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ABSTRACT

Meta-learning aims to extract meta-knowledge from historical tasks to accelerate
learning on new tasks. A critical challenge in meta-learning is to handle task het-
erogeneity, i.e., tasks lie in different distributions. Unlike typical meta-learning al-
gorithms that learn a globally shared initialization, recent structured meta-learning
algorithms formulate tasks into multiple groups and learn an initialization for tasks
in each group using centroid-based clustering. However, those algorithms still
require task models in the same group to be close together and fail to take ad-
vantage of negative correlations between tasks. In this paper, task models are
formulated into a subspace structure. We propose a MUlti-Subspace structured
Meta-Learning (MUSML) algorithm to learn the subspace bases. We establish
the convergence and analyze the generalization performance. Experimental re-
sults confirm the effectiveness of the proposed MUSML algorithm.

1 INTRODUCTION

Humans are capable of learning new tasks from a few trials by taking advantage of prior experi-
ences. However, the state-of-the-art performance of deep networks heavily relies on the availability
of large amounts of labeled samples. To improve sample efficiency, meta-learning algorithms (Ben-
gio et al., 1991; Thrun & Pratt, 1998) are designed to learn meta-knowledge from historical tasks
and accelerate learning on unseen tasks. Meta-learning has been widely used for few-shot learn-
ing (Finn et al., 2017; Wang et al., 2020), neural architecture search (Zoph & Le, 2017; Liu et al.,
2018), hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2018), reinforcement
learning (Nagabandi et al., 2018; Rakelly et al., 2019), recommendation systems (Vartak et al., 2017;
Lee et al., 2019a), and natural language processing (Gu et al., 2018; Obamuyide & Vlachos, 2019).

Typical meta-learning algorithms (Finn et al., 2017; Denevi et al., 2019; Rajeswaran et al., 2019;
Zhou et al., 2019) learn a globally shared meta-model for all tasks. For example, the Model-Agnostic
Meta-Learning (MAML) algorithm (Finn et al., 2017) learns a meta-initialization such that a good
model for an unseen task can be fine-tuned from limited examples by a few gradient descent steps.
However, when the tasks are heterogeneous, the task models are diverse and a common meta-model
may not be sufficient.

To tackle this issue, recent works (Jerfel et al., 2019; Zhou et al., 2021) cluster tasks into multiple
groups and learn an initialization for tasks in each group. Specifically, Jerfel et al. (2019) formulate
the task distribution as a mixture of hierarchical Bayesian models and update the components (i.e.,
initializations) using Expectation Maximization. Zhou et al. (2021) first train task models using the
vanilla MAML, and then cluster them into several groups based on the Euclidean distance. The
cluster centroids become the group-specific initializations. However, centroid-based clustering fails
to take advantage of negative correlation between tasks (e.g., w and−w may be assigned to different
clusters) and fails to handle tasks that are distant from all clusters (e.g., tasks τ ′ in Figures 1(a)
and 1(b)).

Another approach to deal with task heterogeneity is based on formulating task models into a sub-
space structure. Recent attempts (Kong et al., 2020; Tripuraneni et al., 2021) focus on the simple
case where linear regression tasks are drawn from a single subspace. They leverage a moment-
based estimator to recover its basis. However, it is not easy to extend such moment-based methods
to nonlinear models (e.g., neural networks) or general losses (e.g., cross-entropy loss).

In this paper, we propose to learn multiple subspaces for nonlinear models or general losses, and
treat the subspace bases as meta-parameters. For each task, the base learner selects a subspace that
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(a) Single cluster. (b) Multiple clusters. (c) Subspace structure.

Figure 1: Different formulations of task structure.

the learned task model achieves the best performance on the training set. The meta-learner then
updates the basis of the selected subspace by minimizing the validation loss of the learned task
model. We establish convergence results for the proposed algorithm. We show theoretically that
the expected generalization gap depends on complexity of the subspaces, while the expected excess
risk depends on both complexity of the subspaces and distance between the optimal task models and
the learned subspaces. Experiments on standard benchmark datasets verify the effectiveness of the
proposed method.

In summary, the contributions of this paper are as follows:

(i) We propose a MUlti-Subspace structured Meta-Learning (MUSML) algorithm to learn
multiple subspaces for task models. The proposed algorithm can be applied to both lin-
ear and nonlinear models.

(ii) We prove the convergence of MUSML and theoretically study the generalization perfor-
mance.

(iii) Experimental results demonstrate that MUSML outperforms the state-of-the-arts.

Notations: Vectors (e.g., x) and matrices (e.g., X) are denoted by lowercase and uppercase boldface
letters, respectively. For a vector x, its `2-norm is represented as ‖x‖. For a matrix X, its `2-norm is
‖X‖, and its Frobenius norm is ‖X‖F. Subspaces are denoted by blackboard boldface letters (e.g.,
S). 1m ∈ Rm denotes a m-dimensional vector with all entries being 1.

2 RELATED WORK

Meta-learning designs algorithms to extract meta-knowledge from historical tasks so that new tasks
can be learned fast with a few training examples. Popular meta-learning algorithms can be di-
vided into three categories: metric-based approach (Koch et al., 2015; Vinyals et al., 2016; Snell
et al., 2017; Bertinetto et al., 2018; Sung et al., 2018; Oreshkin et al., 2018; Lee et al., 2019b),
memory-based approach (Santoro et al., 2016; Munkhdalai & Yu, 2017), and optimization-based
approach (Ravi & Larochelle, 2017; Finn et al., 2017; Rajeswaran et al., 2019; Denevi et al., 2019;
Balcan et al., 2019).

Most of meta-learning methods assume a globally shared meta-model (e.g., meta-initialization or
meta-regularization) for all tasks. To tackle heterogeneous tasks, recent works (Vuorio et al., 2019;
Yao et al., 2019a;b) tailor the meta-initialization to task representations, while Denevi et al. (2020)
learn a meta-regularization conditioning on tasks’ side information. Since good task representations
or side information are not easy to obtain, Jerfel et al. (2019) and Zhou et al. (2021) propose to for-
mulate tasks into multiple groups and parameters for tasks within the same group are assumed to be
close in terms of the Euclidean distance. However, centroid-based methods still require parameters
of related tasks to be close together and fail to handle negatively correlated tasks. To overcome these
challenges, recent attempts (Kong et al., 2020; Saunshi et al., 2020; Tripuraneni et al., 2021) study
linear regression tasks that are drawn from a low-dimensional subspace. Using a moment-based
estimator, the basis can be recovered (Kong et al., 2020; Tripuraneni et al., 2021). However, their
algorithms are limited to linear regression and a single subspace.
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3 METHODOLOGY

3.1 PROBLEM FORMULATION

Let p(τ) be a task distribution. In meta-learning, a collection of tasks are used to learn meta-
parameters. Each task τ ∼ p(τ) consists of a training set Dtrτ = {(xi, yi) : i = 1, . . . , Ntr} and
a validation set Dvlτ = {(xi, yi) : i = 1, . . . , Nvl}, where x are the features and y the labels. Let
f(·;w) be a model parameterized by w ∈ Rd, and L(D;w) = 1

|D|
∑

(x,y)∈D `(f(x;w), y) be the
supervised loss on data setD, where `(·, ·) is a loss function. The training set is used to learn the task
model, while the validation set is used to update the meta-parameters at meta-training or evaluate
the task model at meta-testing.

3.2 MULTI-SUBSPACE STRUCTURED META-LEARNING

In this paper, tasks are assumed to be clustered in multiple groups, and parameters for tasks in the
same group lie in a low-dimensional subspace. Specifically, there are K subspaces S1, . . . ,SK . For
simplicity, we assume all subspaces to have the same dimensionality m. Let Sk ∈ Rd×m be a
basis of Sk. For a task τ , the base learner selects the subspace Skτ that τ lies in, and determines
the linear combination weight vτ for the basis. The task model is then wτ = Skτvτ . The basis
set {S1, . . . ,SK} are meta-parameters to be updated by the meta-learner, while (kτ ,vτ ) are task
parameters learned by the base learner.

Kong et al. (2020) and Tripuraneni et al. (2021) consider linear regression tasks and assume that
the task parameters are drawn from a low-dimensional subspace. For this case, the column space
of EτE(x,y)∼τ,(x′,y′)∼τyy

′xx′> is identical to the column space of S. Using a moment-based es-
timator, they recover the basis from abundant meta-training tasks. However, their algorithms are
infeasible for general models (e.g., neural networks) and general losses (e.g., cross-entropy loss).

For each task τ , our base learner selects one of the K subspaces such that the learned task model
achieves the best performance on Dtrτ . Specifically, the inner loop in meta-learning is formulated as

(k∗τ ,v
∗
τ ) = argmin

k∈{1,...,K},vτ∈Rm
L(Dtrτ ;Skvτ ), (1)

where S1, . . . ,SK are fixed. When `(f(x;w), y) is convex in w, L(Dtrτ ;Skvτ ) is also convex in vτ
and the minimization problem can be solved by convex programming (Boyd et al., 2004). However,
for nonlinear models such as neural networks, the loss is usually non-convex and obtaining the
global minimum of L(Dtrτ ;Skvτ ) is intractable. Instead, for each k, we first compute v

(k)
τ,Tinner

by

Tinner gradient descent steps from an initial v(k)
τ,0 = 1

m1m with stepsize α, then obtain the task

parameters k∗τ ≡ argmin1≤k≤K L(Dtrτ ;Skv
(k)
τ,Tinner

) and v∗τ ≡ v
(k∗τ )
τ,Tinner

.

After obtaining the task parameters (k∗τ ,v
∗
τ ), the meta-learner updates Sk∗τ by a gradient descent

step on the validation loss L(Dvlτ ;Sk∗τv
∗
τ ). Let w∗τ ≡ Sk∗τv

∗
τ . As v∗τ is a function of Sk∗τ ,

by the chain rule, ∇Sk∗τ
L(Dvlτ ;Sk∗τv

∗
τ ) = ∇>w∗τL(D

vl
τ ;w∗τ )∇Sk∗τ

w∗τ = ∇w∗τL(D
vl
τ ;w∗τ )v

∗>
τ +

∇>w∗τL(D
vl
τ ;w∗τ )Sk∗τ∇Sk∗τ

v∗τ . Here, for simplicity, the dependence of k∗τ on Sk∗τ is ignored. As

v∗τ = v
(k∗τ )
τ,0 − α

∑Tinner−1
t′=0 ∇

v
(k∗τ )

τ,t′−1

L(Dtrτ ;Sk∗τv
(k∗τ )
τ,t′−1), the total complexity of computing ∇Sk∗τ

v∗τ

is O(Tinnerdm
3). Usually, m� d is very small.

The whole procedure, called MUSML, is shown in Algorithm 1. Similar to other optimization-based
meta-learning algorithms (Finn et al., 2017; Rajeswaran et al., 2019), Tinner is usually small (e.g., 1
to 5) for meta-training, but can be large (e.g., 10 to 20) at meta-testing.

3.3 THEORETICAL ANALYSIS

Assumption 1. (i) `(f(x;w); y) is β1-Lipschitz smooth1 in w; (ii) v∗τ is β2-Lipschitz smooth
in Sk∗τ ; (iii) Eτ‖∇Sk∗τ

L(Dvlτ ;Sk∗τv
∗
τ ) − Eτ∇Sk∗τ

L(Dvlτ ;Sk∗τv
∗
τ )‖2 ≤ σ2; (iv) {v∗τ , τ ∼ p(τ)}

1In other words, ‖∇w`(f(x;w); y)−∇w`(f(x;w
′); y)‖ ≤ β1‖w −w′‖.
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Algorithm 1 MUSML.
Require: stepsize α, ηt, number of inner gradient steps Tinner, number of subspaces K, subspace

dimension m;
1: for t = 0, 1, . . . , T − 1 do
2: sample a task τt = (Dtrτt ,D

vl
τt) ∼ p(τ);

3: base-learner:
4: L∗τt =∞;
5: for k = 1, . . . ,K do
6: v

(k)
τt,0

= 1
m1m;

7: for t′ = 0, 1, . . . , Tinner − 1 do
8: v

(k)
τt,t′+1 = v

(k)
τt,t′
− α∇

v
(k)

τt,t
′
L(Dtrτt ;Sk,tv

(k)
τt,t′

);

9: end for
10: if L(Dtrτt ;Sk,tv

(k)
τt,Tinner

) < L∗τ then
11: k∗τt = k,v∗τt = v

(k)
τt,Tinner

,L∗τt = L(D
tr
τt ;Sk,tv

(k)
τt,Tinner

);
12: end if
13: end for
14: meta-learner:
15: gt = ∇Sk∗τt ,t

L(Dvlτt ;Sk∗τt ,tv
∗
τt);

16: for k = 1, . . . ,K do
17: Sk,t+1 = Sk,t − ηtI(k∗τt , k)gt; . I(a, b) = 1 if a = b otherwise 0.
18: end for
19: end for
20: return S1,T , . . . ,SK,T .

and basis vectors are in a compact set, and thus their `2-norms are bounded by a con-
stant β3 > 0; (v) There exists a constant ε > 0 such that for all τ ∼ p(τ),
L(Dtrτ ;Sk∗τv

∗
τ ) ≤ mink 6=k∗τ ,1≤k≤K L(D

tr
τ ;Skv

(k)
τ,Tinner

)− ε.

The assumptions on Lipschitz-smoothness and variance are commonly used in stochastic non-
convex optimization (Ghadimi & Lan, 2013; Reddi et al., 2016) and meta-learning in non-convex
settings (Fallah et al., 2020; Zhou et al., 2021), while the compactness assumption is also used in
the convergence analysis of bilevel optimization (Franceschi et al., 2018).

Let I(a, b) = 1 if a = b, and 0 otherwise. The following Theorem establishes convergence of the
proposed algorithm and the proof is similar to that in (Fallah et al., 2020). The O(1/

√
T ) rate is the

same as MAML (Fallah et al., 2020; Ji et al., 2020) and other meta-learning algorithms (Zhou et al.,
2019) . All proofs are in the Appendix.

Theorem 1. Let Lmeta(S1, . . . ,SK) = L(Dvlτ ;Sk∗τv
∗
τ ) and ηt = min

(
ε

2mβ1β2β3
, 1√

T

)
. With As-

sumption 1, we have

min
1≤t≤T

E‖∇[Sk,t,...,SK,t]Lmeta(S1,t, . . . ,SK,t)‖2 ≤ O

(
K∑
k=1

σ2
√
T

E
∑T
t=1 I(k

∗
τt , k)

)
,

where the expectation is over the random training samples. If each subspace is selected T
K times in

expectation, i.e., E
∑T
t=1 I(k

∗
τt , k) =

T
K for all k, then the upper bound simplifies to O

(
σ2K2
√
T

)
.

Next, we study the testing performance of the learned subspaces. The following assumption ensures
that the task parameters are stable when one sample is changed in the training set. Stability is a
widely-used tool to analyze the generalization of meta-learning algorithms and bilevel optimiza-
tion (Maurer & Jaakkola, 2005; Bao et al., 2021).
Assumption 2. For any two training sets Dtr1 and Dtr2 that only differ in one sample,
max1≤k≤K ‖argminv∈Rm L(Dtr1 ;Skv)− argminv∈Rm L(Dtr2 ;Skv)‖ ≤ K

Ntr
.

Theorem 2. Let τ ′ be a testing task, R(τ ′;S1, . . . ,SK) ≡ EDtr
τ′∼τ

′E(x,y)∼τ ′`(f(x;Sk∗
τ′
v∗τ ′), y)

and R̂(τ ′;S1, . . . ,SK) ≡ EDtr
τ′∼τ

′L(Dtrτ ′ ;Sk∗τ′v
∗
τ ′), where (k∗τ ′ ,v

∗
τ ′) =
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argmin1≤k≤K,vτ′∈Rm L(D
tr
τ ′ ;Skvτ ′). With Assumptions 1 and 2, (i) we have

R(τ ′;S1, . . . ,SK) ≤ R̂(τ ′;S1, . . . ,SK) +O
(
K
√
m

Ntr

)
; (2)

(ii) Let wo
τ ′ ≡ argminwτ′∈Rd E(x,y)∼τ ′`(f(x;wτ ′), y) be the optimal model for τ ′ and Ro(τ ′) ≡

E(x,y)∼τ ′`(f(x;w
o
τ ′), y) be its expected risk. Then,

R(τ ′;S1, . . . ,SK) ≤ Ro(τ ′) +O
(
K
√
m

Ntr
+ min

1≤k≤K
dist(wo

τ ′ ,Sk)
)
, (3)

where dist(wo
τ ′ ,Sk) ≡ minwτ′∈Sk ‖w

o
τ ′ −wτ ′‖ is the distance between wo

τ ′ and the subspace Sk.

Theorem 2 analyzes the effects of m and K to the testing performance. From (2), increasing the
complexity of subspaces may reduce R̂(τ ′;S1, . . . ,SK) but increase the expected generalization
gapR(τ ′;S1, . . . ,SK)−R̂(τ ′;S1, . . . ,SK). For fixed K and m, proper subspaces enable the base
learner to reduce both R̂(τ ′;S1, . . . ,SK) and R(τ ′;S1, . . . ,SK). From (3), the expected excess
riskR(τ ′;S1, . . . ,SK)−Ro(τ ′) is upper bounded byO

(
K
√
m

Ntr
+min1≤k≤K dist(wo

τ ′ ,Sk)
)

. The
first term depends on the complexity of subspaces, while the second term arises from the approxi-
mation error of wo

τ ′ using the learned subspaces. Again, good subspaces reduce the excess risk.

For the centroid-based clustering method in (Zhou et al., 2021), its expected excess risk is bounded
byO

(
γTinner

Ntr
+ ‖ωk∗

τ′
−wo

τ ′‖2
)

, where γ > 1 and ωk∗
τ′

is the centroid of the cluster that τ ′ belongs
to. The distance ‖ωk∗

τ′
−wo

τ ′‖ plays the same role as the term min1≤k≤K dist(wo
τ ′ ,Sk) in (3), which

measures how far the optimal model wo
τ ′ is away from the subspaces or clusters.

3.4 A PRACTICAL IMPLEMENTATION FOR MUSML

The proposed MUSML is a model-agnostic meta-learning framework. Note that the basis incur ad-
ditional memory cost, which can be problematic especially for deep networks that usually contain
millions of parameters. As features extracted from the bottom layers are more general (Yosin-
ski et al., 2014), a practical implementation is to divide the network weight w into two parts: (i)
w(btm) ∈ Rdbtm for the bottom layers near the input that are shared globally across all tasks, and (ii)
w(top) ∈ Rdtop for the top layers. Let the basis Sk be partitioned analogously as [1>m ⊗ θ;S

(top)
k ],

where θ ∈ Rdbtm is the globally shared parameters and ⊗ is the Kronecker product. This implemen-
tation reduces the memory from O(Kmd) to O(Kmdtop + dbtm).

4 EXPERIMENTS

4.1 FEW-SHOT CLASSIFICATION ON META-DATASET

Dataset. We use the standard 5-way Ntr-shot setting (Ntr = 1 or 5) on the commonly-used Meta-
Dataset benchmark (Yao et al., 2019a;b; Triantafillou et al., 2020) to evaluate the proposed method.
This benchmark consists of 4 image classification datasets: Caltech-UCSD Birds-200-2011 (denoted
by Bird) (Welinder et al., 2010), Describable Textures Dataset (denoted by Texture) (Cimpoi et al.,
2014) , Fine-Grained Visual Classification of Aircraft (denoted by Aircraft) (Maji et al., 2013), and
FGVCx-Fungi (denoted by Fungi) (Schroeder & Cui, 2018). We adopt the split setting in (Yao
et al., 2019a) that for each dataset, classes are randomly split into three parts for meta-training,
meta-validation and meta-testing, respectively. Table 1 describes the statistics of this meta-dataset,
and Figure 6 in the appendix shows some example images. Following (Yao et al., 2019a), each
few-shot task samples classes from one of the four datasets.

Network Architecture. We use the Conv4 network in (Yao et al., 2019a;b), which has 4 modules.
Each module is a 3× 3 convolutional layer with 64 filters, followed by a batch normalization layer,
ReLU activation, and a 2 × 2 max-pooling layer. Follow the practical implementation, the first
two modules are shared globally by all the tasks. As the choice of the model f(x;w) is flexible,
a simple prototype classifier with the cosine similarity (Snell et al., 2017; Gidaris & Komodakis,
2018) is used here.
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Table 1: Statistics for datasets.

dataset #classes #samples per class
(meta-training/validation/testing)

Meta-Dataset

Bird (Welinder et al., 2010) 64/16/20 60
Texture (Cimpoi et al., 2014) 30/7/10 120
Aircraft (Maji et al., 2013) 64/16/20 100

Fungi (Schroeder & Cui, 2018) 64/16/20 150

Mini-Imagenet (Vinyals et al., 2016) 64/16/20 600

Baselines. We compare the proposed method with state-of-the-art baselines: (i) meta-learning algo-
rithms with a globally shared meta-model including MAML (Finn et al., 2017), MetaSGD (Li et al.,
2017), TapNet (Yoon et al., 2019), and ProtoNet (Snell et al., 2017); (ii) meta-learning algorithms
with a task modulation network including TADAM (Oreshkin et al., 2018), MT-Net (Lee & Choi,
2018), BMAML (Yoon et al., 2018), and MMAML (Vuorio et al., 2019); (iii) structured meta-learn-
ing algorithms including HSML (Yao et al., 2019a), ARML (Yao et al., 2019b), TSA-MAML (Zhou
et al., 2021), and (Jerfel et al., 2019) (denoted by DPMM).

Implementation Details. We use the cross-entropy loss for `(·, ·). For the base learner, we use
the SGD optimizer with a learning rate of 0.1. The number Tinner of inner gradient steps is set to
3 at the meta-training and 15 at the meta-validation and meta-testing. We train the subspace bases
for 30, 000 iterations using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate
of 0.001, which is then reduced by half every 5, 000 iterations. To prevent overfitting, we evaluate
the performance on the meta-validation set every 1, 000 iterations and stop training when the meta-
validation accuracy has no significant improvement for 10 consecutive evaluations. By tuning the
hyperparameters K and m from {1, 5, 10, 20, 30, 40} using grid search, (K = 5,m = 5) and
(K = 20,m = 5) achieve the highest meta-validation accuracy for the 1-shot and 5-shot settings,
respectively, thus are used in experiments.

Table 2: Accuracies (with 95% confidence intervals) of 5-way 1-shot classification on Meta-Dataset.
† means that the result is obtained by running the code under this setting. Results of other baselines
are from (Yao et al., 2019a;b).

method Bird Texture Aircraft Fungi average

MAML (Finn et al., 2017) 53.94± 1.45% 31.66± 1.31% 51.37± 1.38% 42.12± 1.36% 44.77%
MetaSGD (Li et al., 2017) 55.58± 1.43% 32.38± 1.32% 52.99± 1.36% 41.74± 1.34% 45.67%

ProtoNet† (Snell et al., 2017) 60.58± 1.22% 34.48± 1.18% 53.38± 1.33% 40.61± 1.27% 47.28%
TapNet (Yoon et al., 2019) 54.90± 1.34% 32.44± 1.23% 51.22± 1.34% 42.88± 1.35% 45.36%

TADAM (Oreshkin et al., 2018) 56.58± 1.34% 33.34± 1.27% 53.24± 1.33% 43.06± 1.33% 46.56%
MT-Net (Lee & Choi, 2018) 58.72± 1.43% 32.80± 1.35% 47.72± 1.46% 43.11± 1.42% 45.59%
BMAML (Yoon et al., 2018) 54.89± 1.48% 32.53± 1.33% 53.63± 1.37% 42.50± 1.33% 45.89%

MMAML (Vuorio et al., 2019) 56.82± 1.49% 33.81± 1.36% 53.14± 1.39% 42.22± 1.40% 46.50%
DPMM† (Jerfel et al., 2019) 61.30± 1.47% 35.21± 1.35% 57.88± 1.37% 43.81± 1.45% 49.55%
HSML (Yao et al., 2019a) 60.98± 1.50% 35.01± 1.36% 57.38± 1.40% 44.02± 1.39% 49.35%
ARML (Yao et al., 2019b) 62.33± 1.47% 35.65± 1.40% 58.56± 1.41% 44.82± 1.38% 50.34%

TSA-MAML† (Zhou et al., 2021) 61.37± 1.42% 35.41± 1.39% 58.78± 1.37% 44.17± 1.25% 49.93%

MUSML (proposed) 63.97± 1.10% 37.65± 1.16% 61.36%± 1.20% 46.23± 1.12% 52.30%

Results. For each dataset, we report the classification accuracy averaged over 1, 000 tasks randomly
sampled from the meta-testing set. The results are reported in Table 2 for the 1-shot setting and
Table 3 for the 5-shot setting. As can be seen, in both settings, MUSML consistently outperforms
current state-of-the-arts. Compared with ProtoNet, the better performance possessed by MUSML
confirms the effectiveness of structuring task models intro multiple subspaces. Compared with
other structured meta-learning methods (i.e., DPMM, HSML, ARML, and TSA-MAML), MUSML
achieves higher accuracy.
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Table 3: Accuracies (with 95% confidence intervals) of 5-way 5-shot classification on Meta-Dataset.
† means that the result is obtained by running the code under this setting. Results of other baselines
are from (Yao et al., 2019a;b).

method Bird Texture Aircraft Fungi average

MAML (Finn et al., 2017) 68.52± 0.73% 44.56± 0.68% 66.18± 0.71% 51.85± 0.85% 57.78%
MetaSGD (Li et al., 2017) 67.87± 0.74% 45.49± 0.68% 66.84± 0.70% 52.51± 0.81% 58.18%

ProtoNet† (Snell et al., 2017) 71.48± 0.72% 50.36± 0.67% 71.67± 0.69% 55.68± 0.82% 62.29%
TapNet (Yoon et al., 2019) 69.07± 0.74% 45.54± 0.68% 67.16± 0.66% 51.08± 0.80% 58.21%

TADAM (Oreshkin et al., 2018) 69.13± 0.75% 45.78± 0.65% 69.87± 0.66% 53.15± 0.82% 59.48%
MT-Net (Lee & Choi, 2018) 69.22± 0.75% 46.57± 0.70% 63.03± 0.69% 53.49± 0.83% 58.08%
BMAML (Yoon et al., 2018) 69.01± 0.74% 46.06± 0.69% 65.74± 0.67% 52.43± 0.84% 58.31%

MMAML (Vuorio et al., 2019) 70.49± 0.76% 45.89± 0.69% 67.31± 0.68% 53.96± 0.82% 59.41%
DPMM† (Jerfel et al., 2019) 72.22± 0.70% 49.32± 0.68% 73.55± 0.69% 56.82± 0.81% 63.00%
HSML (Yao et al., 2019a) 71.68± 0.73% 48.08± 0.69% 73.49± 0.68% 56.32± 0.80% 62.39%
ARML (Yao et al., 2019b) 73.68± 0.70% 49.67± 0.67% 74.88± 0.64% 57.55± 0.82% 63.95%

TSA-MAML† (Zhou et al., 2021) 72.31± 0.71% 49.50± 0.68% 74.01± 0.70% 56.95± 0.80% 63.20%

MUSML (proposed) 78.57± 0.68% 51.73± 0.67% 81.03± 0.66% 59.20± 0.68% 67.63%

(a) meta-training tasks. (b) meta-testing tasks.

Figure 2: Usage frequency of each learned subspace under the 5-way 1-shot setting (K = 5,m = 5).
The value in the (i, j)-th grid is the frequency that MUSML assigns tasks from the j-th dataset to
the i-th subspace. Dark colors indicate high frequencies.

(a) meta-training tasks. (b) meta-testing tasks.

Figure 3: Usage frequency of each learned subspace for the 5-way 5-shot setting (K = 20,m = 5).
The value in the (i, j)-th grid is the frequency that MUSML assigns tasks from the j-th dataset to
the i-th subspace. Dark colors indicate high frequencies.

Figure 2 shows the usage frequency of learned subspaces under the 5-way 1-shot setting, and Fig-
ure 3 shows that under the 5-way 5-shot setting. As can be seen, the task structure under 5-shot
setting is more clear. Figure 3 also reveals that 5-shot tasks from Bird and Fungi are prone to share
the same subspace (i.e., the second subspace).

We further study the effects of K and m to the meta-testing accuracy. We repeat the experiment for
10 times and plot the accuracy in Figures 4 and 5 under the 1-shot and 5-shot settings, respectively.
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(a) Varying K when m = 5 is fixed. (b) Varying m when K = 5 is fixed.

Figure 4: The meta-testing accuracy under the 5-way 1-shot setting.

(a) Varying K when m = 5 is fixed. (b) Varying m when K = 20 is fixed.

Figure 5: The meta-testing accuracy under the 5-way 5-shot setting.

As shown in Figures 4(a) and 5(a), a larger K under the 1-shot setting is likely to cause overfitting
than under the 5-shot setting. According to Figures 4(b) and 5(b), the accuracy is significantly
improved when m increases from 1 to 5.

We conduct experiments to verify that the effectiveness of MUSML is from its subspace structure
instead of higher model complexity. We test the prototype classifier (Snell et al., 2017) with a
Kd × wider network (denoted by Wide-ProtoNet). As shown in Table 4 and Table 5, MUSML still
achieves better performance.

Table 4: Accuracies (with 95% confidence intervals) of 5-way 1-shot classification on Meta-Dataset.
method Bird Texture Aircraft Fungi average

ProtoNet (Snell et al., 2017) 60.58± 1.22% 34.48± 1.18% 53.38± 1.33% 40.61± 1.27% 47.28%
Wide-ProtoNet 61.58± 1.10% 34.81± 1.05% 57.41± 1.28% 43.65± 1.00% 49.36%

MUSML (proposed) 63.97± 1.10% 37.65± 1.16%% 61.36%± 1.20% 46.23± 1.12% 52.30%

Table 5: Accuracies (with 95% confidence intervals) of 5-way 5-shot classification on Meta-Dataset.
method Bird Texture Aircraft Fungi average

ProtoNet (Snell et al., 2017) 71.48± 0.72% 50.36± 0.67% 71.67± 0.69% 55.68± 0.82% 62.29%
Wide-ProtoNet 75.52± 0.68% 50.49± 0.58% 76.82± 0.62% 57.12± 0.71% 65.00%

MUSML (proposed) 78.57± 0.68% 51.73± 0.67% 81.03± 0.66% 59.20± 0.68% 67.63%
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4.2 FEW-SHOT CLASSIFICATION ON MINI-IMAGENET

Experiment Setup. We compare the proposed MUSML method with baselines on the Mini-
Imagenet dataset (Vinyals et al., 2016), which consists of 100 randomly chosen classes from
ILSVRC-2012 (Russakovsky et al., 2015). The statistics of this dataset are described in Table 1.
We adopt the same split as (Ravi & Larochelle, 2017). All the methods in comparison use the
experiment settings and the Conv4 backbone introduced in (Vinyals et al., 2016). The first two
modules of Conv4 are shared globally by all the tasks. We evaluate the performance on the meta-
validation set every 1, 000 iterations, and stop training when the meta-validation accuracy has no
significant improvement for 10 consecutive evaluations. As this dataset has no explicitly heteroge-
neous structure, the complexity of subspace is probably low. We tune the hyperparameters K and
m from {1, 2, 3, 4, 5} using grid search, where (k = 2,m = 3) and (k = 3,m = 3) achieve the
best meta-validation performance for the 1-shot and 5-shot settings, respectively, and thus use these
settings.

Result. We report in Table 6 the classification accuracy averaged over 600 tasks randomly sampled
from the meta-testing set. As can be seen, MUSML performs better than baselines.

Table 6: Accuracies (with 95% confidence intervals) of 5-way few-shot classification on the Mini-
Imagenet dataset. “-” means that the corresponding result is not reported in related publications.

method 5-way 1-shot 5-way 5-shot

MAML (Finn et al., 2017) 48.7± 1.8% 63.1± 0.9%
MetaSGD (Li et al., 2017) 50.5± 1.9% 64.0± 0.9%

ProtoNet (Snell et al., 2017) 49.4± 0.8% 68.2± 0.7%
TapNet (Yoon et al., 2019) 50.7± 0.1% 69.0± 0.1%

TADAM (Oreshkin et al., 2018) 50.3± 1.7% 66.2± 0.8%
MT-Net (Lee & Choi, 2018) 51.7± 1.8% -
BMAML (Yoon et al., 2018) 50.0± 1.9% -

MMAML (Vuorio et al., 2019) 49.9± 1.9% -
DPMM (Jerfel et al., 2019) 49.3± 1.5% 64.1± 0.9%
HSML (Yao et al., 2019a) 50.4± 1.8% -
ARML (Yao et al., 2019b) 50.4± 1.7% -

TSA-MAML (Zhou et al., 2021) 49.5± 1.3% 64.3± 0.8%

MUSML (proposed) 54.1± 1.0% 69.9± 0.7%

5 CONCLUSION

In this paper, we proposed a novel algorithm called MUSML to learn multiple subspaces for task
models. For each task, the base learner selects the subspace that the task lies in, and computes
the corresponding linear combination weight. The subspace bases are meta-parameters updated by
the meta-learner. We theoretically establish the convergence and analyze the generalization perfor-
mance. Experimental results on benchmark datasets demonstrate that the proposed MUSML method
outperforms the state-of-the-arts.

ETHICS STATEMENT

We have read the ethics review guidelines and ensured that this paper conforms to them. No human
subjects are researched in this work, so there is no such potential risk. All datasets used in the
experiments are public and do not contain personally identifiable information or offensive content.
There is no potential negative societal impacts.

REPRODUCIBILITY STATEMENT
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Appendix. We have include code, data, and instructions needed to reproduce the main experimental
results. All training details are mentioned in Section 4.
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A APPENDIX

A.1 EXAMPLES FROM Meta-Dataset

(a) Bird. (b) Texture. (c) Aircraft. (d) Fungi.

Figure 6: Some examples taken from Meta-Dataset.

A.2 PROOF OF THEOREM 1

Proof. Let vec(X) be the vectorization of a matrix X, i.e., the column vector obtained by stack-
ing the columns of X. We first consider the kth subspace Sk. As both `(f(x;w), y) and v∗k
are Lipschitz-smooth, L(Dvlτ ;Sk∗τv

∗
τ ) is also Lipschitz smooth in Sk∗τ . As L(Dtrτ ;Sk∗τv

∗
τ ) ≤

mink 6=k∗τ ,1≤k≤K L(D
tr
τ ;Skv

(k)
τ,Tinner

) − ε, by the mean value theorem, L(D(tr)
τt ;Sk∗τt ,t+1v

∗
τt) =

L(D(tr)
τt ;Sk∗τt ,tv

∗
τt) + ηt vec

(
∇Sk∗τt

L(D(tr)
τt ;Sk∗τtv

∗
τt) |Sk∗τt=Sk∗τt ,ξ

)>
vec(Sk∗τ ,t+1 − Sk∗τt ,t) ≤

L(D(tr)
τt ;Sk∗τt ,tv

∗
τt) + 2mηtβ1β2β3 ≤ mink 6=k∗τt ,1≤k≤K L(D

tr
τt ;Sk,tv

(k)
τt,Tinner

), where Sk∗τt ,ξ ∈
[Sk∗τt ,t+1,Sk∗τt ,t], thus, k∗τt is unchanged within one meta step. Let kt ≡ k∗τt for notation simplicity.
Using the Taylor expansion, it follows that

Lmeta(Sk,t+1)

≤ Lmeta(Sk,t) + vec(∇Sk,tLmeta(Sk,t))
> vec (Sk,t+1 − Sk,t) +

β1β2
2
‖Sk,t+1 − Sk,t‖2

= Lmeta(Sk,t)− I(kt, k)ηt vec(∇Sk,tLmeta(Sk,t))
> vec(∇Sk,tL(Dvlτt ;Sk,tv

∗
τt))

+ I(kt, k)
η2t β1β2

2
‖∇Sk,tL(Dvlτt ;Sk,tv

∗
τt)‖

2

≤ Lmeta(Sk,t)− I(kt, k)ηt vec(∇Sk,tLmeta(Sk,t))
> vec

(
∇Sk,tL(Dvlτt ;Sk,tv

∗
τt)−∇Sk,tLmeta(Sk,t)

)
+ I(kt, k)ηt‖∇Sk,tLmeta(Sk,t)‖2 + I(kt, k)

η2t β1β2
2
‖∇Sk,tL(Dvlτt ;Sk,tv

∗
τt)‖

2.

Take conditional expectation w.r.t. Sk,t on both sides, then take the total expectation, we have

ELmeta(Sk,t+1) ≤ ELmeta(Sk,t)− EI(kt, k)ηt(1−
ηtβ1β2

2
)‖∇SkLmeta(Sk,t)‖2 + EI(kt, k)

β1β2σ
2η2t

2

≤ ELmeta(Sk,t)− EI(kt, k)
ηt
2
‖∇SkLmeta(Sk,t)‖2 + EI(kt, k)

η2t β1β2σ
2

2
, (4)

where we have used 1 − ηtβ1β2

2 ≥ 1
2 to obtain (4). Summing the above inequality over t, and

rearranging it, we obtain(
ηt
2
E

T∑
t=1

I(kt, k)

)
min

1≤t≤T
E‖∇SkLmeta(Sk,t)‖2 ≤ ELmeta(Sk,0) +

η2t β1β2σ
2

2
E

T∑
t=1

I(kt, k).

(5)
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Dividing both sides by ηt
2 E
∑T
t=1 I(kt, k), as ηt = min

(
ε

2mβ1β2β3
, 1√

T

)
, we obtain

min
1≤t≤T

E‖∇Sk,tLmeta(Sk,t)‖2 ≤ O

(
σ2
√
T

E
∑T
t=1 I(kt, k)

)
, (6)

and conclude that

min
1≤t≤T

E‖∇[Sk,t,...,SK,t]Lmeta(S1,t, . . . ,SK,t)‖2 ≤ O

(
K∑
k=1

σ2
√
T

E
∑T
t=1 I(k

∗
τt , k)

)
. (7)

If E
∑T
t=1 I(kt, k) =

T
K , then

min
1≤t≤T

E‖∇[S1,t,...,SK,t]Lmeta(S1,t, . . . ,SK,t)‖2 = O
(
σ2K2

√
T

)
. (8)

B PROOF OF THEOREM 2

Proof. For notation simplicity, we omit the superscript of τ ′, and let z = (x, y) denote samples.
(i) Let v∗τ,k = argminvτ L(Dtrτ ;Skvτ ). We aim to show that the expected generalization gap

R(τ ′;S1, . . . ,SK) − R̂(τ ′;S1, . . . ,SK) = EτEDtrτ
[
Ez∼τ `(f(x;Skv

∗
τ,k), y)− L(Dtrτ ;Skv

∗
τ,k)
]

is bounded by an order of O(λK
√
m

Ntr
). Let Dtr(i)τ be a training set only differs with Dtrτ in the

ith sample, ie, Dtr(i)τ ≡ (Dtrτ − {zi}) ∪ {z′i}. And let v
∗(i)
τ,k ≡ argminvτ L(D

tr(i)
τ ;Skvτ ).

We will show that the solution obtained by minimizing the losses on Dtrτ is close to the
one on Dtr(i)τ : 1) EDtrτ Ez∼τ `(f(x;Skv

∗
τ,k), y) = 1

Ntr

∑Ntr
i=1 EDtrτ Ez′i∼τ `(f(x

′
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∗
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′
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1
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EDtrτ L(D
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∗
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]∣∣
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, (Assumption 2)

where β1 is the Lipschitz constant of `(f(x;w), y), β4 is the bound of basis vectors as they stay in
a compact set, and ‖X‖F is the Frobenius norm. As the above analysis is independent of the choice
of k, we conclude that

R(τ ′;S1, . . . ,SK)− R̂(τ ′;S1, . . . ,SK) ≤ O
(
K
√
m

Ntr

)
. (9)
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(ii) Let wo
τ = argminwτ Ez∼τ `(z;wτ ) and koτ = argmin1≤k≤K dist(wo

τ ,Sk). The excess risk
satisfies

0 ≤ R(τ ′;S1, . . . ,SK)−Ro(τ ′)
≤ EDtrτ

[
Ez∼τ `(f(x;Sk∗τv

∗
τ ), y)− L(Dtrτ ;Sk∗τv

∗
τ )
]︸ ︷︷ ︸

≤O
(
K
√
m

Ntr

)

+ EDtrτ

 1

Ntr

∑
z∈Dtrτ

`(f(x;Sk∗τv
∗
τ ), y)− Ez∼τ `(f(x;w

o
τ ), y)


≤ O

(
K
√
m

Ntr

)
+ EDtrτ

[
L(Dtrτ ;Sk∗τv

∗
τ )− L(Dtrτ ;wo

τ,Skoτ
)
]

︸ ︷︷ ︸
Sk∗τ v

∗
τ is the optimal solution in the subspaces, thus, this term≤0

+ EDtrτ ‖∇wL(Dtrτ ; ξτ )‖‖wo
τ,S⊥

koτ

‖ (by the mean aalue theorem)

≤ O
(
K
√
m

Ntr
+ β2‖wo

τ‖S⊥
koτ

)
where we have decomposed wo

τ = wo
τ,Skoτ

+ wo
τ,S⊥

koτ

, ξτ ∈ [wo
τ,Skoτ

,wo
τ ], and the last inequality

follows by the Lipschitz-smoothness. We conclude that

R(τ ′;S1, . . . ,SK)−Ro(τ ′) ≤ O
(
K
√
m

Ntr
+ min

1≤k≤K
dist(wo

τ ′ ,Sk)
)
.
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