System Logic Cells (K) 930

Memory (Mb) 60.5
DSP Slices 4272

33G Transceivers 16
Maximum I/O Pins 347

The board features are shown in Figure 21.

J.3 USAGE DETAILS

The resource utilization of FastTF on the ZCU208 Evaluation Kit is shown in Figure 22. We now
give a brief introduction for clock, BRAM, and DSP, shown below:

• Clock The clock in an FPGA provides the timing signal that synchronizes all operations within
the device. It controls the flow of data by determining when actions such as data processing or
memory reads/writes occur. Multiple clock domains can exist in an FPGA design to drive different
parts of the logic at different frequencies, which helps optimize performance and reduce power
consumption.

• BRAM (Block RAM) BRAM (Block Random Access Memory) is a dedicated on-chip memory
resource available within the FPGA. It provides high-speed memory that can be used for data
storage, buffering, or caches. BRAM blocks are widely used in applications requiring temporary
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Figure 21: Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit

data storage, such as signal processing, image processing, and communication systems. Unlike
external memory, BRAM is tightly integrated into the FPGA fabric, making data access faster and
more efficient.

• DSP (Digital Signal Processing) Slices DSP slices are specialized hardware units in an FPGA
that are optimized for performing arithmetic operations such as multiplication, addition, and ac-
cumulation, which are common in digital signal processing tasks. These slices allow FPGAs to
efficiently handle operations like filtering, fast Fourier transforms (FFT), and other real-time pro-
cessing tasks. By leveraging DSP slices, designers can offload critical signal processing operations
from general-purpose logic, improving performance and reducing resource usage.
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Figure 22: Resource utilization of FastTF on ZCU208 Evaluation Kit. (a) Break down by clock
cycles (b) Break down by BRAM utilization. (c) Break down by DSP utilization.

Please note that the results may vary depending on the specific FPGA chip and the implementation
details, for example, the algorithm for FFT.

J.4 FUTURE WORK

In this paper, we only present a hardware implementation scheme. Future work can be further
explored in the following aspects:
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• A more streamlined hardware implementation of FastTF Theoretically, FastTF requires sig-
nificantly less computation than other algorithms, which presents opportunities for reducing the
computational resources required on the FPGA.

• Integration with other hardware accelerators: Implementation on additional hardware plat-
forms: In the near future, we aim to deploy this algorithm on a range of other hardware devices,
including embedded systems such as Raspberry Pi, ESP32, and STM32, to fully verify the perfor-
mance of the proposed algorithm.

K CORE CODE FOR FASTTF

We put part of the core code of FastTF in List 1. The complete code will be released upon accep-
tance. The code consists the forwawrd pass of FastTF, which is based on the PyTorch framework.
However, the definition of the model architecture and the training process are not included in the
code snippet.
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1 def forward(self, x):
2 batch_size = x.shape[0]
3 seq_mean = torch.mean(x, dim=1).unsqueeze(1)
4 x = (x - seq_mean).permute(0, 2, 1)
5

6 x = x.reshape(-1, self.seg_num_x, self.num_sampling, self.
down_sampling).permute(0, 1, 3, 2) # bc,n,period,samp

7 x = torch.fft.rfft(x, dim=3)[:, :, :, :self.cut_freq]
8 x = x.reshape(-1, self.enc_in, self.seg_num_x, self.down_sampling,

self.cut_freq)
9

10 if self.flinear_individual:
11 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.

down_sampling, self.flinear_sparse_num, self.in_sparse_freq)
12 # print(x.shape)
13 x = torch.einsum(’bcsdft,cfet->bcsdfe’, x, self.flinear_weight)

+ x
14 # print(y.shape)
15 else:
16 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.

down_sampling, self.flinear_sparse_num, self.in_sparse_freq)
17 x = torch.einsum(’bcsdft,fet->bcsdfe’, x, self.flinear_weight) +

x
18

19 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.
down_sampling, self.cut_freq)

20 x = x.permute(0, 1, 3, 4, 2) # b,c,period,samp,n
21

22 if self.linear_individual:
23 x = x.reshape(batch_size, self.enc_in, self.down_sampling, self.

group, self.in_group_freq, self.seg_num_x)
24 tmp = torch.einsum(’bcfgkn,cgyn->bcfgky’, x, self.linear_weight)
25 else:
26

27 x = x.reshape(batch_size, self.enc_in, self.down_sampling, self.
group, self.in_group_freq, self.seg_num_x)

28 tmp = torch.einsum(’bcfgkn,gyn->bcfgky’, x, self.linear_weight)
29

30 x = tmp.reshape(batch_size, self.enc_in, self.down_sampling, self.
cut_freq, self.seg_num_y)

31 tmp2 = torch.zeros([x.size(0), x.size(1), x.size(2), self.
num_sampling // 2 + 1, x.size(4)], dtype=x.dtype).to(x.device)

32 tmp2[:, :, :, :self.cut_freq, :] = x
33

34 y = tmp2.permute(0, 1, 4, 2, 3)
35

36 y = torch.fft.irfft(y, dim=4).permute(0, 1, 2, 4, 3)
37

38 y = y.reshape(batch_size, self.enc_in, self.pred_len)
39

40 y = y.permute(0, 2, 1) + seq_mean
41

42 return y

Listing 1: Example Python Code
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