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Abstract

Concepts play a pivotal role in various human001
cognitive abilities. However, there has been rel-002
atively little work on endowing machines with003
the ability to form and reason with concepts. In004
particular, pretrained language models (LMs)005
work at the level of words, not concepts. This006
is problematic as different words relating to the007
same concept compete for probability mass.008

Here we take the first step towards develop-009
ing a concept-aware LM. Instead of rethinking010
the training process, we adapt existing LMs.011
We build a proof-of-concept LM outputting a012
ranked list of concepts, and show that they are013
relatively coherent and diverse. We demon-014
strate that concepts could help improve the015
LM’s ranking and robustness. While this work016
is rather preliminary, we believe concept-aware017
LM can benefit many downstream tasks.018

1 Introduction019

Concepts are the glue that holds our mental model020

of the world together. It is hard to see how any021

intelligent agent could do without them. They are022

what enables us to comprehend new situations in023

terms of previous ones: when we walk into a new024

situation (e.g., a restaurant) full of new objects and025

people, we interpret it using learned concepts.026

Concepts can be concrete (“soup”) or abstract027

(“tasty”). They can also be complex, e.g., “good028

winter beach destinations”. While there is a lively029

debate on the exact nature of concepts, researchers030

agree they play a pivotal role in various cognitive031

abilities such as categorization, learning, commu-032

nicating, planning, and decision-making (Murphy,033

2004). Thus, they are of interest to AI researchers034

wishing to endow machines with such abilities.035

The representation of concepts has been studied036

in ML, NLP, and knowledge representation (Fuma-037

galli and Ferrario, 2019; Davis and Marcus, 2015;038

Gardenfors, 2014). However, they often view con-039

cepts as fixed, shallow structures representing some040

set of entities. Recent studies suggest concepts are 041

more flexible and dynamically influenced by con- 042

text (Gabora et al., 2008). Unfortunately, AI still 043

struggles with accounting for the creative, context- 044

sensitive manner in which people employ concepts. 045

Here we focus on adding concepts to language 046

models (LMs). Recently, pretrained large LMs 047

(Yang et al., 2019; Raffel et al., 2020; Floridi and 048

Chiriatti, 2020) have gained immense popularity, 049

achieving SOTA results across the board. A funda- 050

mental LM task is text completion. However, using 051

tokens (rather than concepts) leads to surface form 052

competition: different surface forms compete for 053

the same the probability mass, even if they share the 054

same meaning, e.g., “mother” and “mom” (Holtz- 055

man et al., 2021), which distorts the ranking. 056

Here we take the first step towards developing 057

concept-aware LMs. Instead of rethinking LMs’ 058

training, we take the simpler approach of adapt- 059

ing existing ones. Our method is model-agnostic, 060

operating on any pretrained LM. Previous works 061

showed it was possible to enhance pretrained LMs 062

without further training and improve their perfor- 063

mance on tasks such as word sense disambiguation, 064

factualness and consistency (Levine et al., 2020; 065

Liu et al., 2022). We believe concept-aware LMs 066

could similarly enhance downstream tasks. 067

2 Problem definition 068

We focus on the fundamental LM task of text com- 069

pletion, namely fill-mask. Given a masked sentence 070

S ∈ Ω and an LM, our goal is to return a ranked list 071

of concepts C1, ..., CN (representing completions). 072

Each concept Ci is a non-empty set of surface-level 073

tokens t ∈ Ω. Ideally, the concepts and their rank- 074

ing should correspond to human intuition. 075

3 Algorithm 076

Overview. As we wrote above, rather than rethink- 077

ing LM’s architecture and training process, we take 078
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Figure 1: Overview of our algorithm. The input is a masked sentence. We augment it by paraphrasing and predict
the top k completions for each of the paraphrases. Next, we filter out rare and unlikely tokens (strikethrough) and
perform agglomerative clustering using the token-contextual embeddings from the input LM (centroid in bold). We
assign new weights to each node in the dendrogram (darker ranked higher, sorted according to weight).

the simpler, proof-of-concept approach of building079

concepts on top of the output of existing LMs.080

Figure 1 demonstrates our algorithm. In short,081

given a masked sentence S0, we retrieve top com-082

pletions using the LM (coming up with several083

paraphrases of S0 as an augmentation technique,084

to increase robustness). To form concepts, we per-085

form agglomerative clustering using the contextual086

embeddings. Each node in the dendrogram is as-087

signed with a weight based on its tokens’ both088

weights and repetitions across augmentations.089

For clarity of presentation, Figure 1 shows clus-090

ters (using a distance threshold), rather than single-091

ton tokens. In this example (parent-teacher confer-092

ence), the most likely concept contains tokens such093

as “mom”, “mother” and “dad”, followed closely094

by a concept containing “parents” and “family”.095

Next concepts refer to children and other family096

members in general. The top node indicates the097

completion is probably a family member.098

We present our implementation (code can be099

found at [URL redacted for anonymity]). We give100

a succinct overview, for details see the Appendix.101

Augmentation. To augment the input S0 we first102

retrieve the LM’s top-k completions.1 We replace103

the [MASK] token with the first completion that is104

not a stopword or a sub-word and paraphrase using105

wordtune.2 We then mask {S0, ...,SM−1}.106

Top-k completions retrieval. We retrieve the107

1See details in appendix.
2https://www.wordtune.com/

top-k (k=100) completions for each sentence in 108

{S0, ...,SM−1}. We count how often each com- 109

pletions appears and remove infrequent ones.1 We 110

extract the contextual embeddings for all remain- 111

ing completions (the token embedding from the 112

last hidden layer using S0). We use the contextual 113

embedding due to the importance of context. 114

Clustering & Ranking. We reduce the dimension- 115

ality using PCA and t-SNE1, and use agglomerative 116

clustering to cluster the completions into concepts. 117

We use agglomerative clustering as different thresh- 118

olds yield different concept-granularity, similar to 119

the flexibility of concepts in humans. Each clus- 120

ter is assigned with a weight that corresponds to 121

1) the token with the maximal soft-max score, to 122

avoid problems related to surface form competi- 123

tion, and 2) the token with the maximal number of 124

repetitions across augmentations’ top-100 comple- 125

tions, to increase robustness (a token that repeated 126

frequently is probably very relevant).1 127

4 Evaluation 128

To evaluate our concept-aware method, we focus 129

on fill-mask task (completing a masked sequence). 130

Dataset. We use the ProtoQA dataset, consisting 131

of questions regarding prototypical situations (e.g., 132

“Name something you are likely making if you buy 133

milk, eggs, sugar and cream.”) (Boratko et al., 134

2020). We believe this setting is relevant for our use 135

case, as there are usually several related answers. 136

To make the input similar to the language LMs 137
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Input sentence Completion BERT Concept-BERT
I bought a fake [MASK] from a street vendor. jersey 0.08 0.79
When I retired I started [MASK]. cycling 0.06 0.77

Whenever I suffer from cold I always [MASK]. shudder 0.04 1
rise 0.93 0.24

When I go to the beach I use [MASK]
to protect myself from the sun.

sticks 0.91 0.28
soap 0.74 0.03

I always take my [MASK] with me to the gym. laptop 0.76 0.29
I squeezed myself into the [MASK]. sand 0.71 0.23

Table 1: Examples of completions for which the weight BERT and concept-BERT assign are notably different.
Our manipulation increases the score of appropriate completions and decreases the weight of inappropriate ones.
Weight calculation: (1− < completion rank >)/k where k=100 for BERT and k=number of outputted clusters
for concept-BERT. Color coding: red=low weight, orange=intermediate, green=high.

are usually trained on, we manually changed the138

questions to first-person statements (“I bought milk,139

eggs, sugar and cream to make a [MASK].”). We140

used 63 sentences to fine-tune our parameters and141

an additional 100 sentences for evaluation.1142

Experiments. We used BERT, the most popular143

fill-mask LM (Devlin et al., 2018),3 with and with-144

out our method, outputting BERT’s top 100 com-145

pletions and concept-BERT’s ranked clusters.146

In the following, we verify the clusters are co-147

herent and distinct (§4.1) and the ranking is mean-148

ingful (§4.2). In §4.3 we explore disagreements149

between BERT and concept-BERT.150

4.1 Cluster quality151

As a sanity check, we measured clusters’ semantic152

coherence using the cosine similarity of word2vec’s153

token embedding (first ten clusters for all sen-154

tences). The mean within cluster similarity is 0.41,155

whereas the mean inter cluster is 0.12. For refer-156

ence, BERT’s similarity (top ten completions) is157

0.22. Hence, our clusters are coherent and distinct.158

A closer examination of the clusters highlights159

the distinction between the next-token-prediction160

approach and ours. Consider the sentence “I can’t161

get home for the holidays because of the [MASK].”162

and its cluster: {blizzard, cold, snow, snowfall,163

temperature, weather}. While this is a coherent164

concept (cold weather conditions), some specific165

tokens are less-natural completions without their166

cluster-context (e.g., temperature).167

We note that our clustering approach is rather168

simple, and sometimes fails to capture nuances.169

Consider “I forgot to take off my [MASK] before170

going to bed.” and its cluster {clothes, clothing,171

pajamas}. While pajamas is a type of clothing, it is172

3Most common according to Hugging Face:
https://huggingface.co/models?pipeline_
tag=fill-mask.

the type people usually put on before going to bed. 173

4.2 Ranking quality 174

We evaluate the precision of concept-BERT by an- 175

notating all completions in the top ten clusters for 176

all 100 input sentences. Three Amazon Mechan- 177

ical Turk workers received the masked sentence 178

and a possible completion, and were asked to clas- 179

sify the completion as either: likely /possible but 180

unlikely /does not make sense (see qualifications, 181

compensation, and instructions in Appendix). Note 182

this evaluation cannot be automated, as we wish 183

to see if our concept-aware modification aligns the 184

LM’s output with humans. Completion’s aggre- 185

gated score is its maximal score (mean-variance 186

across annotations=0.17). Our precision at k=1 is 187

72% and 67% at k=10 (see Appendix Figure 3). 188

Since our clusters sometimes contain comple- 189

tions that make less sense than others (although 190

belong to the same concept), we also treat the clus- 191

ters as concept-indicators (e.g., cold weather condi- 192

tions), and test the percentage of reasonable com- 193

pletions within each concept. If we search for clus- 194

ters with at least one good completion, our mean 195

precision = 90% for k={1, 10}. If we restrict to at 196

least two good completions (mean cluster size=2.9), 197

our mean precision is: k=1 (77%) and k=10 (75%). 198

4.3 Completions in dispute 199

We now focus on completions for which BERT and 200

concept-BERT disagree – one predicts it is likely, 201

while the other predicts it is much less likely (Table 202

1). These are the most interesting regions for eval- 203

uating the effect of our manipulation, specifically, 204

how it corresponds to human judgment. 205

To do so, we treat the middle 15% of the ranked 206

lists as buffer and output tokens that are above the 207

buffer according to one model and below according 208

to the other. We identified 282 disputed tokens. 209
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Scenario Mean score Norm. score
Concept-BERT ↑

BERT ↓ 0.84 0.304

Buffer 0.74 -
Concept-BERT ↓

BERT ↑ 0.66 -0.142

Table 2: Mean scores and mean normalized (using the
buffer) scores of the three scenarios in the dispute eval-
uation. Tokens concept-BERT ranked as probable while
BERT ranked as improbable (first row) are significantly
higher than both the buffer (middle row) and the tokens
BERT ranked high and concept-BERT low (bottom).

In addition, we annotated completions that both210

models ranked in the middle 15% (buffer).211

Volunteer computer science graduate students212

annotated 585 completions using the same setup213

as in §4.2. Each completion was annotated by two214

students and aggregated to its maximal score (mean215

variance across annotations=0.1).1216

We divide the annotated completions to 3 groups217

and compute their mean score. As some sentences218

have more good completions than others, we also219

computed a normalized mean score (normalizing220

per sentence using the sentence’s buffer scores).221

Results (Table 2) show that whenever the models222

disagree, concept-BERT is more often correct.223

Figure 2 depicts a score-heat-map of the dis-224

puted completions. Y-axis represents concept-225

BERT’s token weight, x-axis shows BERT’s226

weight. The top-left part (concept-BERT=probable,227

BERT=improbable) scores are higher compared to228

the middle (buffer) and the bottom-right (the op-229

posite scenario). Meaning, we rank appropriate230

completions high, and inappropriate ones low.231

Next, we compute completions’ accumulated232

mean accuracy as a function of rank given by each233

of the models. We expect a negative correlation234

as the quality should decrease when going down235

the ranked list) While concept-BERT does have236

a negative correlation, BERT’s correlation is ac-237

tually positive (meaning, its top-ranked comple-238

tions are on average worse than the bottom-ranked239

ones). Both curves have significant correlation240

(p-values<0.05), whereas BERT’s is weaker (co-241

efficient 0.54 versus 0.91). We stress this is not242

a random sample, but rather the disputed comple-243

tions (and buffer). Thus, we reveal appropriate244

completions and remove inappropriate ones.245

Lastly, we also analyze the mean accuracy of the246

disputed completions as a function of how strict the247

threshold for “in dispute” is. BERT’s accuracy de-248

Figure 2: Heat-map of the disputed completions (higher
means better). The y-axis represents concept-BERT’s
completion weight. The x-axis represents BERT’s
weight. The top-left part of the map received higher
scores compared to the middle (buffer) and the bottom-
right part. Meaning, our manipulation ranked high ap-
propriate completions and low inappropriate ones.

creases much sharper compared to concept-BERT 249

(> 10% versus < 2%), hinting our manipulation 250

increases robustness (see Appendix Figure 5). 251

To conclude, even though we presented a simple 252

implementation, it led to overall coherent concept- 253

clusters with meaningful ranking. We see promis- 254

ing indications that this may enhance the LM’s 255

robustness and help identify good completions. 256

5 Conclusions & Future Work 257

We are inspired by the importance of concepts in 258

human cognition, and specifically for language. In 259

particular, LMs work at the level of words, rather 260

than concepts. This is problematic as even if they 261

represent the same underlying concept in a given 262

context, different surface forms compete for proba- 263

bility mass, distorting the ranking. 264

To better align LMs with humans, we present a 265

model-agnostic method to shift any off-the-shelf 266

pretrained LM from the token- to the concept-level, 267

without fine-tuning or adding any external infor- 268

mation. We evaluate our concept-aware approach 269

using BERT, outputting a ranked list of concepts, 270

which are coherent and diverse. We show that our 271

method improves the LM’s ranking and robustness. 272

While this is only preliminary work, we believe 273

concept-aware LMs can benefit many downstream 274

tasks. Thus, in the future, we believe it would be 275

beneficial to shift LMs’ training towards concepts, 276

either leveraging external data sources (similar in 277

spirit to SenseBERT (Levine et al., 2020) and KID 278

(Liu et al., 2022)), or through a more flexible sys- 279

tem allowing ad-hoc concepts. 280
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6 Limitations & Ethical Considerations281

Our method heavily relays on the input LM, and282

thus might preserve some of the LM’s biases. One283

might try to overcome these biases, e.g., by inject-284

ing external knowledge.285

Another limitation of our method is the usage of286

not just the LM’s completions, but also their em-287

beddings. This does not let us apply our method to288

any LM that is accessible through API that exposes289

only its completion output.290

Lastly, computation is somewhat slower than the291

LM’s computation time, as we run it several times,292

plus postprocessing (paraphrasing extraction, di-293

mensionality reduction, clustering, etc.). We note,294

however, that many of those operations are easily295

parallelizable.296
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Implementation details 354

LM. We used BERT-base-uncased with the default 355

parameters. We performed no training. 356

Augmentation. For this phase we first replaced 357

the missing token with the LM’s most probable 358

completion that contains more than three letters 359

and is not a stop-word (using the stopwords list 360

from nltk.corpus package). We inserted S0 to 361

AI21’s Wordtune paraphrasing model using the 362

default parameters: 363

r e q u e s t s . p o s t ( 364

" h t t p s : / / a p i . a i 2 1 . com / s t u d i o / 365

v1 / e x p e r i m e n t a l / r e w r i t e " , 366

h e a d e r s ={ " A u t h e n t i c a t i o n " : 367

<ai21 − p r i v a t e − token >} 368

j s o n ={ " t e x t " : S_0 , 369

" i n t e n t " : " g e n e r a l " } ) 370

And extracted the text suggestions from the out- 371

put JSON file. We then searched for the original 372

completion and masked all sentences. Sentences 373

in which we were unable to automatically find the 374

word were dropped. 375

Top-k completions retrieval. We used k = 100 376

for each masked sentence. We drop each com- 377

pletion that did not appear in at least half of our 378

augmentations. Note: another possible implemen- 379

tation would be a function of unique completions. 380
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Clustering & Ranking. As a latent space repre-381

sentation of contextual token, we extract the LM’s382

token embedding for this token from the last hid-383

den layer with the input sentence S0. We reduce384

the dimensionality of the embeddings from 768385

to 100 using PCA (scikit learn implementation,386

n_components=100, svd_solver=’full’) and from387

100 to 10 using t-SNE (scikit learn implementa-388

tion, n_components=10, init=’pca’, perplexity=10,389

method=’exact’).390

We cluster the embeddings after the dimen-391

sionality reduction using agglomerative cluster-392

ing using the distance metric cosine similar-393

ity, linkage=’linkage’, distance threshold=0.45,394

n_clusters=None, and compute_distances=True395

(scikit learn implementation)396

To rank the clusters, we used the following for-397

mula:398

weight(Ci) = α ·maxweight(weight(t) ∀t ∈ Ci)

+(1− α) ·maxrep(rep(t) ∀t ∈ Ci)

399

where α = 0.7.400

Human annotators401

For both annotation tasks (computer science gradu-402

ate students and Amazon Mechanical Turk), anno-403

tators were presented with a sentence and a possi-404

ble completion and were asked “Do you think this405

completion makes sense?”. Possible responses are:406

{likely, possible but unlikely, does not make sense}.407

Precision at k. We used Amazon Mechanical Turk408

with the following qualifications: {HIT Approval409

Rate > 98, Number of HITs Approved > 5000,410

Location is one of CA, GB, US (for English speak-411

ers)}. We also used a custom qualification using412

five example sentences and completions. Annota-413

tors were allowed to make one error in order to414

qualify. We paid annotators $0.02 per completion.415

Overall, we had 39 unique annotators.416

Full instructions:417

You will be presented with a sentence containing418

a missing word and a candidate word to fill-in the419

blank. Your role is to determine for each comple-420

tion whether it is likely / possible but not likely /421

does not make sense at all. Note! If a completion422

is not grammatically correct ("I enjoy *raining*"423

instead of *rain*) that is fine, we do not care about424

grammar here. But if the sentence + completion is425

not a full sentence ("I enjoy *doing*") that is NOT426

fine, as the sentence is meaningless.427

Example 1428

Sentence: I went to the parent teacher conference 429

with my _____. 430

Completion: parent 431

Desired response: Likely 432

Example 2 433

Sentence: I went to the parent teacher conference 434

with my _____. 435

Completion: schedule 436

Desired response: Does not make sense 437

Example 3 438

Sentence: I went to the parent teacher conference 439

with my _____. 440

Completion: grandfather 441

Desired response: Possible but unlikely 442

Explanation: While this is not the common sce- 443

nario, it is still possible. 444

Example 4 445

Sentence: I went to the parent teacher conference 446

with my _____. 447

Completion: mothers 448

Desired response: Likely OR Possible but unlikely 449

Completions in dispute. We recruited 8 vol- 450

unteers, all are graduate students from the com- 451

puter science department (same instructions as 452

the Amazon Mechanical Turk experiment, see in- 453

structions above). Each student annotated about 454

150 completions (cutoff at the end of the sen- 455

tence). Each completion was annotated by two 456

students. Mean-variance across annotation=0.1, 457

showing a fairly good quality of annotations (pos- 458

sible responses={0, 0.5, 1}). Students reported the 459

task to take about 15 minutes to complete. 460

Figures & Tables 461

Figure 3: Concept-BERT’s precision at k=10 (number
of clusters annotated by three Amazon Mechanical Turk
annotators). Our method’s mean precision at k=1 is
72% and 67% at k=10.
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Figure 4: Completions’ accumulated mean accuracy as
a function of rank given by each of the models. Both
curves have significant correlation (p-value < 0.05),
whereas BERT’s correlation is weaker (correlation coef-
ficient 0.54 versus 0.91). Interestingly, while concept-
BERT has a negative correlation, as expected since the
rank’s quality should decrease, BERT’s correlation is
positive. We stress this is not a random sample, but
rather the disputed completions (and the buffer). Thus,
this again strengthens our claim, that our manipulation
helps to reveal appropriate completions and remove in-
appropriate ones, with respect to the original LM.

Figure 5: Mean accuracy of the disputed completions
for both models as a function of how strict the threshold
for disagreement is. BERT’s accuracy decreases sharply
compared to concept-BERT, suggesting our manipula-
tion increases robustness.
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