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ABSTRACT

“The power of a generalization system follows directly from its biases” (Mitchell
1980). Today, CNNs are incredibly powerful generalisation systems—but to what
degree have we understood how their inductive bias influences model decisions?
We here attempt to disentangle the various aspects that determine how a model
decides. In particular, we ask: what makes one model decide differently from
another? In a meticulously controlled setting, we find that (1.) irrespective of the
network architecture or objective (e.g. self-supervised, semi-supervised, vision
transformers, recurrent models) all models end up making similar decisions. (2.) To
understand these findings, we analysed model decisions on the ImageNet validation
set from epoch to epoch and image by image. We find that the ImageNet validation
set, among others, suffers from dichotomous data difficulty (DDD): For the range
of investigated models and their accuracies, it is dominated by 46.0% “trivial”
and 11.5% “impossible” images (beyond label errors). Only 42.5% of the images
could possibly be responsible for the differences between two models’ decision
boundaries. (3.) Only removing the “impossible” and “trivial” images allows us to
see pronounced differences between models. (4.) Humans are highly accurate at
predicting which images are “trivial” and “impossible” for CNNs (81.4%). This
implies that in future comparisons of brains, machines and behaviour, much may
be gained from investigating the decisive role of images and the distribution of
their difficulties.

Figure 1: Can you predict which of these images are “tricky” for CNNs? Out of every of the six
pairs, one image is always correctly classified and one always incorrectly (answers on the next page1).
On ImageNet, image difficulty appears largely dichotomous: CNNs make highly systematic errors
irrespective of inductive bias (architecture, optimiser, ...). Humans can reliably differentiate between
images that are “trivially easy” and “impossibly hard” for CNNs (81.4% accuracy).

∗joint first authors in alphabetical order; +corresponding author
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(a) ResNet-18 variants (b) State-of-the-art models

Figure 2: Dichotomous Data Difficulty (DDD) in a nutshell: Irrespective of model differences (e.g.
architecture, hyperparameters, optimizer), most ImageNet validation images are either “trivial” (in
the sense that all models classify them correctly) or “impossible” (all models make an error). This
dichotomous difficulty masks underlying differences between models (as we will show later), and it
affects the majority of the ImageNet dataset—i.e. not only images with label errors (red) as identified
by the cleanlab package (Northcutt et al., 2021a). For comparison, a binomial distribution of errors is
shown in green: this is the distribution of errors expected for completely independent models if all
images were equally difficult.

1 INTRODUCTION

Let’s play a game we call Find those tricky images! In Figure 1, we show pairs of images. One image
is impossible for a CNN regardless of its architecture, optimiser, random seed etc.—it never gets the
label correct. The other image always yields a correct classification—can you find the tricky images?

Done? We will wait. You have probably never seen these images before, and neither have CNNs
seen them during training. How exactly a decision maker—be it a neural network, or a biological
brain—generalises to previously unseen images is influenced by the decision maker’s inductive bias
(Goyal and Bengio, 2020)—in fact, as already recognised in 1980, “the power of a generalisation
system follows directly from its biases” (Mitchell, 1980). Commonly, the inductive bias is defined as
the set of assumptions and choices that determine which hypothesis space is available to the model,
before the model is exposed to data. For instance, starting from the set of all possible hypotheses,
the hypothesis space of linear models is a tiny subset (linearity is one example of a strong inductive
bias). After the “choice” of the inductive bias, the dataset then influences which particular decision
boundary (or concrete hypothesis) is selected from the model’s hypothesis space. Finding the right
inductive bias for a given problem is at the core of machine learning. Therefore it is only consequent
that a tremendous amount of work is being invested in improved architectures (Alzubaidi et al., 2021),
optimisers (Ruder, 2016), learning rate schedules(Loshchilov and Hutter, 2016), etc.—surely we
would expect these choices to make a difference on the resulting model’s decisions even if trained on
the exact same dataset. However, in the present work, we have tested various factors related to the
inductive bias—among other aspects, architecture, optimiser, learning rate, and initialisation—and
yet, on ImageNet, all models agree in the sense that they all make largely similar errors. This is
shown in Figure 2: even radically different state-of-the-art (SOTA) models make surprisingly similar
errors on the ImageNet validation set. To a certain degree, image difficulty appears dichotomous:
nearly 60% of all images are either “trivial” (all models correct) or “impossible” (all models wrong).
As we will demonstrate later, this dataset issue masks and overshadows hidden differences between
models.

1The tricky (=misclassified) images are: 1. bottom, 2. bottom, 3. top, 4. top, 5. bottom, 6. top. This game is
an homage to “Name that dataset” by Torralba and Efros (2011).
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1.1 RELATED WORK

Metrics for CNN comparisons Given the scientific, practical and engineering implications of
model inductive biases, it is perhaps not surprising that many studies investigated differences between
neural networks. For this purpose, the standard metric is accuracy, but some studies also focus on
learned features and decision boundaries (e.g. Hermann and Lampinen, 2020; Nguyen et al., 2020;
Wang et al., 2018; Hermann et al., 2019; Shah et al., 2020), or internal representations (Kriegeskorte
et al., 2008; Kornblith et al., 2019). Using representational similarity analysis (RSA) and most
similar to our work, Mehrer et al. (2020) and Akbarinia and Gegenfurtner (2019) investigated whether
different CNNs yield correlated representations and found that many neural networks show differences
on a representational level. How intermediate representations are related to classification behaviour
largely remains unclear. In order to compare networks on a behavioural level directly, metrics such as
error consistency can be used. Error consistency (measured by κ) assesses the degree of agreement
between two decision-makers on an image-by-image basis, not just average performance (Geirhos
et al., 2020a;b).

Consistent model errors Tramèr et al. (2017) observe that the decision boundaries of two models
are highly similar, an issue that is related to the transferability of adversarial examples between
models. Additionally, it has been shown that standard vanilla models systematically agree on their
errors both on IID (independent and identically distributed) data (Mania et al., 2019) and OOD
(out-of-distribution) data (Geirhos et al., 2020a). It is unclear whether, if at all, there is a connection
between model inductive bias, dataset difficulty and consistent model errors. Another line of work
investigated fairness metric consistency (Qian et al., 2021).

Relationship between DDD and OOD Evaluating models on out-of-distribution (OOD) datasets is
an important way to differentiate between models. However, different models show highly consistent
errors even when evaluated on OOD data, according to Geirhos et al. (2020a, Figure 3). Here,
CNN-to-CNN consistency is at .62, .48 and .67 depending on the OOD dataset, which is closer to
perfect consistency than it is to chance level. Therefore, while OOD data can distinguish models
in terms of overall accuracy, OOD testing is insufficient in terms of revealing deeper differences
overshadowed by dichotomous data difficulty (DDD). Furthermore, OOD datasets might also exhibit
DDD. Looking forward, OOD testing as well as curating datasets without DDD are not mutually
exclusive and should be employed in a combined fashion for a comprehensive understanding of
model similarities and differences.

Problems of datasets The ImageNet dataset (Russakovsky et al., 2015) has numerous issues,
including some that affect most datasets, like dataset bias (Torralba and Efros, 2011). Northcutt et al.
(2021b) showed that around 6% of ImageNet validation images suffer from label errors. Additionally,
many images require more than a single label since multiple objects are present, and the distinctions
between classes seem rather arbitrary at times (Tsipras et al., 2020; Beyer et al., 2020). Even when
trying to replicate the original ImageNet labeling procedure in order to create a new test set, models
trained on ImageNet have an accuracy drop of 11–14% on this new test set (Recht et al., 2019).
Finally, ImageNet labels are based on the WordNet hierarchy, which contains many problematic
categories. For instance, many categories in the “person” subtree have labels ranging from outdated
to outrageous and racist (Crawford and Paglen; Yang et al., 2020). Furthermore and similar to our
work, authors already investigated image sampling strategies during training (Jiang et al., 2019;
Katharopoulos and Fleuret, 2018). However, these studies focused on accelerating the training and
not how the ImageNet issues may obscure differences between models as we explore here.

Example difficulty A number of papers have investigated what makes images easy or difficult—e.g.
Agarwal et al. (2020); Baldock et al. (2021); Mangalam and Prabhu (2019); Paul et al. (2021) for
MNIST/CIFAR, and e.g. Hacohen et al. (2020) for ImageNet. Additionally, it is well-known that
models often make similar errors and often learn examples in the same order, see e.g. Toneva et al.
(2018); Kalimeris et al. (2019).

To summarise: it was clear that there are easier and harder images and that models often make similar
errors. However, the relationship between these two findings has not commonly been recognised. We
here show for the first time the implication thereof: That underlying model differences are masked by
dichotomous data difficulty.
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2 METHODS

All details regarding our software, hardware and dataset can be found in the appendix (section A.2).
Similarity measure For the investigation of network similarities, we mainly use the behavioural
measure error consistency (κ) (Geirhos et al., 2020a) based on Cohen’s work (Cohen, 1960). κ > 0
indicates that two decision-makers systematically make errors on the same images; κ = 0 indicates
no more error overlap than what could be expected by chance alone. κ < 0 implies that two decision-
makers systematically disagree.
Network variations In our experiments we investigated the systematic agreement between CNNs,
varying not only architecture but carefully controlling for number of epochs, optimiser, batch size,
random initialisation, learning rate, hardware randomness, data order, architecture, and disjoint data
sampling. Unless stated otherwise, we only changed one of the above parameters at a time. Our
main results are based on the ImageNet ILSVRC dataset (Russakovsky et al., 2015). We first used
systematic variations on ResNet-18 (called ResNet-18 variants). Details can be found in section A.1
in the Appendix. In total, 30 networks were trained on each of the three data sets (See below:
ImageNet, CIFAR-100, Gaussian) presented in the main text, as well as 60 more networks for control
experiments reported in the Appendix. We stored all network states and all responses for each epoch.
This allows us to analyse the agreement on different training stages epoch by epoch (and image by
image). Later, we investigated different state-of-the-art network architectures. When we investigated
these SOTA models, implementations provided by modelvshuman (Geirhos et al., 2021) were
used (which focuses on various out-of-distribution datasets but not on ImageNet as we do).
Psychophysical experiment We conducted two psychophysical experiments. For both experiments
detailed methods can be found in section A.10 in the appendix.

3 RESULTS

Figure 3: Error consistencies between the different conditions and the base network on the ImageNet
validation set after 90 epochs. For conditions for which multiple models were trained the mean over
all models of a condition is plotted in black.

3.1 MODEL ERRORS ARE ALIGNED DUE TO DICHOTOMOUS DATA DIFFICULTY (DDD)

Figure 3 shows the result of our controlled study of model differences on ImageNet. A positive
error consistency score means that the networks agree beyond what is expected by independent
models. Regardless of the parameter changed (architecture, optimiser, etc.), we find very high error
consistencies (around 0.7)—thus all models agree which images are easy or difficult to classify
irrespective of the model differences investigated.2 Strikingly, changes that we hypothesized would

2In addition to the mean across several runs, we also plot the consistencies of single runs in gray. However,
these are non-visible since the variance within the conditions is very small (except, perhaps, for the “cuda
nondeterministic condition”).
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make a larger difference, e.g. different architecture, have basically the same error consistency as
“minor” changes like enabling hardware randomness on the GPUs. All networks achieved similar top-
1 accuracies (mean: 69.05% after 90 epochs; range: 65.87% to 71.47%; standard deviation: 1.60%,
cf. Figure 13 in the Appendix). Another popular method for agreement analysis is RSA. All our
results also hold here, see Figure 7 in the Appendix. Additionally, switching the base architecture to
VGG-11 or DenseNet-121 does not make a difference either (see Figures 15 and 16 in the Appendix).
A deeper analysis of a single network’s decisions can be found in section A.5 in the appendix.

The findings from Figure 3 becomes even more prominent in Figure 4 where we overlay the previous
figure for all of the 13 networks with different hyperparameters, architectures etc. (explained in
section 2). A very light red entry indicates that all networks correctly classify the image, a very
dark red entry that all networks misclassify the corresponding image; shades of red indicate the
cases in-between (where, e.g., some but not all networks make errors). The figure illustrates that the
previous findings hold across very different inductive biases for ResNet-18 variants: We observe
that 48.2 % images are learned by all models regardless of their inductive bias; 14.3 % images are
consistently misclassified by all models3; only roughly a third (37.5%) of images are responsible for
the differences between two model’s decisions. We call this phenomenon dichotomous data difficulty
(DDD): While the inductive bias restricts the hyperparameter space for a given model, the nature
of the dataset—and especially its highly non-uniform image difficulties—seems to be an important
cause for the high similarity in the decisions of different networks. Model differences may play a
bigger role for images of intermediate difficulty—where there is substantial consistency variation
across models—but only a minor role for easy and hard images. As the dataset primarily consists
of images that all models either classify correctly or incorrectly, all models end up with similar
classification behaviour.

Let us consider two extreme cases in order to put these findings into context. On one end of the
spectrum, if all images were equally difficult and if all networks were independent (i.e. their different
inductive biases would result in independent decision boundaries), then we could expect a binomial
distribution of model errors: out of 13 investigated ResNet-18 models, very few images should be
misclassified by all models and very few correctly classified by all models—instead, most images
should be correctly classified by a handful of models. Figure 2a shows, in green, exactly this
distribution expected for independent models and equally difficult data 4. On the extreme end of
the spectrum, if the inductive bias had no influence at all and the dataset only contained “trivial”
and “impossible” images, we would expect a histogram with only two “spikes”: given ImageNet
accuracies of 69.05% on average, one spike at “None” (30.95% for ImageNet) and one at “All” (69.05
% for ImageNet). Clearly, the empirically obtained histogram (blue) much more resembles the latter,
i.e. the scenario where the (nearly) dichotomous data difficulty dominates over inductive bias. We
observe that DDD on ImageNet is amplified, but not caused, by label errors (Northcutt et al., 2021a;
Beyer et al., 2020; Tsipras et al., 2020) which only have a minor influence on the “None-Bar” from
our histogram in Figure 2. Hence: removing erroneous labels is beneficial and laudable, but it will
not solve DDD.

Is dichotomous data difficulty (DDD) only a problem for ImageNet? This is not the case: DDD is
also present in CIFAR-100 and in the synthetic Gaussian dataset we (purposefully) generated . As a
first indication, for both of these datasets we find similarly high error consistencies between different
models, just like we found for ImageNet (see section A.6 in the appendix).

3.2 DICHOTOMOUS DATA DIFFICULTY EVEN AFFECTS RADICALLY DIFFERENT
STATE-OF-THE-ART MODELS

In the previous section, we found that changing different aspects within one model class does not
change the decisions significantly. However, it is unclear whether these results generalize across
model classes. Therefore, we apply the analysis from Figure 2a with a number of models specifically
chosen to be radically different from each: a self-supervised model (SimCLR, Chen et al. (2020)), a
semi-supervised model (SWSL, Yalniz et al. (2019)), a vision transformer (ViT, Dosovitskiy et al.
(2020)), a recurrent model (CORnet-RT, Kubilius et al. (2019)), a very deep model (ResNet-152,

3Of course, these numbers change if one uses an architecture with higher top-1 accuracy, see next section
4As one of our reviewers suggested, we also tested a model in which the image difficulty is decaying

exponentially—most images are simple, then less and less are more difficult. However, this also does not lead to
a DDD like distribution (see A.9).
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Figure 4: Decisions on all 50K ImageNet validation images of all 13 networks with different inductive
biases (architectures, ...). Dark red indicates that the respective item was falsely classified by all
networks. Light red indicates that the image was correctly classified by all networks. Images are
ordered according to the mean accuracy across networks in the last epoch.

He et al. (2016)), a highly compressed model (SqueezeNet, Iandola et al. (2016)), an adversarially
trained model (ResNet-50 with epsilon 1 L2-robustness on ImageNet, Salman et al. (2020)), a
bag-of-local-features model (Bagnet-33, Brendel and Bethge (2019)), a network trained on stylized
ImageNet (ResNet-50 trained on SIN, Geirhos et al. (2019)), a deep high resolution neural network
(HRNET, Wang et al. (2020)), and OpenAI’s CLIP model (Radford et al., 2021) with a transformer
architecture and joint image-language training objective (11 models in total). Individual accuracies
of these networks can be found in the appendix (see Figure 14). Again, we find the same pattern in
Figure 2b. In total, 46.0 % “trivial” images are learned by all except one model; 11.5 % “impossible”
images are consistently misclassified by all except one model. (42.5%) of images are responsible for
the differences between two model’s decisions.

3.3 DATASET SUBSAMPLING ACCORDING TO DICHOTOMOUS DATA DIFFICULTY REVEALS
DIFFERENCES BETWEEN MODELS

So far we have seen that models agree despite markedly different choices of architecture, training
objectives, and many other aspects. While we hypothesized DDD—a dataset problem—to be the
cause, an alternative explanation would be that models simply agree irrespective of the choice of
data difficulty. In order to differentiate between these two competing hypotheses we performed an
experiment where we removed both the “trivial” and the “impossible” images from the ImageNet
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Figure 5: Error consistency on the original ImageNet test-set (left panel) and on the test-set with
in-between images only (right panel) for the ResNet-variants (a) and the SOTA networks (b). Both
networks were trained on the whole ImageNet training set. Error consistency around 0 indicates
independent responses. A diagonal element of 1 represents that only one network for comparison
was available, otherwise the within condition consistency is calculated, see section 2.

validation dataset. The training dataset was not altered. If model agreement is indeed caused by
DDD, then we should find much stronger differences between different models (as indicated through
lower error consistency scores). The results are presented in Figure 5: Indeed, model differences
are now much more pronounced, in many cases the consistency between different models even
approaches zero, indicating that some networks make truly independent decisions, i.e. have learned
independent decision boundaries whilst being similarly accurate—their different inductive biases
now show. This shows that the high agreement between different models (as observed e.g. by
Geirhos et al. (2020a; 2021) and Mania et al. (2019)) is a result of dataset DDD problems, not that
inductive bias does not matter much. Please note that the reduced consistency is not trivially caused
by the removal of impossible and trivial images: Even when removing extreme images (all models
correct/incorrect), two models could agree or disagree on the remaining images of intermediate
difficulty (error consistency is calculated pair-wise). Finally, we show that there are some particularly
easy and hard classes (Section A.8 in the Appendix).
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3.4 DIFFERENCES BETWEEN “TRIVIALS”, “IMPOSSIBLES” AND “IN-BETWEENS”

Since we found DDD to affect very different models, we were interested to understand the nature
of their differences. To this end, we asked in our first experiment whether humans could identify
which images were “trivial” and “impossible” for CNNs. If they can, this would mean that there
is—at least to some degree—a shared notion of image difficulty between humans and CNNs. We
therefore conducted a psychophysical experiment where subjects were asked to identify which of two
images was easier for a neural network to classify. We found that human observers were able to do so
well beyond chance (50%): on average, with an accuracy of 81%. The accuracies of the different
subjects ranged from 72%5 to 89%, with a standard deviation of 6.29%. The mean error consistency
between the subjects was 0.59. For all combinations of different subjects, the error consistency ranged
from 0.41 to 0.75, with a standard deviation of 0.09. In conclusion, even naïve human observers
without machine learning experience can reliably and consistently predict which images are easy and
difficult for CNNs. In the Appendix, we also show that the ImageNet “superclasses” are not equally
distributed for the three image subsets (see section A.12) and we observe that label ambiguity does
not seem to be the major cause for the emergence of “in-betweens” (see section A.13).

Additionally, we conducted a second follow-up human experiment which aims to find decisive factors
for the trivial, in-between and impossible images. We randomly chose 100 “trivial”, “impossible” and
“in-between” images, each of our eight human observers had to answer three questions; Q1: “How
many objects belonging to different categories are in the image?’, Q2: “Is there a main category in
the image?” Q3: “Is the presentation of the objects unusual in any manner?”. The main results are
summarised in Figure 6.

Figure 6: Barplot displaying the proportions of answers over all observers and for the three questions
mentioned below the subfigures. Colour coded is the image subclass.

For this figure, we removed images which were found to have label errors by Northcutt et al. (2021b)
and balanced the image classes to have the same number of images (n = 57 per class, otherwise our
plots would be misleading if we do not have the same number of images per class). The bars are
normalized so that the proportions of the different classes add up to 1 for each answer category. We
see a clear trend, that with increasing number of categories, increasing uncertainty about the presence
of a main category and increasing oddity of presentation, the proportion of “trivials” decreases while
the proportion of “impossibles” increases. The Pearson correlation coefficient between the mean
number of categories over all observers for each image and the respective mean model accuracy is
-0.37. Furthermore, we found that items with a clear main category had a mean accuracy of 0.64.
Items where observers indicated that they "maybe" had a main category had a mean accuracy of
0.44 while items with no main category had a mean accuracy of 0.37. Finally, items with a normal
presentation had a mean model accuracy of 0.61. Items with a slightly odd presentation had a
mean model accuracy of 0.55 and items with a very odd presentation had a mean model accuracy
of 0.34. We also find high consistencies between the observers, see section A.11 in the appendix.
For completeness, we show raw pooled data in Figure 26/25 (with/without label errors) as well as
individual data with and without label errors in Figure 27/28. All our results also hold when we
include images with label errors.

5Our experimental paradigm here is a high-powered small N-Design (Smith and Little, 2018). Even our
worst performing observer with 72% accuracy yields a p-value of 5 · 10−8 for the null hypothesis of chance
performance.
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In summary, experiment one shows that human can reliably and with high accuracy distinguish trivial
and impossible image. Second, we found in our second experiment that the number of categories
in the image, whether there is a main category or not, and the oddness of presentation all seem
to contribute to whether an image belongs to the “trivial”, “in-between” or “impossible” subsets.
While the factors we investigated show a clear effect, it is evident that there is no single factor
that completely explains the differences between the three subsets of images. We are clearly still
in need of an explanation what makes images “trivial”, “in-between” or “impossible” for neural
networks. To a certain degree, this is perhaps not surprising. There is a long history of investigating
the factors underlying image difficulty in vision research which we could not capture with our only
three questions. Future studies might draw on this line of research and ideally explore more possible
factors which could be related to the dichotomous difficulty inherent in popular image datasets.

4 DISCUSSION

We investigated the influence of dataset difficulty on model decisions. We found that model decisions
are not only determined by the inductive bias (such as their architecture)—they are even more
influenced by the dichotomous difficulty of images in common datasets (DDD): many ImageNet
images are either “trivial” or “impossible”, but only a third in-between. This has implications for
model design. Viewed positively, results for one network may generalise towards different networks,
which can be advantageous in some circumstances. This is in line with previous findings that some
results transfer between different model classes, e.g. adversarial examples (Szegedy et al., 2013;
Papernot et al., 2016). However, if models are trained on datasets with DDD, design decisions like
architectural improvements may not be able to show their full potential since the resulting models,
due to DDD, have a high likelihood of ending up in a very similar decision-regime as other (already
existing) models—and might even inherit their vulnerabilities. In comparison to underspecification
described by D’Amour et al. (2020) we observe that models behave very similarly because of DDD.
When removing trivial and impossible images, the differences between models are unmasked—which
potentially can be used to accelerate training (Jiang et al., 2019; Katharopoulos and Fleuret, 2018).
Furthermore, our method also offers an easy to implement method to curate DDD-free datasets. One
only needs to train different models on the same data, followed by removing impossible and trivial
images.

Previous investigations found label errors to be a problem in a number of datasets. Here we show a
dataset issues that affects a much larger number of ImageNet images than those affected by label
errors. In order to be able to improve our ability to differentiate between models and give their
inductive bias a chance to truly make a difference, we will need datasets that are more balanced
with respect to image difficulty or use only in-between images. This is far from trivial since we do
not know precisely what causes DDD. Inspiration could come from psychology and vision science,
where investigations into what makes an image or object difficult have a long history. At least since
Eleanor Rosch’s (Rosch, 1973) pioneering work we know that for some object categories there are
“natural prototypes”, i.e. particularly representative exemplars of a category. Thus not all members of
a category are equally easy to recognize and classify. Second, for human vision it is well known that
the recognition of an object depends on its viewpoint: objects are easier to see from a “canonical”
viewpoint (Biederman, 1987; Bülthoff and Edelman, 1992; Freeman, 1994; Tarr and Kriegman, 2001;
Tarr et al., 1996). Third, object recognition also depends on its context and surroundings. Humans can
recognize objects remarkably quickly (Thorpe et al., 1996), but this is only true if they are effectively
segmented from their background by the photographer’s selection of focus point, focal length and
aperture (Wichmann et al., 2010). As a result one can make a real-world dataset arbitrarily trivial (or
impossible) for human observers. Perhaps it was somewhat naïve to believe that large automatically
generated datasets would “get the mix right” and result in images where the difficulty within and
between categories is approximately the same.

Our human experiment shows that humans can reliably identify the impossible images from ImageNet
(see Figure 18 in the Appendix for more examples). Inspection of those images left us with the
impression that impossible images often contain multiple objects and sometimes “unusual” objects and
viewpoints which is verified in our follow-up experiment. From a cognitive science or neuroscience
perspective DDD might thus also provide new opportunities for insight: Perhaps the impossible
images are the ones which can reveal differences between humans and CNNs and are thus those
which neuroscience and cognitive science should be interested in?
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5 ETHICS STATEMENT

Potential social harm. We do not expect that our work causes harm to people or groups.
Environmental aspects. We roughly used 250 GPU days for this paper. Each GPU unit on our
cluster (together with CPU and RAM) consumes on average 300W. In total, this paper consumed
1800kWh. The CO2 emission in the country of the authors is roughly 400g/kW resulting in a CO2
equivalent of 720kg—this corresponds to roughly 45% of the emission of a flight from London to
New York. We will compensate the amount of CO2 with a certified CO2-compensation company.
Furthermore, we will make sure that other researchers have access to the trained models, see below.
We can not distribute all models yet (several GBs) because of the size limit of the supplementary
materials.
Psychophysical experiment. Prior to the experiment written consensus was collected from all
participants. Recently, some issues around ImageNet were discussed e.g. by https://www.
excavating.ai. Thus, we removed some images in our psychophysical experiment and do not
show any images containing humans in this paper. Otherwise, we do not see potential participant
risks in our experiment.
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Code to reproduce our findings can be found on github: https://github.com/
wichmann-lab/trivial-or-impossible.
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A APPENDIX

A.1 RESNET-18 VARIANTS

Our systematic variations for the ResNet-18 variants are:

• Base condition: a standard ResNet-18 trained on ImageNet in PyTorch6 was used as the baseline network for
all comparisons; one instance trained.

• Plus 1ep: a network was trained for one additional epoch compared to the base network; one instance trained.

• Plus 10ep: a network was trained for ten additional epochs compared to the base network; one instance
trained.

• Different optimizer: a network was trained using SGD with Nesterov momentum(Sutskever et al., 2013)
instead of vanilla SGD; one instance trained.

• Different batch size: for this condition we split the batch size in half (128 instead of the 256). This was
done by drawing the same batches from the data loader and splitting them in half. We then input the halves
sequentially into the model, effectively doubling the number of gradient updates; one instance trained.

• Different initialisation: networks were varied in the initialisation of their layer weights by choosing a different
random seed for each network; five instances trained.

• Different learning rate: the networks were trained using initial learning rates varying from 0.148 to 0.152
instead of the default learning rate of 0.1. We narrowed the range such that they still reach the same accuracy
level; five instances trained.

• CUDA non-deterministic: Training networks without CUDA determinism is the standard procedure. However,
graphic card operations are not necessarily deterministic, e.g. functions like reduce_sum (Riach, 2019).
This non determinism might not influence accuracy but may influence agreement between instances; five
instances trained.

• Different dataorder: networks were trained with the exact same training data, however the order of the
samples was varied for each model by choosing a different random seed before initialisation of the data loader;
five instances trained.

• Different architectures: we trained a DenseNet-121 as a different architecture. Due to hardware constraints,
we had to use a batch size of 64 for this condition; one instance trained.

• Half data: the network was trained on only half of the data but compared to the base condition with all data;
one instance trained.

• Combined condition: for this condition, we combined multiple conditions. Here, we trained networks of the
different architecture condition with training data in a different order, using SGD with Nesterov momentum,
varying learning rates from 0.148 to 0.152, and different initialisations for each network; 5 instances trained.

• Different data: two networks were trained on the first and second half of the ImageNet training set respectively.
Thus two different, disjoint training datasets were used—of course from the same distribution (ImageNet).
For this condition we compared the networks to each other instead of comparing against the base condition.

A.2 SOFTWARE, HARDWARE AND DATA

The networks were trained on GeForce RTX 2080 Ti GPUs with CUDA Version 11.1, CPU cores and 32 GB
RAM shared between the cores. All code was written in PyTorch using Python 3 and the code to reproduce our
findings is available in the supplementary material. For the RSA analysis, we used the thingsvision toolkit
(Muttenthaler and Hebart, 2021). We used three data sets: ImageNet (Russakovsky et al., 2015), CIFAR-100
(Krizhevsky and Hinton, 2009) and the third dataset (“Gaussian noise”) was generated by ourselves to investigate
the effect of training on a dataset that does not contain any “natural image structure”. It was generated by
drawing pixel-wise uncorrelated Gaussian noise for each of the three RGB-channels. The dataset consisted of
100 classes with 20000 train and 50 test images per class. The i-th class has a mean of 128 and a standard
deviation of σ = i, which is how classes can be identified by a model.

A.3 CONTROL EXPERIMENTS WITH VGG AND DENSENET

To ensure that our findings generalize across different architectures and different datasets, we reran our main
experiment with a number of variations:

6See https://github.com/pytorch/examples/tree/master/imagenet: batch size of
256, 90 epochs, the SGD optimizer and an initial learning rate of 0.1 that was divided by 10 every 30 epochs.
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First, we tested different architectures; ImageNet with Densenet-121 as base network: Using a Denenet-121
as base network with a slightly altered training paradigm using only 30 instead of 90 epochs—to reduce the
environmental impact of our study—and a batch size of 64 due to GPU RAM limitations. A ResNet-50 was
used as comparison architectures.

Imagenet with VGG-11 as base network: For VGG-11 as the base network, we used a starting learning rate of 0.1
as according to the standard PyTorch implementation. Again, we only trained networks in this paradigm for 30
epochs and with learning rate steps every 10 epochs. Additionally, we used an AlexNet as different architecture.

Second, in addition to ImageNet and our Gaussian dataset we used another dataset, namely CIFAR-100: Again,
we followed the standard ResNet-18 PyTorch implementation with the modification that we only used a total of
30 epochs to reduce the environmental impact of our study.

A.4 CONTROL EXPERIMENT REPRESENTATIONAL SIMILARLY ANALYSIS

Additionally, to check whether our results are reproducible outside of a behavioural measure, we applied
the tool representational similarly analysis (RSA). RSA is a method that originated in the brain sciences. It
quantifies whether the inner representation—here the activation of kernels by single images—is similar across
networks (Kriegeskorte et al., 2008; Mehrer et al., 2020). An RSA between two networks yields a correlation
index between -1 and 1, indicating anti-correlation, no correlation (0) and perfect correlation respectively. It
is important to note that the correlation values from RSA and κ from error consistency are not comparable,
although they have the same limits.

Figure 7: Correlations between the last fully connected layers of the different conditions and the base
network on the ImageNet validation set after 90 epochs. For conditions in which multiple models
were trained, only the first model was used.
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A.5 ANALYSING A SINGLE NETWORK

Figure 8 shows for our base network, whether ImageNet validation images are classified correctly (white) or
incorrectly (blue) across epochs. There are three take-aways from this visualization. (1.), one immediately
notices the influence of the standard learning rate steps after 30 and 60 epochs. However, after this step, some
images (bottom) are also “forgotten” (classified correctly before step but incorrectly afterwards), which contrasts
with the usual expectation that a model gradually improves over time. (2.), some images are learned immediately
during the very first epoch and never forgotten later (top right region), while some are never learned at all. We
will later see that this is not an effect of label errors, see Figure 2a. (3.), while accuracy usually only improves
minimally from one epoch to the next (e.g. 0.04% from epoch 89 to epoch 90, or 14 additionally correctly
classified images out of 50,000), on average 12.37% of the models’ image classification decisions swap every
epoch, corresponding to 6,184 images! (See Figure 17 in the Appendix for a plot which shows the number of
swapped labels from epoch to epoch). The key takeaways from Figure 8 are already known from previous works
investigating model errors over training time (Toneva et al., 2018; Mangalam and Prabhu, 2019; Kalimeris et al.,
2019)—we do not intend to claim any conceptual novelty in this regard, Figure 8 simply intends to visualise
these intriguing patterns clearly.

Figure 8: Decisions on all 50K ImageNet validation images of the single base network over the
epochs. Blue indicates that the respective item was falsely classified during the specific epoch, while
white indicates that it was correctly classified. The items from the ImageNet validation set are ordered
according to the mean accuracy the base network achieved on them over the course of the 90 epochs.
Therefore, items which were classified correctly from epoch 1 are on top and items which were
classified incorrectly from epoch 1 are on the bottom.
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A.6 DDD IN CIFAR AND THE GAUSSIAN DATASET

Is dichotomous data difficulty (DDD) only a problem for ImageNet? We here show that this is not the case on
two different datasets. CIFAR-100 (Krizhevsky and Hinton, 2009) and the third dataset (“Gaussian noise”)
was generated by ourselves to investigate the effect of training on a dataset that does not contain any “natural
image structure”. It was generated by drawing pixel-wise uncorrelated Gaussian noise for each of the three
RGB-channels. The dataset consisted of 100 classes with 20000 train and 50 test images per class. The
i-th class has a mean of 128 and a standard deviation of σ = i, which is how classes can be identified by a model7.

As a first indication, for both of these datasets we find similarly high error consistencies between different
models, just like we found for ImageNet (see Figure 21). Furthermore, training models on CIFAR-100 and the
Gaussian data set leads to a very similar result pattern as for natural data sets like ImageNet and CIFAR-100
(shown in panel (b) and (c) of Figure 22). This is a strong indication —together with the imbalanced class
accuracies in Figure 20— that highly consistent model errors are a result of DDD and not an artefact of natural
images.

A.7 KL DIVERGENCE

We constructed a third dataset (“Gaussian noise”). It was generated by drawing pixel-wise uncorrelated Gaussian
noise for each of the three RGB-channels. The dataset consisted of 100 classes with 20000 train and 500 test
images per class. The i-th class has a mean of 128 and a standard deviation of σ = i, which is how classes can
be identified by a ML model. With this procedure, the KL-Divergence

KL(Classi, Classi+1) = log(
σi+1

σi
) +

σ2
i

2 · σ2
i+1

− 1

2
(1)

between class i and i− 1 is decreasing, see Figure 9.

Figure 9: Kl-Divergence vs. accuracy for the Gaussian dataset. (Left) KL-divergence between Classi
and Classi+1. (Centre) Acc. of Classi. (Right) Scatterplot between KL-divergence and accuracy. For
the last plot we skip the first 20 classes (with accuracy close to 1) for better visibility.

A.8 CLASS ACCURACIES

Figure 20 clearly shows that for all datasets, some classes are very easy to classify (e.g. up to 100% top-1
accuracy on ImageNet), while other classes are very difficult (e.g. down to 10% top-1 accuracy on ImageNet, for
a list of top-10 easiest and hardest classes see Table 1). This means that there are both easy and hard images as
well as easy and hard classes.

7We constructed the dataset with a decreasing KL-divergence between classes. Thus some classes are easier
than others. In fact, we show (Figure 9) that the KL divergence is a very good predictor for class accuracies.
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Highest accuracy Lowest accuracy
’earthstar’ ’screen, CRT screen’
’yellow lady’s slipper, yellow lady-slipper,
Cypripedium calceolus, Cypripedium
parviflorum’

’velvet’

’proboscis monkey, Nasalis larvatus’ ’sunglass’
’Leonberg’ ’ladle’
’freight car’ ’tiger cat’
’echidna, spiny anteater, anteater’ ’notebook, notebook computer’
’African hunting dog, hyena dog, Cape hunting
dog, Lycaon pictus’

’hook, claw’

’limpkin, Aramus pictus’ ’cleaver, meat cleaver, chopper’
’hamster’ ’letter opener, paper knife, paperknife’
’three-toed sloth, ai, Bradypus tridactylus’ ’spatula’

Table 1: Table displaying the ten classes, for which the base network achieved with highest and
lowest accuracies respectively. Items are in a descending order, so that ’earthstar’ has the highest
accuracy and ’screen, CRT screen’ has the lowest accuracy.
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A.9 MODELING IMAGE DIFFICULTY

We modelled the image difficulty in Figure 2 as a delta peak, all images have the same difficulty. One of
our reviewers suggested to model the image difficulty with an exponential decay instead—this means that we
assumed that there are many simple images, then less and less more difficult images.

We therefore extend our previous approach by simulating an exponential and a sigmoid function. For each of the
two functions, we binned the “difficulty” in bins of size 0.01 in the range of 0.00 to 1.00. We then calculated
how many images are to be expected in each of the difficulty bins given the underlying function. For each of the
difficulty bins, we then sampled from a binomial distribution. The mean difficulty of the images corresponds
to the observed mean difficulty (p=0.689) for ResNet-18 variants. Both functions still yield very different
histograms compared to the observed histogram of image difficulties. In order to better reproduce the observed
histogram, a U-shaped function (bimodal distribution) is required.

Figure 10: DDD is neither explained by an exponential/sigmoidal decay in image difficulty, nor
by uniform example difficulty. (a) Binned functions modelling (exponentially) decaying (orange)
and sigmoidal (purple) image difficulty. (b) Observed histogram (blue) with histograms obtained by
sampling with a binomial observer given the exponential (orange) and sigmoid (purple) functions.
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A.10 METHODS OF THE HUMAN EXPERIMENTS

Experiment 1: Can humans distinguish trivials and impossibles?
In order to test whether humans can infer which images are easy and hard for CNNs, we conducted a psy-
chophysical two-alternative forced choice experiment (Wichmann and Jäkel, 2018). In the experiment, observers
were instructed to indicate by button press which image of an image pair they believe to be more difficult for
a network to classify correctly—Is the right or the left image easier to classify for a CNN? An example trial
can be found in the appendix, see Figure 23. Images were chosen from the ImageNet validation set such that
the image pairs consisted of one image which all networks with different inductive bias classified correctly and
another image which all networks misclassified (see also Figure 18). Stimuli were non-normalized images of
size 224× 224 px. Observers performed 149 self-paced trials. Overall, nine observers (mean age = 34.6 yrs, 2
female, 7 male) participated. Two observers were entirely naïve to CNN research, a further four were naïve to
the purpose of the experiments, but knew about CNNs. Subjects received monetary compensation of 10 C per
hour. The total duration of the experiment was 30 minutes per observer.
Experiment 2: What makes trivial, inbetween and impossible images different?
Thanks to the suggestion of our reviewers, we designed a follow-up experiment to better understand the differ-
ences between “trivials”, “impossibles” and “in-betweens”. We randomly chose 100 “trivial” (all networks give
the correct response), 100 “impossible” (no network gives a correct response) and 100 “in-between” images.
Each observer had to answer the following questions for each image:

• Q1: How many objects belonging to different categories are in the image (e.g. three dogs are still one
category: dog. But two dogs and one cat are two categories: dog and cat)?

• Q2: Is there a main category in the image? (No, maybe, Yes)

• Q3: Is the presentation of the objects unusual in any manner (e.g. orientation, location, size, view-
point)? (No, slightly, very)

Stimuli were non-normalised images of size 224× 224 px on a white background with the trial number on the
left, see example image in Figure 24. All observer rated the same 300 images.
Overall, 8 observers (mean age = 36.0 yrs, 1 female, 7 male) participated. Two observers were entirely naïve to
CNN research, a further three were naïve to the purpose of the experiments but have experience in working with
CNNs and three observers were non-naïve. The total duration of the experiment was 90 minutes per observer.
Subjects received compensation worth 15C.
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A.11 CONSISTENCY IN THE SECOND HUMAN PSYCHOPHYSICAL EXPERIMENT

Due to a suggestion of our reviewers, we checked the consistencies between our observers in this follow-up
experiment . For question one (number of categories), the average pairwise correlation was 0.62 [min = 0.42 ,
max = 0.76]. For question number two (is there a main category) and three (presentation oddness) we calculated
Krippendorff’s alpha (0 indicates no agreement between raters, 1 implies perfect agreement 8) which is suited for
ordinal data. For question two, we also removed subject two from the analysis, since they reported that they did
not use object categories but instead semantic categories like playing music or partying in the debriefing. Here
we obtained on average of α2 = 0.50[min = 0.38, max = 0.63] for question 2 and α3 = 0.33[min = 0.10, max =
0.48] for question 3. Furthermore, we made sure that these numbers are not affected by the pre-knowledge of the
observers. Thus there was reasonably high agreement between the observers despite the rather open (or vague)
nature of the task and instructions.

8Krippendorff offers in his book (Krippendorff, 2004, p. 241) a lower bound only for very high agreement.
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A.12 SUPERCLASS ANALYSIS

We analysed the proportions of images from the three image categories (“trivials”, “in-betweens” and “impossi-
bles”) belonging to each of the ImageNet superclasses. The superclasses result from the WordNet hierarchy and
are sometimes also referred to as subtrees Deng et al. (2009). We mapped the unique image identifiers from the
ImageNet validation images to their respective superclasses using a file from the git repository of Tsipras et al.
(2020).

This analysis is visualised in Figure 11. Here we show the distribution of image subsets (“trivial”, “in-between”,
“impossible”) within each superclass. Since we have less impossibles than trivial, they are overall more rare.
The two most extremely unbalanced superclasses are “Implements, containers, misc. objects” and “Birds”. For
“Implements [...]”, only 20% of images are in the “trivial” subset and 10% are in the “impossible” subset. In
contrast, the “Birds” superclass consists of 60% “trivials” and <5% “impossibles”. We therefore find that the
image subsets are not equally distributed for the superclasses. Furthermore, we show that the superclasses are
not equally distributed over the image subsets, see Figure 12. Both Figures point towards the same conclusion:
there are easier and harder superclasses.

Figure 11: Barplot showing the proportions of items from each of the three image subsets (“trivial”,
“in-between”, “impossible”) belonging to each superclass. Here, the values are normalized so that
the proportions of items in each superclass sum to 1. The superclasses are ordered according to the
proportion of impossibles to trivials.
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Figure 12: Proportion of items from each of the three image categories (“Trivials”, “Inbetweens” and
“Impossibles”) belonging to each superclass. The values are normalized so that the proportions of
each subset sum to 1.
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A.13 LABEL AMBIGUITY AS CAUSE FOR THE “IN-BETWEEN”

One of our reviewers suggested that label ambiguity might be a major cause for the emergence of "in-between"
images.

We agree that there is a possibility that disagreement between human annotators could reduce the accuracy for
the “in-between” images. Label ambiguity is known to affect image datasets (Whitehill et al., 2009; Peterson
et al., 2019; Gordon et al., 2021)—although interestingly the ImageNet creators tried to mitigate this, see
Russakovsky et al. (2015, p.7 onward). We agree that label ambiguity can affect model accuracies. Thus
we decided to investigate this hypothesis (label ambiguity as a cause for disagreement) using two different,
independent datasets to analyse label ambiguity in ImageNet.

First we revisit the dataset of Northcutt et al. (2021b). The authors automatically detected label errors in the
ImageNet validation set and used Amazon Mechanical Turk to manually check every possibly falsely labelled
image with 5 human raters. If label ambiguity is a cause of the “in-between” we expect that the 5 human raters
do not a agree on the “in-betweens”. Thus we combine combine Northcutt’s data and with our previous analysis.
Overall, for the MTurk analysis Northcutt proposes label errors on 5440 images in the ImageNet validation
set. From these 5440 potential label errors 2643 are in the “in-between” class. Out of the potential 2643
images, on 1945 at least one rater was not in agreement with the others. However please note that this high
rate is expected, since the 2643 images are those already identified as possibly having ambiguous labels by the
automatic approach. We have to compare this number to the total number of images in the “in-between” subset,
which is 21248 images. Hence, only 9% (=1945/21448) of “in-between” images suffer from label ambiguity,
compared to an overall rate of 8,8%(4424/50000) label ambiguity for the entire dataset.

This provides evidence that label (dis-)agreement may not be a main confounder in our experiment, but of course
an automated approach might miss certain images. We therefore make use of another dataset: that of Geirhos
et al. (2021) with humans (which does not rely on any automated assessment).

Geirhos et al. (2021) used four observers, which performed a classification task in a highly controlled psy-
chophysical setting on a subset of the ImageNet validation set. In total the observers classified 607 colored
images belonging to the “in-between” subset. Here the four observer agreed on 85% (513 out of 607) of the
images. Thus, the disagreement between raters is fairly small.

Both papers used completely independent raters and different strategies (MTurk vs. highly controlled psy-
chophysics). Still, analysing data from both approaches point towards the same result, providing evidence that
only a minor fraction of “in-between” are affected by label ambiguity.
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A.14 FIGURES

Figure 13: Accuracies of the different conditions and the base network on the ImageNet validation
set after 90 epochs. The mean over all models of a condition is displayed here.

Figure 14: Accuracies for the SOTA models on the ImageNet validation set. Mean accuracy of all
models is 0.689
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Figure 15: Error consistencies on the ImageNet validation set with VGG-11 as the base network.
All variations performed are the same as outlined in the Methods section. In this case, the different
architecture is an AlexNet. The conditions are ordered by the mean error consistency on the ImageNet
validation set for ResNet-18 as the base network (see Figure 3). For conditions in which multiple
models were trained, the model-wise error consistencies are plotted with a lower opacity compared to
the mean over all models for the conditions.

Figure 16: Error consistencies on the ImageNet validation set with DenseNet-121 as the base network.
All variations performed are the same as outlined in the Methods section. In this case, the different
architecture is a ResNet-50. The conditions are ordered by the mean error consistency on the
ImageNet validation set for ResNet-18 as the base network (see Figure 3). For conditions in which
multiple models were trained, the model-wise error consistencies are plotted with a lower opacity
compared to the mean over all models for the conditions.
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Figure 17: Lineplot showing the number of decisions that change from the current to the following
epoch. For epoch 0, this means that the number of decisions that are different between epoch 0 and
epoch 1 are shown. For conditions in which multiple model instances were trained, only the last
instance is shown for the sake of simplicity.
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Figure 18: Pairs of impossible (top) and trivial images (bottom) from ImageNet.
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Figure 19: Pairs of impossible (top) and trivial images (bottom) from CIFAR-100.

(a) ImageNet (b) CIFAR-100 (c) Gaussian

Figure 20: Class-wise accuracy per dataset. Shown is the decreasing accuracy for all classes in the
validation sets and for the fully trained base network.
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Figure 21: Error consistencies between the different conditions and the base network for the validation
sets of CIFAR-100 and our Gaussian dataset. The conditions are ordered by the mean error consistency
on the ImageNet validation set (see Figure 3). For conditions in which multiple models were trained,
the model-wise error consistencies are plotted with a lower opacity compared to the mean over all
models for the conditions.

(a) ImageNet (b) CIFAR-100 (c) Gaussian

Figure 22: Histogram showing how many models correctly classify validation sets images in the
last epoch. In blue, the densities of how many items were answered correctly are shown. “None”
indicates that no models classified the items correctly (impossibles), while for “All” items were
classified correctly by all models (“trivial images”). For the sake of simplicity, only the last model
was used for conditions where multiple models were trained. In green, samples are drawn from a
binomial distribution with n equal to the number of models and p equal to the mean accuracy over the
models. Additionally for ImageNet, the distribution of 5000 label errors as identified by the cleanlab
package are shown in red (Northcutt et al., 2021a).
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Figure 23: Example trial from the first psychophysical experiment. Observers were asked: “Is the
right or the left image easier to classify for a neural network?”. The number on the left indicates the
trial number and the letters “R” and “L” above the images were entered into the answer sheet by the
observers.
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Figure 24: Example trial from the second psychophysical experiment. Observers were asked: “How
many objects belonging to different categories are in the image (e.g. three dogs are still one category:
dog. But two dogs and one cat are two categories: dog and cat)?”, “Is there a main category in
the image? (No, maybe, Yes)” and “Is the presentation of the objects unusual in any manner (e.g.
orientation, location, size, viewpoint)? (No, slightly, very)”. The number on the left indicates the trial
number.

Figure 25: Barplot displaying the proportions of answers over all observers. We did not remove label
errors for this plot. The bars are normalized so that the proportions of the different answers add up to
1 for each question.
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Figure 26: Barplot displaying the proportions of answers over all observers. For this plot, we removed
images which were found to have label errors by Northcutt et al. (2021b) and balanced the image
classes to have the same number of images. The bars are normalized so that the proportions of the
different answers add up to 1 for each question.
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Figure 27: Barplots displaying the proportions of answers for each individual observer. We did not
remove label errors for this plot. The bars are normalized so that the proportions of the different
answers add up to 1 for each question.
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Figure 28: Barplots displaying the proportions of answers for each individual observer. We removed
images which were found to have label errors by Northcutt et al. Northcutt et al. (2021b). The bars
are normalized so that the proportions of the different answers add up to 1 for each question.
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