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Abstract

When humans imitate others they often rely on their memory of individuals1

demonstrating the desired behaviors to emulate. This not only permits people2

to reproduce taught behavior, but also enables them to generalize procedural ex-3

pertise to novel situations. This paper introduces HEMS-BC; a behavior cloning4

agent that uses a novel, psychologically plausible model of event memory. From5

sequential observations of an expert, the memory system represents states, ob-6

servations, and state transitions as Bayesian causal models, and stores them into7

a hierarchically organized event memory taxonomy. In response to observation8

queries, posterior conditional samples of observation-action pairs are drawn to9

rectify class imbalances in the training dataset that the imitation learner uses to10

approximate the expert policy. Our findings show that our method achieves and11

maintains expert-level performance from fewer expert demonstrations compared12

to a baseline system with no event memory capabilities.13

1 Introduction14

The advent of deep learning has fostered the proliferation of neural network-based learning agents15

capable of demonstrating, and sometimes surpassing, human-level performance on various tasks16

[2, 1, 11, 15]. In particular, behavior cloning (BC) has been a common choice for building intelligent17

agents because of its architectural simplicity, scalability, and ability to rapidly approximate policies18

from expert demonstrations [4, 6].19

One of the key challenges, however, in employing BC is the difficulty to overcome distributional20

biases [3]. One recent BC approach, Positive Unlabeled Behavior Cloning (PUBC) [14], learns21

a classifier that extracts the ideal samples from a large dataset to refine the BC learning process.22

In [13], the authors use a diffusion model to model expert state-action pairs, which is then used23

to guide policy learning by denoising and generating data for BC. In our approach, HEMS-BC,24

we leverage the Hybrid Event Memory System (HEMS) [8, 9, 7] to represent states, observations,25

and environment dynamics as Bayesian networks, and store them in a hierarchically organized event26

memory taxonomy. HEMS-BC uniformly draws posterior conditional samples of observation-action27

pairs to create a balanced training dataset that the BC learner uses to approximate the expert policy.28

This work makes two novel contributions. First, it incorporates the use of Bayesian networks to29

generate balanced datasets for behavior cloning. Second, it introduces a novel representation for30

state transition models that abstract observation and state content from the environmental dynamics.31
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2 The Hybrid Event Memory System32

We previously introduced the Hybrid Theory of Event Memory[8] which commits to six theoretical33

postulates on the nature of event memory: 1) Event memory is a long-term memory that stores34

episodes and schemas; 2) Episodes are propositional representations of specific events; 3) Schemas35

are first-order propositional templates with probabilistic annotations; 4) Event memory elements are36

organized in hierarchies; 5) Retrieval cues play a central role in remembering; and 6) Remembering37

an event involves performing structural matching and probabilistic inference.38

HEMS implements this theory by using Bayesian networks [10] to represent episodes and schemas.39

A Bayesian network is a directed acyclic graph describing the joint probability distribution of a40

set of correlated variables. Formally, for variables X; a function returning the paraents of variable41

Xi ∈ X, pa(Xi); and a set of discrete-valued assignments to the variables, {xi ∪ u}, we state:42

P (X1, .., XN ) =

N∏
i=1

P (Xi = xi|pa(Xi) = u) (1)

Figure 1 shows an example event hierarchy built from a number generation domain. Episode 143

describes a situation where the value “10” is generated by the variable Number. Consequently,44

variable Ten contains P (Ten = “True”|Number = “10”) = 1. A similar joint probability45

distribution exists in Episode 2. Schema 1, however, is a probabilistic generalization of both46

episodes, summarizing elements of both.47

HEMS constructs such a hierarchy in an online manner by inserting new episodes in a top-down48

manner. This insertion procedure greedily sorts the new memory element through the hierarchy,49

choosing the branch with the highest likelihood of generating the new example. HEMS penalizes the50

likelihood score, considering the complexity of the model proportional to the number of episodes it51

summarizes, to combat overfitting. Next, HEMS merges the episode contents into the best-matching52

schema to update the model. After the merge takes place, HEMS recurses down the branch of the53

merged schema to continue insertion, setting the new episode’s parent to the modified schema. The54

insertion process ends when the current episode parent is the best match, or when HEMS merges the55

new episode with another existing episode.56

Additionally, HEMS includes procedures for probabilistic inference and conditional sampling. Con-57

ditional sampling utilizes the posterior network given by probabilistic inference, and probabilistic58

inference begins with cue-based retrieval, which returns a memory element in response to a re-59

trieval cue. A retrieval cue specifies a (partially) observed episode that HEMS uses to identify the60

best-matching element. In similar fashion to insertion, HEMS sorts the retrieval cue through the61

hierarchy, but does not merge or update the existing distributions in the memory models. HEMS62

implements loopy belief propagation over an approximation of the retrieved event memory element,63

known as a Bethe cluster graph [5], to infer the posterior network. Conditional samples are drawn64

from this by sampling the posterior network in a top-down manner.65

Figure 1: A notional generalization tree showing one schema node at the root and two children
episodes. The distributions in the schema node probabilistically summarize its children.
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3 Representing Temporal Episodes (1pg)66

This work extends the HEMS event memory representation to include temporal episodes and67

schemas, which enables the system to model dynamics. HEMS temporal models are directed acyclic68

state transition graphs modeled as Bayesian networks. They include state, observation, and action69

nodes. Figure 2 shows a sample temporal schema. The schema elements define a state transition70

model P (Si|Si−1, Ai−1), such that Si is an arbitrary state and Ai ∈ A, coming from the set of pos-71

sible actions. The schema also includes an observation model, P (Oi|Si) and policy π = P (Ai|Oi)72

for directing the agent’s behavior. To accommodate the HEMS temporal models into the event hi-73

erarchy, we created three separate partitions to organize the event memory contents. As Figure 274

shows, the first partition, (green), stores and organizes observations, the second (red) stores states,75

and the third (blue) stores temporal models.76

Importantly, state and observation nodes in temporal models are content free. They range over a77

set of pointers, R, that reference state and observation schema in the event hierarchy. This makes78

conditioning the temporal models simple because observations and actions are only conditioned79

on one variable, R, and yet abstracting the temporal model in this way permits HEMS to model80

arbitrarily complex dynamical systems.81

To build the event hierarchy, we assume HEMS receives an observation, the state of the world, and82

the action taken in that moment. It inserts the observation and state episodes into memory, and83

returns pointers to the location where these models were inserted. HEMS uses these pointers to84

build the temporal episode such that the state and observation nodes point to the respective locations85

of the state and observation episodes. The action node simply captures the given action. Once86

the temporal episode is complete, as determined by a user-specified length, HEMS inserts it into87

memory as described in Section 2.88

During retrieval and inference, we assume HEMS does not have access to the state. Given a (par-89

tial) observation, HEMS returns a pointer to the most similar element in memory. Following this,90

HEMS builds a temporal retrieval cue whose observation node contains the returned pointer. HEMS91

retrieves the best-matching temporal model and performs inference to produce a posterior temporal92

model conditioned on the contents of the retrieval cue. Then, HEMS follows the pointers in the93

posterior network to reveal the state and observation models. HEMS does a second inference step in94

each model to produce posterior estimates for state and observation variables. Conditional samples95

are drawn by querying this posterior network in a top-down manner.96

4 Experimental Design and Empirical Evaluations97

To evaluate our extensions to HEMS in sequential decision-making domains, we designed HEMS-98

BC, a behavior cloning agent with event memory capabilities. We conducted our experiments in99

two gymnasium [12] toy text domains, FrozenLake and CliffWalking, which are discrete action and100

observation space domains. In FrozenLake, the agent attempts to navigate a frozen lake to reach a101

goal position without falling through holes interspersed on the surface. The lake is slippery which102

causes the agent to randomly move one space in a perpendicular direction to the one commanded.103

Figure 2: A sample temporal schema that includes state transition, observation, and policy.
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The agent receives +1 reward for reaching the goal position and +0 otherwise. In CliffWalking, the104

agent moves around a cliff to reach the other side. The agent receives −1 reward for each time step105

the agent is not at the goal position and −100 reward if the agent steps over the cliff.106

For both domains, HEMS represents the state by the agent’s current row and column coordinates.107

Similar to Figure 1, state models include a random variable, Numberi for i ∈ [1, 2], for each108

coordinate and range over the possible values of that coordinate. Under this node exist binary-109

valued child nodes labeled with the written name of the number that takes value “True” when110

Numberi takes its corresponding numeric value. Both domains represent the observation with a111

single variable, so parameterization is as shown in Figure 1.112

For both domains, we repeated our experiments with five different random seeds. For each seed,113

HEMS-BC observed a variable number of expert demonstrations, adding each observation to the114

event memory. HEMS-BC generated a balanced training dataset by retrieving and sampling tempo-115

ral models conditioned on the observations from the expert traces. We compared the performance116

of HEMS-BC in an ablation study with a BC baseline system with no event memory.117

Figures 3a and 3d show that HEMS-BC approximates the expert policy from fewer expert demon-118

strations compared to the baseline BC agent. Figure 3a shows that HEMS-BC’s performance mono-119

tonically improves and maintains expert-level performance, while the baseline system does not.120

Figure 3d shows that HEMS-BC reached expert performance after a single expert demonstration,121

while the baseline system needed 100 samples of the same trajectory. Lastly, Figures 3b and 3e122

show that HEMS-BC converges slightly faster during training, but each epoch takes roughly twice123

as long compared to the baseline performance, shown in Figures 3c and 3f.124

(a) Frozen Lake Reward (b) Frozen Lake Loss (c) Frozen Lake Epoch Time

(d) Cliff Walking Reward (e) Cliff Walking Loss (f) Cliff Walking Epoch Time

Figure 3: Our results show that HEMS-BC learns the expert policy in both domains from fewer
expert demonstrations compared to the baseline BC system with no event memory capabilities.

5 Future Work and Conclusions125

In this paper, we demonstrated how event memory capabilities improve sample efficiency for behav-126

ior cloning agents. Our agent, HEMS-BC, leveraged the hybrid event memory system to store and127

parametize the state, observation, and environmental dynamics as Bayesian networks. This permit-128

ted the agent to automatically rectify distributional biases in the data. We discussed how our novel129

temporal models enabled this by abstracting the dynamics from the state and observation models.130

Looking forward, we plan to extend HEMS-BC to learn hierarchical temporal models that repre-131

sent higher-level procedural operations. In summary, this work provides a foundation for continued132

exploration in sequential decision-making in uncertain dynamical systems.133

4



References134

[1] Berner Christopher, Brockman Greg, Chan Brooke, Cheung Vicki, Debiak Przemysław, Denni-135

son Christy, Farhi David, Fischer Quirin, Hashme Shariq, Hesse Chris, others . Dota 2 with136

large scale deep reinforcement learning // arXiv preprint arXiv:1912.06680. 2019.137

[2] Brockman Greg, Cheung Vicki, Pettersson Ludwig, Schneider Jonas, Schulman John, Tang Jie,138

Zaremba Wojciech. Openai gym // arXiv preprint arXiv:1606.01540. 2016.139
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