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Abstract

Large Language Models (LLMs) excel in Nat-001
ural Language Processing (NLP) tasks but of-002
ten propagate societal biases from their train-003
ing data, leading to discriminatory outputs.004
These biases are amplified by the models’ self-005
attention mechanisms, which disproportion-006
ately emphasize biased correlations with sensi-007
tive tokens, like "he" or "she", reflecting the008
sensitive attributes such as gender and race.009
To address this issue, we propose a novel fine-010
tuning method, called Cross-Attention-based011
Weight Decay (CrAWD), which modifies the012
LLM architecture to mitigate bias. CrAWD in-013
troduces a cross-attention mechanism between014
an input sequence and a sensitive token se-015
quence, enabling the model to identify and016
selectively decay the attention weights of to-017
kens associated with sensitive tokens. This re-018
duces the influence of biased association on the019
model’s generation while maintaining task per-020
formance. Evaluations on real-world datasets021
demonstrate the effectiveness of our proposed022
CrAWD method. Notably, our method can han-023
dle multiple sensitive attributes by adjusting024
the sensitive token sequence, and it does not025
require full knowledge of sensitive tokens pre-026
sented in the dataset, underscoring CrAWD’s027
versatility in promoting fair LLMs across vari-028
ous applications.029

1 Introduction030

Large language models (LLMs) trained on vast031

datasets have demonstrated remarkable capabili-032

ties on different natural language processing (NLP)033

tasks, including text generation (Brown et al., 2020)034

and, text classification (Zhang et al., 2024). How-035

ever, their widespread usage in real-world settings036

has also raised concerns about the propagation of037

societal biases embedded in their training data (Kir-038

itchenko and Mohammad, 2018). These biases can039

result in discriminatory outputs, affecting down-040

stream applications in significant ways (Bender041

et al., 2021; Zhao et al., 2017a). Addressing bias in042

Figure 1: Text generation bias due to biased associations
encoded in pre-trained LLMs.

LLMs is essential for building more equitable and 043

responsible AI systems. 044

Bias in the NLP tasks is reported as biased or 045

stereotypical associations with some sensitive at- 046

tributes, such as gender, race, language, religion, 047

etc. (Bolukbasi et al., 2016; Barocas et al., 2019). 048

For LLMs, the bias arises from the training data 049

and is then encoded in the models’ internal archi- 050

tectures. Pre-training on large corpora drawn from 051

the web often means the data contains inherent so- 052

cietal biases related to race, gender, and other sen- 053

sitive attributes (Caliskan et al., 2017). Pre-trained 054

LLMs also exhibit significant bias amplification, 055

meaning that even subtle biases in the training data 056

become more pronounced in the model’s output 057

(Bender et al., 2021). The transformer-based mod- 058

els allocate attention weights to different tokens 059

during training using the self-attention mechanisms 060

(Vaswani et al., 2017). When exposed to biased 061

training content, the model can disproportionately 062

focus on biased associations with sensitive tokens, 063

such as gendered pronouns or racially coded words. 064

This leads to biased predictions, especially in tasks 065

like text classification and generation (He et al., 066

2022; Haque et al., 2024). For example (shown in 067

Figure 1), LLM learns a biased association between 068

gender and occupations from the training data via 069

self-attentions. For the next token generation, “My 070

friend works at the hospital. He is a ___”, it gen- 071
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erates “doctor” with a high probability due to the072

high attention weights from “hospital” and “he”,073

where the association between “he” and “doctor” is074

biased. A fair LLM should generate tokens based075

mainly on the relevant context of “hospital”.076

Various approaches have been proposed to mit-077

igate bias in LLMs, ranging from data-level inter-078

ventions to model-level adjustments. Data-level079

methods include balancing the training data or re-080

moving biased examples (Zhao et al., 2017b), while081

model-level techniques focus on architectural mod-082

ifications or post-processing steps that reduce the083

impact of biased outputs (Dong et al., 2024; Dige084

et al., 2023). For example, Dong et al. (2024) mea-085

sures bias as explicit mentions of gender pronouns.086

Their fine-tuning method directly adds a gender087

probability loss, derived from their bias metric, to088

the total loss to mitigate bias. Bias mitigation fine-089

tuning to minimize a specific evaluation metric090

requires prior knowledge of the evaluation task and091

sensitive tokens, which lack generalizability across092

different types of biases in LLMs. There is no093

single metric to summarize all types of biases in094

LLMs. These studies focus on bias defined by spe-095

cific model output, which limits their mitigation096

methods to generalize to other tasks. Instead of097

a specific metric on the model output, we believe098

that the model’s internal self-attention mechanism099

plays an important role in encoding and perpetuat-100

ing bias.101

To address these challenges, we propose a bias102

mitigation technique, called Cross-Attention-based103

Weight Decay (CrAWD), which modifies the LLM104

architecture to reduce the influence of biased as-105

sociation during LLM fine-tuning. Specifically,106

our approach introduces a cross-attention mecha-107

nism between an input sequence and a reference se-108

quence consisting of sensitive tokens, such as "he"109

and "she". This cross-attention enables the model110

to identify the input tokens that have strong correla-111

tions with sensitive tokens. By selectively decaying112

the attention weights of these tokens during fine-113

tuning, we can scale down their biased influence114

on the model’s predictions without significantly115

degrading the overall performance of correctness.116

The contribution of this work is as follows:117

• This work addresses bias in LLMs by propos-118

ing a novel cross-attention-based bias miti-119

gation technique. Our method effectively re-120

duces the influence of biased associations in121

the input sequences, enabling the model to122

learn the contextual information without unin- 123

tended biases. 124

• Our method achieves a good balance between 125

bias mitigation and performance preservation. 126

It maintains the self-attention component to 127

capture contextual relationships and employs 128

a decayed cross-attention component to re- 129

duce the influence of biased associations. 130

• This method does not require full knowledge 131

of the potential sensitive tokens in the fine- 132

tuning task. It can work with multiple sensi- 133

tive attributes simultaneously by adjusting the 134

reference sensitive sequence. 135

• The evaluation on real-world datasets demon- 136

strates the versatility and effectiveness of our 137

proposed method in a variety of settings. 138

2 Related Work 139

Bias in NLP systems has emerged as a significant 140

concern, particularly as language models become 141

increasingly integral to a wide range of applica- 142

tions. Bolukbasi et al. (2016) and Caliskan et al. 143

(2017) demonstrated that societal biases like gen- 144

der, racial, and cultural stereotypes, which may 145

lead to discriminatory outcomes are embedded in 146

model representations. Large-scale datasets, of- 147

ten sourced from unfiltered content on the inter- 148

net, are a primary contributor to bias in language 149

models. These datasets frequently reflect societal 150

prejudices, which models inadvertently learn and 151

sometimes amplify during text generation (Sheng 152

et al., 2019; Bender et al., 2021). As Wan et al. 153

(2023) highlighted, such biases do not just per- 154

sist but may intensify in model outputs, leading to 155

harmful stereotypes being reproduced at scale. 156

To address this issue, researchers have devel- 157

oped several tools to measure bias in large lan- 158

guage models (LLMs). Notable among these are 159

the StereoSet dataset (Nadeem et al., 2021) and 160

the Crows-Pairs dataset (Nangia et al., 2020), both 161

designed to assess the presence of societal bias in 162

generated text. In addition to measuring bias, vari- 163

ous mitigation techniques have been explored. One 164

popular approach involves generation-based strate- 165

gies, such as zero-shot (Gallegos et al., 2024; Liu 166

et al., 2024) and few-shot prompting (Wang et al., 167

2023; Ko et al., 2023; Ma et al., 2023), where care- 168

fully crafted prompts are employed to guide models 169

toward more equitable outputs. Another strategy 170

is the use of Chain of Thought (CoT) reasoning, 171

which has been shown to improve the fairness of 172
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model generations by making the model’s decision-173

making process more transparent and deliberate174

(Tian et al., 2023).175

While these approaches have made significant176

strides in mitigating bias during text generation,177

there has been limited research on fine-tuning tech-178

niques specifically aimed at addressing bias during179

model training. For instance, Dong et al. (2024)180

proposed metrics to assess both explicit and im-181

plicit gender bias in generated text, incorporating182

these metrics into the loss function as a regular-183

ization technique to reduce bias. Similarly, He184

et al. (2022) introduced an auxiliary model that185

predicts protected attributes, using the negative186

log-likelihood from these predictions as an energy-187

based constraint to minimize the influence of bi-188

ased tokens on the output. Contrastive learning189

has also been employed as a bias mitigation tech-190

nique, where stereotypical data points are pushed191

away while non-stereotypical data points are pulled192

closer in the model’s latent space (Zhou et al.,193

2024).194

3 Bias in LLMs from the Attention195

Perspective196

Large Language Models (LLMs) are pre-trained197

on vast corpora of data, which often contain social198

biases associated with sensitive attributes such as199

gender, race, or ethnicity. These biases are em-200

bedded in the model during pre-training and can201

propagate into downstream tasks. We aim to miti-202

gate such bias embedded in the pre-trained LLMs203

using a fair fine-tuning method.204

We use the next token generation task for205

LLM fine-tuning. Given an input sequence x =206

{ti}ni=1, where ti denotes the i-th token in the se-207

quence and n is the sequence length, the LLM208

predicts the next token tn+1 by adjusting its pa-209

rameters θ to maximize the conditional probabil-210

ity Pθ(tn+1|t1, t2, . . . , tn). LLMs utilize the self-211

attention (SA) mechanism to learn a robust and con-212

textual representation of each token (Vaswani et al.,213

2017). SA mechanism assigns attention weights to214

all input tokens {t1, t2, . . . , tn} based on their con-215

textual relevance to the target token tn+1. Specifi-216

cally, the self-attention mechanism is defined as:217

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (1)218

where Q, K, and V represent the query, key, and219

value matrices, and d is the embedding dimen-220

sion. The attention mechanism computes attention221

weight αij , which quantifies how much token ti 222

contributes to the updated representation of token 223

tj . In other words, the attention weight αij deter- 224

mines the degree of influence that token ti has on 225

token tj during the representation learning process. 226

A higher αij means that more weight is given to the 227

information from the token ti when updating the 228

representation of the token tj . The hidden state of 229

each token representation is updated as a weighted 230

sum of all tokens’ representations in the sequence, 231

including itself. 232

Unintended biases are embedded into LLMs 233

when a sensitive token ts (such as “he”, “Alice”, 234

etc.) related to a sensitive attribute receives dis- 235

proportionately higher attention weights compared 236

to a non-sensitive token in the task context. The 237

disproportionate association of ts in the attention 238

mechanism is the root of the bias. It skews the 239

probability distribution on the next token predic- 240

tion, causing it to prioritize the sensitive token in 241

its output. It leads to biased or stereotypical as- 242

sociations in LLM representation, prediction, and 243

generation tasks, reflected in different evaluation 244

metrics. 245

Our goal is to mitigate the effect of the sensitive 246

token ts during fine-tuning, ensuring that the rep- 247

resentation learned from the self-attention mecha- 248

nism does not disproportionately emphasize the bi- 249

ased associations, thus reducing bias in the model’s 250

output while maintaining overall performance in 251

downstream tasks. 252

4 Cross-Attention-based Weight Decay 253

In this section, we propose a novel fair fine-tuning 254

method, called Cross-Attention-based Weight 255

Decaying (CrAWD), to mitigate bias in pre-trained 256

LLMs. The core mechanism in CrAWD is a 257

cross-attention (CA) mechanism between input se- 258

quences and reference sensitive tokens. The cross- 259

attention mechanism helps to identify potentially 260

biased associations. Through weight decay, the 261

fine-tuned LLM tries to deemphasize these biased 262

associations. In the end, it learns a debiased con- 263

textual representation for downstream tasks. 264

4.1 Overview 265

Figure 2 shows the overall architecture of CrAWD. 266

Other than the regular input sequence x, CrAWD 267

also takes a reference sensitive sequence b as in- 268

put. The reference sensitive sequence consists of 269

a series of sensitive tokens that represent various 270
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Figure 2: The CrAWD Architecture

sensitive attributes, such as gender, race, religion,271

ethnicity, or language. The self-attention blocks272

(SABs) learns the hidden representations Hx
self and273

Hb
self for x and b, respectively. Then CrAWD intro-274

duces a cross-attention block (CAB), which takes275

in Hx
self and Hb

self to identify biased associations.276

Then, CrAWD instructs the model to deemphasize277

these biased associations by decaying the cross-278

attention weights. The final representation Hfinal279

of LLM consists of two parts: the regular SA rep-280

resentation Hx
self for the input x to preserve the281

model performance, and the CA representation af-282

ter weight decay Hcross to reduce the influence of283

biased associations. In this way, the LLM can gen-284

erate fair output without over-penalizing the overall285

performance.286

4.2 Reference Sensitive Sequence287

To identify biased associations in the pre-trained288

LLMs, CrAWD takes a pre-defined list of sensitive289

tokens as references, denoted as reference sensitive290

sequence b = {ts}ms=1, where m is the length of291

the sequence. The reference sensitive tokens are292

representative sensitive tokens related to one or293

multiple sensitive attributes of interest. We do not294

require b to be a complete list with the full pre-295

defined knowledge of potential biases in the fine-296

tuning dataset and downstream tasks. It can be297

just one reference token for each sensitive attribute298

group. The cross-attention mechanism only uses b299

as a reference. In the embedding space, it examines300

similar tokens related to the sensitive attributes and301

discovers biased associations with those tokens.302

The input embeddings of the input sequence x303

and the reference sensitive sequence b are E(x)304

and E(b), respectively. Each of them is passed 305

through L self-attention (SA) layers, feed-forward 306

networks (FFN), and normalization, to produce 307

self-attended hidden representations Hx
self ∈ Rn×d 308

and Hb
self ∈ Rm×d. Here, Hx

self and Hb
self repre- 309

sent the updated last hidden state of the SA block 310

that captures the contextual relationships within the 311

input sequence. 312

4.3 Cross-Attention Mechanism 313

After getting the hidden representations Hx
self and 314

Hb
self from the input sequence and the reference sen- 315

sitive sequence. CrAWD calculates cross-attention 316

weights from the cross-attention (CA) mechanism, 317

which can be used to identify biased associations 318

in the pre-trained LLMs. 319

The CA block contains a single cross-attention 320

layer with both Hx
self and Hb

self as its input. The 321

cross-attention weights are calculated by follow- 322

ing Equation 1, where the query, key, and value 323

matrices are computed through linear projections: 324

Q = Hx
selfWQ with WQ ∈ Rd×d,

K = Hb
selfWK with WK ∈ Rd×d,

V = Hb
selfWV with WV ∈ Rd×d.

325

The cross-attention mechanism enables the 326

model to compute the influence of sensitive at- 327

tributes on the input sequence x by comparing the 328

query Q (from x) with the key K (from b), and 329

using the value V (from b) to update the hidden 330

state. The hidden representation Hx
self of the input 331

sequence x represents the contextual information 332

within the input sequence, which may include bi- 333

ased information with any sensitive token. The hid- 334

den representation Hb
self of the reference sensitive 335

sequence b represents the sensitive attributes and 336

all potential sensitive tokens related to them (not 337

just the ts listed in b). The cross-attention weights 338

capture the strength of biased associations between 339

the input sequence and the sensitive tokens. Specif- 340

ically, a higher cross-attention weight βis from the 341

cross-attention matrix represents a higher possibil- 342

ity that there are biased associations between the 343

input token ti and the sensitive attribute represented 344

by ts. It can be a direct bias between ti and another 345

input token in x that is similar to ts, or an indirect 346

bias between ti and a sensitive context (without the 347

presence of a direct sensitive token). 348
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4.4 Weight Decay349

The cross-attention mechanism captures the poten-350

tial biased association between the input token ti351

and the sensitive attributes. To mitigate bias, we use352

weight decay to deemphasize (but not completely353

ignore) these tokens during the fine-tuning.354

From the cross-attention matrix, we select the355

top-K% of attention weights as these weights re-356

flect the most likely biased associations between357

the input token ti and the sensitive attributes.358

CrAWD decays the attention weights on these to-359

kens by a small factor λ during the fine-tuning, The360

attention weights for these tokens are adjusted as361

follows:362

β′
is =

{
λ · βis, if βis ≥ τ,

βis, otherwise,
(2)363

where τ is the cutoff threshold at the top-K% at-364

tention weights.365

Weight decay on β reduces the impact of biased366

associations on the final prediction. The fine-tuned367

model mainly focuses on the other associations368

actually related to the task context. Thus, the model369

can make unbiased predictions in a context similar370

to the fine-tuning task.371

After weight decay, the decayed cross-attention372

weights join the residual connection, followed by a373

normalization layer. Then the output goes through374

a position-wise fully connected feed-forward net-375

work (FFN) layer and a normalization layer, to376

compute the cross-attention hidden representation377

as the output of the CA block:378

Hcross = FFN(Cross-Attentiondecay(Hx
self, H

b
self)),379

where Cross-Attention weights β is modified by380

following Equation 2, and Hcross ∈ Rn×d. The re-381

sulting cross-attention hidden representation Hcross382

encodes the identified biased associations in LLMs.383

4.5 Final Hidden Representation384

Once the biased associations are deemphasized385

through weight decay, the final hidden represen-386

tation of the input sequence is obtained by combin-387

ing the self-attention representation Hx
self with the388

decayed cross-attention representation Hcross. The389

final hidden representation Hfinal is computed as:390

Hfinal = Concat(Hx
self, Hcross).391

Here, the self-attention component captures the392

essential contextual information within the input393

sequence, while the decayed cross-attention com- 394

ponent selectively adjusts the influence of biased 395

associations with sensitive attributes without over- 396

penalization. By integrating these two components, 397

the final hidden representation Hfinal ∈ Rn×2d in- 398

corporates both rich contextual information for the 399

fine-tuned task and mitigation of unintended biases. 400

At the end, the final hidden representation Hfinal is 401

passed through linear and softmax layers to predict 402

the next token tn+1 in the sequence. 403

Our mitigation method also applies to 404

transformer-based text classification models. 405

5 Experiment Setup 406

5.1 Research Questions 407

We aim to answer the following questions with our 408

experiments: 409

• RQ1: Does fine-tuning with CrAWD mitigate 410

bias in different pre-trained LLMs? 411

• RQ2: How does the performance of CrAWD 412

compare to existing fine-tuning techniques for 413

mitigating different biases in text generation 414

or classification? 415

• RQ3: How does identification of biased as- 416

sociation (with different top-K%) and weight 417

decay (with different λ) affect the utility- 418

fairness trade-off of CrAWD? 419

5.2 Datasets 420

The Jigsaw Unintended Bias in Toxicity dataset 421

(cjadams et al., 2019) consists of approximately 2 422

million public comments annotated for toxicity and 423

the protected attributes of the comment targets. We 424

select 21,000 records for fine-tuning. 425

The Bias in Bios dataset (De-Arteaga et al., 426

2019) contains textual biographies used to investi- 427

gate bias in NLP models, featuring 15 different oc- 428

cupations and a balanced gender distribution with 429

binary gender as the sensitive attribute. We ran- 430

domly select 100k records for fine-tuning. 431

The Stanford Natural Language Inference 432

(SNLI) corpus (Bowman et al., 2015) comprises 433

570k human-written English sentence pairs, each 434

consisting of a premise and a hypothesis labeled as 435

entailment, contradiction, or neutral. It mentions 436

sensitive attributes like gender, ethnicity, age, etc. 437

We select 100k premises for fine-tuning. 438

The Measuring Hate Speech Corpus (Sachdeva 439

et al., 2022) contains 50,070 social media com- 440

ments, annotated by 11,143 Amazon Mechanical 441
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Turk contributors using faceted Rasch measure-442

ment theory (RMT) to assess hate speech. A subset443

of 27,818 comments, focused on racial hate speech444

detection, includes 11,418 hate speech records and445

16,400 non-hate speech records. We use it for the446

evaluation of text classification tasks.447

5.3 Baselines448

For text generation, we use different pre-trained449

models for evaluations, including GPT2 (Rad-450

ford et al., 2019), Llama2 (7B version) (Touvron451

et al., 2023), Llama3 (8B version)(Dubey et al.,452

2024), and Falcon (5B version) (Almazrouei et al.,453

2023), Flan-T5 (3B version) (Chung et al., 2022),454

DeepSeek (6.7B version) (DeepSeek-AI et al.,455

2025).456

We adopt several fine-tuning methods as base-457

lines. We first compare our model with the Vanilla458

Fine-tuning on pre-trained models. Vanilla Fine-459

tuned models gain task-specific knowledge from460

the fine-tuning datasets, but there is no fairness461

mechanism built in to mitigate bias.462

Indirect Bias Mitigation (IBM) (Haque et al.,463

2024) method uses attention-based explanation to464

calculate similarity between important tokens in the465

instance and sensitive information and then uses466

the similarity as a regularizer in the loss function467

to mitigate bias.468

Debias Tuning (DT) (Dong et al., 2024) explore469

different metrics to disclose explicit and implicit470

gender bias in LLMs. They design a regularization471

term for each metric and add it to the loss function472

to mitigate bias in fine-tuning.473

Deep Soft Debias (DSD) (Rakshit et al., 2025)474

is a post-hoc debiasing technique that routes token475

embeddings through a compact residual MLP. A476

dual objective retains original geometric structure477

while forcing outputs to lie orthogonal to a hand-478

crafted bias subspace, thereby suppressing linear479

demographic bias with negligible task-performance480

loss.481

For text classification, we use the pre-trained482

BERT-base model (Devlin et al., 2019) as the base483

model. Other than Vanilla and IBM, we also adopt484

the following fine-tuning methods as baselines.485

Adversarial Debias (AD) (Zhao et al., 2018)486

is an in-processing mitigation technique that em-487

ploys adversarial learning to reduce the correlation488

between the predicted outcome and the protected489

attribute, aiming to achieve equality of opportunity.490

Controlling Bias Exposure (CBE) (He et al.,491

2022) is an in-processing mitigation technique that 492

employs an auxiliary model to predict a protected 493

attribute. The negative log-likelihood from this 494

prediction acts as an energy-based constraint, regu- 495

lating the impact of biased tokens on the output. 496

5.4 Metrics 497

Perplexity (PPL) is a metric used to evaluate the 498

quality of text generated by a language model. It 499

measures how well the model predicts a sequence 500

of words by assessing the probability of the model’s 501

predictions across a given text. (lower is better). 502

For text classification, we use Accuracy as a 503

utility metric to evaluate the correctness of the clas- 504

sification model 505

We use the Idealized Context Association Test 506

(ICAT) from StereoSet (Nadeem et al., 2021) to 507

evaluate the model’s tendency to produce stereo- 508

typical associations. ICAT combines a Language 509

Modeling Score (LMS) and a Stereotype Score 510

(SS). A higher ICAT indicates strong modeling 511

with reduced stereotyping. 512

The Word Embedding Association Test 513

(WEAT) (Caliskan et al., 2017) measures bias via 514

cosine similarity of target-attribute word sets (lower 515

scores imply less bias). 516

The Gender Attribute Score (GAS) is a 517

straightforward metric for evaluating gender bias in 518

generated sentences by checking for the presence 519

of gender-specific words in a list (see Appendix 520

A.2). Lower values indicate more neutral text. 521

The True Positive Rate (TPR) gap (Zhao et al., 522

2018) evaluates Equality of Opportunity by measur- 523

ing differences in TPRs between subgroups (lower 524

gaps are fairer). 525

Finally, the Area Under Similarity Curve 526

(AUSC) (Haque et al., 2024) evaluates indirect bias 527

via attention-based explanations; higher AUSC sug- 528

gests greater reliance on sensitive context tokens. 529

6 Result Analysis 530

6.1 Fine-tuning Performance (RQ1) 531

We fine-tune different pre-trained LLMs using 532

CrAWD on the Jigsaw dataset. Table 1 shows 533

the bias in the pre-trained models, the vanilla fine- 534

tuned models, and the CrAWD fine-tuned models. 535

We run all the models 5-repeat rounds and report 536

the average value of each metric in Table 1. For 537

ICAT, which combines LM performance (LMS) 538

and stereotype bias (SS), CrAWD has the high- 539

est ICAT for each LLM. Notably, CrAWD sig- 540
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Table 1: Average fine-tuning performance of CrAWD in different pre-trained LLMs over 5-repeat runs. ∗ denotes
that the model fine-tuned by our proposed CrAWD method has statistically significant differences with both
pre-trained and vanilla fine-tuned models under a one-tailed t-test with p < 0.05.

LLM Pre-Trained Vanilla CrAWD
ICAT↑ WEAT↓ ICAT↑ WEAT↓ ICAT↑ WEAT↓

GPT2 63.817 0.980 67.078 0.693 67.997 0.374∗

Llama2-7B 65.527 0.863 67.756 0.722 69.560∗ 0.406∗

Llama3-8B 64.924 0.583 64.706 0.557 66.136∗ 0.345∗

Falcon-7B 66.476 0.498 67.711 0.340 69.471∗ 0.247∗

FlanT5-3B 66.000 0.496 67.123 0.508 68.241∗ 0.431
Deepseek-6.7B 66.667 0.221 65.432 0.897 68.452∗ 0.200

Table 2: Gender bias in text generation in fine-tuned
models on the Bias in Bios dataset

LLM Model GAS↓ WEAT↓ PPL↓

Llama2-7b

Vanilla 0.860 0.582 15.360
IBM 0.800 0.613 17.108
DT 0.790 0.589 21.896

DSD 0.750 0.526 15.553
CrAWD 0.340 0.194 22.646

Llama3-8B

Vanilla 0.895 0.640 19.906
IBM 0.835 0.632 28.527
DT 0.870 0.697 41.533

DSD 0.900 0.704 41.677
CrAWD 0.550 0.639 46.993

nificantly outperforms both pre-trained and stan-541

dard fine-tuned models across all LLMs, except542

for GPT-2. This suggests that CrAWD effectively543

reduces stereotype bias while maintaining high util-544

ity. For WEAT, which measures the association545

bias in the embedding space, CrAWD has the low-546

est WEAT for each LLM. The results indicate that547

fine-tuning with CrAWD can effectively mitigate548

association bias. Specifically, CrAWD consistently549

achieves significantly lower WEAT scores than550

both pre-trained and fine-tuned methods across551

all pre-trained LLMs, except for FLanT5-3B and552

Deepseek-6.7B. A possible reason for the rela-553

tively low WEAT scores of pre-trained FlanT5 and554

DeepSeek is that these models have already incor-555

porated bias-mitigation mechanisms in their word556

embeddings during pre-training (e.g., instruction557

tuning for FlanT5 (Chung et al., 2022) and domain-558

diverse training corpora for Deepseek (DeepSeek-559

AI et al., 2025)). In addition, the vanilla fine-tuning560

Deepseek model resulted in a dramatic increase in561

bias, suggesting that the vanilla fine-tuning process562

without bias-mitigation mechanisms can amplify563

biases even in an initially unbiased LLM. In con-564

clusion, it is advantageous to use CrAWD during565

LLM fine-tuning for all LLMs.566

For qualitative assessment, we analyse outputs567

from Llama-2-7B fine-tuned on Bias in Bios with568

the Vanilla and CrAWD (Figure. 3, Appendix A.4). 569

Vanilla fine-tuning introduces explicit gender to- 570

kens and reproduces occupational gender stereo- 571

types, whereas CrAWD produces gender-neutral 572

generations devoid of such bias. In Appendix 573

A.4, Figure. 4, attention-map visualization for the 574

prompt “The doctor said that. . . ” illustrates the ef- 575

fect: cross-attention can successfully identify the 576

biased association between “doctor” in the prompt 577

and “she” in the reference bias token with the high- 578

est attention score in the cross attention matrix. 579

6.2 Comparison with Baselines (RQ2) 580

We use three datasets to evaluate CrAWD against 581

other fine-tuning methods to mitigate different bi- 582

ases in text generation or classification. We fine- 583

tune Llama2-7B and Llama3-8B for text generation 584

and BERT-base for classification. 585

We evaluate gender bias in text generation in 586

Llama2-7B and Llama3-8B models fine-tuned on 587

the Bias in Bios dataset. As shown in Table 2, 588

CrAWD has the lowest scores on GAS and WEAT. 589

It mitigates bias in the model’s attention mech- 590

anism, which is reflected in multiple bias met- 591

rics. For text generation utility evaluated by PPL, 592

CrAWD has a slightly higher utility cost in this 593

setting as the result of utility-fairness trade-off. De- 594

bias Tuning can only mitigate for a specific metric 595

target, GAS, so it does not generalize to other eval- 596

uations. 597

To consider a more realistic scenario, in Table 3 598

we limit the model’s prior knowledge of the evalu- 599

ation task. Both Debias Tuning and CrAWD only 600

consider token “he” and “she” for gender during 601

fine-tuning. The evaluation uses Appendix A.2 to 602

calculate GAS and even more for WEAT in LLama 603

models. CrAWD only needs a simple reference 604

{“he”, “she”} to mitigate bias effectively. Whereas, 605

Debias Tuning’s mitigation performance is very 606

limited to the prior knowledge during training. It 607

needs more information to achieve good perfor- 608
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Table 3: Model training with different amounts of prior knowledge (in terms of sensitive tokens)

Sensitive sequence Debias Tuning (DT) CrAWD
GAS↓ WEAT↓ PPL↓ GAS↓ WEAT↓ PPL↓

he, she 0.790 0.589 21.896 0.340 0.194 22.646
he, she, man, woman 0.750 0.546 21.797 0.485 0.339 22.421

he, she, man, woman, male, female 0.710 0.595 24.339 0.405 0.295 23.103

Table 4: Racial bias in text classification in BERT-base
models fine-tuned on the Hate Speech dataset

Model Accuracy↑ TPR Gap↓ AUSC↓
Vanilla 0.944 0.181 0.717

AD 0.916 0.035 0.702
CBE 0.924 0.053 0.604
IBM 0.874 0.050 0.636

CrAWD 0.972 0.042 0.413

Table 5: The performance of CrAWD using different
Top-K%

Top-K% GAS↓ WEAT↓ PPL↓
10 0.485 0.660 16.609
20 0.430 0.624 15.642
30 0.400 0.606 19.687
40 0.340 0.194 22.646

mance on GAS and WEAT and even then the per-609

formance is not as good as CrAWD. In addition, it610

can be also observed that the relative performance611

improvement between the CrAWD method fine-612

tuned on “he, she” and “he, she, man, woman, male,613

female” is 17.14% for GAS and 52.05% for WEAT,614

while the performance drop for PPL is only 2.02%.615

The results clearly indicate that using simple refer-616

ences in CrAWD fine-tuned method dramatically617

improves LLM performance on GAS and WEAT618

while maintaining comparable PPL.619

We also evaluate racial bias using their related620

sensitive tokens (see Appendix A.1) in text clas-621

sification in BERT-base models fine-tuned on the622

Hate Speech dataset. As shown in Table 4, CrAWD623

has the second lowest TPR gap and lowest AUSC,624

indicating that it is effective in removing both di-625

rect bias in model prediction and indirect bias in626

model explanation. CrAWD has the highest ac-627

curacy (higher than Vanilla), which shows that628

CrAWD has a good balance of model utility and629

fairness. We also evaluate multiple types of biases630

in text generation in fine-tuned models on the SNLI631

dataset (see Appendix A.3).632

6.3 Trade-off Analysis (RQ3)633

We evaluate the performance of CrAWD using dif-634

ferent values of hyperparameters when fine-tuning635

Llama2-7B on the Bias in Bios dataset. The values636

Table 6: The performance of CrAWD using different
weight decay values λ

Weight Decay (λ) GAS↓ WEAT↓ PPL↓
0.1 0.176 0.665 15.180
0.2 0.340 0.194 22.646
0.3 0.125 0.341 19.298
0.4 0.410 0.421 22.197

with the optimal trade-off between fairness (mea- 637

sured by WEAT) and utility (measured by PPL) are 638

used for all other CrAWD experiments. 639

Top-K% defines the percentage of cross- 640

attention weights selected to decay. A higher K% 641

identifies more tokens that have biased associations 642

with sensitive attributes. As shown in Table 5, with 643

K increases, the model discovers more biased asso- 644

ciations and better mitigates bias as indicated by the 645

lower WEAT score. However, it also mis-identifies 646

meaningful associations as bias and worsen the 647

model utility as indicated by the higher PPL score. 648

At Top-40%, the bias is low and the model utility 649

is still satisfactory. 650

Weight Decay value λ controls the strength of 651

weight decay applied to the identified biased to- 652

kens. A lower value of λ leads to a stronger bias 653

mitigation, which trade-off more utility for fair- 654

ness. As shown in Table 6, with λ decreases, the 655

model deemphasizes more on tokens with biased 656

associations. It lowers the WEAT acore and better 657

mitigates bias. It also degrades the model utility as 658

indicated by the higher PPL score. At λ = 0.2, the 659

bias is low and the model utility is still satisfactory. 660

7 Conclusion 661

In this work, we introduced Cross-Attention-based 662

Weight Decay (CrAWD), a method for mitigating 663

multiple types of bias in LLMs. CrAWD uses cross- 664

attention mechanism to identify and reduce biased 665

associations with sensitive attributes during fine- 666

tuning, without requiring prior knowledge of bias. 667

Our approach successfully reduces bias in model 668

outputs while preserving performance, offering a 669

versatile and effective solution for promoting fair- 670

ness in diverse NLP tasks across various domains. 671
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8 Limitations672

The CrAWD method introduces a cross-attention673

layer, adding extra parameters to the LLM archi-674

tecture and increasing runtime complexity during675

training and inference. This additional compu-676

tational overhead may limit its applicability in677

resource-constrained environments or scenarios re-678

quiring low latency. In future work, we will explore679

parameter-light alternative solutions to reduce com-680

putational costs, which effectively mitigate bias681

without increasing model complexity.682

9 Ethical Considerations683

We aim to mitigate biases in LLMs using the684

CrAWD method. While we utilize widely used cor-685

pora for training, we acknowledge that they may686

contain harmful or biased content, we are not re-687

sponsible for any offensive material they include.688

Our focus is on reducing biased associations within689

models to generate less biased outputs, assessed690

through bias-related metrics, without compromis-691

ing overall performance. We do not explore the692

potential extrinsic harms that might arise from em-693

ploying the debiasing methods studied.694
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A Appendix998

A.1 Implementation Details999

For LLM fine-tuning, we employ QLoRA1000

(Dettmers et al., 2024) for parameter-efficient train-1001

ing with the following configuration parameters:1002

rank = 16, alpha = 32, dropout = 0.1, and task_type1003

= “causal_lm”. The model undergoes training for 51004

epochs with a learning rate of 10−5. We use cross-1005

entropy as our loss function and optimize it with1006

the AdamW8bit optimizer. We conducted all the1007

experiments on 2 NVIDIA Tesla A100 GPUs with1008

400GB memory. For experiments of RQ1, we run1009

all the models for 5-repeat rounds and report the av-1010

erage value of each metric. All experiment results1011

are reproducible using a provided set of random1012

seeds.1013

For the detailed architecture of CrAWD, we1014

use the pre-trained LLama2-7B-chat from Hug-1015

ging Face as an example. LLama2-7B-chat com-1016

prises 32 decoder layers, each featuring 8 atten-1017

tion heads and a dropout rate of 0.1. The em-1018

bedding size of the model is 4,096. In CrAWD1019

fine-tuning, we enhance this architecture by adding1020

a single cross-attention layer using PyTorch’s1021

nn.MultiheadAttention, is also configured with a1022

dropout rate of 0.1. This cross-attention layer in-1023

troduces additional parameters which is less than1024

1% of the model and it take 15% additional com-1025

puting time per epoch. Both the input sequence x1026

and the sensitive sequence b are fed into the model.1027

We pad both sequences to a maximum length of1028

32, i.e., n = m = 32. After computing the cross-1029

attention weights, we select the Top-40% of the1030

highest weights and apply weight decay by mul-1031

tiplying them by weight decay parameter λ = 0.2,1032

effectively reducing their values by 80%.1033

The sensitive sequence b consists of the follow-1034

ing tokens {“he”, “she”, “gay”, “straight”, “young”,1035

“old”, “black”, “white”, “Asian”, “European”,1036

“American”, “Mexican”, “disabled”, “abled”, “Mus-1037

lim”, “Christian”, “Jewish”, “fat”, “thin”, “rich”,1038

“poor”}. It only needs one reference token for each1039

sensitive attribute group. In the embedding space,1040

the cross-attention mechanism examines similar to-1041

kens related to the sensitive attribute and discovers1042

the biased associations with those tokens. For dif-1043

ferent datasets, we use a subset of b. We use only1044

gender tokens for the Bias in Bios dataset, racial1045

tokens for the Hate Speech dataset, and the full set1046

for the SNLI dataset.1047

For the WEAT calculation, we use ChatGPT o11048

mini to make suggestions on the word sets for the 1049

considered sensitive attributes. 1050

A.2 Gender Attribute Score (GAS) 1051

Evaluation Set 1052

In the GAS metric for assessing gender bias in 1053

the model’s text generation, we use the follow- 1054

ing evaluation test set {“he”, “she”, “him”, “her”, 1055

“his”, “hers”, “man”, “woman”, “male”, “female”, 1056

“boy”, “girl”, “father”, “mother”, “son”, “daugh- 1057

ter”, “brother”, “sister”, “king”, “queen”, “actor”, 1058

“actress”, “husband”, “wife”, “uncle”, “aunt”, “sir”, 1059

“madam”}. Any generated text containing at least 1060

one word from this set is considered as biased, 1061

whereas text that excludes all such words is consid- 1062

ered as neutral. 1063

A.3 Handling Multiple Types of Bias 1064

To evaluate how our model performs in mitigating 1065

multiple types of bias, we fine-tuned LLaMA2- 1066

7b and LLaMA3-8B models on the SNLI dataset, 1067

which contains sensitive tokens related to gender, 1068

race, and age (See Appendix A.1). Our reference 1069

sequence, b, is designed to discover and mitigate 1070

multiple types of biases simultaneously, without re- 1071

lying on full knowledge of the evaluation task. As 1072

shown in Table 7, baseline models struggle to ad- 1073

dress all three sensitive attributes effectively. While 1074

they may perform well for one type of bias, they 1075

often fail to mitigate others. For instance, models 1076

like IBM might significantly reduce gender bias 1077

in Llama3-8B, but they do so at the expense of 1078

race or age bias, typically sacrificing perplexity. 1079

Similarly, Debias Tuning excels in mitigating one 1080

type of bias, but leaves other dimensions relatively 1081

unchecked. In contrast, CrAWD provides a more 1082

stable and balanced approach. It consistently ranks 1083

among the top two methods across all bias metrics 1084

in both LLaMA2-7b and LLaMA3-8B, effectively 1085

reducing gender, race, and age biases without sig- 1086

nificantly harming perplexity. This stability arises 1087

because CrAWD adapts its reference sequence b 1088

to address various sensitive tokens simultaneously, 1089

rather than focusing on a single bias at the expense 1090

of others. As a result, CrAWD offers a more holis- 1091

tic and reliable debiasing solution, mitigating multi- 1092

ple biases at once while maintaining model fluency. 1093

for 45 seconds 1094

A.4 Case Study 1095

For qualitative analysis, we examine some text ex- 1096

amples generated by Llama2-7B fine-tuned on the 1097
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Table 7: Multiple bias in text generation in fine-tuned models on the SNLI dataset

LLM Model WEAT↓ PPL↓Gender Race Age

LLaMA2-7b

Vanilla 0.955 0.526 0.049 18.243
IBM 0.942 0.846 0.006 19.958

Debias Tuning 0.929 0.667 0.072 17.512
CrAWD 0.938 0.445 0.028 20.004

LLaMA3-8B

Vanilla 0.901 0.190 0.565 32.072
IBM 0.546 0.302 0.984 111.783

Debias Tuning 0.878 0.247 0.708 29.154
CrAWD 0.885 0.349 0.576 35.952

Figure 3: Examples generated by Llamma2-7B fine-
tuned using the Vanilla and CrAWD methods

Bias in Bios dataset using the Vanilla and CrAWD1098

methods, shown in Figure 3. The vanilla fine-tuned1099

model generates texts with a gender narrative (with1100

the presence of specific gender token), where it1101

exhibits gender stereotyping bias in occupations.1102

The CrAWD model generates gender neutral texts,1103

which do not have a gender narrative nor show any1104

gender bias associated with occupations.1105

To further inspect, we visualize the final decoder1106

layer’s cross-attention matrix with the predefined1107

sensitive sequence {“he”, “she”} for the prompt1108

Figure 4: Cross-attention visualization for the prompt
“The doctor said that. . . ”

“The doctor said that. . . ”. Figure. 4 shows the 1109

strongest weight links to the input token “doctor” 1110

to the word “she”, meaning the model’s decision 1111

is driven mainly by the word “doctor”. This pro- 1112

nounced attention link exposes an implicit gender 1113

association for the profession, evidence that in the 1114

model’s training it picks up association bias with 1115

certain gender specific words which lead to biased 1116

text generation and CrAWD can successfully re- 1117

duce this association with the weight decay trick. 1118
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