
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FASTTF: 4 PARAMETERS ARE ALL YOU NEED FOR
LONG-TERM TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series forecasting is essential across various sectors, including finance,
transportation, and industry. In this paper, we propose FastTF, a powerful yet
lightweight model in Time-Frequency domain for long-term time series forecast-
ing. Our aim is to push the boundary of model lightweighting and facilitate the
deployment of lightweight model on resource-constrained devices. Leveraging the
global nature and information compressibility of the time series in frequency do-
main, we introduce patch-wise downsampling, Sparse Frequency Mixer (SFM),
and patch predictor to capture the temporal variations of frequency components
across different patches. Experimental results on five public datasets demonstrate
that FastTF with very few parameters outperforms several state-of-the-art mod-
els and demonstrates a strong generalization capability. Notably, on the ETTh1
dataset, FastTF with only 4 parameters achieves a performance that is close to
the DLinear and FITS in the horizon-96 forecasting. Furthermore, we deployed
our model on a FPGA development board (Zynq UltraScale+ RFSoC ZCU208
Evaluation Kit), where the corresponding resource usage statistics illustrate that
our model has a very low computational overhead and latency, making it easily
implemented on hardware devices.

1 INTRODUCTION

“Less is more” —— Ludwig Mies van der Rohe

Time series forecasting, a technique used to predict future data based on historical observations
and has found extensive applications in various fields such as finance, transportation, energy, and
meteorology. With the development of deep learning technologies, neural network-based models,
including MLP (Zeng et al., 2023; Xu et al., 2023; Liu et al., 2024; Yi et al., 2024; Wang et al., 2024),
CNN (Wu et al., 2022; Wang et al., 2023; Luo & Wang, 2024), and Transformer (Zhou et al., 2021;
2022; Nie et al., 2022), have gradually supplanted traditional models like ARIMA (Shumway et al.,
2017) and have become mainstream. However, these models often face significant challenges: on
one hand, their complexity makes them difficult to deploy on computationally constrained devices
such as FPGAs or other embedded systems. On the other hand, as black-box models, they generally
lack interpretability.

From the perspective of signal sequence characteristics, models only based on time-domain-based
are effective at capturing trend information but fail to leverage the global nature and information
compression capabilities of the frequency domain, leading to shortsightedness and high complexity.
Conversely, models that only based on frequency domain are adept at capturing the inherent periodic
characteristics within sequences but struggle to handle the sequential order of data, resulting in
ambiguity in temporal information. To address these issues, we model the time series forecasting
problem as one of intra-patch information fusion and inter-patch trend prediction. Specifically, the
proposed FastTF model segments the time series into patches in the time domain and employs a
downsampling strategy within patches, designed based on the Nyquist sampling theorem, to achieve
efficient weight sharing across subsequences. Additionally, a Sparse Frequency Mixer (SFM) is
introduced to address spectral leakage inherent in the discrete Fourier transform and to exploit the
naturally sparse correlations between frequency points for intra-patch information fusion. The patch
predictor is then used for inter-patch frequency trend prediction. This approach not only results in
an exceptionally lightweight model that can be deployed on resource-constrained edge devices but

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

also provides a certain degree of interpretability. The contribution of this paper can be summarized
as follows:

• We propose FastTF, a powerful yet extremely lightweight model for long-term time series
forecasting.

• Based on the Nyquist sampling theorem, FastTF performs patch-wise downsampling and
sub-sequence rFFT on time series data after dividing it into patches, maximizing weight
sharing while minimizing information loss.

• Observing the sparse correlation between frequency points, we design SFM (Sparse Fre-
quency Mixer), a linear mapping layer with a block diagonal weight matrix to facilitate
information fusion between frequency points. The patch predictor then predicts the tempo-
ral variations of different frequency points and transform them back to the time domain.

• Experiments on five public datasets demonstrate that FastTF achieves superior performance
compared to most mainstream models with remarkably low parameter counts and training
overhead. Deployment results on an FPGA development board confirm that it can run with
minimal resource and time overhead.

2 RELATED WORK

Transformer Based Models Transformers (Vaswani, 2017) stand out in time series forecasting
due to their strong ability to capture long-range dependencies. For instance, Informer (Zhou et al.,
2021) and Autoformer (Wu et al., 2021) capture the temporal dependencies of time series, while
FEDformer (Zhou et al., 2022) models the frequency domain of time series. Recent study, like
PatchTST (Nie et al., 2022), showed the effectiveness of patch-based processing in time series
forecasting. However, these models are computationally expensive and suffer from a potential in-
formation loss due to the attention mechanism (Zeng et al., 2023).

MLPs and CNNs The latest research shows that simple linear models, like MLP and CNN, can
achieve competitive performance in time series forecasting. For example, DLinear (Zeng et al.,
2023), FITS (Xu et al., 2023) are two representative models that use single linear layers to capture
the time and frequency characteristics of time series. ModernTCN (Luo & Wang, 2024), a CNN-
based model that originated from modern convolution, also shows strong generalizability in time
series forecasting.

3 PRELIMINARIES AND MOTIVATION

DFT & FFT & rFFT Given a discrete time sequence x(n) with n ranging from 0 to N − 1, the
Discrete Fourier Transform (DFT) converts this time-domain sequence into its frequency-domain
representation. The DFT is defined as:

X(k) =

N−1∑
n=0

x(n)e−j2πkn/N (1)

where X(k) is the value of the sequence at frequency index k, N is the total number of samples
in the sequence, and e−j2πkn/N is the complex exponential factor used to extract the frequency
components of the sequence. FFT is a fast algorithm for computing the DFT which reduces the
computational complexity from O(N2) to O(N log2 N), making it feasible to compute the DFT for
large sequences (Cooley & Tukey, 1965).
Property 1. The DFT of a real-valued sequence x(n) is Hermitian symmetric, i.e., X(k) = X∗(N−
k), where X∗ denotes the complex conjugate of X .

Property 1 (with the proof given in the Appendix A.1) indicates that only around half of the fre-
quency points are unique, and the other half can be obtained by taking the complex conjugate of
the first half. Therefore, we use rFFT (Ziegler, 1972; Sorensen et al., 1987), which only computes
around half of the frequency points to further reduce computational overhead. Frequency domain
analysis is widely applied to time series and has the following characteristics:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Global Perspective: As seen in equation 1, each frequency component in the DFT of a time series
is related to all time indices, meaning each frequency component integrates information from the
entire sequence.

• Information Compression: As illustrated in Figure 1, most time series in nature and daily life,
after applying the DFT, exhibit characteristics of high and low-frequency components (shown in
Figure 2). Most of the energy is concentrated in the low-frequency part, allowing us to filter out
high-frequency noise and focus on the main components of the time series.

Figure 1: Original Time Se-
ries from weather dataset

Figure 2: The result of rFFT
for time series in Figure 1

Figure 3: The structure of the Com-
plex Linear Layer

On one hand, the global perspective of the frequency domain blurs time information, which drives
us to seek a method that captures the variation of frequency over time. Specifically, this involves
dividing the entire time series into several patches and predicting the changes in frequency points
between different patches. On the other hand, the compression of information in the frequency
domain inspires us to perform down-sampling and filtering within each patch, which will be detailed
in Section 4.

Complex Linear Layer The Complex Linear Layer (Trabelsi et al., 2017) is a linear transformation
layer that operates on complex numbers. Just as the linear layer in real-valued neural networks, given
an n-dimensional input x and an m-dimensional output y, the Complex Linear Layer is defined as
y = Wx+ b, where x ∈ Cn,y ∈ Cm,W ∈ Cm×n, b ∈ Cm is the complex weight matrix, input,
output, and bias, respectively (as shown in Figure 3). The complex linear layer has already been
integrated into PyTorch implementations.

4 METHODOLOGY

Figure 4: The architecture of FastTF

Channel Independent Time Series Forecasting Given a multivariate time series X =
[x(1),x(2), . . . ,x(N)], where each x(i) is a univariate series, the goal is to predict future values
for each series independently. For each x(i), given a historical window x

(i)
t−L+1:t ∈ RL, we predict

the future horizon x̂
(i)
t+1:t+H ∈ RH . For simplicity, we use x to represent x(i)

t−L+1:t in the following
sections.
The goal of this paper is to design a lightweight and efficient time series forecasting model. To
achieve this, our approach is primarily based on three key ideas:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1. Weight Sharing: We promote weight sharing by splitting the complete sequence into multiple
subsequences and applying the same operations to each subsequence or to the frequency points
in parallel.

2. Weight Sparsification: The spectral leakage and the natural correlation (see Section 4.2) be-
tween frequency points in time series indicate sparse correlations between these frequency points,
leading us to apply group sparsification to the weight matrix in the frequency domain.

3. Patch-Scale Prediction: To reduce the number of parameters, while at the same time capturing
the temporal variations of frequency components, we predict the frequency points over an interval
at the patch scale.

The architecture of our model, FastTF, is shown in Figure 4. FastTF first accepts a single-channel
sequence x ∈ RL and divides it into P patches, each of length L/P . Each patch is then down-
sampled by a factor of M and each subsequence is transformed into the frequency domain using
rFFT, yielding XrFFT ∈ CP×fc×M , where fc is the cut off frequency. The properly designed SFM
(Sparse Frequency Mixer) is then applied to XrFFT to capture the sparse correlations between fre-
quency points in each subsequence, obtaining XSFM ∈ CP×fc×M . The patch predictor gets XSFM

as input and predicts the future frequency components of each patch, yielding X̂ ∈ CHP
L ×fc×M .

Finally, the inverse rFFT (irFFT) and the reshape operation is applied to X̂ to obtain the predicted
time series x̂ ∈ RH . We now detail each component of FastTF in the following sections.

4.1 PATCH-WISE DOWNSAMPLING AND RFFT

Theorem 1. Given a continuous-time signal x(t) with a maximum frequency component fmax, sam-
pling the sequence at a rate fs to get a descrete sequence x(n) and downsampling it by a factor of
M . To avoid spectral aliasing, the sampling frequency fs should satisfy the following condition:

M ≤ fs
2fmax

,

Proof. See Appendix A.2.

After patch division, a patch-wise downsampling strategy with a factor of M is applied to each patch.
Although Theorem 1 provide the necessary conditions to ensure that no information loss occurs
during sampling, it must be noted that, in practice, signals (or sequences) that meet these criteria
are virtually nonexistent. From a technical perspective, the sequence should first undergo low-pass
filtering before downsampling to completely prevent spectral aliasing. However, considering that
the high-frequency components of most sequences are negligible (as illustrated in Figure 2), and the
additional computational cost associated with low-pass filtering (discussed in detail in Apppendix
B), FastTF omits the filtering step and relies on empirical methods to select the value of M in
practice. Given downsampled sequences Xsamp ∈ RP× L

PM ×M , we apply the rFFT to each patch
and empirically select the cut-off frequency fc to obtain XrFFT ∈ CP×fc×M . The overall process
can be expressed as follows:

XrFFT = Cut (rFFT(Downsample(x))) (2)

where Cut(·) is a function that selects the first fc frequency points of the rFFT result.

4.2 SPARSE FREQUENCY MIXER (SFM)

The SFM (Sparse Frequency Mixer) is designed to integrate information between frequency points
in the frequency domain. Specifically, the SFM is motivated by two key observations:

• Spectral Leakage: Proposition 1 (with the proof given in the Appendix A.3) and Figure 5a
illustrate that even for a single frequency signal, the sampled time sequence’s energy can spread
to surrounding frequency points due to the mismatch of FFT frequency points.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b) (c)
Figure 5: Sparse correlation between frequency points: (a) Spectral leakage phenomenon due
to misalignment with DFT bins, the number of sampling points is 120 and the sampling rate is set
to 100; (b) Higher harmonics generated by a base frequency; (c) The pattern of the weight matrix
learned in the Sparse Frequency Mixer without sparsification.

• Natual Correlation: The frequency components of a time sequence can be naturally correlated,
for example, the harmonics generated by a base frequency, as introduced in Proposition 2 (with
the detailed explanation given in the Appendix A.4) and illustrated in Figure 5b.

Proposition 1 (Spectral Leakage due to Misalignment with DFT Bins). Let x[n] be a discrete-time
signal of length N , sampled at a rate fs. The Discrete Fourier Transform (DFT) computes frequency
components at specific frequency bins given by:

fk =
kfs
N

, k = 0, 1, . . . , N − 1.

If the signal x[n] contains a sinusoidal component of frequency f0, such that f0 does not exactly
match any of the DFT frequency bins fk, i.e.,

f0 ̸= fk for any k,

then the energy of the sinusoidal component at f0 will leak into adjacent frequency bins. This
phenomenon is known as spectral leakage.
Proposition 2 (Harmonics). Let x(n) be a time series that is a periodic or quasi-periodic signal,
possibly containing non-linearities or sharp transitions (e.g., discontinuities or sudden changes).
The presence of such non-linearities or sharp transitions in x(n) leads to the generation of higher
harmonics in its frequency spectrum.

These observations suggest that the frequency points in a time series are correlated, but the cor-
relation is sparse, meaning that most frequency points only interact with a few nearby ones. This
is further confirmed by a learned weight matrix of the frequency domain linear layer, which shows
a sparse pattern. Specifically, weights connecting distant frequency points are nearly zero, as il-
lustrated in Figure 5c. Based on these facts, we design the SFM to capture the sparse correla-
tions between frequency points. For simplicity, we assume that the correlation between frequency
points is block-diagonal, so that the weight matrix of the SFM can be also represented as a block-
diagonal matrix, which is equivalent to a grouped linear layer. Specifically, given the input XrFFT,
the SFM first reshapes the fc frequency points into K groups, each containing fc/K frequency
points, and then applies a linear transformation to each group for PM rFFT sequences in parallel.
Given SFM : CP×fc×M → CP×fc×M , the operation of SFM can be formulated as:

XSFM = SFM(XrFFT) (3)

= Concat(L1(X
(1)
rFFT), . . . ,LK(X

(K)
rFFT)), k = 1, 2, . . . ,K (4)

where Lk(·) is the linear transformation applied to the k-th group of frequency points, i.e.,
Lk : CP× fc

K ×M → CP× fc
K ×M . Concat(·) is a function that concatenates the results of the lin-

ear transformations, and X
(k)
rFFT ∈ CP× fc

K ×M denotes the k-th group of frequency points in XrFFT.

4.3 PATCH PREDICTOR AND POST-PROCESSING

The patch predictor is a linear layer that maps the mixed frequency components XSFM to the future
frequency components of each patch X̂ (CP×fc×M → CHP

L ×fc×M ), and the weight is shared

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

across different frequency components. The predicted frequency components are then zero-padded
to their original length

(⌊
L

2PM

⌋
+ 1
)

and transformed back to the time domain using irFFT followed
by a reshape operation to obtain the final prediction x̂ ∈ RH :

X̂ = PatchPredictor(XSFM) (5)

X̂irFFT = irFFT
(

ZeroPad(X̂)
)

(6)

x̂ = Reshape(X̂irFFT) (7)

where ZeroPad(·) is a function that zero-pads the frequency dimensioin, and Reshape(·) reshapes
the irFFT result to obtain the final prediction (CHP

L × L
PM ×M → RH ).

5 EXPERIMENTS

Table 1: The statistics of the used forecasting
datasets.

Dataset Traffic Electricity Weather ETTh1 & ETTh2

Channels 862 321 21 7
Sampling Rate 1 hour 1 hour 10 min 1 hour
Total Timesteps 17,544 26,304 52,696 17,420

In this section, we first validate the perfor-
mance of FastTF on five commonly used pub-
lic datasets, followed by a detailed complexity
analysis of FastTF, where we present a configu-
ration framework with only 4 parameters. Next,
we conduct a series of hyperparameter searches
to analyze the performance under different hy-
perparameter settings. Moreover, experiments
were conducted to verify the generalizability of FastTF on different datasets and horizons. Finally,
we deployed FastTF on an FPGA development board and provided corresponding resource usage
statistics to demonstrate its feasibility for deployment on hardware devices.

Table 2: Comparison of different methods across various datasets and horizons. The best 3
results are highlighted red, blue, green, respectively. Please note that all the results are reported
after fixing the code bug (See Appendix D).

Dataset ETTh1 ETTh2 Electricity Traffic

Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

FEDformer (2022b) 0.375 0.427 0.459 0.484 0.340 0.433 0.508 0.480 0.188 0.197 0.212 0.244 0.573 0.611 0.621 0.630
TimesNet (2023) 0.384 0.436 0.491 0.521 0.340 0.402 0.452 0.462 0.168 0.184 0.198 0.220 0.593 0.617 0.629 0.640
PatchTST (2023) 0.385 0.413 0.440 0.456 0.274 0.338 0.367 0.391 0.129 0.149 0.166 0.210 0.366 0.388 0.398 0.457
DLinear (2023) 0.384 0.443 0.446 0.504 0.282 0.350 0.414 0.588 0.140 0.153 0.169 0.204 0.413 0.423 0.437 0.466
FITS (2024) 0.382 0.417 0.436 0.433 0.272 0.333 0.355 0.378 0.145 0.159 0.175 0.212 0.398 0.409 0.421 0.457
U-Mixer(2024) 0.370 0.423 0.470 0.500 0.290 0.366 0.423 0.446 0.151 0.163 0.179 0.210 0.451 0.458 0.477 0.520
Koopa (2024) 0.375 0.421 0.451 0.445 0.298 0.356 0.370 0.392 0.154 0.193 0.199 0.215 0.401 0.403 0.432 0.464
MICN (2023) 0.398 0.430 0.440 0.491 0.299 0.422 0.447 0.442 0.164 0.177 0.193 0.212 0.519 0.537 0.534 0.577
FastTF (ours) 0.350 0.388 0.419 0.416 0.268 0.330 0.351 0.376 0.132 0.149 0.165 0.200 0.387 0.400 0.410 0.446

5.1 EXPERIMENTAL SETUP

Datasets The five datasets used in our experiments follows Zhou et al. (2021). The statistics of the
datasets are summarized in Table 1 and the detailed information are shown in Appendix E.

Table 3: Weather dataset results.

Dataset Weather

Horizon 96 192 336 720

FEDformer (2022b) 0.217 0.276 0.339 0.403
TimesNet (2023) 0.172 0.219 0.280 0.365
PatchTST (2023) 0.149 0.194 0.245 0.314
DLinear (2023) 0.176 0.218 0.262 0.323
FITS (2024) 0.145 0.188 0.236 0.308
TimeMixer (2024) 0.147 0.189 0.241 0.310
ModernTCN (2024) 0.149 0.196 0.238 0.314
Koopa (2024) 0.154 0.193 0.245 0.321
MICN (2023) 0.161 0.220 0.278 0.311
FastTF (ours) 0.140 0.180 0.232 0.301

Baseline We compare FastTF with transformer-based
models include FEDformer, and PatchTST, CNN-based
models include TimesNet, MICN and ModernTCN,
MLP-based models include DLinear, FITS, Koopa, U-
Mixer (Ma et al., 2024) and TimeMixer. The baseline
models are set to its best performance on each dataset.
Please note that the look-back window for FastTF is set
to 720. We use MSE (Mean Squared Error) as the evalua-
tion metric and each model was evaluated on four differ-
ent forecasting horizons: 96, 192, 336, and 720.

Environment We implement FastTF using PyTorch and
train the model on a single NVIDIA RTX 4090 GPU.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 MAIN RESULTS

Table 2 and Table 3 present the experimental results of FastTF and the baseline models on the five
datasets. FastTF achieves competitive performance compared to the baseline models, with a sig-
nificantly lower number of parameters. Specifically, FastTF achieved a nealy 10% of performance
improvement compared to the MLP-based models like DLinear and FITS on horizon-96 forecasting
on the ETTh1 dataset. This is due to the fact that ETTh1 dataset exhibits stronger seasonality and pe-
riodicity, which can be better captured by the Time-Frequency domain analysis of FastTF. Moreover,
compared to complex models like FEDformer and TimesNet, FastTF achieves better performance,
because the model better analized simple frequency shift and variation in the time series. Notably,
FastTF performed well on both mid-term (like horizon-96 and horizon-192) and long-term forecast-
ing tasks, which can be attributed to its patch prediction strategy. The hyperparameter settings and
the additional results are provided in Appendix C.

5.3 COMPLEXITY ANALISYS

Theorem 2 (parameter count). Given the look-back window length L, the number of patches P , the
output horizon H , and the cut-off frequency fc, the number of frequency group K in SFM, the total
number of parameters in FastTF can be calculated as:

Parameters =
fc

2

K
+

HP 2

L
(8)

Specifically, without cutting off the frequency points, given the the down sampling factor M , the
number of parameters in FastTF can be calculated as:

Parameters =
(
⌊ L

2PM
⌋+ 1

)2

/K +
HP 2

L
(9)

Proof. The proof is provided in Appendix A.5 and the detailed parameter table is shown in Appendix
G. The detailed complexity analysis can be found in Appendix H.

Table 4: The parameter count of DLinear (2023), FITS (2024), and FastTF (ours) under different
Horizon and Look-back settings on ETTh1 dataset, where the patch size L/P is set to 48 and the
downsampling factor is set to 24.

model DLinear (2023) FITS (2024) FastTF (ours)

Horizon
Look-back 96 192 336 720 96 192 336 720 96 192 336 720

96 18624 37056 64704 138K 840 1,218 2,091 5,913 4 9 15 31
192 37248 74112 129K 277K 1,260 1,624 2,542 6,643 9 17 29 61
336 65184 130K 226K 484K 1,890 2,233 3,280 7,665 15 29 50 106
720 140K 278K 485K 1.04M 3,570 3,857 5,125 10,512 31 61 106 226

Table 5: Comparison of various models in terms
of parameters, maximum GPU memory usage,
and inference batch time (with batch size 256 on
cpu) on the weather dataset. For fair compari-
son, we set the look-back window to 720 and
the predict horizon to 720.

Model Parameters Max GPU Mem Batch Time (cpu)

FEDformer (2022b) 16.80 M 6.05 G 18.55s
MICN (2023) 73.45 M 4.97 G 7401.7ms
ModernTCN (2024) 176.18 M out of memory –
PatchTST (2023) 8.7 M 11.21 G 2234.3ms
Koopa (2024) 2.14 M 12.614 G 60.81ms

DLinear (2023) 21.80 M 660.80 M 84.48ms
FITS (2024) 951 K 401.89 M 68.16ms
FastTF (Ours) 3.8 K 223.17 M 46.16ms

400 600 800 1000 1200 1400
Training Time (ms/epoch)

0.40

0.42

0.44

0.46

0.48

0.50

M
SE

FastTF (ours)
0.092GB, 432ms

DLinear
0.112GB, 444ms

FITS
0.16GB, 496ms

Koopa
0.222GB, 810ms

ModernTCN
3.484GB, 1261ms

PatchTST
1.083GB, 1217ms

MICN
4.939GB, 18120ms FEDformer

5.193GB, 94000ms
0.1GB 0.3GB
Memory Footprint

Figure 6: The memory footprint and train-
ing speed of different models on the ETTh1
dataset. The look-back window and the pre-
dict horizon are both set to 720.

Theorem 2 provides the calculation of the number of parameters in FastTF. We then explore the limit
of the number of parameters in FastTF by comparing the performance (MSE loss) with DLinear and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

FITS on the ETTh1 dataset, a small dataset with 7 similarly behaved channels. The result shown in
Table 4 indicates that FastTF is able to conduct 96-96 forecasting with as few as 4 parameters, which
is 210 times fewer than DLinear and 4000 times fewer than that of FITS. When it comes to 720-
720 forecasting, FastTF achieves a comparable performance with only 226 parameters, which is
nearly 5000 times fewer than DLinear. As shown in memory footprint Figure 6, FastTF achieves
the best performance while significantly reducing the memory usage and training time compared to
other baselines. Specifically, FastTF is 38 times more memory efficient and 3 times faster than
ModernTCN on the ETTh1 dataset.

Furthermore, Table 5 shows the parameter count, GPU memory usage, and cpu inference time of
FastTF and other models on the weather dataset, a dataset with 21 different behaved channels.
Please note that a individual configuration is used for each model (See Appendix F for detailed
information). Astonishingly, FastTF achieves the best performance with only 3.8K parameters,
which is up to 4400 times smaller than the transformer-based models, and 46,400 times smaller
than the recent CNN-based models, ModernTCN. In short, FastTF is lighter, faster, and better.

5.4 4 PARAMETERS ARE ALL YOU NEED–A CASE STUDY ON THE ETTH1 DATASET

Proposition 3 (The ability to capture statistical property drift). The rFFT operation can natually
capture drift of statistical property in the time series, i.e., the variance of the mean value of the time
series between different patches, bacause recall Equation 1 we have:

X(0) =

N−1∑
n=0

x(n) = N · mean(x), (10)

which is also called the DC component of a spectrum. Table 6: The performance comparison
of FastTF with only 4 and 8 parameters
on the ETTh1 dataset.

Model (look-back length) Param. count MSE

FastTF (96) 4 0.383
FastTF(192) 8 0.371

FITS (720) 5.9K 0.382
DLinear (720) 138K 0.384
FEDformer (96) 16.30 M 0.380

We now give a configuration framework on the ETTh1
dataset for FastTF with only 4 parameters. Given the
look-back window length L = 96, the number of patches
P = 2, the cut-off frequency fc = 1 (so that the 1 param-
eter in SFM can be omitted), the down sampling factor
M = 24, and the number of frequency group K = 1, the
performance of FastTF on the ETTh1 dataset is shown in
Table 6. This framework achieves a competitive perfor-
mance compared to the baseline models, and reduced the number of parameters by 4,000,000 times
compared to FEDformer. Beneath this result lies an interesting coincidence: The points obtained
by downsampling within a patch happen to be at the same position across two cycles (with the ma-
jor cycle of ETTh1 being 24). Proposition 3 indicates that when fc = 1, the model captures the
shift of mean value across patches by averaging each subsequence, essentially capturing the trend
information on the scale of the entire cycle. The prediction results is shown in Figure 7.

5.5 DETAILED DISCUSSION

0 25 50 75 100 125 150 175 200
Time index

3

2

1

0

1

A
m

pl
itu

de

Ground Truth
Predict

Figure 7: The prediction results of
FastTF with only 4 parameters on the
ETTh1 dataset.

The effect of downsampling The downsampling within
patches facilitates weight sharing, as subsequent SFM op-
erates independently on each subsequence. However, the
downsampling process lowers the maximum frequency
that the rFFT can represent. Consequently, the high-
frequency components of the original sequence’s spec-
trum are aliased back into the low-frequency range, which
results in irreversible information loss within individual
sequences. Fortunately, since the set of all subsequences essentially retains all the information
from the original sequence, this information loss is partially compensated. We explore the extent to
which this operation impacts the final model performance by varying the downsampling factor M ,
with the results presented in Table 7. The results indicates that although the performance usually
decreases as the downsampling factor increases, the degradation is relatively marginal, which fur-
ther demonstrates the robustness of FastTF. Interestingly, on the weahter dataset, the performance
even improves when the downsampling factor is set to 24, which is consistent with the fact that the
weather dataset has a relatively low frequency and is less sensitive to the downsampling operation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
The number of groups

0.38

0.40

0.42

0.44

0.46

M
SE H = 96

H = 720

(a)

2 4 6 8 10 12
The number of groups

0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43

M
SE H = 96

H = 720

(b)

4 6 8 10 12
Cut-off frequency

0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575

M
SE

H = 96
H = 720

(c)

6 12 18 24
Cut-off frequency

0.34
0.36
0.38
0.40
0.42
0.44
0.46

M
SE H = 96

H = 720

(d)

6 12 24 48 96
Patch Size

0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43

M
SE H = 96

H = 672

(e)
Figure 8: Detailed study on hyperparameters. (a) The effect of the number of frequency groups
K in SFM on the traffic dataset. (b) The effect of the number of frequency groups K in SFM on the
ETTh1 dataset. (c) The effect of the cut-off frequency fc on the traffic dataset. (d) The effect of the
cut-off frequency fc on the ETTh1 dataset. (e) The effect of the patch size on the ETTh1 dataset.

The effect of SFM The sparse grouping of frequency points in SFM reduce the number of param-
eters of the weight matrix linearly with the number of frequency groups K, but it also omits the
potential long-range connections between frequency points. Therefore, we futher explore the ef-
fect of the number of frequency groups K on the model performance on ETTh1 and traffic, and
the results are shown in Figure 8a and Figure 8b. The results imply that the increase in K does
not necessarily harm the model performance. In fact, the sparse grouping strategy can be seen as a
form of regularization, which can prevent overfitting and improve the model’s generalization ability.
Moreover, the selection of cut-off frequency fc is also crucial. The results in Figure 8c and Figure
8d show that the model performance is relatively stable when fc is closed to L

2PM and start to de-
teriorate rapidly when fc becomes too small. This is because most of the information in the time
series is concentrated in the low-frequency range, and the information loss become significant when
the cut-off frequency gets close to the main frequency of the time series. The result of the ablation
study about the SFM is given in Appendix C.2.

Table 7: Results obtained by varying the
downsampling factor M on three datasets,
with the look-back window set to 672, and
the patch size set to 48.

Dataset ETTh1 Weather Electricity

Horizon 96 720 96 720 96 720

M = 24 +0.012 +0.007 +0.009 +0.004 -0.004 +0.002
M = 8 +0.009 +0.007 +0.005 +0.001 +0.001 +0.003
M = 4 +0.003 +0.002 +0.003 +0.002 +0.002 +0.002
M = 2 +0.001 -0.002 +0.002 +0.000 +0.001 +0.003
M = 1 0.350 0.418 0.144 0.306 0.145 0.204

The effect of patch size We explore the effect of the
patch size on the model performance on the ETTh1
dataset, and the results are shown in Figure 8e. The
results suggest that a larger patch size is more ad-
vantageous for ultra-long-term forecasting, while a
moderate patch size is beneficial for relatively short-
term predictions. On the other hand, setting the
patch size to an integer multiple of the data’s inher-
ent periodicity also facilitates cross-period feature
learning, thus improving the model’s performance.

5.6 GENERALIZABILITY

The generalization capability of a model, i.e., its ability to perform inference on other similar
datasets after being trained on a specific dataset, is a crucial metric for evaluating the effectiveness
of a method. Therefore, we evaluated FastTF on two transfer paths, ETTh2→ ETTh1 and Electricity
→ ETTh1, and presented the results in Table 8. The results demonstrate that FastTF significantly
outperforms baseline models in both horizon of 96 and 720. Specifically, in 96 step, the Electricity
dataset proves more suitable for transfer learning compared to ETTh2, while the opposite holds true
for 720 step forecasts. This is because, in terms of long-term trends, ETTh2 shares greater similarity
with ETTh1 (Lin et al., 2024). These findings indicate that FastTF can be effectively transferred
to other datasets with minimal performance degradation, particularly for long-term predictions on
ETTh2.

5.7 TRAINING DETAIL
Table 8: The generalizability of FastTF on
the ETTh2 → ETTh1 and Electricity →
ETTh1 transfer paths.

Dataset ETTh2 → ETTh1 Electricity → ETTh1

Horizon 96 720 96 720

PatchTST 0.452 0.478 0.405 0.473
Koopa 0.411 0.449 0.401 0.477
DLinear 0.422 0.526 0.390 0.469
FITS 0.414 0.446 0.388 0.452
FastTF 0.385 0.423 0.380 0.444

In the final part of our experimental analysis, we fo-
cus on the training details. Figure 9 presents various
training specifics of FastTF on the ETTh1 dataset.

Figures 9a and 9b illustrate the training loss and val-
idation loss curves of FastTF, along with a compar-
ison to DLinear and FITS. The results indicate that
FastTF converges more rapidly and with greater sta-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

bility, with a significantly lower convergence value on the validation set compared to DLinear and
FITS. In contrast, FITS and DLinear both exhibit unstable fluctuations during the early stages of
training.

Figure 9c shows the predictive performance of FastTF. FastTF is able to better capture the peaks,
troughs, and inherent periodicity within the sequence, demonstrating a significantly superior perfor-
mance compared to DLinear and FITS.

Figure 9d visualizes the SFM weight matrix under the condition of K = 3. The three weight
matrices are concatenated in a block-diagonal form, with the remaining parts displayed as zeros.
Comparing this figure with Figure 5c, it can be observed that the primary portions of the weight
matrix are preserved, while the less important weights at the edges are ignored. This linear reduction
in the size of the weight matrix effectively retains the most critical information, consistent with the
discussion in Section 5.5.

0 50 100 150 200 250
Iteration (Batch)

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 L
os

s

DLinear
FastTF
FITS

(a)

0 2 4 6 8 10 12
Epoch

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Va
lid

at
io

n 
Lo

ss

DLinear
FastTF
FITS

6 7 8 9 10
0.67

0.68

0.69

0.70

0.71

(b)
0 20 40 60 80

Time index

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF
DLinear
FITS

(c)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23 0.0

0.2

0.4

0.6

0.8

(d)
Figure 9: Training detail and visualization of FastTF on the ETTh1 dataset. (a) Training loss curve,
where learning rate is set to 0.008. (b) Validation loss curve. (c) Prediction results. (d) Visualization
of the sparse weight matrix in SFM.

6 DEPLOYMENT ON FPGA DEVELOPMENT BOARD

FPGA (Field-Programmable Gate Array) is a versatile integrated circuit that enables users to pro-
gram hardware according to specific requirements, facilitating the implementation of targeted func-
tionalities. Owing to its advantages of low power consumption and low latency, FPGA is extensively
utilized in digital signal processing applications. However, its limited storage and computational re-
sources present challenges for the independent deployment of large neural network models. This
paper focuses on the Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit as a representative example
to demonstrate the exceptional hardware deployability of FastTF. We conduct on-chip deployments
of three algorithms—FastTF, DLinear, and FITS—comparing their resource consumption and la-
tency in a 720-720 inference task. For FastTF, we set parameters at M = 3, K = 2, fc = 8, and
a patch size of 48, while the truncation frequency for FITS is set to 200. The results, summarized
in Table 9, reveal that FastTF significantly conserves storage and computational resources while
delivering faster predictions and lower operational power. Notably, both DLinear and FITS utilize
more BRAM blocks and DSPs, which may be impractical for lower-configured FPGAs. Moreover,
the inference time of FITS seems to be unreasonably high, which is due to its adoption of a serial
computation scheme during the FFT stage, as the resource consumption of parallel algorithms far
exceeds the limits of the development board. Please note that the results may vary depending on the
implementation details. Additional details can be found in Appendix J.

7 CONCLUSION

Table 9: Resource Usage and Infer-
ence Time on FPGA. Mul denotes the
number of real number multiplications
(without considering rFFT).

Metric FastTF DLinear FITS

BRAMs 5.5 722.5 407
DSP Blocks 810 2893 2410

Power 4.9W 5.1W 5.9W
Cycles 353 750 21851

Mul 20.5K 1054.8K 240.0K

In this paper, we proposed FastTF, a time series forecast-
ing model that operates in the Time-Frequency domain.
The model employs downsampling and inter-patch pre-
diction to enable weight sharing, while frequency-domain
weight sparsification further minimizes both parameter
count and computational overhead. Through explanations
and experimental results, we demonstrate that FastTF of-
fers seven key advantages: simple, lightweight, fast, effective, robust, generalizable, and de-
ployable. These strengths strongly position FastTF as a highly competitive model for time series
forecasting tasks, particularly on resource-constrained devices.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with 1k parameters. arXiv preprint arXiv:2405.00946, 2024.

Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
series dynamics with koopman predictors. Advances in Neural Information Processing Systems,
36, 2024.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Xiang Ma, Xuemei Li, Lexin Fang, Tianlong Zhao, and Caiming Zhang. U-mixer: An unet-mixer
architecture with stationarity correction for time series forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 14255–14262, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive and fair
benchmarking of time series forecasting methods, 2024. URL https://arxiv.org/abs/
2403.20150.

Robert H Shumway, David S Stoffer, Robert H Shumway, and David S Stoffer. Arima models. Time
series analysis and its applications: with R examples, pp. 75–163, 2017.

H V Sorensen, D Jones, Michael Heideman, and C Burrus. Real-valued fast fourier transform
algorithms. IEEE Transactions on acoustics, speech, and signal processing, 35(6):849–863, 1987.

Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Fe-
lipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep
complex networks. arXiv preprint arXiv:1705.09792, 2017.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-
scale local and global context modeling for long-term series forecasting. In The eleventh interna-
tional conference on learning representations, 2023.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv
preprint arXiv:2405.14616, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
poral 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv
preprint arXiv:2307.03756, 2023.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. Advances in Neural Information Processing Systems, 36, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

11

https://arxiv.org/abs/2403.20150
https://arxiv.org/abs/2403.20150


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International conference
on machine learning, pp. 27268–27286. PMLR, 2022.

H Ziegler. A fast fourier transform algorithm for symmetric real-valued series. IEEE Transactions
on Audio and Electroacoustics, 20(5):353–356, 1972.

A PROOF

A.1 PROOF OF PROPERTY 1

Proof. We want to prove that the Discrete Fourier Transform (DFT) of a real-valued sequence x(n)
is Hermitian symmetric, i.e., X(k) = X∗(N − k).

The DFT of the sequence x(n) is defined as:

X(k) =

N−1∑
n=0

x(n)e−j 2π
N kn

where k = 0, 1, 2, . . . , N − 1.

The complex conjugate of X(k), denoted as X∗(k), is:

X∗(k) =

(
N−1∑
n=0

x(n)e−j 2π
N kn

)∗

Since the sum of the conjugates is equal to the conjugate of the sum, and e−jθ is conjugated to ejθ,
we have:

X∗(k) =

N−1∑
n=0

x∗(n)ej
2π
N kn

Given that x(n) is a real-valued sequence, x∗(n) = x(n). Thus:

X∗(k) =

N−1∑
n=0

x(n)ej
2π
N kn

Now, let’s express X(N − k) using the definition of the DFT:

X(N − k) =

N−1∑
n=0

x(n)e−j 2π
N (N−k)n

Simplifying the exponent:

X(N − k) =

N−1∑
n=0

x(n)e−j 2π
N Nnej

2π
N kn

Since e−j 2π
N Nn = e−j2πn and e−j2πn = 1 for any integer n, we have:

X(N − k) =

N−1∑
n=0

x(n)ej
2π
N kn

Notice that:

X∗(k) =

N−1∑
n=0

x(n)ej
2π
N kn

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

and:

X(N − k) =

N−1∑
n=0

x(n)ej
2π
N kn

Thus, we conclude:
X(N − k) = X∗(k)

We have shown that:
X(k) = X∗(N − k)

This result confirms that the DFT of a real-valued sequence x(n) is Hermitian symmetric, complet-
ing the proof.

A.2 PROOF OF THEOREM 1

Proof. We begin by considering the original discrete-time sequence x(n) which is sampled at a
frequency fs. The sequence x(n) has a maximum frequency component fmax.

The Nyquist sampling theorem states that to avoid aliasing, the sampling frequency fs must satisfy:

fs ≥ 2fmax.

This ensures that the highest frequency component in the signal is adequately captured by the sam-
pling process.

Now, consider downsampling the sequence x(n) by a factor of M . Downsampling is the process
of reducing the sampling rate by keeping every M -th sample and discarding the others. The new
sequence after downsampling is denoted by xd(n) = x(Mn).

When we downsample by a factor of M , the effective sampling frequency after downsampling
becomes:

f ′
s =

fs
M

.

To avoid aliasing in the downsampled sequence, the new sampling frequency f ′
s must satisfy the

Nyquist condition:
f ′
s ≥ 2fmax.

Substituting f ′
s =

fs
M into the inequality, we get:

fs
M
≥ 2fmax.

Multiplying both sides by M , we obtain:

fs ≥ 2M × fmax.

This inequality indicates that for the downsampling process to avoid aliasing, the original sampling
frequency fs must be at least 2M times the maximum frequency component fmax of the sequence
x(n).

Hence, the theorem is proved.

A.3 PROOF OF PROPOSITION 1

Proof. The phenomenon of spectral leakage occurs when a sinusoidal component within a signal
does not align perfectly with the frequency bins of the Discrete Fourier Transform (DFT). The
DFT calculates the frequency content of a discrete-time signal x[n] over a finite interval, producing
frequency components at specific frequencies fk = kfs

N , where k ranges from 0 to N − 1 and fs is
the sampling frequency.

When the frequency of a sinusoidal component f0 in the signal does not coincide with any of these
discrete DFT frequency bins fk, the DFT cannot represent f0 as a single frequency component.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Instead, the energy that should ideally be concentrated at f0 is distributed among several neighboring
frequency bins, a phenomenon known as spectral leakage.

To understand why this occurs, consider the DFT of a sinusoidal signal x[n] = A cos(2πf0n + ϕ).
If f0 aligns perfectly with one of the DFT bins fk, the DFT will represent this component as a peak
at fk, with no energy in the other bins. However, if f0 does not align with any fk, we can express
f0 as f0 = fk +∆f , where ∆f is the mismatch between f0 and the nearest DFT bin frequency fk.
The sinusoid can no longer be represented by a single complex exponential at fk, and instead, its
energy spreads across multiple bins.

Mathematically, this is due to the finite length of the signal. The DFT implicitly assumes that the
signal is periodic with a period equal to the length of the signal N . When f0 does not match any
fk, the assumption of periodicity introduces discontinuities at the boundaries of the signal, creating
artifacts in the frequency domain. These artifacts manifest as energy in frequency bins that are not
directly associated with f0, leading to the appearance of spectral leakage.

To illustrate, consider the DFT of the signal x[n] = A cos(2π k0+δ
N n), where k0 is an integer, and

δ is a small fractional frequency component such that f0 = (k0+δ)fs
N . The DFT will show a peak

not only at k0 but also in adjacent bins k0 ± 1, k0 ± 2, . . ., depending on the value of δ. The energy
spreads over several bins, reducing the sharpness of the spectral peak, which would otherwise be
concentrated if δ = 0.

In practice, spectral leakage can be mitigated by techniques such as windowing, where the signal
is multiplied by a window function that tapers the signal to zero at the boundaries, reducing the
discontinuities and therefore the leakage. However, even with windowing, some degree of leakage
is typically unavoidable when f0 does not exactly match a DFT bin.

A.4 EXPLANATION OF PROPOSITION 2

The phenomenon of harmonics is a fundamental concept in signal processing, particularly when
dealing with signals that exhibit non-linearities or discontinuities. Consider a periodic signal x(n)
with a fundamental frequency f0. The fundamental frequency is the inverse of the period T of the
signal, i.e., f0 = 1

T . For a perfectly sinusoidal signal, the frequency spectrum would ideally consist
of a single peak at f0. However, when x(n) contains non-linearities or sharp transitions, these
irregularities introduce additional frequency components into the spectrum, known as harmonics.
These harmonics are integer multiples of the fundamental frequency, occurring at frequencies 2f0
(second harmonic), 3f0 (third harmonic), and so on.

Non-linearities in a signal can arise due to various causes, such as amplitude clipping, rectification,
or the presence of sharp corners or edges. When a signal with such characteristics is analyzed
in the frequency domain, the Fourier transform reveals not only the fundamental frequency but
also its harmonics. For example, consider a signal x(n) = A cos(2πf0n) that undergoes a non-
linear transformation, such as squaring. The resulting signal y(n) = x2(n) = A2 cos2(2πf0n)
can be expressed using the trigonometric identity cos2(θ) = 1

2 + 1
2 cos(2θ), leading to y(n) =

A2

2 + A2

2 cos(4πf0n). The frequency spectrum of y(n) now includes a DC component (at f = 0)
and a component at 2f0, the second harmonic.

Discontinuities or sharp transitions in a time series, modeled as abrupt changes in the signal’s ampli-
tude, also introduce a wide range of frequency components, particularly higher harmonics. A square
wave, for example, alternates between two levels, and its Fourier series expansion reveals that it
consists of the fundamental frequency and all odd harmonics (3rd, 5th, 7th, etc.). This behavior is
due to the sharp transitions between the high and low states of the square wave.

In practical applications, the presence of harmonics can have significant implications. In audio
signals, harmonics can add richness or distortion, depending on whether they are desired or not. In
communication systems, harmonics can cause interference, necessitating the use of filters to remove
them. In power systems, harmonics can lead to inefficiencies and potential damage to equipment.
Therefore, understanding the source of harmonics and how they manifest in a signal’s spectrum is
crucial for effective signal processing and analysis.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.5 PROOF OF THEOREM 2

Proof. The parameter count can be divided into two parts: the number of parameters in the SFM
and the patch predictor. Given the input sequence length L, the number of patches P , and the output
horizon H , the SFM can be viewed as a mapping from fc frequency components to fc frequency
components (i.e., Cfc → Cfc ) with each sparse group conducting a linear transformation from fc

K

to fc
K frequency components. The number of parameters in the SFM can therefore be calculated as:

ParametersSFM =
fc
K
× fc

K
×K =

f2
c

K
(11)

The output number of patches can be calculated as PH
L , so that the patch predictor can be viewed as

a mapping from CP to CPH
L , and the number of parameters in the patch predictor can be calculated

as:

ParametersPatchPredictor = P × PH

L
=

P 2H

L
(12)

Therefore, the total number of parameters in FastTF is the sum of the parameters in the SFM and
the patch predictor:

Parameters =
f2
c

K
+

P 2H

L
(13)

Specifically, after downsampling we get PM subsequences with length Lsub = L
PM , and then the

rFFT operation is applied to each subsequence, yielding another PM subsequences with length⌊
L

2PM

⌋
+ 1. By setting fc =

⌊
L

2PM

⌋
+ 1, the number of parameters in the SFM can be calculated

as:

ParametersSFM =
f2
c

K
=

(⌊
L

2PM

⌋
+ 1
)2

K
, (14)

and therefore the total number of parameters in FastTF is:

Parameters =

(⌊
L

2PM

⌋
+ 1
)2

K
+

P 2H

L
. (15)

B THE REASON FOR NOT FILTERING THE ORIGINAL TIME SERIES

Low-pass filtering before downsampling is essential to prevent spectral aliasing, a phenomenon
where higher frequency components of a signal are incorrectly interpreted as lower frequencies.
This occurs because downsampling reduces the sampling rate, which can cause the signal’s fre-
quency content to exceed the new Nyquist limit (half the new sampling rate). If the original sequence
contains frequency components higher than this limit, they can fold back into the lower frequency
range, leading to distortion and loss of information. By applying a low-pass filter, these higher
frequency components can be effectively removed, ensuring that the downsampled sequence accu-
rately represents the original signal within the new bandwidth. This process preserves the integrity
of the signal and prevents aliasing artifacts, which could otherwise compromise the quality of the
downsampled data.

However, in FastTF, we do not explicitly filter the original time series before downsampling. This
decision is mainly based on the following considerations:

• Additional Complexity: Incorporating a low-pass filter before downsampling would introduce
additional computational complexity to the model. Specifically, an extra rFFT and irFFT oper-
ation would be required to implement the filtering process, increasing the overall computational
load. Given that FastTF aims to be a lightweight and efficient model, minimizing unnecessary
complexity is crucial to maintain its simplicity and speed.

• Potential Information Loss: On the one hand, From a time domain perspective, the single-
sequence downsampling process itself acts as a low-pass filter, effectively removing high-
frequency components that exceed the new Nyquist limit. This operation dicarded many point

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameters for different datasets and prediction horizons. Here, cnt represents the
total number of parameters for the configuration. Here PS denotes the patch size.

Dataset 96 192 336 720

PS M fc K cnt PS M fc K cnt PS M fc K cnt PS M fc K cnt

ETTh1 48 2 12 2 102 48 2 12 2 132 48 2 12 2 177 48 2 12 2 297
ETTh2 6 1 4 2 1928 6 1 4 2 3848 6 1 4 2 6728 6 1 4 2 14408
Electricity 4 1 3 1 4329 4 1 3 1 8649 4 1 3 1 15129 4 1 3 1 32409
Traffic 24 2 6 2 138 24 2 6 2 258 24 2 6 2 438 24 2 6 2 918
Weather 12 2 4 2 648 12 2 4 2 1128 12 2 4 2 1848 12 2 4 2 3768

in the original time series, which will result in severe information loss. However, in FastTF, the
downsampling process was repeatedly applied for M times, which actually maintained all the in-
formation in the original time series. Therefore, the distortion caused by aliasing can be somehow
alleviated. On the other hand, the filter operation before downsampling may also remove some
useful information in the original time series, which is not conducive to the subsequent time series
forecasting task.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 TRAINING SETTINGS

In this section, we provide additional details on the training settings used in the experiments. The
training process was conducted on a single NVIDIA RTX 4090 GPU with 24GB memory. The
optimizer used was Adam with a learning rate of 0.008, a batch size of 256, and a maximum epoch
of 100. The model was implemented using PyTorch and trained using the Mean Squared Error
(MSE) loss function. The hyperparamter table for each dataset is shown in Table 10. Specifically,
the MSE loss was calculated as:

MSE =
1

N

N∑
i=1

(yi − x̂i)
2, (16)

where N is the number of samples, yi is the true value (ground truth), and x̂i is the predicted value.

During Training, we adopt an early stop strategy based on the validation loss. Specifically, the train-
ing process will be terminated if the validation loss does not decrease for 6 consecutive epochs. The
model parameters at the epoch with the lowest validation loss are saved as the final model. Besides,
we also adopt the learning rate decay strategy. Specifically, the learning rate will be reduced by a
factor of 0.6 for every 10 epochs.

C.2 ABLATION STUDY

The ablation study result is shown in Table 11. The ablation study is conducted on different datasets
and prediction horizons to evaluate the impact of different components of FastTF. The FastTF de-
notes the full model, while FastTF-SFM and FastTF-rFFT represent the models without the SFM
and rFFT components, respectively. The results show that transforming the input sequence into
the frequency domain using rFFT and applying SFM to mix the frequency information can greatly
improve the performance of FastTF across different datasets and prediction horizons.

C.3 HYPERPARAMETER SEARCHING DETAILS

We searched for the optimal hyperparameters for FastTF on the ETTh1, ETTh2, Traffic, and Weather
datasets, and the results are shown in Tables 12, 13, 14, and 15, respectively. It must be noted that,
although the results vary across different hyperparamters, the performance of FastTF is generally ro-
bust with respect to hyperparameters, as the model consistently achieves competitive results across
different settings. This robustness is a key advantage of FastTF, making it easy to deploy in prac-
tice without extensive hyperparameter tuning. Specifically, for resource constrained environments,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: Ablation study results for different datasets and prediction horizons. FastTF denotes the
full model, while FastTF-SFM represents the model without the SFM component.

Dataset Ablation Horizon

96 192 336 720

ETTh1 FastTF 0.350 0.388 0.419 0.416
FastTF-SFM 0.396 0.425 0.448 0.439

ETTh2 FastTF 0.268 0.330 0.351 0.376
FastTF-SFM 0.292 0.346 0.364 0.387

Electricity FastTF 0.132 0.149 0.165 0.200
FastTF-SFM 0.202 0.198 0.242 0.270

Traffic FastTF 0.387 0.403 0.410 0.435
FastTF-SFM 0.464 0.473 0.476 0.542

Weather FastTF 0.140 0.182 0.232 0.301
FastTF-SFM 0.191 0.232 0.272 0.335

the model can be deployed with a relatively small number of parameters while maintaining strong
forecasting performance.

Table 12: Parameter search results for ETTh1. The number in the paratheis represents the corre-
sponding parameter count. Here the patch size PS is set to 48.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.350(655) 0.350(318) 0.352(222) 0.351(126) 0.418(850) 0.416(513) 0.417(417) 0.416(321)
2 0.351(199) 0.350(102) 0.353(78) 0.355(54) 0.416(394) 0.416(297) 0.420(273) 0.419(249)
4 0.353(79) 0.355(48) 0.369(42) – 0.421(274) 0.420(243) 0.433(237) –
8 0.359(46) 0.362(38) – – 0.425(241) 0.417(233) – –

Table 13: Parameter search results for ETTh2. Here the patch size PS is set to 6.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.268(1936) 0.268(1928) – – 0.376(14416) 0.376(14408) – –
2 0.270(1924) – – – 0.378(14404) – – –
4 – – – – – – – –
8 – – – – – – – –

C.4 RESULTS ON MORE DATASETS

In this section we provide additional experimental results on ETTm1, ETTm2, and Exchange
datasets. The introduction of these datasets can be found in Section E, and the results are sum-
marized in Table 17.

C.5 CRITICAL DIFFERENCE DIAGRAM

The critical difference diagram is a statistical tool used to compare multiple methods across dif-
ferent datasets and horizons. It is based on the Friedman test, a non-parametric statistical test that
determines whether there are significant differences between the methods’ performance. The criti-
cal difference diagram visualizes the average ranks of the methods and indicates which methods are
significantly different from each other based on the critical difference value. The critical difference
value is calculated using the Nemenyi test, which takes into account the number of datasets and
methods being compared. The result is shown in Figure 10.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 14: Parameter search results for Traffic. Here the patch size PS is set to 24.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.390(289) 0.388(192) 0.390(168) 0.389(156) 0.447(1069) 0.446(972) 0.448(948) 0.456(924)
2 0.389(169) 0.387(138) 0.393(132) – 0.447(949) 0.446(918) 0.449(912) –
4 0.391(136) 0.393(128) – – 0.451(916) 0.452(908) – –
8 0.396(124) – – – 0.455(904) – – –

Table 15: Parameter search results for Weather. Here the patch size PS is set to 12.

Horizon 96 720

M
K 1 2 3 6 1 2 3 6

1 0.142(529) 0.141(498) 0.143(492) – 0.302(3649) 0.301(3618) 0.306(3612) –
2 0.142(496) 0.140(488) – – 0.303(3616) 0.301(3608) – –
4 0.145(484) – – – 0.306(3604) – – –
8 – – – – – – – –

C.6 ADDITIONAL PREDICTION RESULTS

Additional prediction results in the training set are shown in Figures 11, 12, 13, 14, 15, 16, 17,
18, 19, 20. The results show that FastTF can effectively capture the underlying patterns in the time
series data and make accurate predictions across different datasets and prediction horizons.

D THE CODE BUG

In Dec. 2023, an anonymous researcher pointed out a long existing bug in the source code of a
series of time series forecasting models. The bug can be traced back to the implementation of In-
former (Zhou et al., 2021), and has already affected a series of subsequent works, including DLinear,
Autoformer, Fedformer, PatchTST, Koopa, FITS, and TimeMixer, etc. The bug is related to the cal-
culation of the settings of the test dataloader, where the drop last parameter is incorrectly set to
True by default. This setting causes the last incomplete batch of the test dataloader to be dropped,
leading to incorrect evaluation results. Empirically, the bug significantly improved the performance
of the models on the ETT datasets, and the impact on other datasets is relatively marginal (Qiu et al.,
2024). The bug has been fixed in the latest version of the source code, and the corrected results are
presented in this paper.

E DETAIL OF THE PUBLIC DATASETS

1. Weather: This dataset contains 21 meteorological indicators such as humidity and air tempera-
ture for the year 2020 in Germany.

2. Traffic: Contains road occupancy rates measured by 862 different sensors across San Francisco
Bay Area freeways over a span of two years. The data is sourced from the California Department
of Transportation.

3. Electricity: Comprises hourly electricity consumption data of 321 clients, recorded between
2012 and 2014.

4. Exchange: Includes daily exchange rates of eight different countries from 1990 to 2016. patient
data in the United States from 2002 to 2021. The dataset includes seven indicators such as the
number of ILI patients across different age groups and the ratio of ILI patients to the total number
of patients. Data is provided by the Centers for Disease Control and Prevention (CDC).

5. ETT (Electricity Transformer Temperature): Contains data collected from electricity trans-
formers using seven sensors, capturing variables such as load, oil temperature, etc. The dataset is
split into two sub-datasets labeled as 1 and 2, corresponding to two different electric transform-
ers from separate counties in China. Each sub-dataset includes two different time resolutions: 15
minutes and 1 hour, denoted as m and h respectively. Thus, there are four ETT datasets: ETTh1,
ETTh2, ETTm1, and ETTm2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 16: Complete form of statistical information for the datasets used in the experiments.

Dataset Weather Traffic Exchange Electricity ETTh1 ETTh2 ETTm1 ETTm2
Dataset Size 52696 17544 7207 26304 17420 17420 69680 69680
Variable Number 21 862 8 321 7 7 7 7
Sampling Frequency 10 mins 1 hour 1 day 1 hour 1 hour 1 hour 15 mins 15 mins

Table 17: Comparison of different methods across various datasets and horizons. The best 3
results are highlighted red, blue, green, respectively.

Dataset ETTm1 ETTm2 Exchange

Horizon 96 192 336 720 96 192 336 720 96 192 336

FEDformer (2022b) 0.326 0.365 0.392 0.446 0.180 0.252 0.324 0.410 0.139 0.256 0.426
TimesNet (2023) 0.338 0.371 0.410 0.478 0.187 0.249 0.321 0.497 0.107 0.226 0.367
PatchTST (2023) 0.290 0.332 0.366 0.416 0.165 0.220 0.274 0.362 0.093 0.192 0.350
DLinear (2023) 0.299 0.335 0.369 0.425 0.167 0.224 0.281 0.397 0.081 0.157 0.305
U-Mixer(2024) 0.317 0.369 0.395 0.443 0.178 0.243 0.331 0.434 0.087 0.171 0.285
Koopa (2024) 0.294 0.337 0.380 0.426 0.171 0.226 0.283 0.394 0.083 0.184 0.331
MICN (2023) 0.314 0.359 0.398 0.459 0.178 0.245 0.295 0.389 0.102 0.172 0.272
FastTF (ours) 0.302(4th) 0.334 0.372 0.415 0.162 0.215 0.266 0.349 0.080 0.167 0.304

F THE INDIVIDUAL CONFIGURATION

In practical applications, time series datasets are often multi-channel. Let C denote the number of
input channels, then a look-back window of data can be represented as X ∈ RC×L. For channel-
independent models like FITS and DLinear, there are generally two training strategies:

1. Train a separate single-channel model for each channel, with independent weights across chan-
nels, referred to as the Individual configuration.

2. Use a shared set of weights across all channels.

For FastTF, we also employ the Individual configuration on the weather dataset, but with a key dif-
ference: we train a SFM for each channel independently, while the patch predictor shares weights
across channels. The motivation behind this strategy is to reduce the model’s parameter count and
mitigate overfitting. Specifically, the SFM integrates frequency information over short time inter-
vals, where different channels exhibit varying short-term behavior in the weather dataset. Con-
versely, the patch predictor captures long-term trend changes across patches, which tend to be con-
sistent across different channels.

G PARAMETER TABLE FOR FASTTF

The detailed parameter table of patch predictor and SFM in FastTF is shown in Table 18 and Table
19, respectively. The parameter count of the patch predictor is calculated based on the patch size,
prediction horizon, and look-back window, while the parameter count of the SFM is determined by
the patch size, downsampling factor, and sparse group number.

Table 18: The parameter count of patch predictor in FastTF with different patch sizes, prediction
horizons and look-back windows.

patch size L/P = 12 L/P = 24 L/P = 48

Horizon
Look-back 96 192 336 672 720 96 192 336 672 720 96 192 336 672 720

96 64 128 224 448 480 16 32 56 112 120 4 8 14 28 30
192 128 256 448 896 960 32 64 112 224 240 8 16 28 56 60
336 224 448 784 1568 1680 56 112 196 392 420 14 28 49 98 105
720 480 960 1680 3360 3600 120 240 420 840 900 30 60 105 210 225

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7

FastTF (ours) (1.2)

PatchTST (2023) (2.8)

FITS (2024) (2.8)

Koopa (2024) (4.4)

(7.1) FEDformer (2022b)

(7) TimesNet (2023)

(5.7) MICN (2023)

(5) DLinear (2023)

Critical Difference Diagram of Average Score Ranks

Figure 10: Critical difference diagram for the comparison of different methods across various
datasets and horizons. The methods are ranked based on the average rank across all datasets and
horizons.

0 20 40 60 80
Time index

0.4

0.2

0.0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 20 40 60 80
Time index

0.0

0.5

1.0

1.5

2.0

2.5

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 20 40 60 80
Time index

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 20 40 60 80
Time index

1.2

1.1

1.0

0.9

0.8

0.7

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 20 40 60 80
Time index

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 11: Additional prediction results on the ETTh1 dataset with H = 96.

H DETAILED COMPLEXITY ANALYSIS

In main text, we focus on calculating the parameter count of FastTF, which is a key indicator of
model complexity. However, the computational complexity of FastTF is also an important aspect
to consider, as it directly affects the model’s training and inference efficiency. Here, we provide a
detailed analysis of the computational complexity of FastTF, focusing on the forward pass of the
model.
Lemma 1. One complex multiplication requires at least 3 real multiplications.

Proof. for z1 = a+ bj, z2 = c+ dj, z = z1 + z2, let p = (a+ b)(c− d), q = ac, r = bd, then the
real part of z is q− r, and the imaginary part of z is p− q+ r. To calculate p, q and r, we need 3 real
multiplications, therefore one complex multiplication requires at least three real multiplications.

Theorem 3 (The number of multiplications in FastTF). Given the input sequence length L, the
number of patches P , the downsampling factor M , the cut-off frequency fc, the number of sparse
groups K, the number of multiplication operations in N-point rFFT (denoted as MN

rFFT) and N-point
irFFT (denoted as MN

irFFT), the total number of multiplication operations in FastTF (to process a
single channel input sequence x ∈ RL) can be calculated as:

Mul = PM ×M
L/PM
rFFT +

MHP

L
×M

L/PM
irFFT + PMf2

c /K + fcMP 2H/L (17)

Specifically, the number of real-valued multiplication operations is 3 times the number of complex-
valued multiplication operations, so the total number of real-valued multiplication operations in

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Time index

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 25 50 75 100 125 150 175 200
Time index

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 25 50 75 100 125 150 175 200
Time index

0.25

0.00

0.25

0.50

0.75

1.00

1.25

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 25 50 75 100 125 150 175 200
Time index

0.5

0.0

0.5

1.0

1.5

2.0

2.5
A

m
pl

itu
de

Ground Truth
FastTF

(e)

0 25 50 75 100 125 150 175 200
Time index

2

1

0

1

2

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 12: Additional prediction results on the ETTh1 dataset with H = 192.

0 20 40 60 80
Time index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 20 40 60 80
Time index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 20 40 60 80
Time index

1.6

1.4

1.2

1.0

0.8

0.6

0.4

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 20 40 60 80
Time index

0.8

0.6

0.4

0.2

0.0

0.2

0.4

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 20 40 60 80
Time index

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 20 40 60 80
Time index

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 13: Additional prediction results on the ETTh2 dataset with H = 96.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Time index

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 25 50 75 100 125 150 175 200
Time index

0.2

0.4

0.6

0.8

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 25 50 75 100 125 150 175 200
Time index

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 25 50 75 100 125 150 175 200
Time index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 25 50 75 100 125 150 175 200
Time index

2.00

1.75

1.50

1.25

1.00

0.75

0.50
A

m
pl

itu
de

Ground Truth
FastTF

(e)

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 14: Additional prediction results on the ETTh2 dataset with H = 192.

0 100 200 300 400
Time index

0.8

0.6

0.4

0.2

0.0

0.2

0.4

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 100 200 300 400
Time index

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 100 200 300 400
Time index

0.7

0.6

0.5

0.4

0.3

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 100 200 300 400
Time index

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 100 200 300 400
Time index

0.8

0.6

0.4

0.2

0.0

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 100 200 300 400
Time index

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 15: Additional prediction results on the weather dataset with H = 96.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Time index

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 100 200 300 400 500
Time index

0.8

0.6

0.4

0.2

0.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 100 200 300 400 500
Time index

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 100 200 300 400 500
Time index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 100 200 300 400 500
Time index

1.3

1.2

1.1

1.0

0.9

0.8

0.7
A

m
pl

itu
de

Ground Truth
FastTF

(e)

0 100 200 300 400 500
Time index

1.6

1.4

1.2

1.0

0.8

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 16: Additional prediction results on the weather dataset with H = 192.

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 20 40 60 80
Time index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 20 40 60 80
Time index

1

0

1

2

3

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 20 40 60 80
Time index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 17: Additional prediction results on the Electricity dataset with H = 96.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 25 50 75 100 125 150 175 200
Time index

0.0

0.5

1.0

1.5

2.0

2.5

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 25 50 75 100 125 150 175 200
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0
A

m
pl

itu
de

Ground Truth
FastTF

(e)

0 25 50 75 100 125 150 175 200
Time index

1

0

1

2

3

4

5

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 18: Additional prediction results on the Electricity dataset with H = 192.

0 20 40 60 80
Time index

1

0

1

2

3

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 20 40 60 80
Time index

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 20 40 60 80
Time index

1

0

1

2

3

4

5

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 20 40 60 80
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 19: Additional prediction results on the Traffic dataset with H = 96.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Time index

1

0

1

2

3

A
m

pl
itu

de

Ground Truth
FastTF

(a)

0 25 50 75 100 125 150 175 200
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

A
m

pl
itu

de

Ground Truth
FastTF

(b)

0 25 50 75 100 125 150 175 200
Time index

1

0

1

2

3

4

A
m

pl
itu

de

Ground Truth
FastTF

(c)

0 25 50 75 100 125 150 175 200
Time index

1.5

1.0

0.5

0.0

0.5

1.0

A
m

pl
itu

de

Ground Truth
FastTF

(d)

0 25 50 75 100 125 150 175 200
Time index

1

0

1

2

A
m

pl
itu

de

Ground Truth
FastTF

(e)

0 25 50 75 100 125 150 175 200
Time index

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
m

pl
itu

de

Ground Truth
FastTF

(f)
Figure 20: Additional prediction results on the Traffic dataset with H = 192

Table 19: The parameter count of SFM in FastTF with different patch sizes, downsampling factors
and sparse group numbers. Note that the values in parentheses represent the corresponding cut-off
frequency.

patch size L/P = 12 L/P = 24 L/P = 48

K
M 1 2 4 6 1 2 4 6 8 12 1 2 4 8 12 24

1 49(7) 6(4) 4(2) 4(2) 169(13) 49(7) 16(4) 9(3) 4(2) 4(2) 625(25) 169(13) 49(7) 16(4) 9(3) 4(2)
2 18(6) 8(4) – – 72(12) 18(6) 8(4) – – – 288(24) 72(12) 18(6) 8(4) – –
3 12(6) – – – 48(12) 12(6) – – – – 192(24) 48(12) 12(6) – – –
4 – – – – 36(12) – – – – – 144(24) 36(12) – – – –
6 – – – – 24(12) – – – – – 96(24) 24(2) – – – –

FastTF can be calculated as:
Mulreal = 3×Mul

= 3(PMM
L/PM
rFFT +

MHP

L
M

L/PM
irFFT + PMf2

c /K + fcMP 2H/L)
(18)

If we omit the rFFT and irFFT operations and only consider the multiplication operations in the
neural network part, the number of multiplication operations in FastTF can be simplified as:

Mulnn,real = 3PMf2
c /K(SFM) + 3fcMP 2H/L(Patch Predictor) (19)

Proof. The number of multiplication operations in the rFFT and irFFT operations can be calculated
based on the input sequence length L, the downsampling factor M , and the cut-off frequency fc.
Specifically, the rFFT operation is applied to PM subsequences with length Lsub = L

PM , and the
irFFT operation is applied to PM subsequences. The number of multiplication operations in the
rFFT and irFFT operations can be calculated as PM×M

L/PM
rFFT and MHP

L ×M
L/PM
irFFT , respectively.

The number of multiplication operations in the SFM and patch predictor can be calculated based on
the number of sparse groups K, the cut-off frequency fc, the number of patches P , and the prediction
horizon H . Specifically, the SFM applies Cfc → Cfc transformations to each subsequence, results
in Mf2

c /K complex-valued multiplication operations. And similarly, the number of multiplication
operations in the patch predictor is fcMP 2H/L. The total number of multiplication operations in
FastTF is the sum of the multiplication operations in the rFFT, irFFT, SFM, and patch predictor,
which gives the formula for Mul.

The number of real-valued multiplication operations is 3 times the number of complex-valued multi-
plication operations, as each complex multiplication operation can be decomposed into 4 real-valued

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 20: The number of multiplication operations in FastTF, DLinear, and FITS with different
prediction horizons and look-back windows. The kernel size in DLinear is set to 25, the cut-off
frequency for FITS is set to half of the rFFT sequence length, the patch size is set to 48, the fc is set
to 12, the downsampling factor M is set to 2, and the sparse group number K is set to 3.

patch size DLinear FITS FastTF

Horizon
Look-back 96 192 336 672 720 96 192 336 672 720 96 192 336 672 720

96 20.8K 41.7K 72.9K 145.8K 156.2K 3.5K 10.4K 27.2K 96.8K 110.2K 864 1728 3024 6048 6480
192 39.3K 78.5K 137.4K 274.8K 294.5K 5.2K 13.8K 33.3K 108.9K 123.1K 1152 2304 4032 8064 8640
336 66.9K 133.8K 234.2K 468.4K 501.8K 7.8K 19.0K 42.3K 127.0K 142.6K 1584 3168 5544 11088 11880
720 140.6K 281.3K 492.2K 984.5K 1054.8K 14.7K 32.9K 66.5K 175.4K 194.4K 2736 5472 9576 19152 20520

multiplication operations. Therefore, the total number of real-valued multiplication operations in
FastTF is 3 times Mul, which gives the formula for Mulreal.

If we omit the rFFT and irFFT operations and only consider the multiplication operations in the
neural network part, the number of multiplication operations in FastTF can be simplified as the
sum of the multiplication operations in the SFM and patch predictor, which gives the formula for
Mulnn,real.

Theorem 4 (The number of multiplications in DLinear and FITS). We only consider the multiplica-
tion operations in the neural network part, so that given the input sequence length L, the prediction
horizon H , and the cut-off frequency fFITS

c , the length ratio η and the kernel size for the average
pooling Kavg, the number of multiplication operations in DLinear can be calculated as:

MulDLinear = 2LH +KavgL (20)

The number of multiplication operations in FITS can be calculated as:

MulFITS,nn,real = 3fFITS
c ⌊fFITS

c η⌋ (21)

Proof. The proof is trivial and omitted here.

The comparison of the number of multiplication operations in FastTF, DLinear, and FITS is shown in
Table 20. The results show that FastTF has a significantly lower number of multiplication operations
compared to DLinear and FITS. Specifically, for 720-720 prediction horizon and look-back window,
FastTF reached only around 2% and 10% of the multiplication operations in DLinear and FITS,
respectively.

I TRAINING ACCELERATION

To further reduce the training time of FastTF, a preprocessing step can be applied to the input data
to accelerate the training process. Specifically, the input data can be downsampled and transformed
using the rFFT operation in advance, and the resulting data can be stored for training. This prepro-
cessing step can significantly reduce the computational cost of the rFFT operation during training,
as the rFFT operation is computationally intensive and can be a bottleneck in the training process.
The detailed algorithm for preprocessing and training with FastTF is shown in Algorithm 1.

J DEVELOPMENT ON FPGA CHIPS

J.1 BRIEF INTRODUCTION TO FPGA CHIPS

FPGA, or Field-Programmable Gate Array, is a type of integrated circuit that allows users to con-
figure hardware functionality after manufacturing. This versatility enables the implementation of
custom digital circuits tailored to specific applications, making FPGAs ideal for tasks such as signal
processing, data processing, and system control. FPGAs feature a matrix of programmable logic
blocks, interconnections, and input/output pins, allowing for high parallel processing capabilities
and real-time operation. They are widely used in various industries, including telecommunications,
automotive, and aerospace, due to their low latency, low power consumption, and adaptability to
changing requirements.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 1 Preprocess and Train with FastTF

Require: Training data X = {x(1),x(2), . . . ,x(N)}, Downsample factor M , cut-off frequency fc,
Batch size B

Ensure: Trained model θ
1: Preprocessing:
2: for i = 1 to N do
3: x

(i)
downsampled ← Downsample(x(i),M)

4: X
(i)
rFFT ← rFFT(x(i)

downsampled)

5: X
(i)
preprocessed ← Cut(X(i)

rFFT, fc)
6: end for
7: Store preprocessed data Xpreprocessed
8: Training:
9: for each training epoch do

10: for each mini-batch of size B do
11: Sample a batch Xbatch ⊂Xpreprocessed

12: Forward pass: Predict X̂ ← FastTF(Xbatch)

13: Compute loss L(X̂,Y )
14: Backpropagate gradients
15: Update model parameters θ
16: end for
17: end for

J.2 ZYNQ ULTRASCALE+ RFSOC ZCU208 EVALUATION KIT

The Zynq™ UltraScale+™ RFSoC ZCU208 Evaluation Kit is an ideal platform for out-of-the-box
RF evaluation and cutting-edge application development. It features the Zynq UltraScale+ RFSoC
ZU48DR, which integrates eight 14-bit 5GSPS ADCs, eight 14-bit 10GSPS DACs, and eight soft-
decision forward error correction (SD-FEC) cores, making it suitable for RF-class applications. The
key features of the ZCU208 Evaluation Kit are shown in Table 21.

Table 21: Key Parameters of Zynq UltraScale+ RFSoC ZCU208

Parameter Value
14-bit, 5.0 GSPS RF-ADC Count 8
14-bit, 10.0 GSPS RF-DAC Count 8

SD-FEC Cores 8
System Logic Cells (K) 930

Memory (Mb) 60.5
DSP Slices 4272

33G Transceivers 16
Maximum I/O Pins 347

The board features are shown in Figure 21.

J.3 USAGE DETAILS

The resource utilization of FastTF on the ZCU208 Evaluation Kit is shown in Figure 22. We now
give a brief introduction for clock, BRAM, and DSP, shown below:

• Clock The clock in an FPGA provides the timing signal that synchronizes all operations within
the device. It controls the flow of data by determining when actions such as data processing or
memory reads/writes occur. Multiple clock domains can exist in an FPGA design to drive different
parts of the logic at different frequencies, which helps optimize performance and reduce power
consumption.

• BRAM (Block RAM) BRAM (Block Random Access Memory) is a dedicated on-chip memory
resource available within the FPGA. It provides high-speed memory that can be used for data
storage, buffering, or caches. BRAM blocks are widely used in applications requiring temporary

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 21: Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit

data storage, such as signal processing, image processing, and communication systems. Unlike
external memory, BRAM is tightly integrated into the FPGA fabric, making data access faster and
more efficient.

• DSP (Digital Signal Processing) Slices DSP slices are specialized hardware units in an FPGA
that are optimized for performing arithmetic operations such as multiplication, addition, and ac-
cumulation, which are common in digital signal processing tasks. These slices allow FPGAs to
efficiently handle operations like filtering, fast Fourier transforms (FFT), and other real-time pro-
cessing tasks. By leveraging DSP slices, designers can offload critical signal processing operations
from general-purpose logic, improving performance and reducing resource usage.

0 50 100 150 200 250 300 350
Clock Cycles

Reshape

FFT&rFFT

Matrix Mul

2 (0.57%)

276 (78.19%)

75 (21.25%)

Clock Cycle Breakdown by Operation

(a)

0 1 2 3 4 5 6 7 8
BRAM Utilization

Reshape

FFT&rFFT

Matrix Mul

0 (0%)

5 (90.9%)

0.5 (9.1%)

BRAM Utilization Breakdown by Operation

(b)

0 200 400 600 800 1000
DSP Utilization

Reshape

FFT&rFFT

Matrix Mul

0 (0%)

270 (33.3%)

540 (66.7%)

DSP Utilization Breakdown by Operation

(c)

Figure 22: Resource utilization of FastTF on ZCU208 Evaluation Kit. (a) Break down by clock
cycles (b) Break down by BRAM utilization. (c) Break down by DSP utilization.

Please note that the results may vary depending on the specific FPGA chip and the implementation
details, for example, the algorithm for FFT.

J.4 FUTURE WORK

In this paper, we only present a hardware implementation scheme. Future work can be further
explored in the following aspects:

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

• A more streamlined hardware implementation of FastTF Theoretically, FastTF requires sig-
nificantly less computation than other algorithms, which presents opportunities for reducing the
computational resources required on the FPGA.

• Integration with other hardware accelerators: Implementation on additional hardware plat-
forms: In the near future, we aim to deploy this algorithm on a range of other hardware devices,
including embedded systems such as Raspberry Pi, ESP32, and STM32, to fully verify the perfor-
mance of the proposed algorithm.

K CORE CODE FOR FASTTF

We put part of the core code of FastTF in List 1. The complete code will be released upon accep-
tance. The code consists the forwawrd pass of FastTF, which is based on the PyTorch framework.
However, the definition of the model architecture and the training process are not included in the
code snippet.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

1 def forward(self, x):
2 batch_size = x.shape[0]
3 seq_mean = torch.mean(x, dim=1).unsqueeze(1)
4 x = (x - seq_mean).permute(0, 2, 1)
5

6 x = x.reshape(-1, self.seg_num_x, self.num_sampling, self.
down_sampling).permute(0, 1, 3, 2) # bc,n,period,samp

7 x = torch.fft.rfft(x, dim=3)[:, :, :, :self.cut_freq]
8 x = x.reshape(-1, self.enc_in, self.seg_num_x, self.down_sampling,

self.cut_freq)
9

10 if self.flinear_individual:
11 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.

down_sampling, self.flinear_sparse_num, self.in_sparse_freq)
12 # print(x.shape)
13 x = torch.einsum(’bcsdft,cfet->bcsdfe’, x, self.flinear_weight)

+ x
14 # print(y.shape)
15 else:
16 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.

down_sampling, self.flinear_sparse_num, self.in_sparse_freq)
17 x = torch.einsum(’bcsdft,fet->bcsdfe’, x, self.flinear_weight) +

x
18

19 x = x.reshape(batch_size, self.enc_in, self.seg_num_x, self.
down_sampling, self.cut_freq)

20 x = x.permute(0, 1, 3, 4, 2) # b,c,period,samp,n
21

22 if self.linear_individual:
23 x = x.reshape(batch_size, self.enc_in, self.down_sampling, self.

group, self.in_group_freq, self.seg_num_x)
24 tmp = torch.einsum(’bcfgkn,cgyn->bcfgky’, x, self.linear_weight)
25 else:
26

27 x = x.reshape(batch_size, self.enc_in, self.down_sampling, self.
group, self.in_group_freq, self.seg_num_x)

28 tmp = torch.einsum(’bcfgkn,gyn->bcfgky’, x, self.linear_weight)
29

30 x = tmp.reshape(batch_size, self.enc_in, self.down_sampling, self.
cut_freq, self.seg_num_y)

31 tmp2 = torch.zeros([x.size(0), x.size(1), x.size(2), self.
num_sampling // 2 + 1, x.size(4)], dtype=x.dtype).to(x.device)

32 tmp2[:, :, :, :self.cut_freq, :] = x
33

34 y = tmp2.permute(0, 1, 4, 2, 3)
35

36 y = torch.fft.irfft(y, dim=4).permute(0, 1, 2, 4, 3)
37

38 y = y.reshape(batch_size, self.enc_in, self.pred_len)
39

40 y = y.permute(0, 2, 1) + seq_mean
41

42 return y

Listing 1: Example Python Code

30


	Introduction
	Related Work
	Preliminaries and Motivation
	Methodology
	Patch-wise Downsampling and rFFT
	Sparse Frequency Mixer (SFM)
	Patch Predictor and Post-processing

	Experiments
	Experimental setup
	Main Results
	Complexity Analisys
	4 Parameters are all you need–a case study on the ETTh1 dataset
	Detailed Discussion
	generalizability
	Training Detail

	Deployment on FPGA Development Board
	Conclusion
	Proof
	Proof of Property 1
	Proof of Theorem 1
	Proof of Proposition 1
	Explanation of Proposition 2
	Proof of Theorem 2

	The Reason for not Filtering the Original Time Series
	Additional Experimental Results
	Training Settings
	Ablation study
	hyperparameter Searching Details
	Results on more datasets
	Critical Difference Diagram
	Additional prediction results

	The Code Bug
	Detail of the Public Datasets
	The Individual Configuration
	Parameter table for FastTF
	Detailed Complexity Analysis
	Training acceleration
	Development on FPGA chips
	Brief Introduction to FPGA Chips
	Zynq UltraScale+ RFSoC ZCU208 Evaluation Kit
	Usage details
	Future Work

	Core Code for FastTF

