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Abstract

We develop a semi-amortized, policy-based, approach to Bayesian experimental design (BED)
called Step-wise Deep Adaptive Design (Step-DAD). Like existing, fully amortized, policy-
based BED approaches, Step-DAD trains a design policy upfront before the experiment.
However, rather than keeping this policy fixed, Step-DAD periodically updates it as data is
gathered, refining it to the particular experimental instance. This allows it to improve both
the adaptability and the robustness of the design strategy compared with existing approaches.

Keywords: Bayesian experimental design, adaptive design, information maximization

1 Introduction

Adaptive experimentation plays a crucial role in science and engineering: it enables targeted
and efficient data acquisition by sequentially integrating information gathered from past
experiment iterations into subsequent design decisions (MacKay, 1992; Atkinson et al., 2007;
Myung et al., 2013). For example, consider an online survey that aims to infer individual
preferences through personalized questions. By strategically tailoring future questions based
on insights from past responses, the survey can rapidly hone in on relevant questions for each
specific individual, enabling precise preference inference with fewer, more targeted questions.

Bayesian experimental design (BED) offers a principled mathematical framework for
solving the adaptive design problem (Chaloner and Verdinelli, 1995; Ryan et al., 2016;
Rainforth et al., 2023). In the BED framework, the quantity of interest (e.g. individual
preferences), is represented as an unknown parameter θ and modelled probabilistically
through a joint generative model on θ and experiment outcomes given designs. The goal
is then to choose designs that are maximally informative about θ. Namely, we maximize
the Expected Information Gain (EIG, Lindley, 1956, 1972), which measures the expected
reduction in our uncertainty about θ from running an experiment with a given design.

The traditional adaptive BED approach (Fig 1a) involves iterating between making design
decisions by optimizing the EIG of the next experiment step, and updating the underlying
model through Bayesian inference, conditioning on data obtained so far. Unfortunately, this
approach leads to sub-optimal design decisions, as it is a greedy, myopic, strategy that fails
to plan for future experiment steps (Huan and Marzouk, 2016; Foster, 2021). Furthermore,
it requires substantial computation at each experiment iteration (posterior update and EIG
optimization), making it impractical for real-time applications (Rainforth et al., 2023).

Foster et al. (2021) showed that this traditional framework can be significantly improved
upon by instead taking a policy-based BED (PB-BED) approach. As shown in Fig 1b, their
Deep Adaptive Design (DAD) framework, and its subsequent extensions (Ivanova et al.,
2021; Blau et al., 2022; Lim et al., 2022), are based on learning a design policy network
upfront, mapping experimental histories to next design. This fully amortized approach
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Figure 1: Overview of adaptive BED approaches. The traditional BED approach
fits a posterior after each experiment iteration and optimizes for the next step
best designs (i.e. greedily). Fully amortized policy-based BED approaches like
DAD train a policy once offline, before the live experiment, then deploy this as a
fixed policy to make adaptive design decisions during the experiment itself. Our
proposed semi-amortized PB-BED approach enables periodic policy refinement,
assimilating data from the real-world live experiment.

avoids any significant computation during the experiment, enabling real-time, adaptive, and
non-myopic design strategies that represent the current state-of-the-art in adaptive BED.

In principle, fully amortized approaches can learn optimal design strategies (in terms of
total EIG). In practice, learning a policy that remains optimal for all possible experiment
realizations is rarely realistic. In particular, the dimensionality of experimental history
expands as the experiment progresses, making it increasingly difficult to account for all
possible eventualities through upfront training alone. Moreover, deficiencies in our model
means that observed data can be distinct from the simulated one used to train the policy.

To address these limitations, and allow utilisation of any computation that is available
during the experiment, we introduce a hybrid, semi-amortized PB-BED approach, called
Step-wise Deep Adaptive Design (Step-DAD). As illustrated in Fig 1c, Step-DAD periodically
updates the policy during the experiment. This allows the policy itself to be adapted based
on previously gathered data, refining it to maximize performance for the particular realization
of the data that we are observing. In turn, this allows Step-DAD to make more accurate
design decisions and provides significant improvements in robustness to observing data that
is dissimilar to that generated in the original policy training. Our empirical evaluations
reveal that Step-DAD is able to provide substantial improvements in state-of-the-art design
performance, while still using substantially less computation than traditional adaptive BED.

2 Background

Guided by the principle of information maximization, Bayesian experimental design (BED,
Lindley, 1956) is a model-based framework for designing optimal experiments. Given a
model p(θ)p(y | θ, ξ), describing the relationship between experiment outcomes y, controllable
designs ξ and parameters of interest θ, the goal is to select the design ξ that maximizes the
expected information gain (EIG) about θ. The EIG (equivalent to mutual information) is
the expected reduction in Shannon entropy from the prior to the posterior distribution of θ:

I(ξ, y) = Ep(y|ξ)[H[p(θ)] −H[p(θ | ξ, y)]], where p(y | ξ) = Ep(θ)[p(y | θ, ξ)], (1)
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In the following subsections, we highlight works most closely related to ours, with a
detailed discussion available in Section 5.

2.1 Traditional Adaptive BED

BED becomes particularly powerful in adaptive experimental contexts, where we allow
the next design, ξt, to be informed by the data acquired up to that point, ht−1 :=
(ξ1, y1), . . . , (ξt−1, yt−1), which we refer to as the history. In the traditional adaptive BED
framework (Ryan et al., 2016), this is done by assimilating the data into the model by fitting
the posterior p(θ |ht−1), followed by the maximizing the one-step ahead or incremental EIG

Iht−1(ξt) = Ep(y|ξt,ht−1)

[
H[p(θ |ht−1)] −H[p(θ |ht)]

]
, (2)

where p(y | ξt, ht−1) = Ep(θ |ht−1)[p(y | θ, ξt, ht−1)]. We use the superscript ht−1 to emphasize
conditioning on the history currently available, setting h0 = ∅.

Whilst this traditional framework offers a principled way to optimize experimental designs,
it comes with some limitations. One drawback is its myopic nature that greedily maximizes
for the next best design and overlooks the impact of future experiments, ultimately leading
to sub-optimal design decisions. Another limitation is the significant computational expense
incurred from the iterative posterior inference and EIG optimization. In general, the posterior
computation is intractable and the EIG (2) estimation is doubly intractable (Rainforth et al.,
2018; Foster et al., 2019). Since these steps must be conducted at each experiment iteration,
the traditional adaptive BED approach is often impractical for real-time applications.

2.2 Amortized Policy-Based BED

In response to the limitations of traditional adaptive BED, Foster et al. (2021) introduce the
idea of amortizing the adaptive design process through learnt policies. This amortized policy-
based BED (PB-BED) approach represents a significant advancement over the traditional
framework, delivering state-of-the-art non-myopic design optimization whilst enabling real-
time deployment. PB-BED reformulates the design problem using a policy π, which maps
experimental histories to next design, π : ht−1 7→ ξt. The optimal policy maximizes the total
EIG across the T experiments (Foster et al., 2021; Shen and Huan, 2021)

I1→T (π) = Ep(hT |π) [H[p(θ)] −H[p(θ |hT )]] , (3)

= Ep(θ)p(hT | θ,π) [log p(hT | θ, π) − log p(hT |π)] (4)

where p(hT | θ, π) =
∏T

t=1 p(yt | θ, ξt, ht−1), p(hT |π) = Ep(θ)[p(hT | θ, π)], and ξt = π(ht−1)
are all evaluated autoregressively. This policy-based formulation strictly generalizes the
traditional adaptive BED approach, which can be viewed as learning a policy that maximizes
the incremental one-step-ahead EIG (2) at each iteration, π(ht−1) = arg maxξt I

ht−1

t−1→t(ξt).

Whilst the total EIG formulation (3) provides a unified training objective for the policy,
it remains doubly intractable like the standard EIG. The original Deep Adaptive Design
(DAD) of Foster et al. (2021) addressed this by using tractable variational lower bounds of
the EIG (Foster et al., 2019, 2020; Kleinegesse and Gutmann, 2020) coupled with stochastic
gradient ascent (SGA) schemes to directly train a policy network taking the form of a
neural network directly mapping from histories to design decisions. It thus provided a
foundation for conducting PB-BED in practice. A number of extensions to the DAD
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approach have since been developed, e.g. (Ivanova et al., 2021; Blau et al., 2022; Lim et al.,
2022), broadening its applicability to a wider class of models by proposing alternative policy
training schemes. All share a core methodology, where the policy network is trained only
once, offline, with hypothetical experimental histories simulated from the assumed generative
model p(θ)p(hT | θ, π). Once trained, it remains unchanged during the live experiment and
across multiple experimental instances (e.g. different survey participants), as illustrated in
Fig 1b. This fully amortized approach eliminates the need for posterior inference and EIG
optimization at each experiment iteration, thereby enabling almost instant design decisions.

3 Semi-Amortized PB-BED

Fully amortized PB-BED methods enable real-time deployment and provide design decisions
that are typically superior to those of the traditional framework. However, there are many
problems where we can afford to perform some computation during the experiment itself. It
is therefore natural to ask whether we can usefully exploit such computational availability
to further improve the quality of our design decisions? In particular, the fact that the
current state-of-the-art approaches for design quality are all fully amortized suggests that
improvements should be possible when this is not a computational necessity.

To address this, we note that the computational gains of fully amortized PB-BED
methods come at the cost of their inability to adapt the policy itself in response to acquired
experimental data. We argue that this rigidity leads to sub-optimal designs decisions,
particularly in scenarios where real-world experimental data significantly deviates from the
simulated one used during training of the policy. Two main factors contribute to this issue:

Imperfect training In fully amortized PB-BED we simulate experimental histories to
try and learn a policy that will generalize across the entire experimental space—effectively
learning a regressor from all possible histories to design decisions. However, the effectiveness
of any learner with finite data/training is inevitably limited, especially in regions of the
input space where training data is sparse. In short, we are learning a policy to cover all
possible histories we might see, but at deployment we are dealing only with a specific history
that may be similar to few, if any, of the histories with simulated during training. This
challenge is particularly exacerbated in experiments with extended horizons, due to the high
dimensionality of the resulting histories. Additionally, the finite representational capacity of
the policy hinders perfect approximation even with infinite data. Together these lead to a
discrepancy between the learned policy π and the true optimal design strategy π∗, producing
an approximation gap for the learned policies.

Double reliance on the generative model Fully amortized PB-BED relies on the
generative model to both simulate experimental histories for policy training and to evaluate
the success of our design decisions via the total resulting information gained. In other words,
we use the model in both the expectation and information gain elements of the EIG in (3).
This dual reliance magnifies the consequences of model misspecifications (Overstall and
McGree, 2022; Go and Isaac, 2022). Moreover, even if the model is well-specified from a
Bayesian inference perspective (Uppal and Wang, 2003), there might still be significant
discrepancies between the prior-predictive distribution, p(hT |π), used to simulate data in
the policy training and the true underlying data generating distribution.
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The upshot of this is that we may see data at deployment that is highly distinct to any
of that simulated during the policy training. The lack of mechanisms for integrating real
experimental data into the policy means that fully amortized approaches have no mechanism
to overcome this issue. This can be characterized as a form of generalization gap—the
learned policy fails to generalize to the real-world experimental conditions, caused by its
inability to integrate and respond to the actual experimental data gathered so far.

3.1 Online policy updating

To address these limitations, we propose a semi-amortized PB-BED framework, which
introduces dynamic adaptability by allowing periodic updates to the policy during deployment
in response to acquired experimental data. The core idea behind our semi-amortized approach
is based on the intuition that whilst a fully amortized policy is a strong starting point, it
can be significantly enhanced through targeted refinements during the experiment. Focusing
first on the case of a single policy update, the following proposition formalizes this intuition
and lays the theoretical foundation for semi-amortized PB-BED.

Proposition 1 (Decomposition of total EIG). For any design policy π, the total EIG of
a T -step experiment can be decomposed as I1→T (π) = I1→τ (π) + Ep(hτ |π)[Ihτ

τ+1→T (π)], for
any intermediate step 1 ≤ τ ≤ T , where

Ihτ
τ+1→T (π) = Ep(θ|hτ )p(hτ+1:T |hτ ,θ,π)

[
log

p(hτ+1:T |hτ , θ, π)

p(hτ+1:T |hτ , π)

]
. (5)

Proof is given in Appendix B. The decomposition of the total EIG into two distinct
components—the EIG accumulated up to an intermediate step τ , and the expected EIG
for subsequent steps conditional on the history hτ gathered until that point—highlights
a crucial aspect of our semi-amortized approach: that the optimality of a policy for the
later phases of the experiment, from step τ + 1 to T , is solely determined by the model
and already collected data hτ . That is, it is independent of the policy deployed during the
first τ experiments. As such, we can use a strategy where, regardless of the initial policy
performance, we can construct a new policy at some intermediate step τ that optimizes
future remaining experimental designs, without being constrained by past decisions.

Our semi-amortized approach is now based around exploiting this flexibility to refine the
policy midway through the experiment by introducing a step design policy πs(τ). Initially,
πs(τ) uses the fully amortized policy πh0 for the first τ steps of the experiment. After step τ ,
it switches to a new policy πhτ , trained to maximize the total remaining EIG, Ihτ

τ+1→T (π) (5).
This gives us an infer-refine process for semi-amortization in PB-BED that mirrors

the two stage procedure characteristic of traditional adaptive BED (cf Fig. 1a and Fig. 1c).
The infer stage entails fitting the posterior distribution p(θ |hτ ) with the data up to τ .
The subsequent refine stage learns a customized policy πhτ for the remaining steps of the
experiment by maximizing (5). It therefore allows for more effective design decisions than
the fully amortized approach. However, unlike the traditional BED approach, which is
greedy and requires updates at every experimental step, our semi-amortized method offers a
superior non-myopic design strategy and allows for selective updates.

We acknowledge that this approach requires some computation to be performed during
the live experiment, which can pose challenges in applications where design decisions must
be made very quickly. However, in many applications there is computation time available,
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and our semi-amortized PB-BED approach can exploit this, even if that time is limited. As
we show in subsequent sections, significant improvements to the policy can often be achieved
with minimal additional training, such that substantial gains are often possible without
drastically compromising deployment speed.

Multi-step policy updates We can naturally extend our approach to include a multi-step
update mechanism, enabling a more dynamic and responsive policy adaptation over the course
of the live experiment. To this end, we define a refinement schedule, T = τ0, τ1, · · · , τK—
an increasing sequence defining the points at which the policy is refined. We adopt the
convention τ0 = 0 and h0 = ∅, marking the offline optimization of the fully-amortized policy
πh0 . For τk > 0, we follow our two-stage infer-refine procedure.

4 Step-Wise Deep Adaptive Design

We introduce Step-Wise Deep Adaptive Design (Step-DAD) as a way of implementing
the semi-amortized PB-BED in practice. Building on DAD and the infer-refine procedure
outlined in the last section, Step-DAD employs stochastic gradient ascent schemes to optimize
variational lower bounds on the remaining EIG (5) to sequentially train the step policy πs(T )

in a scalable manner. An overview of Step-DAD is presented in Algorithm 1 in the Appendix.

The two key components of Step-DAD’s aforementioned infer-refine procedure are an
inference method for approximating p(θ|hτ ), and a refinement strategy for using this to
update our policy. Standard inference techniques (such as variational inference and Monte
Carlo methods) are used for the former as discussed in our experiments. Our focus here will
instead be on our specialized procedure for policy refinement and the policy architecture itself.

4.1 Policy refinement

Due to its doubly intractable nature, the task of optimizing the remaining EIG, Ihτk
τk+1→T (π),

presents a notable challenge (Rainforth et al., 2018; Foster et al., 2019). In selecting an
appropriate scalable and computationally tractable estimator for it, we wish to ensure
compatibility with a wide range of inference schemes for p(θ |hτk). Namely, as this serves
as an updated ‘prior’ during the policy refinement, it is important that we use an EIG
estimator that does not require evaluations of the prior density, to ensure compatibility with
sampling-based inference schemes.

Lower bound estimators such as the explicit-likelihood-based sequential Prior Contrastive
Estimator (sPCE, Foster et al., 2021), as well as the implicit likelihood InfoNCE (van den
Oord et al., 2018; Ivanova et al., 2021) and NWJ (Nguyen et al., 2010; Kleinegesse and
Gutmann, 2020) bounds, align with this requirement. For generative models with explicit
likelihoods (implicit models are discussed in Appendix C), we, therefore, choose to employ
the sPCE lower bound, defined as

LsPCE
τk+1→T (π) = E

[
log

p(hτk+1:T |hτkθ0, π)
1

L+1

∑L
ℓ=0 p(hτk+1:T | θℓ, π)

]
. (6)

Here, the expectation is taken over a ‘positive’ prior sample θ0 ∼ p(θ0 |hτk), future design-
outcome pairs under it hτk+1:T ∼

∏T
t=τk+1 p(ht |hτkθ0, ξt), ξt = π(ht−1), and L ‘contrastive’

prior samples θ1:L ∼
∏L

ℓ=1 p(θℓ |hτk). Step-DAD parameterizes π by a neural network
and optimizes an appropriate objective, such as LsPCE

τk+1→T (π), with respect to the network
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parameters using standard stochastic gradient ascent (SGA) schemes (Robbins and Monro,
1951; Kingma and Ba, 2014). Following (Foster et al., 2021), we use path-wise gradients in
the case of reparametrizable distributions (Rezende et al., 2014; Mohamed et al., 2020), and
score function (REINFORCE) otherwise (Williams, 1992).

4.2 Policy architecture

It is possible to optimize (6) by training an entirely new policy πhτk
at each refinement step

τk, allowing flexibility to even select different architectures. Though such a strategy may
occasionally be advantageous, we instead, we propose a more pragmatic and lightweight
approach: leveraging the already established fully amortized policy πh0 as a baseline and
fine-tuning it for subsequent steps. Though our experiments perform a full fine-tuning of all
policy parameters, it is also possible to implement more parameter-efficient methods.

For the policy architecture, similar to (Foster et al., 2021), we individually embed each
design-outcome pair (ξi, yi) ∈ ht into a fixed-dimensional representation before aggregating
them across t into a summary vector. This allows condensing varied-length experimental
histories into a consistent dimensionality, enabling the handling of variable history sizes.
Finally, the summary vector is then mapped to the next experimental design ξt+1. For
the aggregation mechanism, the choice between permutation invariant and autoregressive
architectures depends on the nature of the data. When the data ht is exchangeable,
permutation invariant architectures like DeepSets (Zaheer et al., 2017) or SetTransformer
(Lee et al., 2019) are suitable. In contrast, sequential or time-series data would benefit from
autoregressive models like transformers (Vaswani et al., 2017).

5 Related Work

The idea of using a design policy in the context of adaptive BED was first proposed by Huan
and Marzouk (2016). Leveraging dynamic programming principles, the policy they learn
aims to establish a mapping from explicit posterior representations—serving as the state in
reinforcement learning (RL) terminology—to subsequent design choices. As a result, each
iteration of the experiment necessitates substantial computational resources for updating
the posterior. The concept of fully amortized policy-based BED, which directly maps data
collected to design decisions, has only recently been introduced (Foster et al., 2021) and
subsequently extended to differentiable implicit models (Ivanova et al., 2021). RL algorithms
have also been employed to optimize design policies (Blau et al., 2022; Lim et al., 2022).
None of the previous approaches have looked to refine the policy during the experiment itself.

As discussed in § 2.1, adaptive BED has traditionally employed a two-step greedy strategy,
involving EIG optimization and posterior inference optimization. For EIG estimation
established methods include nested Monte Carlo (Myung et al., 2013; Vincent and Rainforth,
2017), variational bounds (Foster et al., 2019, 2020; Kleinegesse and Gutmann, 2020) and
ratio estimation (Kleinegesse and Gutmann, 2019; Kleinegesse et al., 2021). The subsequent
EIG maximization has historically relied on gradient-free optimization, including grid-
search, evolutionary algorithms (Price et al., 2018), Bayesian optimization (Kleinegesse
et al., 2021; Foster et al., 2019), or Gaussian process surrogates (Overstall and McGree,
2020). Thanks to advancements in gradient-based methods, EIG estimation and optimization
can be performed jointly in a SGA scheme (Huan and Marzouk, 2014; Foster et al., 2020;
Kleinegesse and Gutmann, 2021).
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Method Lower bound (↑) Upper bound (↑)

Random 3.612 ± 0.012 3.613 ± 0.012
Static 3.945 ± 0.026 3.946 ± 0.026
Step-Static 3.974 ± 0.008 3.975 ± 0.008
DAD 6.771 ± 0.012 6.803 ± 0.013
Step-DAD 7.605 ± 0.078 7.609 ± 0.078

Table 1: Source Location Finding. For
Step-DAD we report best finetuning
step, τ = 6, and the rest in Table 8.
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Figure 2: Source location finding: Sen-
sitivity to training budget.

The inference scheme used for model updates in the traditional BED framework is
often contingent on the availability of a closed-form likelihood. In cases where it is available,
Monte Carlo based methods are typically used, such as Sequential Monte Carlo (Del Moral
et al., 2006; Drovandi et al., 2014) or population Monte Carlo (Rainforth, 2017). In likelihood-
free settings, techniques like approximate Bayesian computation (ABC) (Lintusaari et al.,
2017; Sisson et al., 2018), ratio estimation (Thomas et al., 2016), or approximating the
likelihood first, e.g. via polynomial chaos expansion (Huan and Marzouk, 2013), are typically
utilized. In addition to the presence of a likelihood function, practical considerations
influencing the choice of posterior inference methods include a trade-off between speed and
accuracy, weighing options like (amortized) variational inference (Zhang et al., 2018) against
asymptotically exact, but slow MCMC methods such as HMC (Betancourt, 2017).

The challenge of model misspecification in BED remains a relatively underexplored
area, with foundational insights provided by (Farquhar et al., 2021) and (Overstall and
McGree, 2022). Fully amortized PB-BED is particularly vulnerable to model misspecification
due to its reliance on a singular learning phase without the capacity to integrate real-world
experimental feedback. Addressing these challenges in the literature is limited, with some
approaches recommending the adoption of a more robust EIG objective as a potential
solution (Go and Isaac, 2022). Our semi-amortized PB-BED methodology, whilst not
directly tackling the issue of misspecification, inherently enhances robustness by enabling
iterative data integration and policy refinement.

6 Experiments

We empirically evaluate our semi-amortized Step-DAD approach on a range of design
problems, comparing its performance against DAD to determine the additional EIG achieved
by πs(T ) over πh0 . Full details about the models and baselines are provided in Appendix D.

6.1 Source Location Finding

We consider the source location finding experiment from Foster et al. (2021), which draws
upon the acoustic energy attenuation model detailed in Sheng and Hu (2005). The objective
of the experiment is to infer the locations of some hidden sources from noisy measurements,
y, of their combined signal intensity. Each source emits a signal whose intensity diminishes
following the inverse-square law relative to distance. Full model details are in Appendix D.4.

We begin by learning a fully amortized DAD policy to perform T = 10 experiments
to locate a single source. A training budget of 50K gradient steps was employed for this
policy, as it was found that further training did not significantly improve performance for
our chosen architecture. We run Step-DAD for τ = 1, . . . , 9, using importance sampling
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θ dim EIG difference DAD, total EIG

4 0.701 ± 0.023 6.483 ± 0.055
8 0.426 ± 0.014 7.111 ± 0.067
12 0.423 ± 0.012 6.956 ± 0.056

Table 2: Locating multiple sources.
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Figure 3: Sensitivity to prior perturbations.

to approximate the posterior p(θ |hτ ). Results in Table 1 highlight the best performing
finetuning step, τ = 6, at which Step-DAD surpasses all baseline methods. Table 8 in the
Appendix shows that τ = 4, 5, 7 exhibit performance statistically equivalent to that of τ = 6.

Sensitivity to training budget We investigate the overall resource efficiency of Step-
DAD by comparing to DAD under two training regimes. Concretely, we consider two budget
levels for the training of the fully amortized policy: full pre-training budget of 50K gradient
steps, and reduced pre-training budget of 10K steps (5× lower), with a subsequent fine-tuning
of 0.5K and 2.5K steps, respectively. Figure 2 presents a conservative comparison between
the two methods by showing upper bound estimates for DAD and lower bound estimates for
Step-DAD. The findings illustrate that Step-DAD surpasses the corresponding DAD baseline
across both budget levels. The Step-DAD variant that starts with a modest pre-training
budget of 10K steps, followed by a fine-tuning phase of 2.5K steps, consistently outperforms
the DAD model trained on a 50K step budget, except at the boundary tuning steps τ = 1
and τ = 9. The performance advantage of Step-DAD is most pronounced when fine-tuning
occurs midway through the experiment (τ = 5, 6), where our method can effectively leverage
the accumulated data to refine the policy and have enough experiments remaining to usefully
deploy the improved customized policy.

Scaling up In the more complex setting of locating multiple sources, our method demon-
strates strong performance gains compared to DAD. We consider 2, 4 and 6 sources, resulting
in 4-, 8- and 12-dimensional unknown parameter, respectively. Table 2 highlights the
scalability of our method to higher-dimensional parameter spaces.

Robustness to prior perturbations We evaluate the robustness of Step-DAD when
the prior distribution at test time diverges from that used during the offline training phase.
This scenario mirrors real-world situations where the conditions during the live experiment
may not match those assumed when training the fully amortized policy. We consider

total EIG under an alternative model, Ip̃(θ)(π) := Ep̃(θ)p(hT |θ,π)

[
log p(hT | θ,π)

p(hT |π)

]
, where

p(hT |π) = Ep̃(θ)[p(hT | θ, π)] and p̃(θ) is the perturbed prior distribution.
Results are shown in Figure 3. The EIG for DAD decreases to essentially zero with

the increased prior shift, whilst Step-DAD is still able to deliver positive information gains.
This robustness is anticipated due to Step-DAD’s ability to assimilate the data gathered
and make policy adjustments in light of new evidence, which is crucial for maintaining an
informative design strategy under uncertain model assumptions.

6.2 Hyperbolic Temporal Discounting

Temporal discounting describes the tendency for individuals to prefer for smaller immediate
rewards over larger delayed ones. This phenomenon is a key concept in psychology and
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Figure 4: Temporal discounting model.
EIG improvement of Step-DAD
over DAD after fine-tuning the pol-
icy at step τ . The DAD network is
trained for 100K steps, subsequent
policy refinement for 1K steps.

Method Upper bound (↑) Lower bound (↑)

Kirby (2009) 1.861 ± 0.008 1.864 ± 0.009
Static 2.518 ± 0.007 2.524 ± 0.007
Frye et al. (2016) 3.500 ± 0.029 3.513 ± 0.029
BADapted 4.454 ± 0.016 4.536 ± 0.018
DAD 4.778 ± 0.013 4.808 ± 0.014
Step-DAD (τ=10) 6.711 ± 0.040 6.721 ± 0.040

Table 3: Temporal discounting. Upper
and lower bound estimates of total
EIG. Errors show ± 1s.e., over 16
(2048) histories for step methods
(rest). All baselines except DAD as
reported in Foster et al. (2021).

economics and has been widely applied to study important social and individual behav-
iors (Critchfield and Kollins, 2001), including dietary choices (Bickel et al., 2021; McClelland
et al., 2016), exercise habits (Tate et al., 2015), patterns of substance abuse and other
unhealthy behaviour (Holt et al., 2003; Story et al., 2014).

An individual’s time delay preference is typically inferred by asking a series of questions
“Would you prefer $R now or $100 in D days time?” The tuple ξ = (R,D) defines our
experimental design, and the the outcome y is the participant’s decision to accept or reject
the delay. For example, a participant might prefer an immediate R = $90 over $100 in
D = 30 days, but might choose differently if the delay was shortened to D = 7 days.

Single update Using the hyperbolic discounting model introduced in Mazur (1987)
and as implemented by Vincent (2016), we train DAD policy for 100K gradient steps, aimed
at designing T = 20 experiments. We select a grid of tuning steps τ in the range from 2 to
18 in increments of 2. For posterior inference, we use simple importance sampling to draw
samples from the posterior p(θ |hτ ) and 1% of the training budget (i.e. 1K gradient steps).

Figure 4 reports the results and illustrates that our method yields an improvement
in total EIG across all tuning steps τ when compared to the baseline DAD policy. The
maximal increase occurs around the middle of the experiment, aligning with intuition: at this
point, sufficient data has been accumulated to inform a meaningful posterior update, whilst
sufficient number of experiments remain to effectively deploy the refined policy. Table 3
demonstrates the superiority of Step-DAD over conventional baselines, including those
derived from psychology research (Kirby, 2009; Frye et al., 2016; Vincent and Rainforth,
2017) and traditional BED approaches such as BADapted (Vincent and Rainforth, 2017). It
also outperforms the static BED strategy, highlighting the effectiveness of adaptive design
strategies in extracting more valuable information from experiments.

Multiple updates and design extrapolation We extend the deployment of DAD
and Step-DAD to T = 40 experiments, doubling the scope at which they were originally
trained, i.e. without retraining the DAD network. Step-DAD is fine-tuned at two steps,
τ and 2τ , with τ ∈ {5, 6, 7, 8}. As Table 4 shows, Step-DAD demonstrates significantly
improved capacity to extract information in the later stages of the experiment, beyond its
initial training.
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EIG from τ (↑) EIG from 2τ (↑)

τ DAD Step-DAD DAD Step-DAD

5 3.9 ± 0.24 4.8± 0.14 2.1 ± 0.36 4.6± 0.18
6 3.4 ± 0.30 5.1± 0.07 1.7 ± 0.30 4.7± 0.12
7 3.0 ± 0.35 4.4± 0.30 1.3 ± 0.23 4.4± 0.11
8 2.6 ± 0.36 4.7± 0.13 1.0 ± 0.19 4.2± 0.13

Table 4: Hyperbolic temporal discounting: extrapolating designs. Comparison of
EIG upper bound for DAD and lower bound for Step-DAD across different tuning
steps τ with T = 40. Errorbars indicate ±1s.e. computed over 16 histories.

7 Conclusions

In this work, we introduced the idea of a semi-amortized approach to PB-BED that enhances
the flexibility, robustness and effectiveness of fully amortized design polices. Our method,
Step-wise Deep Adaptive Design (Step-DAD), dynamically updates its step policy in response
to new data through a systematic ‘infer-refine’ procedure that refines the design strategy
for the remaining experiments in light of the experimental data gathered so far. This
iterative refinement enables the step policy to evolve as the experiment progresses, ensuring
more robust and tailored design decisions, as demonstrated in our empirical evaluation.
Step-DAD marks a step forward in our ability to conduct more efficient, informed, and
robust experiments, opening new avenues for exploration in various scientific domains.
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Appendix A. Algorithm

Algorithm 1: Overview of Step-DAD

Input: Generative model p(θ)p(y | θ, ξ), experimental budget T , refinement schedule
T ={τ0, τ1, . . . , τK+1}, with τ0=0, τK+1=T , training budgets {Nτk}k=1:K

Output: Dataset hT = {(ξt, yt)}t=1:T

Offline stage: Before the live experiment
▷ Set h0 = ∅.
while Computational budget does not exceed N0 do

▷ Train fully-amortized πh0 as in Foster et al. (2021)
end

Online stage: During the live experiment
for k = 1, . . . ,K + 1 do

for τk−1 < t ≤ τk do
▷ Compute design ξt = πhτk−1

(ht)
▷ Run experiment ξt, observe an outcome yt
▷ Update the dataset ht = ht−1 ∪ (ξt, yt)

end
If k = K + 1 then return hT end
while Computational budget does not exceed Nk do

▷ Fit a posterior p(θ |hτk)
▷ Fine-tune policy πhτk

by optimizing (6)

end

end

Appendix B. Proofs

Proposition 1 (Decomposition of total EIG). For any design policy π, the total EIG of
a T -step experiment can be decomposed as I1→T (π) = I1→τ (π) + Ep(hτ |π)[Ihτ

τ+1→T (π)], for
any intermediate step 1 ≤ τ ≤ T , where

Ihτ
τ+1→T (π) = Ep(θ|hτ )p(hτ+1:T |hτ ,θ,π)

[
log

p(hτ+1:T |hτ , θ, π)

p(hτ+1:T |hτ , π)

]
. (5)

Proof We can write the likelihood and marginal as

p(hT | θ, π) = p(hτ | θ, π)p(hτ+1:T |hτ , θ, π), p(hT |π) = p(hτ |π)p(hτ+1:T |hτ , π)

Substituting in the definition of total EIG (3) and rearranging

I1→T (π) = Ep(θ)p(hτ |θ,π)

[
log

p(hτ | θ, π)

p(hτ |π)

]
+

Ep(hτ |π)p(θ|hτ )p(hτ+1:T |hτ ,θ,π)

[
log

p(hτ+1:T |hτ , θ, π)

p(hτ+1:T |hτ , π)

]
= I1→τ (π) + Ep(hτ |π)[Ihτ

τ+1→T (π)]

12
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as required.

Appendix C. Further EIG bounds

The sequential Nested Monte Carlo (sNMC) (Foster et al., 2021) upper bound is given by

UsNMC
τk+1→T (π) := E

[
log

p(hτk+1:T |hτkθ0, π)
1
L

∑L
ℓ=1 p(hτk+1:T | θℓ, π)

]
, (7)

which we use to evaluate different design strategies.

For implicit models we can utilize the InfoNCE bound (van den Oord et al., 2018), which
is given by

LInfoNCE(π, U ;L) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
, (8)

or the NWJ bound (Nguyen et al., 2010), given by:

LNWJ(π, U) := Ep(θ)p(hT |θ,π)
[
U(hT , θ) − e−1Ep(θ)p(hT |π) [exp(U(hT , θ))]

]
(9)

where, for both bounds, U is a learnt critic function, U : hT × θ 7→ R.

Appendix D. Experiment details

D.1 Computational resources

The experiments were conducted using Python and open-source tools. PyTorch (Paszke
et al., 2019) and Pyro (Bingham et al., 2018) were employed to implement all estimators and
models. Additionally, MlFlow (Zaharia et al., 2018) was utilized for experiment tracking
and management. Experiments were performed on two separate GPU servers, one with
4xGeForce RTX 3090 cards and 40 cpu cores; the other one with 10xA40 and 52 cpu cores.
Every experiment was run on a single GPU.

D.2 Evaluation details

In addition to DAD, we consider several other baseline strategies for comparison. Static
design learns all T designs prior to the experiment and remain fixed throughout it. We
consider a Step-Static approach where, akin to a semi-amortized static method, at step
τ , we randomly select τ designs from the total of T and retrain the T − τ remaining ones.
If appropriate, we include a Random design strategy serving as a naive, non-optimized
benchmark, and problem-specific baselines if available.

Our main metric for assessing the quality of various design strategies is the total EIG,
I1→T (π), as given in (3). We approximate it via the sPCE lower bound (6) along with its
upper bound counterpart—the sequential Nested Monte Carlo estimator (sNMC, Foster
et al., 2021). For the remaining EIG (5), we leverage the decomposition from Proposition 1,
estimating the expectation over the partial history hτ with N = 16 realizations.
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When evaluating fully amortized policies, we employ the sPCE (6) lower bound and
sNMC (7) upper bound using a large number of contrastive samples, L = 100000, drawn from
the prior p(θ) to approximate the inner expectation. The outer expectation is approximated
using N = 2048 draws from the model p(θ)p(hT | θ, π). To approximate this quantity for
Step-DAD efficiently, we use

∆I(πs(τ), πh0) := I1→T (πs(τ)) − I1→T (πh0) (10)

= Ep(hτ |π)[I
hτ
τ+1→T (πs(τ)) − Ihτ

τ+1→T (πh0)] (11)

≳
1

N

(
Lhτ
τ+1→T (πs(τ)) − Uhτ

τ+1→T (πh0)
)
, (12)

and add that difference to the lower bound estimate of I1→τ (π).

D.3 Baselines

Static The Static (fixed) baseline pre-selects a fixed ξ1, ..., ξT ahead of the experiment.
This non-adaptive approach used sPCE bound to optimize the design set ξ1, ..., ξT .

Step-Static Step-Static computes a set of designs for ξ1, ..., ξτ before a posterior update
and subsequent computation of designs ξτ , ..., ξT .

Random As the name implies, this baseline selects a random sample of designs ξ1, ..., ξT .
Thus the most non-informed naive approach.

D.4 Location Finding

The objective of the experiment is to ascertain the location, θ, of K sources. K is presumed
to be predetermined. The intensity at each selected design choice, ξ, represents a noisy
observation log y | θ, ξ centered around the logarithm of the underlying model, µ(θ, ξ).

µ(θ, ξ) = b +
K∑
k=1

αk

(m + ||θk − ξ||)2
(13)

In the given context, αk may be either predetermined constants or random variables,
b > 0 represents a fixed background signal, and m is a constant representing maximum
signal.

log[y | θ, ξ] ∼ N (logµ(θ, ξ), σ2) (14)

We assumed a normal standard prior at training: θk
i.i.d.∼ N (0d, Id)

D.4.1 Training details

The model hyper parameters used are outlined in Table 5.

D.4.2 Optimal tuning step

The optimal value for EIG difference occurs at a range around τ = 6 (Table 8). As expected,
for small values of τ , small values for EIG difference are observed as there has not been a
significant number of rollouts for the experiment to deviate from the pre-training data. Past
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Table 5: Source location finding. Parameter Values

Parameter Value

αk 1 for all k
Max signal, m 10−4

Base signal, b 10−1

Observation noise scale, σ 0.5

Table 6: Source location finding. Parameters for training pre-training DAD/Step-DAD

Parameter Value

Batch size 1024
Number of negative samples 1023
Number of gradient steps (default) 50000
Learning rate (LR) 0.0001

the peak at τ = 6, the EIG difference once again drops as there are not enough experimental
steps left to exploit any benefits which would arise from finetuning on the now extensive
experimental history. The remaining decision space is too small.

D.4.3 Scaling up

As a further ablation, we test the robustness of a semi-amortized approach to the more
complex task of location finding with multiple sources of signal. We find a positive EIG
difference in all cases, once again demonstrating the benefits of using the semi-amortized
Step-DAD network compared to the baseline fully amortized DAD network. Increasing the
number of sources leads to a reduction in the EIG difference. However, this is expected
given the increasing complexity of the task compared to the fixed number of steps post τ to
adjust the decision making policy in the semi amortized setting. All experiments were run
with τ = 7.

Appendix E. Hyperbolic Temporal Discounting

Building on Foster et al. (2021), Mazur (1987) and Vincent (2016), we consider a hyperbolic
temporal discounting model. A participant’s behaviour is characterized by the latent variables
θ = (k, α) with prior distributions as follows:

log k ∼ N (−4.25, 1.5) α ∼ HalfNormal(0, 2) (15)

HalfNormal distribution denotes a Normal distribution truncated at 0. For given k, α,
the value of the two propositions “£R today” and “£100 in D days” with design ξ = (R,D)
are given by:

V0 = R, V1 =
100

1 + kD
(16)
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Table 7: Source location finding. Parameters for Step-DAD finetuning

Parameter Value

Num of theta rollouts 16
Number of posterior samples 20000
Finetuning learning rate (LR) 0.0001

Table 8: Source location finding. Total EIG for Step-DAD for various tuning steps τ .
τ Lower bound Upper bound

1 (Worst) 6.826 (± 0.065) 6.837 (± 0.065)
2 7.187 (± 0.097) 7.196 (± 0.098)
3 7.403 (± 0.098) 7.409 (± 0.099)
4 7.588 (± 0.103) 7.592 (± 0.104)
5 7.536 (± 0.183) 7.540 (± 0.183)

6 (Best) 7.605 (± 0.078) 7.609 (± 0.078)
7 7.560 (± 0.149) 7.568 (± 0.149)
8 7.382 (± 0.123) 7.395 (± 0.123)
9 7.255 (± 0.069) 7.277 (± 0.069)

DAD 6.771 (± 0.012) 6.803 (± 0.013)

Participants select V1 in place of V0 with probability modelled as:

p(y = 1|k, α,R,D) = ϵ + (1 − 2ϵ)Φ

(
V1 − V0

α

)
(17)

We fix ϵ = 0.01 and ϕ is the c.d.f of the standard Normal Distribution.

Φ(z) =

∫ z

−∞

1√
2π

exp−1

2
z2 (18)

As in Foster et al. (2021), the design parameters R,D have the constraints D > 0 and
0 < R < 100. R,D are represented in an unconstrained space ξd, ξr and transformed using
the below maps.

D = exp(ξd) R = 100 · sigmoid(ξr) (19)

Tables 9 and 10 give the hyperparameters for training the DAD/Step-DAD policies for
the hyperbolic temporal discounting model
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Table 9: Hyperbolic Temporal Discounting model. Parameters for training pre-
training DAD/Step-DAD

Parameter Value

Batch size 1024
Number of negative samples 1023
Number of gradient steps (default) 100000
Learning rate (LR) 5 × 10−5

Annealing frequency 1000
Annealing factor 0.95
StepDAD: number of posterior draws 20000

Table 10: Hyperbolic Temporal Discounting model. Parameters for Step-DAD fine-
tuning

Parameter Value

Num of theta rollouts 16
Number of posterior samples 20000
Finetuning learning rate (LR) 5 × 10−5

17



References

Anthony Atkinson, Alexander Donev, and Randall Tobias. Optimum Experimental Designs,
with SAS. Oxford University Press, 2007. 1

Michael Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:1701.02434, 2017. 8

Warren K Bickel, Roberta Freitas-Lemos, Devin C Tomlinson, William H Craft, Diana R
Keith, Liqa N Athamneh, Julia C Basso, and Leonard H Epstein. Temporal discounting
as a candidate behavioral marker of obesity. Neuroscience & Biobehavioral Reviews, 129:
307–329, 2021. 10

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. Journal of Machine Learning Research,
2018. 13

Tom Blau, Edwin Bonilla, Amir Dezfouli, and Iadine Chadès. Optimizing sequential
experimental design with deep reinforcement learning. arXiv preprint arXiv:2202.00821,
2022. 1, 4, 7

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
Science, pages 273–304, 1995. 1

Thomas S Critchfield and Scott H Kollins. Temporal discounting: Basic research and
the analysis of socially important behavior. Journal of applied behavior analysis, 34(1):
101–122, 2001. 10

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential monte carlo samplers. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–436, 2006. 8

Christopher C Drovandi, James M McGree, and Anthony N Pettitt. A sequential monte
carlo algorithm to incorporate model uncertainty in bayesian sequential design. Journal
of Computational and Graphical Statistics, 23(1):3–24, 2014. 8

Sebastian Farquhar, Yarin Gal, and Tom Rainforth. On statistical bias in active learning:
How and when to fix it. arXiv preprint arXiv:2101.11665, 2021. 8

Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas
Rainforth, and Noah Goodman. Variational Bayesian Optimal Experimental Design.
In Advances in Neural Information Processing Systems 32, pages 14036–14047. Curran
Associates, Inc., 2019. 3, 6, 7

Adam Foster, Martin Jankowiak, Matthew O’Meara, Yee Whye Teh, and Tom Rainforth.
A unified stochastic gradient approach to designing bayesian-optimal experiments. In
International Conference on Artificial Intelligence and Statistics, pages 2959–2969. PMLR,
2020. 3, 7

18



Step-DAD: Semi-Amortized Policy-Based Bayesian Experimental Design

Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rainforth. Deep adaptive design:
Amortizing sequential bayesian experimental design. Proceedings of the 38th International
Conference on Machine Learning (ICML), PMLR 139, 2021. 1, 3, 6, 7, 8, 10, 12, 13, 15,
16

Adam Evan Foster. Variational, Monte Carlo and Policy-Based Approaches to Bayesian
Experimental Design. PhD thesis, University of Oxford, 2021. 1

Charles CJ Frye, Ann Galizio, Jonathan E Friedel, W Brady DeHart, and Amy L Odum.
Measuring delay discounting in humans using an adjusting amount task. JoVE (Journal
of Visualized Experiments), (107):e53584, 2016. 10

Jinwoo Go and Tobin Isaac. Robust expected information gain for optimal bayesian
experimental design using ambiguity sets. In Uncertainty in Artificial Intelligence, pages
728–737. PMLR, 2022. 4, 8

Daniel D Holt, Leonard Green, and Joel Myerson. Is discounting impulsive?: Evidence
from temporal and probability discounting in gambling and non-gambling college students.
Behavioural processes, 64(3):355–367, 2003. 10

Xun Huan and Youssef Marzouk. Gradient-based stochastic optimization methods in bayesian
experimental design. International Journal for Uncertainty Quantification, 4(6), 2014. 7

Xun Huan and Youssef M Marzouk. Simulation-based optimal bayesian experimental design
for nonlinear systems. Journal of Computational Physics, 232(1):288–317, 2013. 8

Xun Huan and Youssef M Marzouk. Sequential bayesian optimal experimental design via
approximate dynamic programming. arXiv preprint arXiv:1604.08320, 2016. 1, 7

Desi R Ivanova, Adam Foster, Steven Kleinegesse, Michael Gutmann, and Tom Rainforth.
Implicit Deep Adaptive Design: Policy–Based Experimental Design without Likelihoods.
In Advances in Neural Information Processing Systems, volume 34, pages 25785–25798.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/

file/d811406316b669ad3d370d78b51b1d2e-Paper.pdf. 1, 4, 6, 7

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 7

Kris N Kirby. One-year temporal stability of delay-discount rates. Psychonomic bulletin &
review, 16(3):457–462, 2009. 10

S. Kleinegesse and M.U. Gutmann. Efficient Bayesian experimental design for implicit
models. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of the
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 89
of Proceedings of Machine Learning Research, pages 1584–1592. PMLR, 2019. 7

Steven Kleinegesse and Michael Gutmann. Bayesian experimental design for implicit
models by mutual information neural estimation. In Proceedings of the 37th International
Conference on Machine Learning, Proceedings of Machine Learning Research, pages
5316–5326. PMLR, 2020. 3, 6, 7

19

https://proceedings.neurips.cc/paper/2021/file/d811406316b669ad3d370d78b51b1d2e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d811406316b669ad3d370d78b51b1d2e-Paper.pdf


Steven Kleinegesse and Michael U. Gutmann. Gradient-based bayesian experimental
design for implicit models using mutual information lower bounds. arXiv preprint
arXiv:2105.04379, 2021. 7

Steven Kleinegesse, Christopher Drovandi, and Michael U. Gutmann. Sequential Bayesian
Experimental Design for Implicit Models via Mutual Information. Bayesian Analysis,
pages 1 – 30, 2021. doi: 10.1214/20-BA1225. 7

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks.
In International conference on machine learning, pages 3744–3753. PMLR, 2019. 7

Vincent Lim, Ellen Novoseller, Jeffrey Ichnowski, Huang Huang, and Ken Goldberg. Policy-
based bayesian experimental design for non-differentiable implicit models. arXiv preprint
arXiv:2203.04272, 2022. 1, 4, 7

Dennis V Lindley. On a measure of the information provided by an experiment. The Annals
of Mathematical Statistics, pages 986–1005, 1956. 1, 2

Dennis V Lindley. Bayesian statistics, a review, volume 2. SIAM, 1972. 1

J. Lintusaari, M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander. Fundamentals and
recent developments in approximate Bayesian computation. Systematic Biology, 66(1):
e66–e82, January 2017. 8

David JC MacKay. Information-based objective functions for active data selection. Neural
computation, 4(4):590–604, 1992. 1

James E Mazur. An adjusting procedure for studying delayed reinforcement. Commons,
ML.; Mazur, JE.; Nevin, JA, pages 55–73, 1987. 10, 15

Jessica McClelland, Bethan Dalton, Maria Kekic, Savani Bartholdy, Iain C Campbell, and
Ulrike Schmidt. A systematic review of temporal discounting in eating disorders and
obesity: Behavioural and neuroimaging findings. Neuroscience & Biobehavioral Reviews,
71:506–528, 2016. 10

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. Journal of Machine Learning Research, 21(132):1–62,
2020. 7

Jay I Myung, Daniel R Cavagnaro, and Mark A Pitt. A tutorial on adaptive design
optimization. Journal of mathematical psychology, 57(3-4):53–67, 2013. 1, 7

Xuanlong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence
functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on
Information Theory, 56(11), 2010. ISSN 00189448. doi: 10.1109/TIT.2010.2068870. 6, 13

Antony Overstall and James McGree. Bayesian Design of Experiments for Intractable
Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation. Bayesian
Analysis, 15(1):103 – 131, 2020. doi: 10.1214/19-BA1144. 7

20



Step-DAD: Semi-Amortized Policy-Based Bayesian Experimental Design

Antony Overstall and James McGree. Bayesian decision-theoretic design of experiments
under an alternative model. Bayesian Analysis, 17(4):1021–1041, 2022. 4, 8

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. 13

David J Price, Nigel G Bean, Joshua V Ross, and Jonathan Tuke. An induced natural
selection heuristic for finding optimal bayesian experimental designs. Computational
Statistics & Data Analysis, 126:112–124, 2018. 7

Tom Rainforth. Automating Inference, Learning, and Design using Probabilistic Programming.
PhD thesis, University of Oxford, 2017. 8

Tom Rainforth, Rob Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood. On
nesting monte carlo estimators. In International Conference on Machine Learning, pages
4267–4276. PMLR, 2018. 3, 6

Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian
experimental design. arXiv preprint arXiv:2302.14545, 2023. 1

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-
tion and approximate inference in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning, volume 32, pages 1278–1286, 2014. 7

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951. 7

Elizabeth G Ryan, Christopher C Drovandi, James M McGree, and Anthony N Pettitt. A
review of modern computational algorithms for bayesian optimal design. International
Statistical Review, 84(1):128–154, 2016. 1, 3

Wanggang Shen and Xun Huan. Bayesian sequential optimal experimental design for
nonlinear models using policy gradient reinforcement learning. CoRR, abs/2110.15335,
2021. URL https://arxiv.org/abs/2110.15335. 3

Xiaohong Sheng and Yu Hen Hu. Maximum likelihood multiple-source localization using
acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal
Processing, 2005. ISSN 1053587X. doi: 10.1109/TSP.2004.838930. 8

S.A. Sisson, Y. Fan, and M. Beaumont. Handbook of Approximate Bayesian Computation.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2018.
ISBN 9781351643467. 8

Giles W Story, Ivo Vlaev, Ben Seymour, Ara Darzi, and Raymond J Dolan. Does temporal
discounting explain unhealthy behavior? a systematic review and reinforcement learning
perspective. Frontiers in behavioral neuroscience, 8:76, 2014. 10

21

https://arxiv.org/abs/2110.15335


Linda M Tate, Pao-Feng Tsai, Reid D Landes, Mallikarjuna Rettiganti, and Leanne L
Lefler. Temporal discounting rates and their relation to exercise behavior in older adults.
Physiology & behavior, 152:295–299, 2015. 10

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U Gutmann.
Likelihood-free inference by ratio estimation. arXiv preprint arXiv:1611.10242, 2016. 8

Raman Uppal and Tan Wang. Model misspecification and underdiversification. The Journal
of Finance, 58(6):2465–2486, 2003. 4
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