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ABSTRACT

In high-stakes domains like healthcare, operators often face the critical decision of
whether to act on incomplete information or incur costs to collect missing values.
Existing methods typically focus on imputing missing data or quantifying model
uncertainty, but they do not directly assess the stability of a prediction if missing
features were to be revealed. To address this gap, we introduce a framework for
Missing Value Uncertainty (MVU), which is the distribution of predictions induced
by incomplete inputs. We formalize the problem by defining hard confidence: the
probability that a prediction will not change after collecting the missing data. We
propose a novel Direct Missing Value (DMYV) to efficiently estimate the MVU
distribution, bypassing the need for expensive Monte Carlo sampling. Second, we
introduce the Missing Value Calibration Error (MVCE), a new metric specifically
designed to evaluate the calibration of hard confidence values, and a post-hoc
calibration procedure to improve MVU estimation. We showcase our method and
metric on synthetic and real-world datasets.

1 INTRODUCTION

In high-stakes domains such as healthcare and security, decisions are often made with incomplete
information. This raises a critical and practical question for a human operator: Is it worth the cost
and effort to collect missing input values for a specific instance at inference time? For example,
a doctor with a patient’s initial lab results must decide whether this information is sufficient to make
a diagnosis or if more costly and invasive tests are required. Similarly, a security analyst observing
a potential threat with data from a partially failed sensor network must determine whether to act
immediately or deploy resources to gather more information. If additional information is unlikely
to alter the optimal course of action, an operator can proceed without collecting missing values.
However, if the missing values could significantly change the decision, the most prudent action is
to collect them first. This paper centers on developing a framework to help an operator make this
crucial decision.

Prior work has addressed aspects of this problem but fails to directly answer the central question.
Missing value literature, for instance, primarily focuses on developing methods like imputation to
handle missing data and make the best possible prediction given the observed values (Little & Rubin,
2019; |Azur et al.l|2011). While useful, these techniques do not quantify the uncertainty introduced by
the missing features, leaving the operator unsure of how the prediction might change if the missing
values were revealed.

Separately, research in uncertainty quantification has focused on a different question: “How likely
is the prediction to be correct?”. This question is useful for deciding whether to accept a model’s
prediction, corresponding to the notion of soft confidence that we explain in Section[2). However,
it does not inform an operator about the stability of the prediction. Our work instead focuses on a
notion called hard confidence: the probability that a prediction will not change if missing values are
collected (see Section 2] for formal definition). Furthermore, existing work on epistemic uncertainty—
i.e., uncertainty that can be reduced by more information—typically addresses model uncertainty
arising from limited training data (Liu et al.| 2019). While this may inform a decision maker if more
training data is needed, it is orthogonal to the uncertainty from missing features for a single test-time
instance, where the solution is to collect more features, not more training data. Given all this, to
our knowledge, no prior work has formalized, estimated, or evaluated the uncertainty stemming
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specifically from missing values at inference time to aid in deciding whether to collect missing values
or not. This represents a critical gap, as it leaves a practical decision-making problem without a
principled solution.

To fill this gap, we propose a complete framework for analyzing Missing Value Uncertainty (MVU),
the distribution of predictions induced by missing inputs. We formalize the decision-making problem
through the lens of hard confidence, which directly quantifies prediction stability. We establish
imputation and Monte-Carlo baselines for estimating MVU and propose a novel explicit method for
estimating MVU: the Direct Missing Value (DMYV) estimator, which is significantly more efficient
by circumventing sampling of the missing values, particularly in high dimensions. To evaluate
these methods, we develop the Missing Value Calibration Error (MVCE), a new metric designed
specifically for assessing the calibration of hard confidence values. Finally, we introduce a post-hoc
procedure to improve the calibration of any MVU estimation method. Our main contributions are:

* We formalize the problem of missing value uncertainty (MVU) to aid operator decisions about
collecting more information.

* We develop DMV, a novel and efficient approach that directly estimates MVU without requiring
expensive Monte Carlo sampling.

* We define a novel metric, the Missing Value Calibration Error (MVCE), for evaluating MVU
estimation methods on any dataset and propose a MVCE-based post-hoc calibration approach that
can improve an MVU method after training.

* We empirically validate our methods on both synthetic and real-world datasets.

2 SOFT AND HARD VOTING CLASSIFICATION RULES AND CONFIDENCES

Given a distribution of predicted probabilities p(®), which implicitly represents a weighted ensemble
of model predictions, we consider two decision rules: soft and hard voting. Soft voting averages
class probabilities directly and corresponds to the standard Bayes optimal classification rule. In
contrast, hard voting averages the argmax predictions from each model, forming a robust ensemble
classifier. While soft voting is well-studied, we focus on the under-explored hard voting approach, as
its resulting confidence value is more actionable for deciding whether to collect missing data. Though
we apply this approach to missing value uncertainty, it may be of independent interest for other types
of epistemic uncertainty. We first discuss these rules generically before specializing to the missing
value case in the next section.

Notation For discrete class distributions, we will often use p(Y’) (or conditional variants like
p(Y|X0)) to denote either the distribution itself or the vector of probabilities [p(Y = 1), p(Y =
2),...,p(Y = k)], which fully defines the distribution. In many cases these probabilities are defined
by a vector or parameters ¢ such that p(Y = j) = ¢;.

2.1 BACKGROUND: BAYES OPTIMAL CLASSIFICATION VIA SOFT VOTING

Given a distribution of predictions p(®) where ® represent class probabilities, the soft-voting rule
uses P directly as a soft vote and averages over the p(®) distribution:

Ysoft = arg max Epq) [@]; = arg max p(Y =34), Coot = m]ax E,@)[®]; = mjaxp(Y =7), (1)
j J

where p(Y = j) = Eya)[p(Y = j;®)] = Ep@4)[®]; is the marginal probability of Y when
marginalizing over the uncertainty in p(®). This soft voting classification is equivalent to the Bayes
optimal classification rule. The Bayes rule is the most common way to classify because it minimizes
the misclassification error. The confidence value ¢y is simply the probability that the selected class
is correct. When given to a human operator, they could use csof to determine whether they should
accept or ignore the prediction depending on the confidence level required. If the confidence is high,
the operator could confidently accept the prediction. However, if the confidence is low (e.g., close to
1/k), then the operator should simply ignore the prediction since it is uninformative. Thus, from a
practical standpoint, it mostly provides useful and actionable information if the confidence is high.
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2.2 CUMULATIVE PROBABILITY CLASSIFICATION VIA HARD VOTING

We propose to use hard voting (i.e., majority voting) as an alternative and complementary classification
rule that yields distinct information compared to soft voting confidence. In particular, we will explain
why it is useful for deciding whether to collect more information or not. The hard-voting rule uses the
argmax of ® (i.e., a single class hard vote) and averages these hard votes over the p(®) distribution:

Yhard = arg max ; E,g)[OneHot Argmax(®)]; = arg max ; p(Yyote = ) 2)
= argmax ; Pr((;,; ®; > @), 3)
Chard 2 max; E,g)[OneHot Argmax(®)]; = max; p(Yiote = J), “4)

where OneHotArgmax(¢) £ OneHot (arg max ; ¢;) is the one-hot encoding of the argmax function

and Y, ote 2 arg max ; ©; is arandom variable corresponding to the hard vote of a single ¢ (where
each & intuitively represents a model in the ensemble). Note that the objective is equivalent to the
cumulative probability of the distribution in a region defined by the inequalities ) 12 P = Py
Another interpretation is that each model performs the Bayes optimal classification locally using
its own belief and then we take an average over these local classifications. Because hard voting
only considers the index of the largest probability, it ignores the weightings and thus is naturally
more robust to miscalibrated model predicted probabilities. We also generalize this to the case of
cost-sensitive classification in the appendix.

Hard Voting Confidence Values For Deciding Whether to Collect More Information In the con-
text of epistemic uncertainty where the uncertainty could be reduced by collecting more information,
the hard voting confidence values provide the probability that the prediction would stay the same if
all missing values were revealed. If the hard confidence is high, then gathering more information will
not change the predicted class. If the hard confidence is low, then it means that more information
could change the predicted class.

Comparing Soft Voting and Hard Voting Soft and hard voting confidences capture complementary
information for decision-making: soft confidence helps determine whether to accept a prediction as
being accurate, while hard confidence informs the decision to collect more information. A few
distinctions are:

* Behavior with No Uncertainty: For a degenerate distribution p(®) where epistemic uncertainty is
zero, the predictions are identical. However, soft confidence can vary between 1/k and 1, while
hard confidence is always 1, correctly reflecting that no new information will change the outcome.

* Sensitivity to Variance: Soft confidence depends only on the mean of the distribution p(®) and is
insensitive to its variance. In contrast, hard confidence decreases as the variance increases, thereby
capturing the spread of the epistemic uncertainty, not just its central tendency.

3  MISSING VALUE UNCERTAINTY (MVU)

Having discussed uncertainty from a generic distribution of predictions p(®), we now formalize the
Missing Value Uncertainty (MVU) distribution, which arises from incomplete inputs at inference time.
To distinguish MVU from standard epistemic uncertainty, we briefly contrast it with the uncertainty
stemming from finite training data.

Standard epistemic uncertainty typically refers to model uncertainty from a finite training set D,,. In
a Bayesian context, this induces a posterior over model parameters, p(©|D,, ), which in turn creates a
distribution of predictions. This uncertainty is reducible, as it vanishes in the limit of infinite training
samples (n — o0). In contrast, MVU is an orthogonal form of epistemic uncertainty induced by
missing features for a single test-time instance. It is reducible not by collecting more training data,
but by observing the missing features of that specific instance. We now formalize this concept.

Definition 1 (Missing Value Uncertainty Distribution). Given a joint distribution p(X,Y’), let us
define the true class distribution 7(x) given complete inputs and the corresponding random variable
D as:

m(z) £p(YIX =2), @=7(X) Q)
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where 1 X — A=V is a deterministic function mapping a complete input to a probability vector
on the simplex and ® is the random variable representing these class probabilities given the random
input X. Given these, the Missing Value Uncertainty (MVU) distribution given an observed set of
input values X o is defined as:

p(®|Xo = z0) = 77 p(Xm|Xo = z0) (6)

where 7 (xpm) = m(x M, o) is T conditioned on the observed inputs and 7T§) denotes the measure
pushforward operator.

o

It should be noted that the target MVU distribution p(®|X» = z¢) is well-defined for any joint
distribution p(X,Y’). Furthermore, note that 7 is the optimal probabilistic classifier given complete
inputs since it directly gives the class distribution conditioned on a complete input x. Finally,
compared to epistemic uncertainty induced by finite samples, this uncertainty is induced by incomplete
or partial inputs. This uncertainty distribution becomes degenerate (i.e., perfectly certain) when all
inputs are observed. Thus, it aligns naturally with the view of epistemic uncertainty that it becomes
zero when all information is revealed.

Soft and Hard Voting for MVU Applying the voting rules from Section [2to the MVU distribution
provides distinct types of information. Soft voting corresponds to the standard Bayes optimal
classification given the observed features: arg max ; p(Y = j|Xo = z0). As previously discussed,
the resulting soft confidence does not inform an operator whether collecting more inputs would be
useful. Hard voting, however, directly addresses this problem. The hard confidence derived from
argmax ; p(Yhara = j|Xo = 7o) represents the probability that the prediction will not change if
the missing values are revealed. A high hard confidence therefore suggests that the decision is stable
and collecting more data is unnecessary, a critical insight for operators in fields like medical diagnosis
or sensor networks where acquiring more information is costly.

4 METHODS FOR MV U ESTIMATION

Having established hard voting confidence in Section [2]and defining missing value uncertainty in
Section we now consider ways to estimate the MVU distribution p(®| X ) for a distribution of X¢.
Because there are no prior methods that focus on estimating MVU to the authors’ best knowledge,
we first propose two natural baselines based on missing value imputation and Monte Carlo estimates
using generative models. After establishing these baselines, we then introduce our novel Direct
Missing Value (DMYV) approach for directly estimating the MVU distribution without requiring
imputation or sampling.

4.1 BASELINE MVU METHODS

Imputation with Simple Variance Leveraging prior work, we can handle missing values using
a simple imputation approach such as zero imputation or mean imputation (Little & Rubin,|[2019).
However, imputation approaches are limited by the classifier’s inability to estimate missing value
uncertainty, so our best bet is a simple heuristic to estimate variance then use method of moments
to estimate distribution parameters. A naive approach would be to choose some constant variance
regardless of the sample, though with any constant other than 0 (which induces a degenerate distri-
bution), we run the risk of that uncertainty being too large for the predicted mean (as distributions
over probabilities tend to have restrictions on maximum variance). A better heuristic for estimating
Dirichlet parameters is to simply scale the predicted probability ¢ by some constant to produce «;
this approach guarantees any positive scaling constant will produce a valid distribution, though it may
be unintuitive to set the constant. We can make the scaling constant more intuitive by instead scaling
the maximum variance - Dirichlet variance cannot be greater than or equal to ¢ - (1 — ¢) without
producing non-positive « values. Leveraging this knowledge, we can use a variance of ¢ - (1 — ¢) - s
where s is between 0 and 1. One flaw with the simple variance approaches is our uncertainty does
not change with respect to the specific missing features; we get the exact same uncertainty for a
fully observed input as an input that imputed those same values. This will lead to the model being
overconfident under large numbers of missing features, and underconfident with fully observed data.

Monte Carlo Approximation A simple MVU approach is to use Monte Carlo samples of the
missing values given observed values, i.e., samples from p(X y(|zo), to empirically estimate the
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MVU distribution. This is motivated by the fact that the MVU distribution is the pushforward of the
missing value distribution p(X v¢|z) in Equation (6). At a high enough number of samples, this will
produce an approximation close to the true MVU distribution. The key challenge involves sampling
from the missing values given an (arbitrary) set of observed values x» and unknown missingness
pattern. Lower-dimensional cases could use a multivariate normal distribution, which has a simple
closed form conditional distribution; however, in very high-dimensional settings such as image
data, this is a poor approximation. Thus, we propose leveraging prior work on image inpainting in
higher dimension cases, such as diffusion models (Zhang et al., 2023). Using the diffusion model to
directly sample from p(®|z ) is infeasible as such a large number of samples would take too long,
so instead we recommend sampling p(X u(|2o) to estimate p(®|x ), then sampling the estimated
distribution. However, this Monte Carlo approach is still very expensive as it requires sampling from
high-dimensional conditional models. This motivates our proposed method which is a much more
efficient alternative that does not require sampling from high-dimensional distributions.

4.2 DIRECT MISSING VALUE UNCERTAINTY (DMYV)

We propose a novel direct estimator of the MVU distributions based on minimizing the KL divergence
(or equivalently the negative log likelihood (NLL)) between the true and estimated MVU distributions:
argmin , Ex,, [KL(p(®|Xo),py(P|Xo))] = argmin,, Ex, [Ee|x, [~ logpy(P|Xo))]], where
1) represents the model parameters. While at first this might seem like a standard problem, the
challenge is that ® is latent rather than observed. Thus, we cannot directly estimate the NLL given
only samples from X . However, if we know 7(z) £ p(Y|X = ) from Equation , then we can
convert this NLL objective to an objective that only requires complete training samples, i.e., samples
with all features (proof in appendix).

Proposition 1. Given the optimal probabilistic predictor w from Equation (S) and any set of observed
Sfeature indices O, the following holds, where 7y is a constant w.r.t. 1 but does depend on 7:

Ex, [KL(p(®|X0), py(®|X0))] = Exp,x [~ log Py (1(Xo, X) | Xo)] + 9. (D

The right hand side of Proposition|[I|gives a natural way to directly estimate the uncertainty distribution
given only complete samples and an estimate of the optimal complete predictor 7. Importantly, this
approach can directly estimate the uncertainty distribution while elegantly bypassing the need to do
conditional sampling of missing values given observed values.

Estimating both the optimal classifier and the MVU distributions from training data. Given
the above result, we propose a natural two-stage approach to estimating MVU distributions. First, we
estimate the optimal predictor 7 using standard supervised learning on the complete dataset. Second,
we plug-in this estimated predictor into the objective above to learn the final MVU predictor. At first
glance, it may seem that you could simply minimize the linear combination of the standard cross
entropy loss for ¢ and the objective above for p:

argmin g, (Ex.y [lon(7o(X), V)] + Exo xu [~ 108 5u(Fo(Xo, Xar) | Xo)] +7%, )+ ()

where /¢ is the standard cross entropy loss, 6 are the parameters for the predictor on complete inputs
(i.e., no missing values) and v are the parameters of the MVU predictor given observed inputs X .
However, Equation (8) would incorrectly ignore the fact that the constant in Proposition [1|depends
on 7y and thus in this case would depend on 6. Moreover, the -y, term is not possible to approximate
since we do not know the density of p(® | X). Therefore, we propose a bi-level optimization
problem that will be valid because the lower-level problem assumes that the corresponding upper
level variables are fixed:

Iél)ldfl XIf::y[ECE(fT.g(X), Y)], S.t. w € arg minlz ]EXO,XM [— logﬁd;(ﬁ'e(X@, XM) | X@)] . (9)
This bi-level problem avoids the previous issue and can be easily decomposed into a two stage
optimization problem (1) Optimize a classifier 7y on the complete data via standard supervised
learning, and then (2) optimize an uncertainty model p,, (P | X ) assuming that 7y is fixed leveraging
Proposition[I] The beauty of this approach is that the optimization problems are completely decoupled.
Notably, it is possible to use a large pretrained model for 7y, including a foundation model.

'In the appendix, we discuss a regularized bi-level problem that cannot be decoupled into two stages.
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Theoretic Guarantee for DMV The theoretic version of this bi-level optimization matches the true
MVU distributions (proof in appendix), which establishes the theoretic guarantees for DMV.

Proposition 2. Let the non-parametric version of Equation () be defined as:
¢, f* £ argmin E [(ce(f(X),Y)], st g€argmin  E [~logq(f(Xo,Xnm) | Xo)],
a.f XY q Xo,X

OsAM
where q and f are general non-parametric functions. The optimal solution q* corresponds to the true
MVU distributions, i.e., ¢*(®|Xo) = p(®| Xo).

Approximation of p, Our DMV approach could use any approximation for py, including a Dirichlet
distribution, a mixture of Dirichlet distributions, or even any real-valued distribution that is projected
onto the probability simplex. For example, if Z ~ Normal(y, X) comes from a multivariate normal

distribution, then ® £ softmax(Z) is a distribution on the simplex. However, because the Dirichlet
density is known in closed form, we will use a Dirichlet approximation in our experiments where
the strength parameters « are predicted by a function g, (Xe) given observed values Xo, i.e.,
Py(®|X0) = poiur(P|a = g4(X0)). Importantly, g, must be able to handle arbitrary observed
features including no observed features or all features. Additionally to be proper strength parameters
for a Dirichlet, g, must be strictly positive, which we will enforce by simply applying an exponential
final activation function to a standard NN.

5 EVALUATING MVU VIA MISSING VALUE CALIBRATION ERROR (MVCE)

As stated in the introduction, the key decision question is: “Is it worth it to collect missing values (for
this specific test sample)?” The answer to this question depends heavily on the specific real-world
problem context such as the cost of revealing missing values (e.g., doing a biospy is significantly more
expensive than collecting blood pressure) and the costs of being wrong (e.g., performing surgery if
there is no cancer has high cost). To formally evaluate the decision problem, we would have to specify
a decision process with all associated actions, costs/rewards, world environment, etc. Thus, instead
of focusing on a particular scenario, we aim for a problem-agnostic evaluation of MVU models
by asking an uncertainty calibration question w.r.t. hard confidence: “When my model predicts
a hard confidence of ¢% on a partially observed input zo, is the prediction on the fully observed
x the same ¢% of the time?” This is similar but distinct from the standard uncertainty calibration
question corresponding to soft confidence which is: “When my model predicts a soft confidence of
%, does it match the true class ¢% of the time?” Specifically, the hard confidence calibration gives
the probability that the prediction will not change, while the soft confidence calibration gives the
probability the class is correct. While soft confidence values can be naturally evaluated using the
well-known Expected Calibration Error (ECE) (Naeini et al.| 2015} |Guo et al., 2017) (see review of
ECE in the appendix), evaluating hard confidence values for MVU requires some adaptation.

5.1 MISSING VALUE CALIBRATION ERROR FOR HARD CONFIDENCE EVALUATION

Because hard confidence aims to quantify the probability that the prediction will stay the same, the
key idea is that we will simulate the phenomena of revealing all missing values using complete
training data. Intuitively, we simulate a partially observed input z» by dropping features from the
full input 2 and then compare with the prediction on the complete x. Compared to ECE, we are not
estimating whether the prediction is accurate but whether the prediction changed on average after
revealing all missing values. As a reminder, the aim of hard confidences is to help operators know
whether collecting missing values would be useful or not. Given this, like ECE, MVCE first partitions
the dataset into bins B based on the hard confidence values Chard,s-

Definition 2 (Missing Value Calibration Error MVCE)). Given a dataset of labeled pairs, their
computed hard predictions and hard confidences, and a partition of the dataset B, MVCE is defined
as: MVCE = Y5 % |cons(B) — Efgr)d(B) , where Eﬁfr)d(B) £ ﬁ Y icB éﬁ?r)dz is the average
hard confidence on the (simulated) partial input xo ; in bin B and the consistency of bin B is defined
as cons(B) = ﬁ Y icB ]l(g)}(f:r)d’i = Uhard,i), Where ;Q}(Sr)d’i is the prediction on the partial input
20,i and Ynard,; IS the prediction on the complete input x;.

The consistency term captures the idea of how often the prediction changed when all the missing
features were revealed. This is the key difference for evaluating hard confidence values for MVU
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while the other parts are similar to ECE. This MVCE definition can also naturally be generalized to the
case of cost-sensitive classification defined in Appendix[A.T|by using the corresponding cost-sensitive
predictions and confidence values. We use a simple partitioning scheme of diving confidence values
into a number of equal range bins, which is the common partitioning scheme for ECE.

Relation to Other Metrics Our MVCE metric isolates the evaluation of the hard confidence values
for MVU. As such, it does not evaluate the accuracy or standard calibration of the classifier. For
this, one can simply use standard metrics like accuracy and ECE to evaluate the performance and
calibration of the classifier. This is similar to how a classifier may be accurate but not calibrated or
calibrated but not accurate. In practice, we recommend using accuracy, ECE and our MVCE metric
so that all aspects of the system can be properly evaluated, but we focus on the evaluation of hard
confidence values in this paper.

5.2 POST-HOC CALIBRATION OF MVU viA MVCE

Similar to prior post-hoc calibration methods, we propose a post-hoc calibration method to improve
MVU distribution estimate after training using the MVCE metric. While traditional methods for
first-order uncertainty calibration typically adjust the predicted class probabilities (or soft confidences
in our context) (Bengs et al.,[2022), our goal is to improve the estimate of hard confidences, which
depend on the variance. Therefore, we must calibrate the predicted MVU distribution p(®|zo)
directly, which will implicitly calibrate our confidence values.

Our post-hoc MVU adjustment approach can be viewed as a type of post-processing of the estimated
MVU distribution, i.e., py »(®|zo) = Q(Py(P|zo), A), where Q modifies the MVU distribution
based on parameters ), ideally by changing either the variance or entropy without changing the
mean. As one example which we will use in experiments, when the MVU is a Dirichlet distribution,
ie., py(®lzro) = poir(P|la = gy (z0)), we can simply scale the predicted Dirichlet strengths by a
positive scalar A, i.e., Py x = ppir(P|ae = Agy (20)). Thus, our post-hoc calibration approach can
be defined as: \*(¢) = argmin y MVCE(py »(®|zo)). While the objective is non-differentiable
due to the binning of B, we can use zero-th order optimization to choose A such as a simple grid
search for low-dimensional A or Bayesian optimization approaches. Furthermore, if robustness to
multiple cost functions is important (Appendix [A.T), we could change the objective to an expectation
over cost functions. For example, let W ~ Dirichlet(« = 1) be drawn from the uniform distribution
over the probability simplex, then the objective to optimize could be Ey [MVCEw (P4 1 (P|z0)),
where MVCEy denotes the cost-sensitive version of MVCE.

6 RELATED WORKS

Missing Values Missing values are features within a sample that are unobserved where having an
observed value would be useful for evaluation (Little & Rubinl 2019). We are particularly focused on
quantifying the impact of missing values on the prediction. While some work considers incomplete
training data, we currently only consider missing values during evaluation, which we assume are
missing at random. One approach to handling missing values is imputation (Little & Rubin| 2019
Khosravi et al.}2019), though this lacks a mechanism for estimating uncertainty. Some approaches
can produce multiple imputations conditioned on the observation which can be leveraged through
Monte Carlo to estimate uncertainty; image inpainting is a notable example for high dimensional
spaces (Ma et al.l 2018} Zhang et al.||2023; [Liu et al., 2023)). Other approaches modify the classifier
to allow missing inputs, which may even be able to estimate missing value uncertainty directly
(Khosravi et al.| [2019), though these often impose restrictions on the model architecture or input
space. Our goal is to directly handle missing values with uncertainty without such restrictions.

Uncertainty Aleatoric uncertainty is any source of variability outside our model (notably unmea-
surable), which we simply model as random behavior. Epistemic uncertainty is a reducible form of
uncertainty in the model due to a lack of data, which can be further decomposed based on the type of
data; commonly parameter uncertainty is considered (Liu et al.,|2019). We focus on missing value
uncertainty (MVU). While MVU is reduced as z» — =, it is not always possible to collect additional
features, which may classify it as either aleatoric or epistemic depending on modeling assumptions.
Some uncertainty work considers robustness to missing values (Zaffran et al., 2023), though they
do not directly report MVU. Some prior works such as Bayesian Inference (Gelman et al., [1995)),
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Evidential Deep Learning (Sensoy et al.,[2018]), and other second-order uncertainty approaches (Sale
et al.| 2023} Bengs et al., 2022)) can report prediction uncertainty, though this is limited to aleatoric or
other types of epistemic such as parametric. To our knowledge prior work has not investigated both
estimating and reporting MVU.

Model Calibration Calibration in machine learning refers to the alignment between a model’s
predicted probabilities and the true likelihood of outcomes, ensuring that confidence scores accurately
reflect real-world chances of correctness. Expected Calibration Error (ECE) is a key metric used to
assess the calibration of probabilistic classifiers by quantifying the difference between the predicted
probabilities and actual outcomes (Naeini et al.L[2015;|Guo et al.,|2017)). [Nixon et al.|(2019) discuss the
shortcomings of the ECE metric and introduces Adaptive Calibration Error (ACE) and Thresholded
ACE (TACE) to address its limitations, particularly in multi-class settings. |Vaicenavicius et al.
(2019) build on this by proposing a general theoretical framework for evaluating the calibration of
probabilistic classifiers. Calibration properties of modern neural networks are analyzed by Minderer
et al.[(2021). However, these calibration works are directed towards directly calibrating the predicted
probabilities, rather than other types of uncertainty over the prediction.

7 EXPERIMENTS

First, we aim to justify our missing value calibration error (MVCE) metric through synthetic data,
showing that the metric correctly penalizes approaches to estimating missing value uncertainty
(MVU) that differ from ground truth. Next, we consider CelebA as a real world dataset with 3
intuitive features, first demonstrating MVCE works in real world data using prior techniques for
accurately estimating missing features, and then demonstrating DMV works as a simpler approach
to solving the MVU problem. Finally, we use DMV on multiclass setups using MNIST, CIFAR10,
and StarcraftCIFAR10, demonstrating it outperforms other simpler approaches to handling missing
values including additional heuristics for estimating missing value imputation variance and a classifier
that directly handles missing values. Due to the randomness in methods and mask generation, the
results subtly varied each run, thus we ran multiple trials of each experiment and average the results;
[Appendix D] contains additional results including standard deviations of the averages.

Validating MVCE Metric With Synthetic Typle 1: With synthetic data, the ground truth
Data To validate our MVCE metric, we use Syn- o de] leads to the lowest MVCE as expected. Mu-
thetic data. We generated a set of X values from  a(ino the generator or using a heuristic for estimat-
a bi-variate normal distribution then marked one ing MVU both increase MVCE. Post-hoc calibra-
of the two variables missing and evaluated dif- o, can greatly reduce MVCE, though it is not a

ferent generators p (Xmlzo) against a simple  gypstitute for improving the model.
linear classifier. The expectation is since the

ground truth generator pFOduced the qata’ 1t Method \ Missing Uncalibrated Calibrated Change
should produce the best estimates of missing fea-  [Ground Truth Generator 0.0066  0.0066 0%
tures. Tablelll shows results of this experiment’ Generator Correlation 0.7 > 0.6 0.0116 0.0116 0%
with the metric correctly penalizing generators Generator CorreIAatlon 0.7>0.8 0.0204 0.0111  -46%
that were modified to no longer match eround Generator Covariance x 0.25 0.0485 0.0082 -83%

. A g g Generator Covariance x 4.0 0.0773 0.0071 -91%
truth. Calibration manages to reduce MVCE for  |imputation, 0.99 Max variance 01001 00994  -1%

models more distant from ground truth, but no-
tably does not trivially minimize leaving ground
truth as the best.

Real World Data Using Image Inpainting To test MVCE on real world data, we wish to compare
to a well-established baseline for estimating missing values. To do this, we make use of a pretrained
CoPaint model (Zhang et al.l 2023)) that can inpaint CelebA-HQ images (Karras et al.,|2017). Since
CelebA-HQ lacks attributes for classification, we obtain them through CelebAMask-HQ (Lee et al.,
2019). We mask out either the top half or bottom half of the image, then use CoPaint to predict
different possibilities for Monte Carlo sampling, (see[subsection 4.T). The samples are passed through
independently trained ResNet18 classifiers (He et al.,2016) trained to predict three features: Blond
Hair (visible in both halves), Eyeglasses (primarily in the top), and smiling (primarily in the bottom).
As seen in Table 2] exploring more possibilities by taking more diffusion samples leads to both
improved consistency and confidence estimates. However, taking a large number of samples ends
up being too slow to practically deploy. To address the performance issue, we make use of DMV
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(subsection 4.2)), along with some simple imputation baselines with 0, 0.5, and 0.99 scaling of the
max variance (subsection 4.T). DMV produced notably faster results than the diffusion approach
even at low sample counts, with MVCE comparable to that of the diffusion approach. While in some
cases the 0 imputation heuristic could produce similar performance, this usually comes at a tradeoff
between minimizing MVCE and maximizing consistency; DMV does not require such a tradeoff.

Table 2: On CelebA data, high number of diffusion samples produce the best result, but this takes too
long to use in practice. DMV provides comparable MVCE while running much more efficiently than
even single sample baselines, and performs well across all features unlike the O imputation approach.
Reported times are for a single sample on the blond hair experiment (features ran in comparable
times). The 0 variance methods cannot be calibrated as our calibration approach scales the variance.

Method \ Missing Time Feature: Blond Hair Feature: Smiling Feature: Eyeglasses
(seconds) [ Cons. MVCE Calibrated | Cons. MVCE Calibrated | Cons. MVCE Calibrated
Diffusion - 1 Sample, 0 Variance 182]0.9478 0.0522 - - |0.8643 0.1357 - - 10.9942 0.0058 -
Diffusion - 1 Sample, 0.5 Max Variance 182/0.9479 0.0327 0.0309 -5%|0.8643 0.1032 0.0988 -4%|0.9942 0.0045 0.0040 -11%
Diffusion - 1 Sample, 0.99 Max Variance 182]0.9446 0.0429 0.0282 -34%|0.8668 0.0976 0.0968 -1%|0.9936 0.0069 0.0041 -41%
Diffusion - 3 Samples - Empirical Variance 547|0.9494 0.0274 0.0234 -14%|0.8451 0.0858 0.0776 -10%|0.9945 0.0051 0.0046 -11%
Diffusion - 30 Samples -Empirical Variance 5465/0.9651 0.0068 0.0058 -15%|0.8689 0.0403 0.0383 -5%(0.9938 0.0046 0.0044 -4%
0 Imputation, 0 Variance 0.547(0.9173 0.0827 - - 10.7410 0.2590 - - 10.7853 0.2147 -
0 Imputation, 0.5 Max Variance 0.538(0.9171 0.0634 0.0606 -4%(0.7410 0.2172 0.2122 -2%|0.7853 0.0875 0.0793 -9%
0 Imputation, 0.99 Max Variance 0.619(0.9182 0.0687 0.0555 -19%|0.7576 0.0618 0.0618 0%|0.9078 0.0946 0.0668 -29%
Direct Missing Value (DMV) 0.901/0.9632 0.0287 0.0060 -79%|0.8043 0.0704 0.0683 -3%|0.9946 0.0028 0.0028 0%

Table 3: The Direct Missing Value approach performance well across all three datasets, notably
having both high consistency while also having low MVCE. While the missing value robust classifier
could produce good consistency, reducing MVCE through uncertainty heuristics produced a tradeoff
due to the reduced confidence being applied to all samples. Mean imputation was generally not viable
in all cases.

. MNIST CIFAR10 StarcraftCIFAR10
Method \ Missing . " .
Cons. MVCE Calibrated | Cons. MVCE Calibrated | Cons. MVCE Calibrated
Mean Imputation, 0 Variance 0.5877 0.4123 - - 10.3519 0.6481 - - [0.7811 0.2189 - -

Mean Imputation, 0.5 Max Variance [0.5886 0.1870 0.1663 -11%|0.3547 0.3121 0.2855 -9%|0.7789 0.0494 0.0214 -57%
Mean Imputation, Scale Probability 0.5856 0.3121 0.1880 -40%|0.3536 0.4768 0.3146 -34%|0.7737 0.1023 0.0216 -79%

Missing Robust, 0 Variance 0.9724 0.0276 - - (0.8715 0.1285 - - 10.9158 0.0842 - -

Missing Robust, 0.5 Max Variance 0.5555 0.2553 0.2560 0%|0.5786 0.0523 0.0542 4%|0.8708 0.1128 0.0225 -80%
Missing Robust, Scale Probability 0.8010 0.0194 0.0095 -51%|0.6003 0.0547 0.0336 -39%|0.8744 0.0222 0.0222 0%
Direct Missing Value 0.9320 0.0729 0.0353 -52%|0.8286 0.0457 0.0457 0%]0.9229 0.0200 0.0114 -43%

Comparison of DMV to Simple Missing Value Approaches on Multiclass Datasets While
DMYV managed to produce comparable performance to the diffusion model on CelebA data, the
O-imputation approach was also able to achieve some good results, which is partially obscured by the
binary classification task. Thus, to fully show the benefit of DMV, we test it on MNIST (Deng, 2012),
CIFAR10 (Krizhevsky et al. 2009) and StarCraftCIFAR10 (Kulinski et al.,[2023) giving us 10 classes.
For masking, we divided the image into a 4x4 grid of ’sensors”, and had a random chance for each
sensor to be dropped during evaluation. We compare DMV to two baselines for handling missing
values: mean imputation, and a classifier robust to missing values. For both approaches, we consider
three heuristics for estimating uncertainty as described in[subsection 4.1] As shown in Table 3] DMV
was able to consistently perform well across all three datasets, while the performance of the other
approaches was far less consistent. Mean imputation notably only produced acceptable consistency
on Starcraft, regardless of variance approach. Meanwhile, a classifier simply robust to missing values
has a tradeoff between good consistency and good MVCE based on the variance approach.

Conclusion In this paper, we addressed the challenge of whether it is worth the cost of collecting
missing inputs based on information at inference time. We leveraged the concept of missing value
uncertainty (MVU) to produce hard confidence, which can be used by an operator to estimate whether
collecting missing features will not change the prediction. We proposed a Direct Missing Value
method to estimate MVU, and developed a metric to evaluate and calibrate MVU estimates. Finally,
we demonstrated our metric and uncertainty estimation methods work through use of several real-
world datasets. Our work is not meant to replace existing approaches to estimating uncertainty, rather
we recommend using it alongside existing epistemic and aleatoric uncertainty methods.
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The supplementary material is organized as follows:

+ Appendix[A]-[Additional Content: We provide some additional content that fit did not fit
in the main paper including the cost-sensitive classification generalization of hard voting
and a review of ECE.

* Appendix[B|- Additional proofs that were not essential in the main paper.

* Appendix [C]- [Extension of Bi-Level DMV Problem with Regularization; An extension
of the bi-level optimization approach from Section 4.2.

* Appendix D] - [Additional Experimental Results: Additional experimental results.

- Appendix [D.1]- Extended results for the CelebA dataset, including reports
of consistency, MVCE after calibration, standard deviations for experiments, and
information on the diffusion model.

- Appendix[D.2]- Multiclass Datasets; Additional information for the MNIST, CIFAR10
and StarCraftCIFAR10 datasets, notably including standard deviations for experiments.

— Appendix - Synthetic; Full details on the synthetic dataset and how it was
generated.

+ Appendix [E|- LLM Usage} Details how LLMs were used in this paper.

A ADDITIONAL CONTENT

A.1 CoOST-SENSITIVE HARD VOTING CLASSIFICATION RULE

The ensembling classification framework above can generalized to the case where different misclassi-
fications have different costs defined by a cost function: £(y, §j) where y is the true label and § is the
predicted label. For example, in medical tests, false positives may have a much lower cost than false
negatives. Thus, we generalize the local Bayes optimal classification rule used to generate each hard
vote using a minimum cost classification rule: y = argmin ; E,y4)[¢(Y, j)] , where p(Y; ¢) denotes
the categorical distribution with parameter ¢. The Bayes optimal classification rule used in the previ-
ous sections can be seen as minimizing the 0-1 loss function: y = argmin ; B,y [lo—1(Y, )] =
argmax ; ¢;. For a simple generalization, we can use the cost-sensitive loss that has different

costs for misclassification based on the true class: £,,(y, §) = w,1(y # y'), where w, is the cost
associated with misclassifying an sample from class y. This yields the following cost-sensitive
classification rule: y = argmin ; E,(y,¢) [€w(Y; j)] = arg max ; w; ;. Intuitively, this changes the
classification boundary on the simplex from being in the center (corresponding to a simple argmax)
to being off the center depending on w. When used in the hard voting method to determine the votes,
this cost-sensitive classification rule will produce a different predictions and confidences:

yl(;’r)d £ argmax ; E,(¢) [OneHot Argmax(w © ®)]; = arg maxjp(Y(w) =7), (10)

vote

arg max ; Pr(();,; w;®; > wj ®j), 11

cggd £ max; E,(¢)[OneHotArgmax(w © ®)]; = max; p(YV(;zi =j). (12)

A.2 BACKGROUND: EXPECTED CALIBRATION ERROR FOR SOFT CONFIDENCE EVALUATION

The basic intuition of soft confidence values is that if the confidence is cqof percent, then the classifier
should be correct cgof; percent of the time. Ideally, a calibration metric would compare the confidence
value to the empirical accuracy conditioned on a specific input. However, given that almost every
input is unique, the accuracy is impossible to estimate accurately. Thus, ECE bins samples based
on their predicted confidence values and then estimates the empirical accuracy within each bin. The
final ECE score is the average over the difference of accuracy and average confidence in each bin.
Formally, given a test dataset D = {(z;,y;)}/~; and the computed the soft predictions Jso ; and
soft confidence values ¢ ; for each sample, ECE first partitions the dataset into bins 13 based on the

soft confidence values ¢soft,;. Then, the ECE is defined as: ECE = )" 5 4 % |acc(B ) — Csoft(B)

where acc(B) £ ﬁ > ien Lsofe,i = i) is the empirical classification accuracy and Geof (B) =

)

ﬁ > ic B Csott,i 18 the average soft confidence. The fact that ECE compares the average confidence

12
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to accuracy is related to the fact that the soft decision rule and corresponding confidences are based
on the Bayes optimal decision rule, which provides the best accuracy among all possible classifiers.

A.3 ADDITIONAL RELATED WORKS

This section covers additional works adjacent to ours that are less directly relevant to our methods.

Conformal Prediction Conformal prediction is an uncertainty quantification method that can
provide distribution-free, statistical guarantees on predictions for any underlying model (Vovk et al.,
2005). Instead of a single prediction, it produces a prediction set (for classification) or interval (for
regression) that is guaranteed to contain the true outcome with a user-specified probability (e.g.,
90%), without depending on assumptions about underlying data distribution or model correctness
(Angelopoulos & Bates|,[2021)). Recent work has adapted the area to missing values (Zaffran et al.,
2023) and high-dimensional settings (Romano et al.| [2019} |[Zaffran et al., |2023)). However, these
methods aim to keep the uncertainty prediction valid despite missing values instead of analyzing the
uncertainty added specifically due to missing values to determine if there is insufficient information.

Active Learning Active learning is a field in machine learning where data is left unlabeled, and the
model attempts to determine the most useful additional samples to label (Settles, [2009). A problem
in that field of particular relevance to our work is the active surveying problem; survey responses are
modeled as a set of questions with incomplete answers, and the model must decide which question
is most useful to ask next (Lewenberg et al., 2017; Ma et al., |2018)). This setup naturally fits as a
missing values problem, though notably work in this area is focused on selecting features based on
information in the feature distribution p(X »¢| X o) rather than measuring uncertainty in the prediction
due to missing features p(Y|Xo).

B PROOFS

B.1 MISCELLANEOUS PROOF(S)

Proof of the equivalence between 0-1 loss minimization and Bayes optimal classification rule:

y = argmin E,y,4)[lo-1(Y, j)] (13)
J
= argmin E,y.¢)[1(Y # j)] (14)
J
= argmin Z o4 (15)
T A
=argmin 1 — ¢; (16)
J
= argmax ¢; . a7

J

Proof that cost-sensitive classification is a weighted version of the Bayes optimal classification rule:

Y = arg min ]Ep(Y;gi)) [gw(}/a .7)] (18)

J

= argmin E,y¢)[wy 1(Y # j)] (19)
j

= argmin Z wjr P (20)
A

= argmin ij/qu/ — quﬁj (21)
J 3!

= argmin —w;¢; (22)
J

= argmax w;@; . (23)

J

13
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B.2 MINIMIZING DMV OBIJECTIVE

We prove that minimizing the DMV objective from Section 4.2 is equivalent to an objective that only
requires complete samples, i.e., samples in the training data have all the features

Proof. We can simply use the definition of KL divergence along with LOTUS to derive the result:

p(;ﬂ:o)[KL(pf(‘I’ | X0),py(® | Xo))] (24)
= E E —log Dy, (P | X, 25
p(Xo)[pf(¢>|Xo)[ og Py (P | Xo))I] + 7 (25)
= E —logp Xo, X X 26
p(Xo)p(XMlxo)[ 0g Py (f(Xo, Xam) | Xo)l] + 7y (26)
= E_ [=logpy(f(Xo, Xa)|X0)] + s, (27)

p(Xo,XMm)

where (23) is by the definition of KL where v; = E,(x ) [Ep; (a|x0)[l0g pf (2| X0)]], 26) is by the
law of the unconscious statistician (LOTUS), and the last is simply by combining the distributions.
Importantly, note that v does depend on f, and thus f must be fixed in the optimization problem for
s to be a constant. O

B.3 OPTIMAL SOLUTION TO NON-PARAMETERIC PROBLEM

We prove the theoretic version of our bi-level optimization from Section 4.2 would result in the true
missing value uncertainty

Proof. Since the upper problem is decoupled, this is simply standard cross entropy minimization,
which is equivalent to KL divergence minimization between f(X) and p(Y|X). Thus, the non-
parametric f(X) if solved perfectly will be equal to p(Y'|X), i.e., py- (Y] X) = p(Y]X).

Given that f*(X) = p(Y'|X), we then invoke Proposition 1 on the lower level problem:

argmin _ E [—logq(f* (X0, Xum) | X0)] (28)
q Xo,Xm
=argmin E [KL(p;-(2]X0),¢(®|Xo))] (29)
q
—argmin B [KL(p(@|Xo), 1(8]X0)) (30)
q (@]
=p(®[Xo), 31
where the first is by Proposition 1, the second is by the fact that f* is optimal, and the last is by the
property of KL divergence that it is minimized if and only if the distributions are equal. O

C EXTENSION OF BI-LEVEL DMV PROBLEM WITH REGULARIZATION

While in general the two stage approach is simple and elegant, the learned model might not satisfy a
natural constraint that the uncertainty model should converge to a Dirac delta if given fully observed
features, i.e., if O = F, then pp(®|X» = X) should converge to a Dirac delta at 7 (X ). To enforce
this natural constraint, we can ensure that the mean of the distribution is equal to 7 (X) and that the
entropy of the distribution is minimized. Specifically, let us define the following loss:

g (2,,0) i= (L (7o (@), By, [@]Xo = a]) + H (py(®] X0 = 2)) ) (32)

where x is a complete feature instance, (k,(p, q) is the KL divergence between two probability
vectors p and ¢, and H is the standard entropy formulation. Unlike the uncertainty estimation term,
this objective function does not depend on a fixed 7y and thus can be added to both the upper and
lower optimization problems:

Ig}gl p()]EY)MCE(ﬂ—O (X)7 Y) + )\greg (Xv /¢7 6)] (33)
st1 € g min (p(XOI;XM)[_ log 3 (70(X0, Xm) | X0)] + Mieg(X, 1, 0)] )
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Unlike the previous bi-level problem, this problem does not decompose and thus must use more
advanced bi-level optimization strategies such as alternating optimization.

D ADDITIONAL EXPERIMENTAL RESULTS

For real world each experiment, we reported two

values: MVCE and consistency, as described in  Tyaple 4- Reported first-order accuracy and ex-
Section 3. We used a simple zero-one cost func-  pected calibration loss for all models on clean data.
tion for estimating confidence, with different For most models, we had high accuracy on the
mutators based on the dataset. All experiments relevant feature, and typically the DMV model
were run in Ubuntu servers using NVIDIA RTX  yould reduce expected calibration error with min-
A5000 GPUs. imal change to accuracy. The robust classifiers
had more limited training, which sometimes led to
a small accuracy drop, though since our work is
focused on evaluating consistency and hard confi-
dences this drop is less relevant.

MVCE MVCE is our primary metric for com-
paring methods, reporting how closely the esti-
mate of confidence matches to the likelihood the
prediction will change as more information is
revealed. Lower MVCE indicates the method is

well calibrated and thus gives good confidence Dataset Model _Classes Accuracy ECE
estimates. In our experiments’ we Computed CelebA - Blond Hair  Classifier 2 93.80% 0.0397
MVCE using 10 bins. When computing MVCE  |CelebA - Blond Hair DMV 2 94.45% 0.0046
we ran 4 trials of each experiment (01‘ 10 for CelebA - Eyeglasses  Classifier 2 99.25% 0.0053
synthetic) and reported the average of the metric ~ |CelebA - Eyeslasses DMV _ 2 99'50?’ 0.0035
and its standard deviation in order to minimize ~|€'€PA - Smiling Classifier 2 91.85% 0.0462
) . CelebA - Smiling DMV 2 92.85% 0.0118
sources of randomness in the experiment. —
MNIST Classifier 10 99.48% 0.0009
Consistency Consistency is the proportion of ~ |MNIST Robust 10 79.52% 0.0221
samples where the prediction under missingness ~ |MNIST bmv 10 98.54% 0.0233
matches the prediction for fully observed data. |CIFARLO Classifier 10 71.77% 0.0753
. . . 0,
While ideally consistency would be close to 1, |“IFARL0 Robust 10 54.70% 0.0623
when essential features are missing we expect CIFAR1O DMV 10 79.99% 0.0561
. - . StarCraftCIFAR10  Classifier 10  79.90% 0.0312
lower consistency. Consistency in the results .
below is computed with 1 bin (i.e. consistenc StarCraftCIFARL0  Robust 10 72:57% 0.0401
P o Y |starcraftCIFARI0O DMV 10 79.78% 0.0297

for the entire dataset). Like MVCE, we also
ran 4 trials of each experiment and reported the
average result in the tables below.

Classifiers For all non-synthetic datasets, we used a modified ResNet18 for predictions, replacing
the final layer with an appropriately sized layer for the number of classes. For the Direct Missing
Value model and the robust to missing values classifier, we additionally replaced the first layer to take
4 channels as an input instead of 3. DMV additionally changed the final activation function from
sigmoid (2 classes) or softmax (3 or more classes) to exponential. Both the standard and robust to
missing values classifier were trained using cross entropy loss. We used the SVG optimizer for the
standard classifier and Adam for the robust to missing values classifier. Training bash files can be
found in the in the codebase for more details.

Hyperparameters

For full details on experiment hyperparameters, we have included . json files containing the
arguments used to our training and evaluation scripts (including random seeds). See the README for
details on locating them, and the scripts folder for example bash files to run the scripts.

Experiment Setup We used a random crop from the larger image size to 224x244 for our model
inputs at training time, and a center crop to 224x244 at testing time. For the DMV and the robust to
missing values classifier, we replaced the first layer of PyTorch’s pretrained ResNet18. Additionally,
we replaced the final layer to adjust the class size. All other layers had weights copied over from
the pretrained weights found in PyTorch. For our mutator used in both training the DMV and robust
classifier and evaluating MVCE, we divided the image into a 4x4 grid of 56x56 pixel regions and
gave each region a 50% chance to be removed each time a sample was fetched. For all three datasets,
we cached the average image to use for mean imputation. Both mean imputation and the robust to
missing values classifier used three different approaches to estimating variance: 0 variance (a single
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point prediction), taking half of the maximum possible variance for a Dirichlet distribution, and
scaling the predicted probabilities by a factor of 10 (which is multiplied by the calibration constant).

Table 5: Overall, while the diffusion model approach tends to perform the best given enough samples,
the direct missing value approach performs nearly as well but at a fraction of the time. This makes
it the most practical model to deploy practically. Calibrating applies a notable improvement to all
methods but does not altar the model that performs best on average. Note that 0 variance is not
calibrated as our calibration approach scales the variance and anything times 0 remains 0.

CelebA - Method \ Missing Time Consistency MVCE Calibrated MVCE

Diffusion - 1 Sample, 0 Variance 182(0.9354 (SD 0.0000 ) |0.0646 (SD 0.0000 ) - - -
Diffusion - 1 Sample, 0.5 Max Variance 182(0.9355 (SD 0.0005 ) |0.0468 (SD 0.0007 )|0.0446 (SD 0.0009 ) -5%
Diffusion - 1 Sample, 0.99 Max Variance 182(0.9350 (SD 0.0005 ) |0.0491 (SD 0.0012 )|0.0431 (SD 0.0005) -12%
Diffusion - 3 Samples - Empirical Variance 547(0.9297 (SD 0.0005 ) [0.0394 (SD 0.0006 ) [0.0352 (SD 0.0006 ) -11%
Diffusion - 30 Samples -Empirical Variance 5465(0.9426 (SD 0.0009 ) (0.0172 (SD 0.0008 ) |0.0162 (SD 0.0007 ) -6%
0 Imputation, 0 Variance 0.547|0.8145 (SD 0.0000 )|0.1855 (SD 0.0000 ) - -

0 Imputation, 0.5 Max Variance 0.538/0.8145 (SD 0.0008 ) [0.1227 (SD 0.0007 ) [0.1174 (SD 0.0011) -4%
0 Imputation, 0.99 Max Variance 0.619(0.8612 (SD 0.0012 ) (0.0750 (SD 0.0025 ) [0.0614 (SD 0.0022 ) -18%
Direct Missing Value (DMV) 0.901(0.9207 (SD 0.0013 ) [0.0340 (SD 0.0015 )[0.0257 (SD 0.0016 ) -24%

D.1 CELEBA

We made use of the CelebA-HQ dataset (Karras et al., [2017), which contains 10,000 64x64 color
images of celebrity faces. We choose this dataset as it was easy to form intuitions about the relationship
between missing masks and the CelebA features. Additionally, it was easy to locate pre-trained
diffusion models for the dataset. Since CelebA-HQ was designed for training generative models, it
lacks features, so we obtained the feature label information from (Lee et al.,[2019). Experiments on
the CelebA dataset were run on three different target features: Blond Hair, Eyeglasses, and Smiling.
A summary of results on the CelebA dataset are shown in Table[5] Tables[6] [0] and [I2]demonstrate the
consistency achieved by each classifier on the relevant feature. Tables[7] [I0} and [I3|show a detailed
breakdown of MVCE computed on each of the three features. Tables and [14|show a detailed
breakdown of the improvements made by calibration on MVCE.

Experiment Setup An independant ResNet18 classifier with pre-trained initial weights was fine-
tuned to predict each feature, making the experiments on CelebA all two class: either the feature
is present or absent. We did not train the classifier with robustness to missing values. We used the
64x64 pixel versions of the CelebA images as inputs with no rescaling during preprocessing to better
match the output resolution of the pretrained diffusion model; taking advantage of the fact ResNet18
allows variable sized inputs. The DMV model was a similarly constructed ResNet18 fine-tuned with
a mutator that randomly selected a missing mask between fully observed, fully missing, top half
missing, and bottom half missing. At test time, we used a single mask for the entire experiment,
either top half missing or bottom half missing. In the tables below, the words “’top” or “bottom”
always refer to the half missing.

Diffusion For the CelebA dataset, we could take advantage of a pretrained diffusion model to perform
experiments. This pretrained diffusion model allowed us to use the Monte Carlo approximation for
Missing Value Uncertainty estimation. We could not do the same on other datasets due to the lack
of a diffusion model, choosing to forego training more models after realizing the diffusion model
approaches are too slow in practice to use. Instead, they serve as a baseline to demonstrate whether
DMV is a viable approach.

Sample Cache To reduce the time it takes to run multiple experiments, we cached 30 samples from
the diffusion model for each mask on each of the 2000 test samples, along with each of the 2000
validation samples for the sake of calibration. This allowed the time to run each experiment with the
diffusion model to be relatively close to that of the non-diffusion approaches at the cost of requiring
several months to pre-generate all the samples. The single sample times reported in Table 5 for any
diffusion approaches takes the time to compute that number of samples from the cache generation and
adds it to the time to run that particular method. This caching approach is likely not representative of
how the model would be used when deployed, but we do not believe it had any significant impact on
the results beyond a small reduction of randomness when running multiple trials. Leveraging this

16



Under review as a conference paper at ICLR 2026

cache limited us to just the two masks in our experiments, though this is not a practical limitation to
either method as both DMV and the diffusion model can handle any arbitrary missing feature with
the right training.

Calibration

We calibrated models by making use of the validation dataset split, ensuring that test data remains
unseen. Evaluation of calibration is done on the same test data as the original evaluation of MVCE.
For the expectation over cost functions, we made a set of cost functions with O cost when y = a, t
loss when y = 0,a = 1, and 1 — ¢ cost when y = 1, a = 0. To perform the expectation, we created a
set of ¢ values from 0.1 to 0.9 in 0.1 increments, and then randomly choose a ¢ value in every batch
while computing MVCE.

Table 6: The blond hair feature is typically visible in both halves of the image, so regardless of the
half that is missing it is not difficult to make consistent predictions with any method.

Blond Hair - Method \ Missing Top Consistency Bottom Consistency | Average Consistency
Diffusion - 1 Sample, 0 Variance 0.9335 (SD 0.0000 )|0.9620 (SD 0.0000 ) [0.9478 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.9341 (SD 0.0005 )|0.9618 (SD 0.0012 )[0.9479 (SD 0.0008 )
Diffusion - 1 Sample, 0.99 Max Variance 0.9352 (SD 0.0005 ) [0.9540 (SD 0.0007 )|0.9446 (SD 0.0006 )

Diffusion - 3 Samples - Empirical Variance 0.9277 (SD 0.0012 )|0.9711 (SD 0.0005 ) [0.9494 (SD 0.0008 )
Diffusion - 30 Samples -Empirical Variance 0.9572 (SD 0.0013 )|0.9729 (SD 0.0005 ) [0.9651 (SD 0.0009 )

0 Imputation, 0 Variance 0.8930 (SD 0.0000 )[0.9415 (SD 0.0000 ) [0.9173 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.8925 (SD 0.0004 )|0.9417 (SD 0.0003 ) [0.9171 (SD 0.0003 )
0 Imputation, 0.99 Max Variance 0.8840 (SD 0.0004 )|0.9525 (SD 0.0006 ) [0.9182 (SD 0.0005 )
Direct Missing Value (DMV) 0.9480 (SD 0.0013 ) |0.9784 (SD 0.0005 )|0.9632 (SD 0.0009 )

Table 7: Since consistency is high across the board, the high MVCE from many of the baseline
methods suggests in most cases they underestimate confidence. DMV notably only performs as good
as the three sample diffusion approach for this feature, which is still highly competitive for how
quickly it can run.

Blond Hair - Method \ Missing Top MVCE Bottom Missing Average MVCE
Diffusion - 1 Sample, 0 Variance 0.0665 (SD 0.0000 ) [0.0380 (SD 0.0000 ) [0.0522 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.0470 (SD 0.0003 )|0.0183 (SD 0.0006 )|0.0327 (SD 0.0004 )
Diffusion - 1 Sample, 0.99 Max Variance 0.0494 (SD 0.0011 )|0.0364 (SD 0.0018 ) (0.0429 (SD 0.0014 )

Diffusion - 3 Samples - Empirical Variance 0.0397 (SD 0.0006 )|0.0151 (SD 0.0003 ) (0.0274 (SD 0.0004 )
Diffusion - 30 Samples -Empirical Variance ~ |0.0098 (SD 0.0007 ) [0.0038 (SD 0.0005 ) [0.0068 (SD 0.0006 )

0 Imputation, 0 Variance 0.1070 (SD 0.0000 ) [0.0585 (SD 0.0000 ) [0.0827 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.0984 (SD 0.0003 ) [0.0284 (SD 0.0005 )|0.0634 (SD 0.0004 )
0 Imputation, 0.99 Max Variance 0.1068 (SD 0.0009 ) [0.0307 (SD 0.0011 )|0.0687 (SD 0.0009 )
Direct Missing Value (DMV) 0.0318 (SD 0.0014 ) |0.0257 (SD 0.0004 )|0.0287 (SD 0.0010 )

Table 8: Calibration overall reduces the MVCE for all methods with the most notable benefit on the
DMYV model by increasing its overall confidence. This notably brings its performance inline with the
diffusion model approach while still performing much quicker.

Blond Hair - Calibrated Method \ Missing | Scale Top MVCE Bottom Missing Average MVCE
Diffusion - 1 Sample, 0.5 Max Variance 0.5(0.0453 (SD 0.0002 ) -4%|0.0165 (SD 0.0009 ) -10%|0.0309 (SD 0.0006 ) -5%
Diffusion - 1 Sample, 0.99 Max Variance 5/0.0427 (SD 0.0004 ) -14%(0.0138 (SD 0.0008 ) -62%|0.0282 (SD 0.0006 ) -34%
Diffusion - 3 Samples - Empirical Variance 0.1/0.0347 (SD 0.0006 ) -13%|0.0121 (SD 0.0006 ) -20%|0.0234 (SD 0.0005 ) -14%
Diffusion - 30 Samples -Empirical Variance 0.25(0.0066 (SD 0.0012 ) -33%|0.0050 (SD 0.0007 ) 30%|0.0058 (SD 0.0009 ) -15%
0 Imputation, 0.5 Max Variance 0.25(0.0972 (SD 0.0006 ) -1%|0.0240 (SD 0.0006 ) -15%|0.0606 (SD 0.0006 ) -4%
0 Imputation, 0.99 Max Variance 2.5/0.0981 (SD 0.0006 ) -8%|0.0129 (SD 0.0003 ) -58%0.0555 (SD 0.0004 ) -19%
Direct Missing Value (DMV) 7.5/0.0061 (SD 0.0015 ) -81%|0.0060 (SD 0.0008 ) -77%|0.0060 (SD 0.0011) -79%
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Table 9: While the eyeglasses feature is primarily in the top of the image, for many samples in the
dataset the feature is partially included in the bottom making it easier to predict the feature without
the top half. There is still some notable loss of consistency when the top half is missing for zero
imputation as the classifier was likely relying on those pixels for the feature.

Eyeglasses - Method \ Missing Top Consistency Bottom Consistency | Average Consistency
Diffusion - 1 Sample, 0 Variance 0.9945 (SD 0.0000 ) {0.9940 (SD 0.0000 )|0.9942 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.9945 (SD 0.0000 ) [0.9940 (SD 0.0000 )|0.9942 (SD 0.0000 )
Diffusion - 1 Sample, 0.99 Max Variance 0.9945 (SD 0.0000 )|0.9927 (SD 0.0005 ) [0.9936 (SD 0.0003 )
Diffusion - 3 Samples - Empirical Variance 0.9955 (SD 0.0000 ) |0.9935 (SD 0.0000 ) [0.9945 (SD 0.0000 )
Diffusion - 30 Samples -Empirical Variance 0.9925 (SD 0.0000 ) |0.9950 (SD 0.0000 )|0.9938 (SD 0.0000 )
0 Imputation, 0 Variance 0.7095 (SD 0.0000 ) {0.8610 (SD 0.0000 )|0.7853 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.7091 (SD 0.0019 )|0.8615 (SD 0.0007 ) [0.7853 (SD 0.0013 )
0 Imputation, 0.99 Max Variance 0.8729 (SD 0.0013 )|0.9427 (SD 0.0019 )|0.9078 (SD 0.0015 )
Direct Missing Value (DMV) 0.9952 (SD 0.0003 )|0.9940 (SD 0.0000 ) [0.9946 (SD 0.0002 )

Table 10: Since this model overall had high consistency, MVCE was low across all diffusion
approaches, with the empirical occasionally getting the best estimate of confidence. The DMV model
trained over this feature was also notably high quality, even outperforming the diffusion methods,
likely due to more successful hyperparameter tuning for this feature.

Eyeglasses - Method \ Missing Top MVCE Bottom Missing Average MVCE
Diffusion - 1 Sample, 0 Variance 0.0055 (SD 0.0000 ) |0.0060 (SD 0.0000 ) [0.0058 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.0041 (SD 0.0001 ) [0.0049 (SD 0.0002 )|0.0045 (SD 0.0002 )
Diffusion - 1 Sample, 0.99 Max Variance 0.0077 (SD 0.0003 ) [0.0061 (SD 0.0009 )|0.0069 (SD 0.0006 )
Diffusion - 3 Samples - Empirical Variance 0.0048 (SD 0.0000 ) [0.0054 (SD 0.0004 )|0.0051 (SD 0.0003 )
Diffusion - 30 Samples -Empirical Variance 0.0052 (SD 0.0004 )|0.0039 (SD 0.0002 ) [0.0046 (SD 0.0003 )
0 Imputation, 0 Variance 0.2905 (SD 0.0000 ) [0.1390 (SD 0.0000 ) [0.2147 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.1346 (SD 0.0016 )|0.0404 (SD 0.0002 )[0.0875 (SD 0.0010 )
0 Imputation, 0.99 Max Variance 0.1178 (SD 0.0036 ) [0.0714 (SD 0.0021 ) (0.0946 (SD 0.0027 )
Direct Missing Value (DMV) 0.0022 (SD 0.0003 ) (0.0033 (SD 0.0001 ) |0.0028 (SD 0.0002 )

Table 11: Calibration was able to improve most models, with the largest improvement on several of
the high variance models with high scaling values, increasing the confidence (and effectively reducing

the variance). The DMV model in this case calibrated to a scale of 1, meaning no change.

Eyeglasses - Calibrated Method \ Missing | Scale

Top MVCE

Bottom Missing

Average MVCE

Diffusion - 1 Sample, 0.5 Max Variance 0.1/0.0033 (SD 0.0000 ) -21%|0.0048 (SD 0.0000 ) -2%(0.0040 (SD 0.0000 ) -11%
Diffusion - 1 Sample, 0.99 Max Variance 7.5|0.0035 (SD 0.0003 ) -55%]|0.0047 (SD 0.0001 ) -23%[0.0041 (SD 0.0002 ) -41%
Diffusion - 3 Samples - Empirical Variance 0.1/0.0041 (SD 0.0000 ) -14%|0.0050 (SD 0.0000 ) -8%|0.0046 (SD 0.0000) -11%
Diffusion - 30 Samples -Empirical Variance 0.25/0.0048 (SD 0.0001 ) -9%|0.0041 (SD 0.0003 ) 3%|0.0044 (SD 0.0002 ) -4%
0 Imputation, 0.5 Max Variance 0.25(0.1209 (SD 0.0023 ) -10%|0.0376 (SD 0.0017 ) -7%|0.0793 (SD 0.0018 ) -9%
0 Imputation, 0.99 Max Variance 2.5(0.0926 (SD 0.0025) -21%0.0410 (SD 0.0016 ) -43%|0.0668 (SD 0.0019 ) -29%
Direct Missing Value (DMV) 1.0/0.0022 (SD 0.0003) 0%|0.0033 (SD 0.0001) 0%|0.0028 (SD 0.0002 ) 0%
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Table 12: Smiling is a difficult feature to predict when the bottom half is missing, leading to lower
consistency when using that mask; especially in zero-imputation.

Smiling - Method \ Missing Top Consistency Bottom Consistency | Average Consistency
Diffusion - 1 Sample, 0 Variance 0.9610 (SD 0.0000 )|0.7675 (SD 0.0000 ) |0.8643 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.9608 (SD 0.0003 )|0.7679 (SD 0.0003 ) [(0.8643 (SD 0.0003 )
Diffusion - 1 Sample, 0.99 Max Variance 0.9609 (SD 0.0009 )|0.7726 (SD 0.0005 ) [0.8668 (SD 0.0006 )
Diffusion - 3 Samples - Empirical Variance 0.9559 (SD 0.0005 )|0.7343 (SD 0.0003 ) (0.8451 (SD 0.0004 )
Diffusion - 30 Samples -Empirical Variance 0.9481 (SD 0.0009 ) |0.7898 (SD 0.0018 ) (0.8689 (SD 0.0013 )
0 Imputation, 0 Variance 0.9480 (SD 0.0000 ) |0.5340 (SD 0.0000 ) (0.7410 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.9475 (SD 0.0004 ) (0.5345 (SD 0.0010 )|0.7410 (SD 0.0007 )
0 Imputation, 0.99 Max Variance 0.9534 (SD 0.0014 )|0.5617 (SD 0.0016 ) [0.7576 (SD 0.0014 )
Direct Missing Value (DMV) 0.9836 (SD 0.0009 ) |0.6250 (SD 0.0033 )|0.8043 (SD 0.0023 )

Table 13: Due to the amount of information lost when the bottom is missing, maximizing the variance
ends up being one of the best non-diffusion approaches. DMV has comparable average performance
to this estimate, as it does not overestimate the variance as much when the top half is missing.

Smiling - Method \ Missing Top MVCE Bottom Missing Average MVCE
Diffusion - 1 Sample, 0 Variance 0.0390 (SD 0.0000 )|0.2325 (SD 0.0000 )|0.1357 (SD 0.0000 )
Diffusion - 1 Sample, 0.5 Max Variance 0.0105 (SD 0.0017 )|0.1960 (SD 0.0007 )|0.1032 (SD 0.0012)
Diffusion - 1 Sample, 0.99 Max Variance 0.0414 (SD 0.0016 ) |0.1537 (SD 0.0019 )|0.0976 (SD 0.0016 )
Diffusion - 3 Samples - Empirical Variance 0.0227 (SD 0.0008 )|0.1490 (SD 0.0014 )(0.0858 (SD 0.0011 )
Diffusion - 30 Samples -Empirical Variance 0.0352 (SD 0.0007 ) |0.0455 (SD 0.0018 ) (0.0403 (SD 0.0013)
0 Imputation, 0 Variance 0.0520 (SD 0.0000 )[0.4660 (SD 0.0000 )[0.2590 (SD 0.0000 )
0 Imputation, 0.5 Max Variance 0.0253 (SD 0.0002 ) [0.4091 (SD 0.0010 )|0.2172 (SD 0.0006 )
0 Imputation, 0.99 Max Variance 0.0677 (SD 0.0011 ) |0.0559 (SD 0.0052 ) (0.0618 (SD 0.0035 )
Direct Missing Value (DMV) 0.0364 (SD 0.0010 )|0.1043 (SD 0.0038 ) [0.0704 (SD 0.0026 )

Table 14: Calibration on the smiling feature provided minimal benefits overall, notably not changing
the best method for any of the categories.

Smiling - Calibrated Method \ Missing Scale Top MVCE Bottom Missing Average MVCE
Diffusion - 1 Sample, 0.5 Max Variance 0.1/0.0074 (SD 0.0023 ) -29%|0.1902 (SD 0.0004 ) -3%(0.0988 (SD 0.0015) -4%
Diffusion - 1 Sample, 0.99 Max Variance 2.5/0.0146 (SD 0.0008 ) -65%(0.1791 (SD 0.0006 ) 17%|0.0968 (SD 0.0006 ) -1%
Diffusion - 3 Samples - Empirical Variance 0.1/0.0162 (SD 0.0014 ) -29%|0.1390 (SD 0.0001) -7%|0.0776 (SD 0.0009 ) -10%
Diffusion - 30 Samples -Empirical Variance 0.75/0.0319 (SD 0.0006 ) -9%|0.0448 (SD 0.0012 ) -2%(0.0383 (SD 0.0009 ) -5%
0 Imputation, 0.5 Max Variance 0.25(0.0213 (SD 0.0004 ) -16%|0.4032 (SD 0.0007 ) -1%|0.2122 (SD 0.0005) -2%
0 Imputation, 0.99 Max Variance 1.0|/0.0677 (SD 0.0011) 0%]|0.0559 (SD 0.0052 ) 0%|0.0618 (SD 0.0035) 0%
Direct Missing Value (DMV) 2.5/0.0281 (SD 0.0010 ) -23%|0.1086 (SD 0.0038 )  4%|0.0683 (SD 0.0026 ) -3%
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D.2 MULTICLASS DATASETS

MNIST

For a simple baseline, we used MNIST (Deng},2012)), which consists of hand-drawn black and white
28x28 digits between 0 and 9. Class labels are easy to interpret, and the single channel makes it
easier to learn the models, though it is also a less challenging problem under missing values. Results
for the experiments on MNIST are shown in Table T3]

Table 15: MNIST was an easier dataset to predict with missing values, leading to few cases where
more information was needed to make good predictions (and this most models were under-confident).
Despite this, DMV was still comparable, and could be calibrated to perform nearly the same as the
robust classifier. While it was possible to similarly calibrate the robust classifier with uncertainty
heuristics, the under confident predictions reduced the uncertainty significantly. Overall,

MNIST Method \ Missing Consistency MVCE Scale Calibrated MVCE
Mean Imputation, 0 Variance 0.5877 (SD 0.0041 )|0.4123 (SD 0.0041 )| - - -
Mean Imputation, 0.5 Max Variance |0.5886 (SD 0.0076 )|0.1870 (SD 0.0074 )| 0.1(0.1663 (SD 0.0025) -11%
Mean Imputation, Scale Probability  |0.5856 (SD 0.0077 )|0.3121 (SD 0.0066 )| 0.1/0.1880 (SD 0.0034 ) -40%

Missing Robust, 0 Variance 0.9724 (SD 0.0013 ) |0.0276 (SD 0.0013) - - -

Missing Robust, 0.5 Max Variance 0.5555 (SD 0.0026 ) [0.2553 (SD 0.0024 ) 0.3/0.2560 (SD 0.0057 ) 0%
Missing Robust, Scale Probability 0.8010 (SD 0.0023 )(0.0194 (SD 0.0021 )| 0.1(0.0095 (SD 0.0015) -51%
Direct Missing Value (DMV) 0.9320 (SD 0.0013 )|0.0729 (SD 0.0027 )| 10.0{0.0353 (SD 0.0016 ) -52%

CIFAR10 CIFARI10 (Krizhevsky et al., 2009) is a well known baseline in Machine Learning,
containing 60,000 32x32 color images of airplanes, automobiles, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. Like CelebA, the class labels are easy to interpret, though there is typically a
much less obvious relationship between particular regions in the image and the prediction making
CIFAR10 a good intermediate difficulty experiment. Additionally, the multi-class setup provides
some difficulties that were not seen in single class. Results for the experiments on CIFAR10 are
shown in Table[16]

Table 16: The DMV method and the robust classifier both have comparable consistency, though DMV
notably produces better confidence estimates as its able to change confidence with respect to each
sample. Reducing MVCE on the robust classifier through uncertainty heuristics leads to a notable
drop in consitency making it not viable in practice. Overall, this dataset shows the value of DMV for
estimating uncertainty that indicates the prediction likely shifted.

CIFAR10 Method \ Missing Consistency MVCE Scale Calibrated MVCE
Mean Imputation, 0 Variance 0.3519 (SD 0.0022 )|0.6481 (SD 0.0022 )| - - -
Mean Imputation, 0.5 Max Variance [0.3547 (SD 0.0024 ) [0.3121 (SD 0.0013 ) 0.1]0.2855 (SD 0.0032 ) -9%
Mean Imputation, Scale Probability 0.3536 (SD 0.0044 )|0.4768 (SD 0.0048 ) 0.1]0.3146 (SD 0.0042 ) -34%
Missing Robust, 0 Variance 0.8715 (SD 0.0045 )|0.1285 (SD 0.0045 )| - - -
Missing Robust, 0.5 Max Variance 0.5786 (SD 0.0062 )[0.0523 (SD 0.0017 )| 0.5(0.0542 (SD 0.0017 ) 4%
Missing Robust, Scale Probability 0.6003 (SD 0.0027 )|0.0547 (SD 0.0033 ) 0.1/0.0336 (SD 0.0016 ) -39%
Direct Missing Value (DMV) 0.8286 (SD 0.0014 )|0.0457 (SD 0.0051 )| 1.0/0.0457 (SD 0.0051) 0%
StarCraftCIFAR10

StarCraftCIFAR10 (Kulinski et al., [2023) is a dataset meant to simulate a battlefield scenario with
data created from replays of the game StarCraft II. The dataset follows the same format as CIFAR10,
though the classes are replaced with 5 maps and a time of game (either beginning or end). The map
part of the class is easily interpretable for those familiar with the game, while the time of game tends
to be more difficult for a human to identify making this a more difficult dataset. It was chosen partly
for the similarity in format to CIFAR10, and partly to expand upon our sensor network motivation.
Results for the experiments on StarCraftCIFAR10 are shown in Table

Experiment Setup

We fine-tuned a modified pretrained ResNet18 model for both classifiers and DMV for both CIFAR10
and StarCraftCIFAR10. Since MNIST are only a single channel, we modified the ResNet18 model to
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Table 17: The map prediction for StarCraftCIFAR10 makes it easier to achieve high levels of
consistency even using simple heuristics. The time of game prediction however is more difficult than
either of the prior prediction tasks, which requires a wholistic approach to missing values to fully
handle well.

StarCraft Method \ Missing Consistency MVCE Scale Calibrated MVCE
Mean Imputation, 0 Variance 0.7811 (SD 0.0040 )|0.2189 (SD 0.0040 )| - - -
Mean Imputation, 0.5 Max Variance |0.7789 (SD 0.0017 )|0.0494 (SD 0.0023 ) 2.5|0.0214 (SD 0.0038 ) -57%
Mean Imputation, Scale Probability ~ [0.7737 (SD 0.0051 )|0.1023 (SD 0.0027 )| 0.25(0.0216 (SD 0.0014 ) -79%
Missing Robust, 0 Variance 0.9158 (SD 0.0009 ) |0.0842 (SD 0.0009 )| - - -
Missing Robust, 0.5 Max Variance 0.8708 (SD 0.0026 )|0.1128 (SD 0.0026 )| 10.0{0.0225 (SD 0.0030 ) -80%
Missing Robust, Scale Probability 0.8744 (SD 0.0030 )|0.0222 (SD 0.0031 )| 1.0{0.0222 (SD 0.0031) 0%
Direct Missing Value (DMV) 0.9229 (SD 0.0014 )|0.0200 (SD 0.0019 )| 0.5/0.0114 (SD 0.0012) -43%

use a single channel input for the standard classifier, and a 2 channel input for the DMV and robust
classifiers. Other datasets used 3 channels for standard classifiers and 4 for the DMV and robust
classifier. We rescaled the images to 224x244 during preprocessing to better match the expected input
size for ResNet18. For our mutator used in both training the DMV and evaluating MVCE, we divided
the image into a 4x4 grid of 56x56 pixel regions and gave each region a 50% chance to be removed
each time a sample was fetched. As we lacked a pretrained diffusion model this datasets and it was
too slow to use in practice, we skipped all diffusion related methods for experiments on both datasets.

Calibration

We calibrated models by making use of the validation dataset split, ensuring that test data remains
unseen. Evaluation of calibration is done on the same test data as the original evaluation of MVCE.
Since the cost function becomes immensely more complex with more than 2 variables, we simply
calibrated the model on a single zero-one cost function. This means CIFAR10 and StarCraftCIFAR10
both likely get slightly better results from calibration as we know the testing environment.

D.3 SYNTHETIC

For the sake of validating missing value calibration error along with
our post-hoc calibration, we created a simple Gaussian Distribution
with two variables, X and X3, using E[X] = (0,0), Var(X;) =
0.3, Var(X3) = 1, and corr(X;, X2) = 0.7. This distribution is
visualized in Figure[T] From this setup, we generated 10000 samples .
and treated those as our ground truth testing dataset. In addition, we = ,
constructed a simple classifier as sigmoid(x; + 2 — 1) which was .
used for all experiments. Since labels are not required to compute -
missing value calibration error, we did not need to generate ground -
truth labels. The results of these experiments are shown in Table [T§] T
and Table

Figure 1: Example distribu-

Experiment Setup

We started with the ground truth generator, which we expect mini-
mize MVCE as it can produce confidence estimates consistent with
the ground truth data. For comparison, we mutated the generator by

tion of random samples from
the synthetic dataset generated
to test Missing Value Predic-
tion Uncertainty.

increasing or decreasing the correlation between the two variables,

and scaling up or scaling down the entire covariance matrix. In

addition, we compared against a single sample imputation, which is comparable to taking a single
sample from the diffusion model on the CelebA dataset.

Calibration In order to verify post-hoc calibration worked, we first calibrated the synthetic dataset.
Like the CelebA method, we calibrated using a range of values. To simulate the testing environment,
we calibrated using a second set of 10000 samples as our calibration dataset. For the expectation over
cost functions, we made a set of cost functions with O cost when y = a, t loss wheny = 0,a = 1,
and 1 — ¢ cost when y = 1, a = 0. To perform the expectation, we created a set of ¢ values from 0.1
to 0.9 in 0.1 increments, and then randomly choose a ¢ value in every batch while computing MVCE.
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Table 18: As expected, the ground truth generator minimizes MVCE. Generators that are closer to
ground truth such as a small change to correlation produce comparabe but still higher MVCE. Models
further away such as a full covariance scale further increase MVCE. Heuristics such as imputation
lead to the worst results.

L. Uncalibrated
Method \ Missing X1 v Average
Ground Truth Generator 0.0052 (SD 0.0005 ) 0.0081 (SD 0.0015) 0.0066( (SD 0.0011 )
Generator Correlation 0.7 > 0.6 0.0066 (SD 0.0009 ) 0.0166 (SD 0.0010 ) 0.0116]| (SD 0.0009 )
Generator Correlation 0.7 > 0.8 0.0167 (SD 0.0007 ) 0.0241 (SD 0.0008 ) 0.0204| (SD 0.0008 )
Generator Covariance x 0.25 0.0369 (SD 0.0007 ) 0.0601 (SD 0.0014 ) 0.0485|(SD 0.0011 )
Generator Covariance x 4.0 0.0566 (SD 0.0009 ) 0.0981 (SD 0.0021 ) 0.0773|(SD 0.0015 )
1 Sample Imputation, 0.99 Max Variance [0.1393 (SD 0.0019 ) 0.0609 (SD 0.0034 ) 0.1001| (SD 0.0027 )

Table 19: Calibration brings the scaled covariance approaches much more inline with the ground truth,
effectively reversing the scale. This ends up being sufficient to reduce the MVCE of one method to
lower than the ground truth. It is interesting to note that the model with 0.25x covariance (effectively
increasing confidence) has a scale that decreases confidence, and vice versa for the model with 4x
covariance. It is also notable that the ground truth generator had a scaling constant of 1, suggesting it
is already calibrated.

L Calibrated Calibration Change Post-Hoc
Method \ Missing ) )

X1 X2 Average X1 X2 Average| Calibration
Ground Truth Generator 0.0052 (SD 0.0006 ) 0.0081 (SD 0.0015) 0.0066 (SD 0.0011)| 0% 0% 0% 1
Generator Correlation 0.7 > 0.6 0.0066 (SD 0.0008 ) 0.0166 (SD 0.0007 ) 0.0116 (SD 0.0008 )| 0% 0% 0% 1
Generator Correlation 0.7 > 0.8 0.0089 (SD 0.0005) 0.0133 (SD 0.0011) 0.0111 (SD 0.0008 ) |-47% -45% -46% 0.75
Generator Covariance x 0.25 0.0056 (SD 0.0007 ) 0.0107 (SD 0.0009 ) 0.0082 (SD 0.0008 ) [-85% -82% -83% 0.25
Generator Covariance x 4.0 0.0090 (SD 0.0005 ) 0.0053 (SD 0.0018 ) 0.0071 (SD 0.0013 ) |-84% -95% -91% 5
1 Sample Imputation, 0.99 Max Variance |0.1383 (SD 0.0023 ) 0.0604 (SD 0.0019 ) 0.0994 (SD 0.0021)| -1% -1% -1% 2.5

E LLM USAGE

We made use of LLMs to assist in revising paper contents such as editing, suggestions for notation,
and getting initial feedback on ideas. Additionally, LLMs were used to help locate relevant related
works. No section of the paper was written fully by LLMs, nor were they involved in any notable
capacity in producing the code used for experiments.
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