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Abstract

Concepts play a pivotal role in various human
cognitive abilities. However, there has been rel-
atively little work on endowing machines with
the ability to form and reason with concepts. In
particular, pretrained language models (LMs)
work at the level of words, not concepts. This
is problematic as different words relating to the
same concept compete for probability mass.

Here we take the first step towards develop-
ing a concept-aware LM. Instead of rethinking
the training process, we adapt existing LMs.
We build a proof-of-concept LM outputting a
ranked list of concepts, and show that they are
relatively coherent and diverse. We demon-
strate that concepts could help improve the
LM’s ranking and robustness. While this work
is rather preliminary, we believe concept-aware
LM can benefit many downstream tasks.

1 Introduction

Concepts are the glue that holds our mental model
of the world together. It is hard to see how any
intelligent agent could do without them. They are
what enables us to comprehend new situations in
terms of previous ones: when we walk into a new
situation (e.g., a restaurant) full of new objects and
people, we interpret it using learned concepts.
Concepts can be concrete (“soup”) or abstract
(“tasty”). They can also be complex, e.g., “good
winter beach destinations”. While there is a lively
debate on the exact nature of concepts, researchers
agree they play a pivotal role in various cognitive
abilities such as categorization, learning, commu-
nicating, planning, and decision-making (Murphy,
2004). Thus, they are of interest to Al researchers
wishing to endow machines with such abilities.
The representation of concepts has been studied
in ML, NLP, and knowledge representation (Fuma-
galli and Ferrario, 2019; Davis and Marcus, 2015;
Gardenfors, 2014). However, they often view con-
cepts as fixed, shallow structures representing some

set of entities. Recent studies suggest concepts are
more flexible and dynamically influenced by con-
text (Gabora et al., 2008). Unfortunately, Al still
struggles with accounting for the creative, context-
sensitive manner in which people employ concepts.

Here we focus on adding concepts to language
models (LMs). Recently, pretrained large LMs
(Yang et al., 2019; Raffel et al., 2020; Floridi and
Chiriatti, 2020) have gained immense popularity,
achieving SOTA results across the board. A funda-
mental LM task is text completion. However, using
tokens (rather than concepts) leads to surface form
competition: different surface forms compete for
the same the probability mass, even if they share the
same meaning, e.g., “mother” and “mom” (Holtz-
man et al., 2021), which distorts the ranking.

Here we take the first step towards developing
concept-aware LMs. Instead of rethinking LMs’
training, we take the simpler approach of adapt-
ing existing ones. Our method is model-agnostic,
operating on any pretrained LM. Previous works
showed it was possible to enhance pretrained LMs
without further training and improve their perfor-
mance on tasks such as word sense disambiguation,
factualness and consistency (Levine et al., 2020;
Liu et al., 2022). We believe concept-aware LMs
could similarly enhance downstream tasks.

2 Problem definition

We focus on the fundamental LM task of text com-
pletion, namely fill-mask. Given a masked sentence
S € Q2 and an LM, our goal is to return a ranked list
of concepts C1, ..., Cn (representing completions).
Each concept C; is a non-empty set of surface-level
tokens ¢t € (2. Ideally, the concepts and their rank-
ing should correspond to human intuition.

3 Algorithm

Overview. As we wrote above, rather than rethink-
ing LM’s architecture and training process, we take
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Figure 1: Overview of our algorithm. The input is a masked sentence. We augment it by paraphrasing and predict
the top k completions for each of the paraphrases. Next, we filter out rare and unlikely tokens (strikethrough) and
perform agglomerative clustering using the token-contextual embeddings from the input LM (centroid in bold). We
assign new weights to each node in the dendrogram (darker ranked higher, sorted according to weight).

the simpler, proof-of-concept approach of building
concepts on top of the output of existing LMs.

Figure 1 demonstrates our algorithm. In short,
given a masked sentence Sy, we retrieve top com-
pletions using the LM (coming up with several
paraphrases of Sy as an augmentation technique,
to increase robustness). To form concepts, we per-
form agglomerative clustering using the contextual
embeddings. Each node in the dendrogram is as-
signed with a weight based on its tokens’ both
weights and repetitions across augmentations.

For clarity of presentation, Figure 1 shows clus-
ters (using a distance threshold), rather than single-
ton tokens. In this example (parent-teacher confer-
ence), the most likely concept contains tokens such
as “mom”, “mother” and “dad”, followed closely
by a concept containing “parents” and “family”.
Next concepts refer to children and other family
members in general. The top node indicates the
completion is probably a family member.

We present our implementation (code can be
found at [URL redacted for anonymity]). We give
a succinct overview, for details see the Appendix.

Augmentation. To augment the input Sy we first
retrieve the LM’s top-k completions.! We replace
the [MASK] token with the first completion that is
not a stopword or a sub-word and paraphrase using
wordtune? We then mask {Sy, ..., Sas_1}.

Top-k completions retrieval. We retrieve the

'See details in appendix.
nttps://www.wordtune.com/

top-k (k=100) completions for each sentence in
{So,...,Snm—1}. We count how often each com-
pletions appears and remove infrequent ones. We
extract the contextual embeddings for all remain-
ing completions (the token embedding from the
last hidden layer using Sp). We use the contextual
embedding due to the importance of context.

Clustering & Ranking. We reduce the dimension-
ality using PCA and t-SNE!, and use agglomerative
clustering to cluster the completions into concepts.
We use agglomerative clustering as different thresh-
olds yield different concept-granularity, similar to
the flexibility of concepts in humans. Each clus-
ter is assigned with a weight that corresponds to
1) the token with the maximal soft-max score, to
avoid problems related to surface form competi-
tion, and 2) the token with the maximal number of
repetitions across augmentations’ top-100 comple-
tions, to increase robustness (a token that repeated
frequently is probably very relevant)!

4 Evaluation

To evaluate our concept-aware method, we focus
on fill-mask task (completing a masked sequence).
Dataset. We use the ProtoQA dataset, consisting

of questions regarding prototypical situations (e.g.,
“Name something you are likely making if you buy
milk, eggs, sugar and cream.”) (Boratko et al.,
2020). We believe this setting is relevant for our use
case, as there are usually several related answers.
To make the input similar to the language LMs
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Input sentence Completion | BERT | Concept-BERT
I bought a fake [MASK] from a street vendor. jersey 0.08 0.79
When I retired I started [MASK]. cycling 0.06 0.77
Whenever I suffer from cold I always [MASK]. shudder i I
rise 0.93 0.24

When T go to the beach T use [MASK] sticks 0.91 0.28
to protect myself from the sun. soap 0.74 0.03

I always take my [MASK] with me to the gym. | laptop 0.76 0.29
I squeezed myself into the [MASK]. sand 0.71 0.23

Table 1: Examples of completions for which the weight BERT and concept-BERT assign are notably different.
Our manipulation increases the score of appropriate completions and decreases the weight of inappropriate ones.
Weight calculation: (1— < completion rank >)/k where k=100 for BERT and k=number of outputted clusters
for concept-BERT. Color coding: red=low weight, orange=intermediate, green=high.

are usually trained on, we manually changed the
questions to first-person statements (“I bought milk,
eggs, sugar and cream to make a [MASK].”). We
used 63 sentences to fine-tune our parameters and
an additional 100 sentences for evaluation.

Experiments. We used BERT, the most popular
fill-mask LM (Devlin et al., 2018); with and with-
out our method, outputting BERT’s top 100 com-
pletions and concept-BERT’s ranked clusters.

In the following, we verify the clusters are co-
herent and distinct (§4.1) and the ranking is mean-
ingful (§4.2). In §4.3 we explore disagreements
between BERT and concept-BERT.

4.1 Cluster quality

As a sanity check, we measured clusters’ semantic
coherence using the cosine similarity of word2vec’s
token embedding (first ten clusters for all sen-
tences). The mean within cluster similarity is 0.41,
whereas the mean inter cluster is 0.12. For refer-
ence, BERT’s similarity (top ten completions) is
0.22. Hence, our clusters are coherent and distinct.

A closer examination of the clusters highlights
the distinction between the next-token-prediction
approach and ours. Consider the sentence “I can’t
get home for the holidays because of the [MASK].”
and its cluster: {blizzard, cold, snow, snowfall,
temperature, weather}. While this is a coherent
concept (cold weather conditions), some specific
tokens are less-natural completions without their
cluster-context (e.g., temperature).

We note that our clustering approach is rather
simple, and sometimes fails to capture nuances.
Consider “I forgot to take off my [MASK] before
going to bed.” and its cluster {clothes, clothing,
pajamas}. While pajamas is a type of clothing, it is

3Most common according to Hugging Face:
https://huggingface.co/models?pipeline_
tag=fill-mask.

the type people usually put on before going to bed.

4.2 Ranking quality

We evaluate the precision of concept-BERT by an-
notating all completions in the top ten clusters for
all 100 input sentences. Three Amazon Mechan-
ical Turk workers received the masked sentence
and a possible completion, and were asked to clas-
sify the completion as either: likely /possible but
unlikely /does not make sense (see qualifications,
compensation, and instructions in Appendix). Note
this evaluation cannot be automated, as we wish
to see if our concept-aware modification aligns the
LM’s output with humans. Completion’s aggre-
gated score is its maximal score (mean-variance
across annotations=0.17). Our precision at k=1 is
72% and 67% at k=10 (see Appendix Figure 3).
Since our clusters sometimes contain comple-
tions that make less sense than others (although
belong to the same concept), we also treat the clus-
ters as concept-indicators (e.g., cold weather condi-
tions), and test the percentage of reasonable com-
pletions within each concept. If we search for clus-
ters with at least one good completion, our mean
precision = 90% for k={1, 10}. If we restrict to at
least two good completions (mean cluster size=2.9),
our mean precision is: k=1 (77%) and k=10 (75%).

4.3 Completions in dispute

We now focus on completions for which BERT and
concept-BERT disagree — one predicts it is likely,
while the other predicts it is much less likely (Table
1). These are the most interesting regions for eval-
uating the effect of our manipulation, specifically,
how it corresponds to human judgment.

To do so, we treat the middle 15% of the ranked
lists as buffer and output tokens that are above the
buffer according to one model and below according
to the other. We identified 282 disputed tokens.
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Scenario Mean score | Norm. score
Concept-BERT T
BERT | 0.84 0.304
Buffer 0.74 -
Concept-BERT |
BERT 1 0.66 -0.142

Table 2: Mean scores and mean normalized (using the
buffer) scores of the three scenarios in the dispute eval-
uation. Tokens concept-BERT ranked as probable while
BERT ranked as improbable (first row) are significantly
higher than both the buffer (middle row) and the tokens
BERT ranked high and concept-BERT low (bottom).

In addition, we annotated completions that both
models ranked in the middle 15% (buffer).

Volunteer computer science graduate students
annotated 585 completions using the same setup
as in §4.2. Each completion was annotated by two
students and aggregated to its maximal score (mean
variance across annotations=0.1).

We divide the annotated completions to 3 groups
and compute their mean score. As some sentences
have more good completions than others, we also
computed a normalized mean score (normalizing
per sentence using the sentence’s buffer scores).
Results (Table 2) show that whenever the models
disagree, concept-BERT is more often correct.

Figure 2 depicts a score-heat-map of the dis-
puted completions. Y-axis represents concept-
BERT’s token weight, x-axis shows BERT’s
weight. The top-left part (concept-BERT=probable,
BERT=improbable) scores are higher compared to
the middle (buffer) and the bottom-right (the op-
posite scenario). Meaning, we rank appropriate
completions high, and inappropriate ones low.

Next, we compute completions’ accumulated
mean accuracy as a function of rank given by each
of the models. We expect a negative correlation
as the quality should decrease when going down
the ranked list) While concept-BERT does have
a negative correlation, BERT’s correlation is ac-
tually positive (meaning, its top-ranked comple-
tions are on average worse than the bottom-ranked
ones). Both curves have significant correlation
(p-values<0.05), whereas BERT’s is weaker (co-
efficient 0.54 versus 0.91). We stress this is not
a random sample, but rather the disputed comple-
tions (and buffer). Thus, we reveal appropriate
completions and remove inappropriate ones.

Lastly, we also analyze the mean accuracy of the
disputed completions as a function of how strict the
threshold for “in dispute” is. BERT’s accuracy de-
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Figure 2: Heat-map of the disputed completions (higher
means better). The y-axis represents concept-BERT’s
completion weight. The x-axis represents BERT’s
weight. The top-left part of the map received higher
scores compared to the middle (buffer) and the bottom-
right part. Meaning, our manipulation ranked high ap-
propriate completions and low inappropriate ones.

creases much sharper compared to concept-BERT
(> 10% versus < 2%), hinting our manipulation
increases robustness (see Appendix Figure 5).

To conclude, even though we presented a simple
implementation, it led to overall coherent concept-
clusters with meaningful ranking. We see promis-
ing indications that this may enhance the LM’s
robustness and help identify good completions.

5 Conclusions & Future Work

We are inspired by the importance of concepts in
human cognition, and specifically for language. In
particular, LMs work at the level of words, rather
than concepts. This is problematic as even if they
represent the same underlying concept in a given
context, different surface forms compete for proba-
bility mass, distorting the ranking.

To better align LMs with humans, we present a
model-agnostic method to shift any off-the-shelf
pretrained LM from the token- to the concept-level,
without fine-tuning or adding any external infor-
mation. We evaluate our concept-aware approach
using BERT, outputting a ranked list of concepts,
which are coherent and diverse. We show that our
method improves the LM’s ranking and robustness.

While this is only preliminary work, we believe
concept-aware LMs can benefit many downstream
tasks. Thus, in the future, we believe it would be
beneficial to shift LMs’ training towards concepts,
either leveraging external data sources (similar in
spirit to SenseBERT (Levine et al., 2020) and KID
(Liu et al., 2022)), or through a more flexible sys-
tem allowing ad-hoc concepts.



6 Limitations & Ethical Considerations

Our method heavily relays on the input LM, and
thus might preserve some of the LM’s biases. One
might try to overcome these biases, e.g., by inject-
ing external knowledge.

Another limitation of our method is the usage of
not just the LM’s completions, but also their em-
beddings. This does not let us apply our method to
any LM that is accessible through API that exposes
only its completion output.

Lastly, computation is somewhat slower than the
LM’s computation time, as we run it several times,
plus postprocessing (paraphrasing extraction, di-
mensionality reduction, clustering, etc.). We note,
however, that many of those operations are easily
parallelizable.
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Implementation details

LM. We used BERT-base-uncased with the default
parameters. We performed no training.

Augmentation. For this phase we first replaced
the missing token with the LM’s most probable
completion that contains more than three letters
and is not a stop-word (using the stopwords list
from nitk.corpus package). We inserted Sy to
AI21’s Wordtune paraphrasing model using the
default parameters:

requests . post(

"https ://api.ai2l .com/studio/
vl/experimental /rewrite ",
headers={" Authentication":
<ai2l —private —token >}
json={"text": S_O,

"intent": "general"})

And extracted the text suggestions from the out-
put JSON file. We then searched for the original
completion and masked all sentences. Sentences
in which we were unable to automatically find the
word were dropped.

Top-k completions retrieval. We used £ = 100
for each masked sentence. We drop each com-
pletion that did not appear in at least half of our
augmentations. Note: another possible implemen-
tation would be a function of unique completions.
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Clustering & Ranking. As a latent space repre-
sentation of contextual token, we extract the LM’s
token embedding for this token from the last hid-
den layer with the input sentence Sp. We reduce
the dimensionality of the embeddings from 768
to 100 using PCA (scikit learn implementation,
n_components=100, svd_solver="full’) and from
100 to 10 using t-SNE (scikit learn implementa-
tion, n_components=10, init="pca’, perplexity=10,
method="exact’).

We cluster the embeddings after the dimen-
sionality reduction using agglomerative cluster-
ing using the distance metric cosine similar-
ity, linkage=’linkage’, distance threshold=0.45,
n_clusters=None, and compute_distances=True
(scikit learn implementation)

To rank the clusters, we used the following for-
mula:

weight(C;) = a - magyeight (weight(t) Vt € C;)
+(1 — ) - mazyep(rep(t) Vt € Cy)

where o« = 0.7.

Human annotators

For both annotation tasks (computer science gradu-
ate students and Amazon Mechanical Turk), anno-
tators were presented with a sentence and a possi-
ble completion and were asked “Do you think this
completion makes sense?”. Possible responses are:
{likely, possible but unlikely, does not make sense}.

Precision at k. We used Amazon Mechanical Turk
with the following qualifications: {HIT Approval
Rate > 98, Number of HITs Approved > 5000,
Location is one of CA, GB, US (for English speak-
ers)}. We also used a custom qualification using
five example sentences and completions. Annota-
tors were allowed to make one error in order to
qualify. We paid annotators $0.02 per completion.
Overall, we had 39 unique annotators.

Full instructions:

You will be presented with a sentence containing
a missing word and a candidate word to fill-in the
blank. Your role is to determine for each comple-
tion whether it is likely / possible but not likely /
does not make sense at all. Note! If a completion
is not grammatically correct ("I enjoy *raining*"
instead of *rain*) that is fine, we do not care about
grammar here. But if the sentence + completion is
not a full sentence ("I enjoy *doing*") that is NOT
fine, as the sentence is meaningless.
Example 1

Sentence: I went to the parent teacher conference
with my .

Completion: parent

Desired response: Likely

Example 2

Sentence: I went to the parent teacher conference
with my .

Completion: schedule

Desired response: Does not make sense

Example 3

Sentence: I went to the parent teacher conference
with my .

Completion: grandfather

Desired response: Possible but unlikely
Explanation: While this is not the common sce-
nario, it is still possible.

Example 4

Sentence: I went to the parent teacher conference
with my .

Completion: mothers

Desired response: Likely OR Possible but unlikely

Completions in dispute. We recruited 8 vol-
unteers, all are graduate students from the com-
puter science department (same instructions as
the Amazon Mechanical Turk experiment, see in-
structions above). Each student annotated about
150 completions (cutoff at the end of the sen-
tence). Each completion was annotated by two
students. Mean-variance across annotation=0.1,
showing a fairly good quality of annotations (pos-
sible responses={0, 0.5, 1}). Students reported the
task to take about 15 minutes to complete.
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Figure 3: Concept-BERT’s precision at k=10 (number
of clusters annotated by three Amazon Mechanical Turk
annotators). Our method’s mean precision at k=1 is
72% and 67% at k=10.
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Figure 4: Completions’ accumulated mean accuracy as
a function of rank given by each of the models. Both
curves have significant correlation (p-value < 0.05),
whereas BERT’s correlation is weaker (correlation coef-
ficient 0.54 versus 0.91). Interestingly, while concept-
BERT has a negative correlation, as expected since the
rank’s quality should decrease, BERT’s correlation is
positive. We stress this is not a random sample, but
rather the disputed completions (and the buffer). Thus,
this again strengthens our claim, that our manipulation
helps to reveal appropriate completions and remove in-
appropriate ones, with respect to the original LM.
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Figure 5: Mean accuracy of the disputed completions
for both models as a function of how strict the threshold
for disagreement is. BERT’s accuracy decreases sharply
compared to concept-BERT, suggesting our manipula-
tion increases robustness.



