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ABSTRACT

An energy-based model (EBM) is a popular generative framework that offers
both explicit density and architectural flexibility, but training them is difficult
since it is often unstable and time-consuming. In recent years, various training
techniques have been developed, e.g., better divergence measures or stabilization
in MCMC sampling, but there often exists a large gap between EBMs and other
generative frameworks like GANSs in terms of generation quality. In this paper,
we propose a novel and effective framework for improving EBMs via contrastive
representation learning (CRL). To be specific, we consider representations learned
by contrastive methods as the true underlying latent variable. This contrastive
latent variable could guide EBMs to understand the data structure better, so it can
improve and accelerate EBM training significantly. To enable the joint training of
EBM and CRL, we also design a new class of latent-variable EBMs for learning the
joint density of data and the contrastive latent variable. Our experimental results
demonstrate that our scheme achieves lower FID scores, compared to prior-art EBM
methods (e.g., additionally using variational autoencoders or diffusion techniques),
even with significantly faster and more memory-efficient training. We also show
conditional and compositional generation abilities of our latent-variable EBMs as
their additional benefits, even without explicit conditional training. The code is
available at https://github.com/hankook/CLEL.

1 INTRODUCTION

Generative modeling is a fundamental machine learning task for learning complex high-dimensional
data distributions pga,(x). Among a number of generative frameworks, energy-based models (EBMs,
LeCun et al., 2006; Salakhutdinov et al., 2007), whose density is proportional to the exponential
negative energy, i.e., pg(x) x exp(—Fpy(x)), have recently gained much attention due to their
attractive properties. For example, EBMs can naturally provide the explicit (unnormalized) density,
unlike generative adversarial networks (GANs, Goodfellow et al., 2014). Furthermore, they are much
less restrictive in architectural designs than other explicit density models such as autoregressive (Oord
et al., 2016b;a) and flow-based models (Rezende & Mohamed, 2015; Dinh et al., 2017). Hence,
EBMs have found wide applications, including image inpainting (Du & Mordatch, 2019), hybrid
discriminative-generative models (Grathwohl et al., 2019; Yang & Ji, 2021), protein design (Ingraham
et al., 2019; Du et al., 2020b), and text generation (Deng et al., 2020).

Despite the attractive properties, training EBMs has remained challenging; e.g., it often suffers
from the training instability due to the intractable sampling and the absence of the normalizing
constant. Recently, various techniques have been developed for improving the training stability
and the quality of generated samples, for example, gradient clipping (Du & Mordatch, 2019), short
MCMC runs (Nijkamp et al., 2019), data augmentations in MCMC sampling (Du et al., 2021), and
better divergence measures (Yu et al., 2020; 2021; Du et al., 2021). To further improve EBMs, there
are several recent attempts to incorporate other generative models into EBM training, e.g., variational
autoencoders (VAEs) (Xiao et al., 2021), flow models (Gao et al., 2020; Xie et al., 2022), or diffusion
techniques (Gao et al., 2021). However, they often require a high computational cost for training
such an extra generative model, or there still exists a large gap between EBMs and state-of-the-art
generative frameworks like GANs (Kang et al., 2021) or score-based models (Vahdat et al., 2021).

*Work done at KAIST.
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Figure 1: Illustration of the proposed Contrastlve Latent-guided Energy Learning (CLEL) framework.
(a) Our spherical latent-variable EBM ( fy, gg) learns the joint data distribution pga, (X, z) generated
by our contrastive latent encoder hy. (b) The encoder hy is trained by contrastive learning with
additional negative variables z ~ pg(z). Here, z; = hy(t;(x))/||he(ti(x))||2 where t; ~ T denotes
a random augmentation, and sg(-) denotes the stop-gradient operation.

Instead of utilizing extra expensive generative models, in this paper, we ask whether EBMs can
be improved by other unsupervised techniques of low cost. To this end, we are inspired by recent
advances in unsupervised representation learning literature (Chen et al., 2020; Grill et al., 2020; He
et al., 2021), especially by the fact that the discriminative representations can be obtained much
easier than generative modeling. Interestingly, such representations have been used to detect out-of-
distribution samples (Hendrycks et al., 2019a;b), so we expect that training EBMs can benefit from
good representations. In particular, we primarily focus on contrastive representation learning (Oord
et al., 2018; Chen et al., 2020; He et al., 2020) since it can learn instance discriminability, which has
been shown to be effective in not only representation learning, but also training GANs (Jeong & Shin,
2021; Kang et al., 2021) and out-of-distribution detection (Tack et al., 2020).

In this paper, we propose Contrastive Latent-guided Energy Learning (CLEL), a simple yet effective
framework for improving EBMs via contrastive representation learning (CRL). Our CLEL consists
of two components, which are illustrated in Figure 1.

* Contrastive latent encoder. Our key idea is to consider representations learned by CRL as an
underlying latent variable distribution pya(z|x). Specifically, we train an encoder h, via CRL,
and treat the encoded representation z := hy(x) as the true latent variable given data x, i.e.,
Z ~ Ddata(-|X). This latent variable could guide EBMs to understand the underlying data structure
more quickly and accelerate training since the latent variable contains semantic information of the
data thanks to CRL. Here, we assume the latent variables are spherical, i.e.,
CRL methods (He et al., 2020; Chen et al., 2020) use the cosine distance on the latent space.

* Spherical latent-variable EBM. We introduce a new class of latent-variable EBMs py(x, z) for
modeling the joint distribution py,, (X, z) generated by the contrastive latent encoder. Since the
latent variables are spherical, we separate the output vector f := fy(x) into its norm || f||2 and
direction f/|| |2 for modeling py(x) and py(z|x), respectively. We found that this separation
technique reduces the conflict between py(x) and py(z|x) optimizations, which makes training
stable. In addition, we treat the latent variables drawn from our EBM, z ~ py(z), as additional
negatives in CRL, which further improves our CLEL. Namely, CRL guides EBM and vice versa.'

We demonstrate the effectiveness of the proposed framework through extensive experiments. For
example, our EBM achieves 8.61 FID under unconditional CIFAR-10 generation, which is lower
than those of existing EBM models. Here, we remark that utilizing CRL into our EBM training
increases training time by only 10% in our experiments (e.g., 38—41 GPU hours). This enables us to
achieve the lower FID score even with significantly less computational resources (e.g., we use single
RTX3090 GPU only) than the prior EBMs that utilize VAEs (Xiao et al., 2021) or diffusion-based
recovery likelihood (Gao et al., 2021). Furthermore, even without explicit conditional training, our

!'The representation quality of CRL for classification tasks is not much improved in our experiments under
the joint training of CRL and EBM. Hence, we only report the performance of EBM, not that of CRL.
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latent-variable EBMs naturally can provide the latent-conditional density py(x|z); we verify its
effectiveness under various applications: out-of-distribution (OOD) detection, conditional sampling,
and compositional sampling. For example, OOD detection using the conditional density shows
superiority over various likelihood-based models. Finally, we remark that our idea is not limited to
contrastive representation learning and we show EBMs can be also improved by other representation
learning methods like BYOL (Grill et al., 2020) or MAE (He et al., 2021) (see Section 4.5).

2 PRELIMINARIES

In this work, we mainly consider unconditional generative modeling: given a set of i.i.d. samples
{x}N | drawn from an unknown data distribution pga,(x), our goal is to learn a model distribution
py(x) parameterized by 6 to approximate the data distribution pgu, (x). To this end, we parameterize
pe(x) using energy-based models (EBMs), and incorporate contrastive representation learning (CRL)
into EBMs for improving them. We briefly describe the concepts of EBMs and CRL in Section 2.1
and Section 2.2, respectively, and then introduce our framework in Section 3.

2.1 ENERGY-BASED MODELS

An energy-based model (EBM) is a probability distribution on R4, defined as follows: for x € Réx,

i) = )

where Ey(x) is the energy function parameterized by 6 and Zy denotes the normalizing constant,
called the partition function. An important application of EBMs is to find a parameter 6 such that
Do is close to Pyaa. A popular method for finding such 6 is to minimize Kullback—Leibler (KL)
divergence between pgaa and py via gradient descent:

, Zg = /Rd exp(—Ep(x))dx, (D

Dx1(paatal|Po) = —Exmpua [108 po(x)] + Constant, )

Vo D1 (paaal|po) = Expu[VoEo(x)] = Exnpy [Vo Eo(X)]. 3)

Since this gradient computation (3) is NP-hard in general (Jerrum & Sinclair, 1993), it is often

approximated via Markov chain Monte Carlo (MCMC) methods. In this work, we use the stochastic

gradient Langevin dynamics (SGLD, Welling & Teh, 2011), a gradient-based MCMC method for

approximate sampling. Specifically, at the (¢ + 1)-th iteration, SGLD updates the current sample %(*)
to x(*+1) using the following procedure:

2
(D %O 4 % Vy log po (1) +e6® 5 ~ N(0,1), )
—_———
:_vxEB (;‘(t))
where € > ( is some predefined constant, %) denotes an initial state, and A/ denotes the multivariate
normal distribution. Here, it is known that the distribution of %(*) (weakly) converges to py with

small enough ¢ and large enough 7" under various assumptions (Vollmer et al., 2016; Raginsky et al.,
2017; Xu et al., 2018; Zou et al., 2021).

Latent-variable energy-based models. EBMs can naturally incorporate a latent variable by specify-
ing the joint density pg(x,2z) o exp(—Fy(x,z)) of observed data x and the latent variable z. This
class includes a number of EBMs: e.g., deep Boltzmann machines (Salakhutdinov & Hinton, 2009)
and conjugate EBMs (Wu et al., 2021). Similar to standard EBMs, these latent-variable EBMs can be
trained by minimizing KL divergence between paa, (x) and py(x) as described in (3):

Vo Dxr(PaaallPe) = Exmpua(x) [VoEo(%X)] — Exnpy(z) [VoEo(X)] &)
= Exnpiua (x),2~p0 (z1%) [ Vo Eo (X, 2)] — Exrpy (2),2~p0 (21%) [ Vo Eo (X, 2)],  (6)
where Ey(x) is the marginal energy, i.e., Eg(x) = — log [ exp(—FEjp(x,2))dz.

2.2 CONTRASTIVE REPRESENTATION LEARNING

Generally speaking, contrastive learning aims to learn a meaningful representation by minimizing
distance between similar (i.e., positive) samples, and maximizing distance between dissimilar (i.e.,
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negative) samples on the representation space. Formally, let b, : R?% — R% be a ¢-parameterized
encoder, (x,x) and (x,x_) be positive and negative pairs, respectively. Contrastive learning then
maximizes sim(hg(x), he(x4)) and minimizes sim(hy(x), hg(x—)) where sim(-, -) is a similarity
metric defined on the representation space R%.

Under the unsupervised setup, various methods for constructing positive and negative pairs have been
proposed: e.g., data augmentations (He et al., 2020; Chen et al., 2020; Tian et al., 2020), spatial or
temporal co-occurrence (Oord et al., 2018), and image channels (Tian et al., 2019). In this work,
we mainly focus on a popular contrastive learning framework, SimCLR (Chen et al., 2020), which
constructs positive and negative pairs via various data augmentations such as cropping and color
jittering. Specifically, given a mini-batch B = {x("}7_,, SimCLR first constructs two augmented
views {v;l) = tg-l) (x(i))}je{m} for each data sample x(*) via random augmentations ty) ~ T.

Then, it considers (vgi), véi)) as a positive pair and (vgi), vék)) as a negative pair for all k # 4. The

SimCLR objective LgimcLr is defined as follows:

Ly i i
ESimCLR(B§ ¢7 T) = % Z Z ACNT_Xem (h¢(vj( )>7 h¢(vk-())7)j), {htb(vl(k))}k;éi,lG{l,Q}; T) s (7)
i=1j=1,2
exp(sim(z,2.4)/7)
& exp(sim(z,z1)/7)+ >, exp(sim(z,z_)/7)’

®)

Lntxent(2,24,{z_};7) = —1o

where sim(u, v) = u'v/|[ul2||v]||2 is the cosine similarity, 7 is a hyperparameter for temperature
scaling, and Lnr.xen denotes the normalized temperature-scaled cross entropy (Chen et al., 2020).

3 METHOD

Recall that our goal is to learn an energy-based model (EBM) pg(x) o exp(—FEjy(x)) to approximate
a complex underlying data distribution pga, (x). In this work, we propose Contrastive Latent-guided
Energy Learning (CLEL), a simple yet effective framework for improving EBMs via contrastive
representation learning. Our key idea is that directly incorporating with semantically meaningful
contexts of data could improve EBMs. To this end, we consider the (random) representation z ~
Paaa(z|X) of x, generated by contrastive learning, as the underlying latent variable.” Namely, we
model the joint distribution paae, (X, Z) = Pdata (X)Daata(z]X) via a latent-variable EBM py(x, z). Our
intuition on the benefit of modeling py, (X, z) is two-fold: (i) conditional generative modeling
PDdata(X|2Z) given some good contexts (e.g., labels) of data is much easier than unconditional modeling
Pdata(X) (Mirza & Osindero, 2014; Van den Oord et al., 2016; Reed et al., 2016), and (ii) the mode
collapse problem of generation can be resolved by predicting the contexts pga, (z|x) (Odena et al.,
2017; Bang & Shim, 2021). The detailed implementations of pga.(z|x), called the contrastive
latent encoder, and the latent-variable EBM are described in Section 3.1 and 3.2, respectively, while
Section 3.3 presents how to train them in detail. Our overall framework is illustrated in Figure 1.

3.1 CONTRASTIVE LATENT ENCODER

To construct a meaningful latent distribution pga,(z|x) for improving EBMs, we use contrastive
representation learning. To be specific, we first train a latent encoder h : R% — R, which is a
deep neural network (DNN) parameterized by ¢, using a variant of the SImCLR objective Lgimcrr (7)
(we describe its detail in Section 3.3) with a random augmentation distribution 7. Since our objective
only measures the cosine similarity between distinct representations, one can consider the encoder
hg maps a randomly augmented sample to a unit vector. We define the latent sampling procedure
Z ~ Pdaa(2]%) as follows:

z~paa(zx) & 2= he(t(x))/[lhs(t(x))l2,t ~ T ©)
3.2  SPHERICAL LATENT-VARIABLE ENERGY-BASED MODELS

We use a DNN fy : R% — R% parameterized by 6 for modeling py(x, z). Following that the latent
variable z ~ pga, (z|x) is on the unit sphere, we utilize the directional information fy(x) /|| fo(x)||2

2Chen et al. (2020) shows that the contrastive representations contains such contexts under various tasks.
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for modeling py(z|x), while the remaining information || fo(x)||2 is used for modeling py(x). We
empirically found that this norm-direction separation stabilizes the latent-variable EBM training.’
For better modeling pg(z|x), we additionally apply a directional projector g : S%~1 — S§%~! to
fo(x)/ |l fo(x)||2, which is constructed by a two-layer MLP, followed by {5 normalization. We found
that it is useful for narrowing the gap between distributions of the direction fg(x)/|| fo(x)]|2 and the
uniformly-distributed latent variable py,, (2z) (see Section 4.5 and Appendix E for detailed discussion).
Overall, we define the joint energy Fy(x, z) as follows:

1 X T
Folx.2) = 51 f00l - oo (o) 2 (10)
Ep(x) = —log /sd—l exp(—Fy(x,2))dz = %”fg(x)”% + Constant, (11)

where 8 > 0 is a hyperparameter. Note that the marginal energy Ejy(x) only depends on || fo(x)||2

since [a—1 exp(Bgs (fo(x)/| fo (x)||l2) " z)dz is independent of x due to the symmetry. Also, the
norm-based design does not sacrifice the flexibility for energy modeling (see Appendix F for details).

3.3 TRAINING

Remark that Section 3.1 and 3.2 define pyu. (X, z) and py(x, z), respectively. We now describe how
to train the contrastive latent encoder hg and the spherical latent-variable EBM py via mini-batch
stochastic optimization algorithms in detail (see Appendix A for the pseudo-code).

Let {x(i)}?:1 be real samples randomly drawn from the training dataset. We first generate n samples
{i(i) 1, ~ pp(x) using the current EBM via stochastic gradient Langevin dynamics (SGLD) (4).
Here, to reduce the computational complexity and improve the generation quality of SGLD, we use
two techniques: a replay buffer to maintain Markov chains persistently (Du & Mordatch, 2019), and
periodic data augmentation transitions to encourage exploration (Du et al., 2021). We then draw latent
variables from pga, and pg: 29 ~ paaa(z|x?) and 2 ~ pg(z|x*) for all i. For the latter case, we
simply use the mode of py(z|x(?)) instead of sampling, namely, z(") := go(f5(x)/|| fo(x)]|2). Let
B:={(x®,zM)}»_ and B := {(x*,z(")}"_| be real and generated mini-batches, respectively.

Under this setup, we define the objective Lggm for the EBM parameter 6 as follows:
Lesm(B, B; 0, a, 8) = ZEQ x@ 20y = By(xD) + a - (Ep(xD)? 4+ Ep(x)?),  (12)

where the first two terms correspond to the empirical average of Dkp(Pdatal| p9)4 and « is a hyperpa-
rameter for energy regularization to prevent divergence, following Du & Mordatch (2019). When
training the latent encoder hg via contrastive learning, we use the SimCLR (Chen et al., 2020) loss

LsimcLr (7) with additional negative latent variables {z( *_,. To be specific, we define the objective
L g for the latent encoder parameter ¢ as follows:

L1x(B, B; ¢,7) Z Z LNT-Xent ( ; 2y ja{zl Nisiieqzy U{E, ) ;o (313)
=1 75=1,2

where LNT.xen: 1S the normalized temperature-scaled cross entropy defined in (8), 7 is a hyperparameter
for temperature scaling, zgz) = h¢(t§l) (x())), and {t;')} ~ 7T are random augmentations. We found
that considering {Z(i) }™_, as negative representations for contrastive learning increases the latent
diversity, which further improves the generation quality in our CLEL framework.
To sum up, our CLEL jointly optimizes the latent encoder hy and the latent-variable EBM (fy, gg)
from scratch via the following optimization: ming ¢ Ey 5[Lesm(B, B: 0, «, B) + Lie(B, B; ¢, 7)].
After training, we only utilize our latent-variable EBM ( fy, gg) when generating samples. The latent
encoder hy is used only when extracting a representation of a specific sample during training.

*For example, we found a multi-head architecture for modeling pe (x) and pe (z|x) makes training unstable.
‘We provide detailed discussion and supporting experiments in Appendix D.
*Here, Z is unnecessary since E;.,, z/%)[VoEo (X, 2)] = Vo Ep(X).
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Table 1: FID scores for unconditional generation on CIFAR-10 (Krizhevsky et al., 2009). T denotes
EBMs that utilize auxiliary generators, and { denotes hybrid discriminative-generative models.

Method FID Method FID
Energy-based models (EBMs) Other likelihood models

Short-run EBM (Nijkamp et al., 2019)  44.50 PixelCNN (Oord et al., 2016b) 65.93

JEM?* (Grathwohl et al., 2019) 38.40 NVAE (Vahdat & Kautz, 2020) 51.67

IGEBM (Du & Mordatch, 2019) 38.20 Glow (Kingma & Dhariwal, 2018) 48.90

FlowCE' (Gao et al., 2020) 37.30  NCP-VAE (Aneja et al., 2021) 24.08

VERAT# (Grathwohl et al., 2021) 27.50 T T Tk

Improved CD (Du et al., 2021) 25.10

BiDVL (Kan et al., 2022) 20.75 NCSN (Song & Ermon, 2019) 25.30

GEBMT (Arbel et al., 2021) 19.31 NCSNv2 (Song & Ermon, 2020) 10.87

CF-EBM (Zhao et al., 2021) 16.71  DDPM (Ho etal,, 2020) 3.17

CoopFlow! (Xie et al., 2022) 1580 _NCSN++ (Songetal., 2021) 220

CLEL-Base (Ours) 15.27 GAN-based models

VAEBMT (Xiao et al., 2021) 12.19 5

EBM-Diffusion (Gao et al., 2021) 958 StyleGAN2-DiffAugment (Zhao et al., 2020) 5.79

StyleGAN2-ADA (Karras et al., 2020) 2.92

CLEL-Large (Ours) 8.61

Table 2: FID scores for un- Table 3: FID improvements via different configurations with training
conditional generation on Ima- time and GPU memory footprint on single RTX3090 GPU of 24G

geNet 32x32. memory. Underline is based on our estimation as the model cannot
be trained on the single GPU.

Method FID Method Params (M) Time Memory FID
IGEBM 62.23 Baseline w/o CLEL 6.96 38h 6G 23.50
Pixel CNN 40.51 + CLEL (Base) 6.96 41h 7G  15.27
Improved CD 32.48 + multi-scale architecture 19.29  74h 8G 1246
CF-EBM 26.31 + CRL with a batch size of 256 19.29 76h 10G  11.65
CLEL-Base (Ours) 22.16 + more channels (Large) 30.70 133h 11G  8.61
CLEL-Large (Ours) 1547 = "oy biffusion (N — 2 blocks) 9.06 163h 10G  17.34

EBM-Diffusion (/N = 8 blocks) 34.83  652h 40G  9.58

VAEBM 135.88 414h 129G 12.19

4 EXPERIMENTS

We verify the effectiveness of our Contrastive Latent-guided Energy Learning (CLEL) framework
under various scenarios: (a) unconditional generation (Section 4.1), (b) out-of-distribution detection
(Section 4.2), (c) conditional sampling (Section 4.3), and (d) compositional sampling (Section 4.4).
All the architecture, training, and evaluation details are described in Appendidx B.

4.1 UNCONDITIONAL IMAGE GENERATION

An important application of EBMs is to generate images using the energy function Fy(x). To this
end, we train our CLEL framework on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet 32x32
(Deng et al., 2009; Chrabaszcz et al., 2017) under the unsupervised setting. We then generate 50k
samples using SGLD and evaluate their qualities using Fréchet Inception Distance (FID) scores
(Heusel et al., 2017; Seitzer, 2020). The unconditionally generated samples are provided in Figure 2.

Table 1 and 2 show the FID scores of our CLEL and other generative models for unconditional
generation on CIFAR-10 and ImageNet 32 x32, respectively. We first find that CLEL outperforms
previous EBMs under both CIFAR-10 and ImageNet 32x32 datasets. As shown in Table 3, our
method can benefit from a multi-scale architecture as Du et al. (2021) did, contrastive representation
learning (CRL) with a larger batch, more channels at lower layers in our EBM fy. As a result, we
achieve 8.61 FID on CIFAR-10, which is lower than that of the prior-art EBM based on diffusion
recovery likelihood, EBM-Diffusion (Gao et al., 2021), even with 5x faster and 4x more memory-
efficient training (when using the similar number of parameters for EBMs). Then, we narrow the
gap between EBMs and state-of-the-art frameworks like GANs without help from other generative
models. We think our CLEL can be further improved by incorporating an auxiliary generator (Arbel
et al., 2021; Xiao et al., 2021) or diffusion (Gao et al., 2021), and we leave it for future work.
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(a) CIFAR-10 (b) ImageNet 32x32

Figure 2: Unconditional generated samples from our EBMs on CIFAR-10 (Krizhevsky et al., 2009)
and ImageNet 3232 (Deng et al., 2009; Chrabaszcz et al., 2017).

Table 4: AUROC scores in OOD detection using explicit density models on CIFAR-10. Bold and
underline entries indicates the best and second best, respectively, among unsupervised methods,
where JEM and VERA are supervised methods.

Method SVHN  Textures CIFARI1O Interp. CIFAR100 CelebA
Pixel CNN++ (Salimans et al., 2017) 0.32 0.33 0.71 0.63 -
GLOW (Kingma & Dhariwal, 2018)  0.24 0.27 0.51 0.55 0.57
NVAE (Vahdat & Kautz, 2020) 0.42 - 0.64 0.56 0.68
IGEBM (Du & Mordatch, 2019) 0.63 0.48 0.70 0.50 0.70
VAEBM (Xiao et al., 2021) 0.83 - 0.70 0.62 0.77
Improved CD (Du et al., 2021) 0.91 0.88 0.65 0.83 -
CLEL-Base (Ours) 0.9848  0.9437 0.7248 0.7161 0.7717
JEM (Grathwohl et al., 2019) 0.67 0.60 0.65 0.67 0.75
VERA (Grathwohl et al., 2021). 0.83 - 0.86 0.73 0.33

4.2 OUT-OF-DISTRIBUTION DETECTION

EBMs can be also used for detecting out-of-distribution (OOD) samples. For the OOD sample
detection, previous EBM-based approaches often use the (marginal) unnormalized likelihood py(x) o
exp(—Ep(x)). In contrast, our CLEL is capable of modeling the joint density pg(x,z) x Ep(x, z).
Using this capability, we propose an energy-based OOD detection score: given X,

fo(x) >T hg(x)
[fo(x)ll2) lhe(x)]l2”

We found that the second term in (14) helps to detect the semantic difference between in- and
out-of-distribution samples. Table 4 shows our CLEL’s superiority over other explicit density models
in OOD detection, especially when OOD samples are drawn from different domains, e.g., SVHN
(Netzer et al., 2011) and Texture (Cimpoi et al., 2014) datasets.

50 = 3o 1B ~ 6o ( (14)

4.3 CONDITIONAL SAMPLING

One advantage of latent-variable EBMs is that they can offer the latent-conditional density py(x|z)
exp(—Fy(x,z)). Hence, our EBMs can enjoy the advantage even though CLEL does not explicitly
train conditional models. To verify this, we first test instance-conditional sampling: given a real
sample x, we draw the underlying latent variable z ~ pgan(z|x) using our latent encoder hy, and
then perform SGLD sampling using our joint energy Ey(x,z) defined in (10). We here use our
CIFAR-10 model. As shown in Figure 3a, the instance-conditionally generated samples contain
similar information (e.g., color, shape, and background) to the given instance.
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Class Class-conditioned Samples Predictions

Conditioned Class

(a) Instance-conditional sampling (b) Class-conditional sampling (c) Confusion matrix

Figure 3: (a, b) Instance- and class-conditionally generated samples using our CLEL in CIFAR-10.
(c) Confusion matrix for the class-conditionally generated samples computed by an external classifier.
Young Female Smiling

Young Female Smiling Multi-attribute-conditioned Samples

v
v v
v v v

(a) Multi-attribute-conditional samphng (b) Attribute predictions

Figure 4: Compositional generation results in CelebA. (a) Samples are generated by conditioning on
checked attributes. (b) Attribute predictions of generated samples computed by an external classifier.

This successful result motivates us to extend the sampling procedure: given a set of instances {x(i) }
can we generate samples that contain the shared information in {x(¥}? To this end, we first draw
latent variables z(*) ~ pya (-|x(*) for all 4, and then aggregate them by summation and normalization:

z:=>,29/||3, 2|2 To demonstrate that samples generated from pg(x|Z) contains the shared

information in {x(")}, we collect the set of instances {x?(])} for each label y in CIFAR-10, and check
whether X, ~ pg(-|Z,) has the same label y. Figure 3b shows the class-conditionally generated
samples {x, } and Figure 3¢ presents the confusion matrix of predictions for {X, } computed by an
external classifier ¢. Formally, each (¢, j)-th entry is equal to Px, (c(%;) = j). We found that X,
is likely to be predicted as the label y, except the case when y is dog: the generated dog images
sometimes look like a semantically similar class, cat. These results verify that our EBM can generate
samples conditioning on a instance or class label, even without explicit conditional training.

4.4 COMPOSITIONALITY VIA LATENT VARIABLES

An intriguing property of EBMs is compositionality (Du et al., 2020a): given two EBMs E'(x|c;) and
E(x]c2) that are conditional energies on concepts ¢; and ¢, respectively, one can construct a new
energy conditioning on both concepts: pg(x|c; and ¢2) x exp(—FE(x|c1) — E(x|c2)). As shown
in Section 4.3, our CLEL implicitly learns E(x|z), and a latent variable z can be considered as a
concept, e.g., instance or class. Hence, in this section, we test compositionality of our model. To
this end, we additionally train our CLEL in CelebA 64 x64 (Liu et al., 2015). For compositional
sampling, we first acquire three attribute vectors z, for a € A := {Young, Female, Smiling} as we
did in Section 4.3, then generate samples from a composition of conditional energies as follows:

Ey(x|A) = %llfe(X)llz =B sim(go(fo(x)/ fo(x)ll2), Za), (15)

acA

where sim(-, -) is the cosine similarity. Figure 4a and 4b show the generated samples conditioning on
multiple attributes and their attribute prediction results computed by an external classifier, respectively.
They verify our compositionality qualitatively and quantitatively. For example, almost generated
faces conditioned by {Young, Female} look young and female (see the third row in Figure 4.)
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Table 5: Component ablation experiments. Table 6: 3 sensitivity. Table 7: Compatibility.

Projection o Negative pp(z) FID, OOD! 3 FID, OODT SSRL _FID|, 0OD]
@ Baseline (3 — 0) 4246 08532 0 4246 08532 4246 08532
(b) MLP 36.29 08580 T4 3744 08485  SimCLR 3573 0.8723
© MLP v 3573 08723 41 3573 08723 BYOL 3631 0.8792
(d)  Identity v 86.02  0.8474 0.1 5639 07559 MAE  37.67 0.8561
©  Linear v 3735 0.8540 : 39 0 o7 0

4.5 ABLATION STUDY

Component analysis. To verify the importance of our CLEL’s components, we conduct ablation
experiments with training a smaller ResNet (He et al., 2016) in CIFAR-10 (Krizhevsky et al., 2009)
for 50k training iterations. Then, we evaluate the quality of energy functions using FID and OOD
detection scores. Here, we use SVHN (Netzer et al., 2011) as the OOD dataset. Table 5 demonstrates
the effectiveness of CLEL’s components. First, we observe that learning pp(z|x) to approximate
Pdata(Z|X) plays a crucial role for improving generation (see (a) vs. (b)). In addition, using generated
latent variables z ~ pg(-) as negatives for contrastive learning further improves not only generation,
but also OOD detection performance (see (b) vs. (c)). We also empirically found that using an
additional projection head is critical; without projection gy (i.e., (d)), our EBM failed to approximate
Pdata(X), but an additional projection head (i.e., () or (¢)) makes learning feasible. Hence, we use a
2-layer MLP (c) in all experiments since it is better than a simple linear function (e). We also test
various 5 € {0.1,0.01,0.001} under this evaluation setup (see Table 6) and find 5 = 0.01 is the best.

Compatibility with other self-supervised representation learning methods. While we have mainly
focused on utilizing contrastive representation learning (CRL), our framework CLEL is not limited
to CRL for learning the latent encoder hg. To verify this compatibility, we replace SimCLR with
other self-supervised representation learning (SSRL) methods, BYOL (Grill et al., 2020) and MAE
(He et al., 2021). See Appendix C for implementation details. Note that these methods have several
advantages compared to SimCLR: e.g., BYOL does not require negative pairs, and MAE does not
require heavy data augmentations. Table 7 implies that any SSRL methods can be used to improve
EBMs under our framework, where the CRL method, SimCLR (Chen et al., 2020), is the best.

5 RELATED WORKS

Energy-based models (EBMs) can offer an explicit density and are less restrictive in architecture
design, but training them has been challenging. For example, it often suffers from the training
instability due to the time-consuming and unstable MCMC sampling procedure (e.g., a large number
of SGLD steps). To reduce the computational complexity and improve the quality of generated
samples, various techniques have been proposed: a replay buffer (Du & Mordatch, 2019), short-run
MCMC (Nijkamp et al., 2019), augmentation-based MCMC transitions (Du et al., 2021). Recently,
researchers have also attempted to incorporate other generative frameworks into EBM training e.g.,
adversarial training (Kumar et al., 2019; Arbel et al., 2021; Grathwohl et al., 2021), flow-based
models (Gao et al., 2020; Nijkamp et al., 2022; Xie et al., 2022), variational autoencoders (Xiao
etal., 2021), and diffusion techniques (Gao et al., 2021). Another direction is on developing better
divergence measures, e.g., f-divergence (Yu et al., 2020), pseudo-spherical scoring rule (Yu et al.,
2021), and improved contrastive divergence (Du et al., 2021). Compared to the recent advances in
the EBM literature, we have focused on an orthogonal research direction that investigates how to
incorporate discriminative representations, especially of contrastive learning, into training EBMs.

6 CONCLUSION

The early advances in deep learning was initiated from the pioneering energy-based model (EBM)
works, e.g., restricted and deep Boltzman machines (Salakhutdinov et al., 2007; Salakhutdinov &
Hinton, 2009), however the recent accomplishments rather rely on other generative frameworks such
as diffusion models (Ho et al., 2020; Song et al., 2021). To narrow the gap, in this paper, we suggest
to utilize discriminative representations for improving EBMs, and achieve significant improvements.
We hope that our work would shed light again on the potential of EBMs, and would guide many
further research directions for EBMs.
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A TRAINING PROCEDURE OF CLEL

Algorithm 1 Contrastive Latent-guided Energy Learning (CLEL)

Require: a latent-variable EBM (fy, gg). a latent encoder hg4, an augmentation distribution 7,
hyperparameters «, 3,7 > 0, and the stop-gradient operation sg(-).

1: for # training iterations do

2:  // Construct batches B and B

3:  Sample {x(l)}?zl ~ Ddata(X)

4: Sample {X()}7_| ~ pp(x) using stochastic gradient Langevin dynamics (SGLD)
50 20 g (h(t (D)) /7y (tD (x)) [l2), D ~ T

6: 2%« sg (go(fo(xD)/ fo(x)]|2))

7:  // Compute the EBM loss, Lgpum

8 Leam — 220 Eo(x®,200) — By(x9) 4+ a - (Ey(x)? + Ey(x)?)

9:  // Compute the encoder loss, L1 g

10: Z(i) — h¢ (t;q) (X(Z)))’ tgz) ~T

J
n % i k ~()1n
11: Lig 2%” Zi:l Zj:LQ ENT—Xent (Z§ )a Z;(),z]w {Zl( )}k;éi,le{l,2} U {Z( )}izl; T)

12:  Update 8 and ¢ to minimize Lggym + L1g
13: end for

B TRAINING DETAILS

Architectures. For the spherical latent-variable energy-based model (EBM) fy, we use the 8-block
ResNet (He et al., 2016) architectures following Du & Mordatch (2019). The details of the (a) small,
(b) base, and (c) large ResNets are described in Table 8. We append a 2-layer MLP with a output
dimension of 128 to the ResNet, i.e., fy : R3%32%32 3 R128 Note that we use the small model for
ablation experiments in Section 4.5. To stabilize training, we apply spectral normalization (Miyato
et al., 2018) to all convolutional layers. For the projection gy, we use a 2-layer MLP with a output
dimension of 128, the leaky-ReLU activation, and no bias, i.e., gg(u) = Wao(Wiu) € R128. For
the latent encoder hg, we simpy use the CIFAR variant of ResNet-18 (He et al., 2016), followed by a
2-layer MLP with a output dimension of 128.

Table 8: Our EBM fj architectures. For our large model, we build three independent ResNets and
resize an input image x € R3*32%32 {g three resolutions: 32 x 32, 16 x 16, and 8 x 8. We use
each ResNet for each resolution image, concatenate their output features, and then compute the final
output feature fp(x) € R'2® using single MLP.

Small Base Large
Input (3,32,32) (3,32,32) (3,32,32), (3,16,16), (3,8,8)
Conv(3 x 3,64) Conv(3 x 3,128) Conv(3 x 3,256)
ResBlock(64) x1 ResBlock(128) X2 ResBlock(256) x2
AvgPool(2 x 2) AvgPool(2 x 2) AvgPool(2 x 2)
ResBlock(64) x1 ResBlock(128) X2 ResBlock(256) X2
EBM f,(x) AvgPool(2 x 2) AvgPool(2 x 2) AvgPool(2 x 2) x 3
0 ResBlock(128) x1 ResBlock(256) X2 ResBlock(256) X2
AvgPool(2 x 2) AvgPool(2 x 2) AvgPool(2 x 2)
ResBlock(128) x1 ResBlock(256) X2 ResBlock(256) X2
GlobalAvgPool GlobalAvgPool GlobalAvgPool
MLP(128,2048, 128) MLP(256,2048,128) Concat — MLP(768,2048, 128)

Training. For the EBM parameter 6, we use Adam optimizer (Kingma & Ba, 2015) with 5; = 0,
B2 = 0.999, and a learning rate of 10~*. We use the linear learning rate warmup for the first 2k
training iterations. For the encoder parameter ¢, we use SGD optimizer with a learning rate of
3 x 1072, a weight decay of 5 x 10, and a momentum of 0.9 as described in Chen & He (2020).

15



Published as a conference paper at ICLR 2023

For all experiments, we train our models up to 100k iterations with a batch size of 64, unless otherwise
stated. For data augmentation 7, we follow Chen et al. (2020), i.e., 7 includes random cropping,
flipping, color jittering, and color dropping. For hyperparameters, we use o = 1 following Du &
Mordatch (2019), and 5 = 0.01 (see Section 4.5 for S-sensitivity experiments). For our large model,
we use a large batch size of 256 only for learning the contrastive encoder hy. After training, we
utilize exponential moving average (EMA) models for evaluation.

SGLD sampling. For each training iteration, we use 60 SGLD steps with a step size of 100 for
sampling X ~ py. Following Du et al. (2021), we apply a random augmentation ¢ ~ 7 for every 60
steps. We also use a replay buffer with a size of 10000 and a resampling rate of 0.1% for maintaining
diverse samples (Du & Mordatch, 2019). For evaluation, we run 600 and 1200 SGLD steps from
uniform noises for our base and large models, respectively.

C IMPLEMENTATION DETAILS FOR BYOL AND MAE

We here provide implementation details for replacing SimCLR (Chen et al., 2020) with BYOL (Grill
et al., 2020) and MAE (He et al., 2021) under our CLEL framework as shown in Section 4.5.

BYOL. Since BYOL also learns its representations on the unit sphere, the method can be directly
incorporated with our CLEL framework.

MAE. Since MAE’s representations do not lie on the unit sphere, we incorporate MAE into our
CLEL framework by the following procedure:

1. Pretrain a MAE framework and remove its MAE decoder. To this end, we simply use a
publicly-available checkpoint of the ViT-tiny architecture.

2. Freeze the MAE encoder parameters and construct a learnable 2-layer MLP on the top of
the encoder.

3. Train only the MLP via contrastive representation learning without data augmentations
using our objective (13) for the latent encoder.
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D TRAINING STABILITY WITH NORM-DIRECTION SEPARATION
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Figure 5: (a) A multi-head architecture design and (b) our norm-direction separation scheme for
modeling p(x) and p(z|x). (c) FID scores with various energy design choices.

At the early stage of our research, we first tested a multi-head architecture for modeling p(x) and
p(z|x). To be specific, E(x) = gy(fo(x)) € R and E(z|x) = z ' go(f(x)) where f is a shared
backbone and g and ¢’ are separate 2-layer MLPs, as shown in Figure 5a. We found that, with this
choice, learning p(x) causes a mode collapse for fy(x) because all samples should be aligned with
a specific direction. In contrast, learning p(z|x) encourages fy(x) to be diverse due to contrastive
learning. Namely, modeling p(x) and p(z|x) with the multi-head architecture makes some conflict
during optimization. We empirically observe that the multi-head architecture is unstable in EBM
training, as shown in Figure 5c. To remove such a conflict, we design the norm-direction separation
for modeling p(x) and p(zlx) simultaneously (i.e., Figure 5b), which leads to training stability, as
shown in Figure Sc.

E THE ROLE OF DIRECTIONAL PROJECTOR
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Figure 6: Cosine similarity distributions using (a) fg(x), (b) go(fo(x)), and (c) hy(x) features.

Our directional projector gy is designed for narrowing the gap between the EBM feature direction
fo(x)/||fo(x)]|2 and the “uniformly-distributed” latent variable pgu.(z) (i-e., hg(x)/||ho(x)]|2).
Specifically, the contrastive latent variable pga.(z) is known to be uniformly distributed (Wang &
Isola, 2020), but we observed that it is difficult to optimize the feature direction fy(x)/|| fo(x)||2 to
be uniform along with learning our norm-based EBM pjy (x) o< exp(—|| fo(x)||3) at the same time. As
empirical supports, we analyze the cosine similarity distributions using fo(x), go(fo(x)), and hy(x)
features on CIFAR-10, as shown in Figure 6. This figure shows that fp(x) tends to learn similar
directions (see Figure 6a) while h4(x) tends to be uniformly distributed (see Figure 6¢). Hence, it is
necessary to employ a projection between them. We found that our projector gy successfully narrows
the gap as shown in Figure 6b, which significantly improves training EBMs.
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F FLEXIBILITY OF NORM-BASED ENERGY FUNCTION

Our norm-based energy parametrization does not sacrifice the flexibility compared to the vanilla
parametrization of EBMs. We here show that any vanilla EBM p; (x) o exp(f1(x)), f1(x) € R,
can be formulated by a norm-based EBM po(x) o exp(|| f2(x)||2), f2(x) € R%, on a compact input
space X (e.g., an image x lies on the continuous pixel space X = [0, 2557 ),

Let b := minyex f1(x) be the minimum value of f;. Then, p3(x) o< exp(f1(x) — b) is identical
to p1 due to the normalizing constant. Furthermore, p3 can be formulated as a special case of the
norm-based EBM py: for example, if the first component of f5 is the same as y/ f1(x) — b and other
components are zero, then p; and p, model the exactly same distribution. Therefore, energy-modeling
with our norm-based design is not much different from that with the vanilla form.
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