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Abstract

Real-time personalization by and large relies on embedding-based models, which
enable fast optimization via nearest-neighbors, but fail to capture complex user
behavior. Transformer-based models successfully capture such behavior, but are
provably hard to optimize. We study simple transformers, i.e. those with a single
self-attention layer, and show they still capture rich user behavior despite their
simplicity. We then develop a sub-linear time algorithm with near-optimal perfor-
mance. On large-scale Spotify and Trivago datasets, simple transformers match the
accuracy of deeper models while enabling real-time recommendations, improving
objective values by over 20% against natural benchmarks.

1 Introduction

Personalization today is powered by ML models that leverage rich user data. Among recent advances,
transformers in particular have revolutionized the modeling of sequential data and are well-suited
for personalization, where users’ interactions with items are naturally sequential. Indeed, larger
firms (e.g., Alibaba [11], Amazon [25], Spotify [31], Wayfair [29]) have already seen strong empirical
success with transformers in offline experiments. Yet there is little principled guidance on how they
should be applied. In general, real-time optimization under transformers is provably hard (in a manner
we make formal momentarily), creating a trade-off between modeling power and tractability. This
raises two questions:

1. Modeling Power: If we restrict to a simpler subclass of transformers, do we lose significant
ability to model user preferences? Proposition 1 (Section 3.1) shows that transformers with a single
attention layer can represent a wide range of preference models from economics, marketing, and
operations management relevant to personalization. Our experiments (Section 4.1) show that simple
transformers captured user preferences almost as accurately as deeper transformer models. They
achieved 43% higher accuracy than the best non-attention baselines (logistic regression, random
forest, SVM) and were only 6.1% worse than general transformers. Thus, simple transformers deliver
much higher accuracy than classical models while nearly matching deeper transformers.

2. Fast Optimization: Can such a subclass still support sublinear-time algorithms for millisecond-
level recommendations? Theorem 1 (Section 3.2) shows that simple transformers can be optimized
efficiently, and Proposition 2 proves this result is tight. Our experiments (Section 4.2) show that our
algorithm completes simple-transformer-based recommendation tasks efficiently and accurately. It
operates in two phases—retrieval and ranking—which we benchmark against approximate nearest
neighbors (ANN) and beam search, respectively. Combining these methods yields four variants.
With the same candidate budget, our algorithm achieved objective values 20.56% higher than using
our retrieval with beam search, and 20.86% higher than using ANN with our ranking. Thus, it
outperforms natural benchmarks in both phases.

Thus, simple transformers strike a practical balance—capturing rich user behavior while enabling
efficient real-time personalization.

Literature Review: Transformer architectures, introduced by [46], are now central to recommender
systems, with adoption by major platforms [11, 25, 31, 29] and research on diverse attention models
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[21, 29, 51, 49, 11, 4, 8, 53, 55, 10, 16, 25, 43, 27]. Their representational power is well established
[54, 50, 20, 34, 40, 39, 6, 15, 24, 48], and we show that even a single attention layer can capture
sequential variety and complementarity/substitution effects. With simple transformers, the recom-
mendation task reduces to binary quadratic optimization—NP-hard in general [36] but with tractable
cases [36, 44, 35, 7]—and our contribution is to exploit the low non-negative rank of the softmax
matrix, building on related low-rank optimization results [17, 30, 33, 12, 15, 2, 3].

2 Model

We begin with pure embedding models, widely used in personalization. These represent items and
users as vectors in a shared low-dimensional space. Let [n] = {1, . . . , n} denote the items and
V ∈ Rn×d the item matrix, with row v⊤i as the value vector of item i. Each user is represented
by u ∈ Rd, typically learned from historical interactions. The utility of recommending item i to
user u is f(v⊤i u), where f : R → R is a non-decreasing Lipschitz function, often interpreted as a
click/purchase probability. The real-time task is to select up to k items maximizing total reward:

max
∑
i∈S

f(v⊤i u) s.t. S ⊂ [n], |S| ≤ k.

Since items contribute independently, the problem reduces to finding the top-k items with largest
v⊤i u, i.e., a nearest-neighbor search query. Approximate nearest neighbor (ANN) algorithms achieve
sublinear runtime in n, while guaranteeing near-optimality. For example, the ANN algorithm in [1]
gives a (1− ϵ)-approximation of the optimization problem above with expected amortized runtime
O
(
n1−c(ϵ)

)
for some function c(·) where c(ϵ) > 0.

We now introduce simple transformers, our primary model. Unlike pure embedding models, which
treat items independently, transformers capture dependencies among items through self-attention.
Given Q,K ∈ Rn×dkq , V ∈ Rn×dv , and X ∈ Rn×n, a self-attention layer is

SAQ,K,V (X) = softmax((XQ)(XK)⊤)XV.1

For a subset S ⊂ [n], let XS be the diagonal membership matrix with (XS)ii = 1 if i ∈ S. Then
each i ∈ S produces a representation by averaging {vj : j ∈ S}, where the weight on vj reflects how
strongly qi aligns with kj . Thus the model naturally captures complementarities, substitutions, and
other set effects absent in embeddings.

Definition 1 (Simple Transformer) For Q,K ∈ Rn×dkq , V ∈ Rn×dv , user vector u ∈ Rdv , and
non-decreasing Lipchitz activation functions f , the simple transformer is

TQ,K,V,f,u(X) =
[
f(SAQ,K,V (X)⊤1 u), · · · , f(SAQ,K,V (X)⊤n u)

]⊤
.2

As before, the recommendation task is to select up to k items maximizing total reward:

OPT := max
∑
i∈S

f(SAQ,K,V (XS)
⊤
i u) s.t. S ⊂ [n], |S| ≤ k. (P)

3 Theoretical Results

3.1 Modeling Preferences with Simple Transformers

Simple transformers are widely used in personalization [49, 11, 4, 8], though deeper architectures are
also common. This raises the question: how well can simple transformers model user preferences?
We address this by showing that two standard parametric models can be exactly represented within
this framework. First, we consider a model of sequential variety effects. Marketing studies (e.g.,
[28, 19, 37]) show that utility depends not only on intrinsic quality but also on novelty relative to past
items. Repeated exposure to similar items lowers utility, while diversity restores engagement. We
now give a mathematical formulation.

1For A ∈ Rn×d, the row-wise softmax, interpreted as attention weights, is defined by softmax(A)i,j =

exp(Ai,j)
/∑d

j′=1 exp(Ai,j′).
2A simple transformer may also use multiple attention heads, where parallel self-attention layers with

different Q,K, V are concatenated before point-wise transformations. Our results extend to this setting, but for
simplicity we focus on the single-head case.

2



Model 1 (Sequential Variety Effects) Let [n] := {1, . . . , n} denote the set of items. Each item i
has a base utility ûi > 0 and a similarity embedding xi ∈ Sd−1. Define pairwise similarity score
between item i and item j by sij := x⊤

i xj ∈ [−1, 1]. Fix a sequence length k ≥ 1 and nonnegative
lag weights λ1, . . . , λk−1 ≥ 0.

For a sequence S = (i1, . . . , ik) of length k, the sequential–variety–adjusted utility of the item at
position t is

g(S, it) = ûit exp

(
β

t−1∑
ℓ=1

λℓ s it, it−ℓ

)
, t = 1, . . . , k,

where β ∈ R controls the strength and sign of the variety effect.

Second, we consider a model of complementarity and substitution. In economics, these effects
describe how the presence of one item influences the desirability of another. A common modeling
approach represents items as vectors in a feature space, with pairwise interactions captured via inner
products (see, e.g., [26, 5, 38]).

Model 2 (Complementarity and Substitution Effects) Let [n] denote the set of items. Each item i
has a value vector v̂i ∈ Rd. The pairwise complementarity and substitution effects is parametrized
by a matrix H ∈ Rn×n where Hii = 0 for every i ∈ [n]. For a user û ∈ Rd and a subset of items
S ⊂ [n], the interaction-adjusted utility of item i ∈ S is defined as

g(S, i) = v̂⊤i û+
∑
j∈S

Hij .

Since in both models an item’s reward depends on the presence of others, they cannot be captured by
pure embeddings. In contrast, we show that simple transformers can represent both.

Proposition 1 Model 1 and Model 2 can be represented by a simple transformer.

3.2 Fast Optimization with Simple Transformers

Our main result is an algorithm that approximately solves Problem (P) in sub-linear time in n and
polynomial time in k. Let W = softmax(QK⊤). We first show that such guarantees are impossible
without rank assumptions on dkq and the non-negative rank of W , denoted rank+(W ).3

Proposition 2 (a) If dkq = Ω(log n), Problem (P) subsumes finding the maximum clique in graphs

with Ω(n) disjoint cliques. (b) Problem (P) has no (1−ϵ)-approximation runs in time ko(
√

rank+(W )),
unless Gap-ETH holds [13].4

Thus, sub-linear runtime requires dkq = o(log n), and polynomial dependence on k requires
rank+(W ) = O(1). Under these assumptions we obtain:

Theorem 1 Suppose dkq = o(log n) and rank+(W ) = O(1). There exists an algorithm for
Problem (P) which, for any k ∈ N and ϵ > 0, achieves ALG ≥ (1− ϵ)OPT, in expected amortized
runtime

O
(
kµ(ϵ)n1−γ(ϵ,k)

)
for functions µ, γ with γ(ϵ, k) > 0.

Finally, the result holds if W can be well approximated by a low non-negative rank matrix, not
necessarily if W itself has low rank.

Real-time recommendation pipelines typically consist of retrieval (selecting a small candidate set) and
ranking (choosing the final recommendations). Our algorithm follows this structure but introduces
new techniques in both phases.

3The non-negative rank of W ∈ Rn×n
≥0 is the smallest r such that W = AB⊤ for A,B ∈ Rn×r

≥0 .
4The Gap Exponential Time Hypothesis (Gap-ETH) asserts that, for some constant ϵ > 0, distinguishing

between satisfiable 3SAT formulas and those that are not even (1− ϵ)-satisfiable requires exponential time.

3



Phase One: Retrieval. We extend ANN-based retrieval to incorporate transformer structure. Items
are partitioned offline by query and key vectors so that those in the same partition behave similarly
under self-attention. Given a user u, we perform ANN search within each partition and take the union
of retrieved items as the candidate set.

Phase Two: Ranking. We build on beam search, which greedily explores a decision tree of item
sequences, but add a provable refinement. Instead of exploring all k levels, we explore only a limited
prefix and then apply LP rounding to optimize over the remaining items. This balances runtime
(shallower exploration) and accuracy (limited rounding error), yielding near-optimal rewards in
sub-linear time.

4 Experiments

4.1 Representation

We evaluate simple transformers on two large-scale datasets. Spotify Million Playlist Dataset [9]: one
million playlists created between 2010–2017, each containing track metadata. Trivago Session-Based
Hotel Recommendation Dataset [23]: roughly 900K hotel-search sessions from 730K users across
340K hotels.

We compare simple transformers against models that ignore sequence effects (e.g., logistic regression,
random forests, SVM, nearest neighbor) and deeper transformers with multiple attention layers. The
prediction task is to estimate user responses (click/no click) given past interactions.

Random
Forest

Logistic
Regression

Simple
Transformer

General
Transformers

Spotify 0.518 0.520 0.702 0.726

Trivago 0.268 0.333 0.503 0.552
Table 1: Average accuracy of different machine-learning models on Spotify and Trivago.

Our results show that, simple transformers consistently outperform models without sequence structure
and approach the accuracy of deeper transformers. Thus, they are expressive enough to capture rich
user behaviors while remaining efficient for real-time personalization.

4.2 Optimization

On Spotify and Trivago, we benchmark against ANN search (ignoring sequence effects) and beam
search. For recommending five items, our method consistently improves user engagement. With
ranking fixed, our retrieval phase outperforms ANN search by 20.86% on average; with retrieval
fixed, our ranking phase outperforms Beam Search by 20.56%. Overall, the algorithm combines high
efficiency with strong empirical accuracy in both phases.

(a) Spotify (b) Trivago

Figure 1: The x-axis is the number of candidate solutions generated by each algorithm, and the y-axis
is the objective value of the current best solution. Each figure is averaged across 100 instances.
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A Proofs in Section 3.1

Proof of Proposition 1.

Model 1: We construct a simple transformer with the following parameters:

• The input dimension is set to

N = nk + nkd+ 1 + nk,

and is indexed as follows. Define index sets

I = {(i, t) : i ∈ [n], t ∈ [k]}, M = {(j,m, a) : j ∈ [n], m ∈ [k], a ∈ [d]},

D = {⊙} (one dummy row), B = {(i, t)base : i ∈ [n], t ∈ [k]},
and order the N rows of Q and K as [I; M; D; B].
Before proceeding, we give intuitions on how these index sets are used:

– I = {(i, t)}: These rows are the only rows with nonzero queries Q. Each of them
represents the effects of the past items to the current item.

– M = {(j,m, a)}: These rows have non-zero keys K and scalar values V . They have
zero queries Q. They encode the item im at position m and its similarity embedding
xim,a.

– D = {⊙}: This is a dummy row that dominates the softmax denominator, so that the
softmax vector behaves like division by a constant.

– B = {(i, t)base}: These rows encode the base utility ûi of each item i.
• The embedding dimension is set to dkq = k + d+ 2. This is split into a position block of

length k, a component block of length d, a single dummy column (denoted ∆), and a single
base column (denoted Θ).

• Let M > 0 be a sufficiently large constant and b0 ∈ R a fixed constant. Later we will take
M large enough so that the simple transformer approximates g(S, it) to arbitrary precision.

• For each position t ∈ [k], define the row vector rt ∈ R1×k by

(rt)m =

{
log λ t−m, m < t,

−M, m ≥ t,
m ∈ [k],

i.e.
rt =

[
log λt−1, log λt−2, · · · log λ1, −M, −M, · · · , −M︸ ︷︷ ︸

k−t+1

]
.

For each t ∈ [k], let Rt ∈ Rn×k be the matrix with all rows equal to rt:

Rt =


rt
rt
...
rt

 (n rows).

Then the position block of the query matrix is the vertical stacking of these k blocks:

Qpos =


R1

R2

...
Rk

 ∈ R(nk)×k.

Next, define the n×d matrix G collecting the (component-wise) logarithms of the similarity
embeddings xi = (xi,1, . . . , xi,d) ∈ Sd−1:

G =


(log x1)

⊤

(log x2)
⊤

...
(log xn)

⊤

 =


log x1,1 log x1,2 · · · log x1,d

log x2,1 log x2,2 · · · log x2,d

...
...

. . .
...

log xn,1 log xn,2 · · · log xn,d

 .
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The component block of the query matrix is k identical copies of G stacked vertically:

Qcmp =


G
G
...
G

 ∈ R(nk)×d.

Let 1p ∈ Rp×1 be the all-ones column, and 0p ∈ Rp×1 be the all-zeross column. Define the
dummy and base query columns as

Q∆ =


M3 1nk

0nkd
0

0nk

 , QΘ =


b0 1nk

0nkd
0

0nk

 ∈ RN×1.

Putting the query blocks together, we define Q to be

Q =


Qpos Qcmp Q∆ QΘ

0 0 0 0

0 0 0 0

0 0 0 0

 ∈ RN×(k+d+2).

• The position block of the key matrix is defined as

Kpos =


1nd 0 · · · 0
0 1nd · · · 0
...

...
. . .

...
0 0 · · · 1nd

 ∈ R(nkd)×k,

i.e., a block-diagonal matrix with k diagonal blocks, each block the column 1nd.
Let Id ∈ Rd×d be the identity matrix. The component block of the key matrix is defined as

Kcmp =


Id
Id
...
Id

 ∈ R(nkd)×d,

Thus, in the block associated with position m and item j, the d consecutive rows equal the
identity Id.
The dummy and base key columns are

K∆ =


0nk
0nkd
1

0nk

 , KΘ =


0nk
0nkd
0

1nk

 ∈ RN×1.

Putting the key blocks together, we define K to be

K =


0 0 0 0

Kpos Kcmp 0 0

0 0 K∆ 0

0 0 0 KΘ

 ∈ RN×(k+d+2).

• Let v ∈ Rnd×1:

v =


x⊤
1

x⊤
2
...
x⊤
n

 =



x1,1

...
x1,d

x2,1

...
xn,d


.
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We define V (one scalar per row) by placing zeros on I and D, the item–component entries
on M, and the base utilities on B:

V =



0nk

β eM
3

v

0

eM
3 ( 1

β log û1, . . . ,
1
β log ûn

)⊤
...

eM
3 ( 1

β log û1, . . . ,
1
β log ûn

)⊤


∈ RN×1,

where eM
3 ( 1

β log û1, . . . ,
1
β log ûn

)⊤
is repeated k times. Set u = 1 so that V ⊤

i u = Vi for
each row i.

• We set fi(x) = exp(βx) for all i ∈ [nk + nkd+ 1 + nk].
• For a length-k sequence S = (i1, . . . , ik), let S′ ⊂ [nk + nkd+ 1 + nk] = [I; M; D; B]

such that S′ contains {(it, t) : t ∈ [k]} ⊂ [I] from the first set of rows, {(im,m, a) : m ∈
[k], a ∈ [d]} ⊂ [M] from the second set of rows, the dummy row D, and {(it, t)base : t ∈
[k]} ⊂ B from the set of base rows.

We show that the simple transformer above approximates g(S, it) to arbitrary precision. The intuition
of our construction is given below:

• Q encodes lags (λ) and similarity embeddings (log xi).
• K encodes positions (t) in the sequence.
• V encodes similarity embeddings (log xi) and base utilities (ûi).
• The dummy row makes softmax act like a constant divider.

Fix a length-k sequence S = (i1, . . . , ik). We first compute XS′Q(XS′K)⊤ for each (it, t) ∈ S′:

(context) (XS′Q(XS′K)⊤)(it,t),(im,m,a) = rt(m) + log xit,a =

{
log λt−m + log xit,a, m < t,

−M + log xit,a, m ≥ t,

(dummy) (XS′Q(XS′K)⊤)(it,t),⊙ = M3,

(base) (XS′Q(XS′K)⊤)(it,t),(it,t)base = 0.

Hence the denominator of the softmax operation on row XS′Q(XS′K)⊤ is

Zt = eM
3

+ 1 +
∑
m<t

d∑
a=1

λt−mxit,a +
∑
m≥t

d∑
a=1

e−Mxit,a.

Define the following (finite) constants

Λt =
∑
m<t

λt−m, S
(≤)
t =

∑
m<t

∑
a

λt−mxit,a , S
(≥)
t =

∑
m≥t

∑
a

e−Mxit,a .

Set
δt = e−M3

+ e−M3

S
(≤)
t + e−M3

S
(≥)
t .

Then
Zt = eM

3

(1 + δt).

Therefore the attention weights on row (it, t) are

softmax(XS′Q(XS′K)⊤)(it,t),(im,m,a) =
exp(rt(m) + log xit,a)

Zt
=

λt−m xit,a

eM3(1 + δt)
(m < t),

and

softmax(XS′Q(XS′K)⊤)(it,t),(it,t)base =
exp(0)

Zt
=

e−M3

1 + δt
.
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Recall that

V(im,m,a) = eM
3

xim,a, V⊙ = 0, V(it,t)base = eM
3

· 1
β
log ûit .

So we have

SAQ,K,V (XS′)(it,t) =
∑
m<t

d∑
a=1

softmax(XS′Q(XS′K)⊤)(it,t),(im,m,a) V(im,m,a)

+ softmax(XS′Q(XS′K)⊤)(it,t),(it,t)base V(it,t)base

=
1

1 + δt

(∑
m<t

d∑
a=1

λt−mxit,a

eM3 eM
3

xim,a + e−M3

eM
3

· 1
β
log ûit

)

=
1

1 + δt

(∑
m<t

λt−m

d∑
a=1

xit,axim,a +
1

β
log ûit

)

=
1

1 + δt

(
t−1∑
ℓ=1

λℓ x
⊤
itxit−ℓ

+
1

β
log ûit

)
.

Fix any ϵ > 0. Since S
(≤)
t ≤ Λt ≤ Λk−1 and S

(≥)
t ≤ d e−M , we can set M large enough so that

e−M3(
1 + Λk−1

)
+ d e−(M3+M) ≤ ϵ,

which gives δt ≤ ϵ for every t. Finally, we have

TQ,K,V,f1,...,fn,u(XS′)(it,t) = f(it,t)
(
SAQ,K,V (XS′)(it,t)

)
= exp

(
β

1 + δt

t−1∑
ℓ=1

λℓ x
⊤
itxit−ℓ

+
1

1 + δt
log ûit

)

= û
1

1+δt
it

exp

(
β

1 + δt

t−1∑
ℓ=1

λℓ x
⊤
itxit−ℓ

)
.

Hence, as M → ∞ (so δt → 0 uniformly in t), we have

(1− ϵ)g(S, it) ≤ TQ,K,V,f1,...,fn,u(XS′)(it,t) ≤ TQ,K,V,f1,...,fn,u(XS′)(it,t).

Therefore the simple transformer approximate g(S, it) to arbitrary precision.

Model 2: We construct a simple transformer with three self-attention heads. The first head and the
second head represent the complementarity effects and the substitution effects, respectively. They
have input dimensions n+ 1, output dimension 1, and embedding dimension n+ 1. The third head
represents the base utility of each item. It has input dimensions n, output dimension d, and embedding
dimension n. Note that this multi-head construction can be equivalently represented as a single-head
simple transformer by arranging the Q, K, V , and u matrices for all three heads into block form.
However, for clarity, we present the proof by describing each head separately.

Let A,B ∈ Rn×n
+ be two matrices with positive entries such that Hij = exp(Aij)− exp(Bij) for

every i, j ∈ [n]. Let M be a sufficiently large constant. Later we will set M to be large enough so
that the simple transformer approximates g(S, i) to arbitrary precision.

Head 1. The first self-attention head has the following parameters:

• Q(1),K(1) ∈ R(n+1)×(n+1) are set such that

Q(1)(K(1))⊤ =


M

M
0 0 M

A

.
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• V (1) ∈ Rn+1 is set to V
(1)
i = 1 for each i ∈ [n] and V

(1)
n+1 = 0. Set u(1) = 1 so that

(V
(1)
i )⊤u(1) = V

(1)
i .

• Set f (1)
i (x) = exp(M)x for every i ∈ [n2 + 1].

• For a subset S ⊂ [n], we set S(1) ⊂ [n+ 1] where S(1) = S ∪ {n+ 1}.

We have

softmax
(
XS(1)Q(1)(XS(1)K(1))⊤

)
ij
=



exp(Aij)∑
j∈S exp(Aij) + exp(M) + (n− |S|)

, i ∈ S, j ∈ S,

exp(M)∑
j∈S exp(Aij) + exp(M) + (n− |S|)

, i ∈ S, j = n+ 1,

1∑
j∈S exp(Aij) + exp(M) + (n− |S|)

, i ∈ S, j ∈ [n] \ S,

1

n+ exp(M)
, i = n+ 1, j ∈ [n],

exp(M)

n+ exp(M)
, i = n+ 1, j = n+ 1,

1

n+ 1
, i ∈ [n] \ S, j ∈ [n+1].

Therefore, for every i ∈ S, we have

SAQ(1),K(1),V (1)(XS(1))⊤i u
(1) =

∑
j∈S exp(Aij)∑

j∈S exp(Aij) + exp(M) + (n− |S|)
.

For any given ϵ > 0, we can take M to be sufficiently large such that∑
j∈S exp(Aij)− ϵ

2

exp(M)
≤ SAQ(1),K(1),V (1)(XS(1))⊤i u

(1) ≤
∑

j∈S exp(Aij)

exp(M)
.

Finally, we get∑
j∈S

exp(Aij)−
ϵ

3
≤ T

Q(1),K(1),V (1),f
(1)
1 ,...,f

(1)
n ,u(1)(XS(1))i ≤

∑
j∈S

exp(Aij).

Head 2. The second self-attention head has exactly the same parameters, expect we replace A with
B and we flip the sign of fi:

• Q(2),K(2) ∈ R(n+1)×(n+1) are set such that

Q(2)(K(2))⊤ =


M

M
0 0 M

B

.
• V (2) ∈ Rn+1 is set to V

(2)
i = 1 for each i ∈ [n] and V

(2)
n+1 = 0. Set u(2) = 1 so that

(V
(1)
i )⊤u(2) = V

(2)
i .

• Set f (2)
i (x) = − exp(M)x for every i ∈ [n2 + 1].

• For a subset S ⊂ [n], we set S(2) ⊂ [n+ 1] where S(2) = S ∪ {n+ 1}.

Then, similar to head 1, we get

−
∑
j∈S

exp(Bij) ≤ T
Q(2),K(2),V (2),f

(2)
1 ,...,f

(2)
n ,u(2)(XS(2))i ≤ −

∑
j∈S

exp(Bij) +
ϵ

3
.
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Head 3. The third self-attention head has the following parameters:

• Q(3),K(3) ∈ Rn×n are set such that

Q(3)(K(3))⊤ =


0 −M · · · −M

−M 0 · · · −M
...

...
. . .

...
−M −M · · · 0

 .

• V (3) ∈ Rn×d is set to V
(3)
i = v̂i for each i ∈ [n].

• u(3) ∈ Rd is set to u(3) = û.
• Set f (3)

i (x) = x for every i ∈ [n].

• For a subset S ⊂ [n], we set S(3) = S.

For every i ∈ S, we have

SAQ(3),K(3),V (3)(XS(3))⊤i u
(3) =

(v̂i)
⊤û+ (n− |S|) exp(−M)

1 + (n− |S|) exp(−M)
.

For any given ϵ > 0, we can take M to be sufficiently large such that

(v̂i)
⊤û− ϵ

3
≤ T

Q(3),K(3),V (3),f
(3)
1 ,...,f

(3)
n ,u(3)(XS(3))i ≤ (v̂i)

⊤û.

Complete the Proof. Because exp(Aij) − exp(Bij) = Hij Combining the above three self-
attention heads, we have

v̂⊤i û+
∑
j∈S

Hij − ϵ ≤
3∑

ℓ=1

T
Q(ℓ),K(ℓ),V (ℓ),f

(ℓ)
1 ,...,f

(ℓ)
n ,u(ℓ)(XS(ℓ))i ≤ v̂⊤i û+

∑
j∈S

Hij .

Therefore the three attention heads approximate g(S, i) to arbitrary precision.

B Proof of Proposition 2

Proof of Proposition 2 (a). We prove that for any constant M ≥ 3, there exists a number c(M) > 0
for which the following holds. For any dkq such that exp(c(M) · dkq) ≤ n− 1 and any k ≥ M + 1,
Problem (P) subsumes the problem of finding a largest clique in a graph with

• n− 1 vertices,
• exp(c(M) · dkq) disjoint cliques,
• and all cliques have size at least k −M and at most k − 1.

Fix any constant M ≥ 1. We construct an instance of Problem (P) by applying the Johnson-
Lindenstrauss Lemma:

Lemma 1 (Johnson-Lindenstrauss Lemma) For any 0 < ϵ < 1 and any set S of m points in Rn,
there exists a universal constant c > 0 and a linear function f : Rn → Rd with d = cϵ−2 log(m)
such that

(1− ϵ)∥xi∥22 ≤ ∥f(xi)∥22 ≤ (1 + ϵ)∥xi∥22
for all xi ∈ S and

(1− ϵ)∥xi − xj∥22 ≤ ∥f(xi)− f(xj)∥22 ≤ (1 + ϵ)∥xi − xj∥22
for all xi, xj ∈ S.

Take N to be large enough such that exp(−N) ≤ 1/2M . Take 0 < δ < 1 to be small enough such
that exp(−δN) ≥ 1− exp(−N). Then N and δ can be chosen to be both only depend on M . We
obtain the following corollary:
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Corollary 1 (Corollary of Lemma 1.) There exists a number c(M) > 0 and a set S of exp(c(M) ·
dkq) unit vectors in Rdkq such that |u⊤

i uj | ≤ δ for every ui, uj ∈ S and ui ̸= uj .

Proof of Corollary 1. Let c > 0 be the universal constant in Lemma 1 and let n = exp(c−1(δ/4)2 ·
dkq). Let c(M) = c−1(δ/4)2, then n = exp(c(M) · dkq). Because δ > 0 only depends on M , we
have c(M) > 0 also only depends on M . Consider {ei}ni=1 ⊂ Rn where ei ∈ Rn is the unit vector
where the i-th entry equals to 1 and all other entries equal to 0. Then we have ∥ei − ej∥22 = 2 for
every ei ̸= ej . By Lemma 1, there exists a linear function f : Rn → Rdkq such that(

1− δ

4

)
≤ ∥f(ei)∥22 ≤

(
1 +

δ

4

)
for all ei and

2

(
1− δ

4

)
≤ ∥f(ei)− f(ej)∥22 ≤ 2

(
1 +

δ

4

)
for all ei ̸= ej .

For every ei ̸= ej , because

∥f(ei)− f(ej)∥22 = ∥f(ei)∥22 + ∥f(ej)∥22 − 2f(ei)
⊤f(ej),

we have

f(ei)
⊤f(ej) = (∥f(ei)∥22 + ∥f(ej)∥22 − ∥f(ei)− f(ej)∥22)/2

≤
((

1 +
δ

4

)
+

(
1 +

δ

4

)
− 2

(
1− δ

4

))
/2

=
δ

2
,

and

f(ei)
⊤f(ej) = (∥f(ei)∥22 + ∥f(ej)∥22 − ∥f(ei)− f(ej)∥22)/2

≥
((

1− δ

4

)
+

(
1− δ

4

)
− 2

(
1 +

δ

4

))
/2

= −δ

2
.

Let ui = f(ei)/∥f(ei)∥2 for all i ∈ [n], then each ui is a unit vector. Moreover, for every ui ̸= uj ,

u⊤
i uj =

f(ei)
⊤f(ej)

∥f(ei)∥2∥f(ej)∥2
≤

δ
2

1− δ
4

= δ

(
2

4− δ

)
< δ,

where the last inequality follows since 0 < δ < 1. Similarly,

u⊤
i uj =

f(ei)
⊤f(ej)

∥f(ei)∥2∥f(ej)∥2
≥

− δ
2

1− δ
4

= −δ

(
2

4− δ

)
> −δ.

Therefore |u⊤
i uj | ≤ δ for every ui ̸= uj . Take S = {ui}ni=1 gives the desired set of unit vectors.

Corollary 1 states that there exists a set of unit vectors in Rdkq , with size exponential in dkq, where
all unit vectors in the set are approximately orthonormal.

Fix any dkq such that exp(c(M) · dkq) ≤ n− 1 and any k ≥ M + 1. Let G be a graph with n− 1
vertices v1, . . . , vn−1 and ℓ = exp(c(M) · dkq) disjoint cliques, each of size at least k −M and at
most k − 1. Let I1, . . . , Iℓ ⊂ [n− 1] be the index sets of vertices corresponding to these ℓ cliques.
That is, {vi}i∈Iℓ′ forms a clique for each ℓ′ ∈ [ℓ]. Without loss of generality we assume ℓ′ ∈ Iℓ′ for
every ℓ′ ∈ [ℓ].

By Corollary 1, there exists ℓ unit vectors u1, . . . , uℓ ∈ Rdkq such that |u⊤
i uj | ≤ δ for i ̸= j. Let

uℓ+1, . . . , un−1 be unit vectors such that ui = uℓ′ for i ∈ Iℓ′ . That is, for indices i, j such that vi
and vj are in the same clique, we have ui = uj . Let U ∈ R(n−1)×dkq where the i-th row of U is u⊤

i .
Let A = UU⊤ ∈ R(n−1)×(n−1), then A has rank at most dkq .
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Because A has rank at most dkq , there exists Q,K ∈ Rn×dkq such that

QK⊤ =


0

0
0 0 0

−N ·A

.
We create an explicit instance of P similar to the instance in the proof of Proposition 2 (a):

• W = softmax(QK⊤). For simplicity of exposition, we replace W with W ′, defined to be

W ′
ij =


1 for i = n or j = n

exp(−N |u⊤
i uj |) for i, j ̸= n and Aij ̸= 1

exp(−N) for i, j ̸= n and Aij = 1,

As a sanity check, W is simply W ′ with each row rescaled to sum to one.

• dv = 1, and we set u = 1, so that V u = V .

• V ∈ Rn×1 is set according to Vi = 1 for i = 1, . . . , n− 1, and Vn = 2.

• For i = 1, . . . , n− 1, we set fi(·) to be:

fi(x) =


0 if 0 ≤ x ≤ 2+exp(−N)k+ 1

4

1+exp(−N)k+ 1
4

x−
2+exp(−N)k+1

4
1+exp(−N)k+1

4

2+exp(−N)k
1+exp(−N)k

−
2+exp(−N)k+1

4
1+exp(−N)k+1

4

if 2+exp(−N)k+ 1
4

1+exp(−N)k+ 1
4

< x < 2+exp(−N)k
1+exp(−N)k

1 if x ≥ 2+exp(−N)k
1+exp(−N)k .

Because 2+exp(−N)k
1+exp(−N)k >

2+exp(−N)k+ 1
4

1+exp(−N)k+ 1
4

, we have fi(·) is continuous piece-wise linear for
every i = 1, . . . , n− 1. We set fn(x) = 0 for every x.

Now notice that because fi(x) ≤ 1 for every i = 1, . . . , n− 1, and fn(x) = 0, the optimal value of
this instance of Problem P is at most k − 1. It will suffice to show that the largest clique G has size
k′ if and only if the optimal value is k′. We prove both directions separately.

If G has a clique of size k′, then the optimal value is at least k′: Suppose G has a clique of size
k′. Without loss of generality, let I1 ⊂ [n− 1] correspond the vertex set of a clique of size k′ in G.
Consider the solution x∗, where x∗

i = 1 for i ∈ I1 ∪ {n}. Because |I1 ∪ {n}| ≤ k, the solution x∗ is
feasible. We will show that the objective value of P at x∗ is k′ (and thus the optimal value is at least
k′).

Because W ′
ij = exp(−N) whenever i, j ∈ I1, we have

n∑
i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

∑
i∈I1

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)

=
∑
i∈I1

fi

(
2 + k′ exp(−N)

1 + k′ exp(−N)

)
.

Since k′ ≤ k − 1. It follows that

2 + k′ exp(−N)

1 + k′ exp(−N)
>

2 + k exp(−N)

1 + k exp(−N)
.

Therefore
n∑

i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=
∑
i∈I1

fi

(
2 + k′ exp(−N)

1 + k′ exp(−N)

)
= |I1| = k′.
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If the largest clique in G has size k′, then the optimal value is at most k′: By our assumption
we have k′ ≥ k −M . Suppose for the sake of contradiction that the optimal value is k∗ > k′. Let x∗

be an optimal solution to P. Notice if x∗
n = 0, then since (w′

i ⊙ V u)j = W ′
ij for all j ∈ [n− 1], we

have
n∑

i=1

x∗
i fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
=

n∑
i=1

x∗
i fi (1) = 0.

Therefore we must have x∗
n = 1.

Let I ⊂ [n−1] be the index set where x∗
i = 1 for i ∈ I . Because fi(x) ≤ 1 for every i = 1, . . . , n−1,

we have |I| ≥ k∗. Let d(i) be the degree of vertex i in the induced subgraph of G with vertex set
{vi}i∈I . Because G consists of disjoint cliques with size at most k′, we have d(i) ≤ k′ − 1 for every
i ∈ C.

Fix any i ∈ I such that

fi

(
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

)
> 0,

or, equivalently,
(w′

i ⊙ V u)⊤x∗

w′
i
⊤x∗

>
2 + exp(−N) + 1

4

1 + exp(−N) + 1
4

.

Because exp(−N |u⊤
i uj |) ≥ exp(−δN) for every i, j ̸= n and Aij ̸= 1, we have

(w′
i ⊙ V u)⊤x∗

w′
i
⊤x∗

=
2 +

∑
j∈I,Aij ̸=1 exp(−N |u⊤

i uj |) + (d(i) + 1) exp(−N)

1 +
∑

j∈I,Aij ̸=1 exp(−N |u⊤
i uj |) + (d(i) + 1) exp(−N)

≤ 2 + (|I| − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

1 + (|I| − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

≤ 2 + (k∗ − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

1 + (k∗ − d(i)− 1) exp(−δN) + (d(i) + 1) exp(−N)

=
2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))(d(i) + 1)

1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))(d(i) + 1)

≤ 2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′

1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′
,

where the second inequality follows since |I| ≥ k∗, and the last inequality follows since exp(−δN)−
exp(−N) > 0 and d(i) ≤ k′ − 1. Therefore

2 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′

1 + exp(−δN)k∗ − (exp(−δN)− exp(−N))k′
>

2 + exp(−N)k + 1
4

1 + exp(−N)k + 1
4

.

So we have
exp(−δN)k∗ − (exp(−δN)− exp(−N))k′ < exp(−N)k +

1

4
.

Rearrange the above inequality gives

exp(−δN)(k∗ − k′) < exp(−N)(k − k′) +
1

4
.

Because k∗ ≥ k′ + 1 and k′ ≥ k −M , we get

exp(−δN) < exp(−N)M +
1

4
.

However, since exp(−N) ≤ 1/2M and exp(−δN) ≥ 1− 1/2M , we have

exp(−δN) ≥ 1− 1

2M
≥ 5

6
> exp(−N)M +

1

4
.

A contradiction. Therefore k∗ ≤ k′.

Proof of Proposition 2 (b).

Our proof is based on a reduction from Problem (P) to the well-known Multi-dimensional Knapsack
Problem (MDKP), defined as follows:

16



Definition 2 (Multi-dimensional Knapsack Problem) The Multi-dimensional Knapsack Problem
(MDKP) with c items and d dimensions is defined as:

max fMDKP(x) = p⊤x (MDKP)

s.t. y⊤i x ≤ ti ∀i ∈ [d],

x ∈ {0, 1}c.

Here, p ∈ Nc, and for all i ∈ [d], we have yi ∈ Zc
≥0 and ti ∈ Z≥0.5

We present the reduction in the following proposition:

Proposition 3 Consider Problem (P), written in the equivalent form P, reproduced below, which has
parameters n, k, and r+, where r+ is the non-negative rank of W :

max fP(I)(x) =

n∑
i=1

xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P)

s.t. x ∈ {0, 1}n, 1 ≤ e⊤x ≤ k.

Now consider an instance of MDKP with parameters c and d. Suppose there exists an algorithm
ALG for solving P with parameters n = k = c+ d+ 1 and min{c, d} ≤ r+ ≤ c+ d+ 1, such that
for any sufficiently small ϵ > 0, the algorithm satisfies

ALGP ≥ (1− ϵ)OPTP

with runtime T . Then we can construct an algorithm ALG′ for solving MDKP with parameters c
and d, such that for the same ϵ, it satisfies

ALG′
MDKP ≥ (1− ϵ)OPTMDKP

with runtime O(T ).

Proof of Proposition 3.

Fix an MDKP instance. We create an instance of P as follows:

• n = k = d+ c+ 1. Here, out of the n total variables, the first d variables will correspond
to the d constraints of MDKP, the c variables after that will correspond to the c variables of
MDKP, and the last variable will be a dummy variable that must be selected in any optimal
solution of P.

• For each i = 1, . . . , d, set

wij =


0 for j = 1, . . . , d

yi,j−d for j = d+ 1, . . . , d+ c

1 for j = d+ c+ 1.

That is, in block notation,
w⊤

i =
[
0 · · · 0 y⊤i 1

]
.

Then we have

w⊤
i x =

c∑
j=1

yijxd+j + xd+c+1.

Moreover, since yi ∈ Zc
≥0 for each i ∈ [d], the non-negative rank of the sub-matrix of W

consisting of its first d rows is at most min{c, d}.

• For each i = d+ 1, . . . , d+ c+ 1, set wi ∈ Rd+c+1
≥0 ’s to be any non-zero vectors such that

W has the desired non-negative rank r+. This is possible since min{c, d} ≤ r+ ≤ c+d+1.
• dv = 1, and we set u = 1, so that V u = V .

5We assume pmin > 0 without loss of generality. If pj = 0 for some j ∈ [c], there always exists an optimal
solution with xj = 0. Hence, we can safely ignore the j-th entry of p, x, and each yi.
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• V ∈ R(d+c+1)×1 is set to be Vi = 0 for i = 1, . . . , d, and Vi = 1 for i = d+ 1, . . . , d+ c,
and Vd+c+1 = 2.

• For each i = 1, . . . , d, set

fi(x) =


−
(∑c

j=1 pj + 1
)

for x ≤ ti+3
ti+2

x− ti+2
ti+1

ti+2
ti+1 − ti+3

ti+2

·

(
c∑

j=1

pj + 1

)
for ti+3

ti+2 < x < ti+2
ti+1

0 for x ≥ ti+2
ti+1 .

Then fi(x) is continuous piecewise-linear.
• For each i = d+ 1, . . . , d+ c, set fi(x) = pi−d. Set fd+c+1(x) = 0.

Because pmin > 0 and 0⃗ ∈ {0, 1}c is a feasible solution to MDKP, we have OPTMDKP = 0 if and
only if 0⃗ ∈ {0, 1}c is the only feasible solution to MDKP. Moreover, if 0⃗ ∈ {0, 1}c is not the only
feasible solution to MDKP, then OPTMDKP ≥ pmin.

Our proof relies on the following lemma.

Lemma 2 Let x ∈ {0, 1}n be a feasible solution to P such that fP(x) > 0. Then we can construct a
feasible solution z ∈ {0, 1}c to MDKP such that fP(x) = fMDKP(z).

Conversely, let z ∈ {0, 1}c be a feasible solution to MDKP such that fMDKP(z) > 0. Then we can
construct a feasible solution x ∈ {0, 1}n to P such that fP(x) = fMDKP(z).

Lemma 2 gives a correspondence between solutions to P and solutions to MDKP. In particular, as a
corollary, Lemma 2 implies the relationship between the optimal objective values of P and MDKP.

Corollary 2 (Corollary of Lemma 2.) OPTP ≤ 0 if and only if OPTMDKP = 0. Moreover, suppose
OPTMDKP > 0. Then OPTP = OPTMDKP.

Proof of Corollary 2. Suppose OPTP > 0. Let x∗ be an optimal solution to P. By Lemma 2 there
exists a feasible solution z to MDKP such that fMDKP(z) > 0 and

OPTP = fP(x
∗) = fMDKP(z) ≤ OPTMDKP.

Conversely, suppose OPTMDKP > 0. Let z∗ be an optimal solution to MDKP. By Lemma 2 there
exists a feasible solution x to MDKP such that

OPTMDKP = fMDKP(z
∗) = fP(x) ≤ OPTP.

We also get
fP(x) ≥ fMDKP(z

∗) > 0.

Before proving Lemma 2, we first show that it is sufficient to prove Lemma 2. Assume we have an
algorithm ALG for solving P such that, for any sufficiently small ϵ > 0, we have ALG satisfies

ALGP ≥ (1− ϵ)OPTP.

Then our proposed algorithm ALG′ for solving MDKP works as follows:

• If ALGP ≤ 0, ALG′ outputs 0⃗ ∈ {0, 1}c.
• If ALGP > 0, let x be the solution to P given by ALGP. Then ALG′ outputs the solution
z ∈ {0, 1}c to MDKP given by Lemma 2. That is, z ∈ {0, 1}c that satisfies

fP(x) = fMDKP(z).

Performance Guarantee of ALG′: Suppose OPTMDKP = 0. Then by Corollary 2,

ALGP ≤ OPTP ≤ 0.

Therefore ALG′ correctly outputs 0⃗ ∈ {0, 1}c.
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On the other hand, suppose OPTMDKP > 0. Then by Corollary 2,
ALG′

MDKP = fMDKP(z) = fP(x) ≥ (1− ϵ)OPTP = (1− ϵ)OPTMDKP.

This proves the desired performance guarantee of ALG′. To finish the proof, we prove Lemma 2 and
analyze the runtime of ALG′.

Proof of Lemma 2. Recall for each i = 1, . . . , d, we set

wij =


0 for j = 1, . . . , d

yi,j−d for j = d+ 1, . . . , d+ c

1 for j = d+ c+ 1.

Also, (V u)i = 0 for i = 1, . . . , d, and (V u)i = 1 for i = d + 1, . . . , d + c, and (V u)d+c+1 = 2.
Therefore for i = 1, . . . , d we have

(wi ⊙ V u)⊤x

w⊤
i x

=

∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

.

Recall for each i = d+ 1, . . . , d+ c we set fi(x) = pi−d, and we set fd+c+1(x) = 0. Therefore we
have

fP(x) =

c+d+1∑
i=1

xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)

=

d∑
i=1

xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi.

First, let x ∈ {0, 1}n be a feasible solution to P(I) such that fP(x) > 0. Let z ∈ {0, 1}c where
zj = xd+j for j ∈ [c]. We claim that z is a feasible solution to MDKP and

fP(x) = fMDKP(z).

Because
∑c

i=1 xd+ipi <
c∑

j=1

pj+1, we must have xi = 1 for every i ∈ [d]. Moreover, if xd+c+1 = 0,

then

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= fi(1) < 0

for every i ∈ [d]. Hence we must have xd+c+1 = 1. Because yi ∈ Zc
≥0 and ti ∈ Z≥0 for all i ∈ [d],

if
∑c

j=1 yijxd+j > ti, we must have
∑c

j=1 yijxd+j ≥ ti + 1. Then

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
≤ fi

(
ti + 3

ti + 2

)
= −

 c∑
j=1

pj + 1

 .

Therefore we must have
∑c

j=1 yijxd+j ≤ ti for all i ∈ [d]. Hence
∑c

j=1 yijzj ≤ ti for all i ∈ [d],
which shows z is a feasible solution to MDKP. Finally, because∑c

j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

≥ ti + 2

ti + 1

for all i ∈ [d], we have

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= 0

for all i ∈ [d]. Therefore

fP(x) =

d∑
i=1

xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi

=

c∑
i=1

zipi

= fMDKP(z).
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Conversely, let z ∈ {0, 1}c be a feasible solution to MDKP such that fMDKP(z) > 0. Let x be a
solution to P where xi = 1 for i = 1, . . . , d and i = d+ c+ 1, and xd+i = zi for i = 1, . . . , c. We
claim that x is a feasible solution to MDKP and

fP(x) = fMDKP(z).

Because z is a feasible solution to MDKP, we have
∑c

j=1 yijzj ≤ ti for all i ∈ [d]. Therefore∑c
j=1 yijxd+j ≤ ti for all i ∈ [d]. Then∑c

j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

≥ ti + 2

ti + 1

for all i ∈ [d]. Therefore we have

fi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
= 0

for all i ∈ [d]. Hence

fP(x) =
d∑

i=1

xifi

(∑c
j=1 yijxd+j + 2xd+c+1∑c
j=1 yijxd+j + xd+c+1

)
+

c∑
i=1

xd+ipi

=

c∑
i=1

zipi

= fMDKP(z).

Given an MDKP instance, our construction of the corresponding P instance takes O(1) runtime.
Also, the procedure of the construction of a feasible solution z ∈ {0, 1}c to MDKP given a feasible
solution to P described in Lemma 2 takes O(1) runtime: we simply set z ∈ {0, 1}c where zj = xd+j

for j ∈ [c]. Therefore, if ALG has runtime T , our ALG′ has runtime O(T ).

By Proposition 3, any (1− ϵ)-approximation scheme for P can be directly translated into a (1− ϵ)-
approximation scheme for MDKP with comparable runtime. Therefore, many hardness results for
MDKP carry over directly to P. We cite such an result below:

Proposition 4 (Corollary of [13]) For general d, MDKP admits no (1− ϵ)-approximation scheme
with runtime

ko(
√
d),

assuming Gap Exponential Time Hypothesis holds.

This result, along with Proposition 3, gives our desired lower bound statement in Proposition 2 (b).

C Proof of Theorem 1

We first formally define the ϵ-Approximate k-Nearest Neighbor Search Algorithm.

Definition 3 (ϵ-Approximate k-Nearest Neighbor Search Algorithm) An ϵ-Approximate k-
Nearest Neighbor search algorithm builds a data structure on any given set of points
{v1, . . . , vn} ⊂ Rd, and takes any query u ∈ Rd, any 1 ≤ k ≤ n, and any ϵ > 0 as
inputs. Let π : [n] → [n] be a permutation of the indices such that v⊤π(1)u ≥ · · · ≥ v⊤π(n)u.
Let (i∗1, . . . , i

∗
k) = (π(1), . . . , π(k)). The oracle outputs k indices i1, . . . , ik ∈ [n] such that

v⊤iju ≥ v⊤i∗j u− ϵ for each j = 1, . . . , k with expected amortized runtime k-ANN(n, d, k, ϵ).

Many ϵ-ANN searches can be naturally modified to perform the ϵ-approximate k-Nearest Neighbor
search, with a similar expected amortized runtime, that is, sub-linear in n.

For all i ∈ [n] and ϵ > 0, the function fi satisfies:

fi(x− ϵ) ≥ (1− g(ϵ))fi(x)− h(ϵ) for all x,
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where 0 ≤ g(ϵ) ≤ 1 and h(ϵ) ≥ 0 are non-negative functions of ϵ. This parametrization captures the
idea that a small additive error in the input x leads to a controlled multiplicative and additive error in
the output fi(x).

Recall that while our algorithm’s runtime is parametrized by the non-negative rank of W , achieving
sub-linear dependence on n and polynomial dependence on k requires that the non-negative rank of
W be small. Importantly, our main result does not require W itself to have low non-negative rank,
but only that W can be well approximated entry-wise by a low non-negative rank matrix.

Formally, suppose there exists a non-negative matrix W ′ ∈ Rn×n
≥0 such that

1− γ ≤ Wij

W ′
ij

≤ 1 + γ for all i, j,

with rank+(W
′) = r+.6 Then our main result is parametrized by r+ and γ. Just as in the case of the

parameter dkq , our guarantee is non-trivial when r+ = O(1).

We are now prepared to state our main result in full, which is that our algorithm achieves the following:

Theorem 2 Let k-ANN(n, d, k, ϵ) be the expected amortized runtime of an ϵ-Approximate k-Nearest
Neighbor search algorithm, which we assume is concave in n (e.g. sub-linear suffices).

Let τ be the number of distinct functions among f1, . . . , fn. Suppose there exists W ′ ∈ Rn×n
+ such

that 1 − γ ≤ Wij/W
′
ij ≤ 1 + γ for all i, j, and W ′ has non-negative rank r+ with an explicit

non-negative factorization. Assume g(x), h(x) = O(x).

Given any ϵ > 0, our algorithm ALG achieves
ALG ≥ (1− ϵ)(1− γ) · OPT − cϵγk

where c is a universal constant. Moreover, the expected amortized runtime of our algorithm is

O
(
ϵ−2dkq · τ · k-ANN

(n
τ
, dv, k, ϵ

)
+ ϵ−2dkqr

2
+/ϵ(1 + γ)r+(τk)r

2
+/ϵ
)
,

where the Big-Oh depends only on ∥Q∥2,∞, ∥K∥2,∞, (V u)max,Wmin, and
maxi∈[n]{fi((V u)max)}.

C.1 Phase One (Retrieval)

In phase one, our algorithm aims to identify a small subset I ⊂ [n] of items such that the optimal
objective value of P does not decrease significantly when restricted to I . To achieve this, our algorithm
first partitions items offline based on their query vectors qi, key vectors ki, and reward functions fi.
Since both qi and ki lie in a space of dimension dkq , the number of partitions is much smaller than n.
Items in the same partition are designed to behave similarly under the self-attention layer. That is,
they produce similar outputs when interacting with other items. When a user u arrives, the algorithm
applies an ϵ-approximate k-nearest neighbor search within each partition to select at most k items
whose value vectors have the highest approximate inner product similarity with u. Because items
within the same partition respond similarly under attention, user preferences within each partition are
primarily determined by similarity to the user vector. Thus, our algorithm retrieves a small subset I
containing high-reward items tailored to the user.

Proposition 5 (Phase One) Suppose we have an ϵ-Approximate k-Nearest Neighbor search algo-
rithm with expected amortized runtime k-ANN(n, d, k, ϵ). Let τ = |

⋃n
i=1{fi}| be the number of

distinct functions among f1, . . . , fn. Given any ϵ > 0, our algorithm returns an index set I ⊂ [n]
such that

|I| = τk

⌈
140max{∥Q∥2,∞, ∥K∥2,∞})2

(V u)max · ϵ

⌉2dkq

,

and the optimal value to the following Problem P(I)

max fP(I)(x) =

n∑
i=1

xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P(I))

s.t. x ∈ {0, 1}n, xi = 0 for i /∈ I, 1 ≤ e⊤x ≤ k

6Actually, we only require a particular sub-matrix to be of non-negative rank r+. This sub-matrix is of
significantly smaller size, corresponding to the entries which survives a certain pruning procedure.
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satisfies
OPTP(I) ≥ (1− g(ϵ))OPTP − kh(ϵ).

Moreover, suppose k-ANN(n, d, k, ϵ) is concave in n. Then the expected amortized runtime of our
algorithm is ⌈

140(max{∥Q∥2,∞, ∥K∥2,∞})2(V u)max

ϵ

⌉2dkq

τ

· k-ANN
(
n

τ
, dv, k,

ϵ

35max{∥Q∥2,∞, ∥K∥2,∞}(V u)max

)
.

A few remarks are in order:

• Suppose dkq = o(log n) and ∥Q∥2,∞, ∥K∥2,∞, (V u)max are all viewed as constants,
then for any given constant ϵ > 0, we have |I| = τkno(1). Moreover, suppose
k-ANN (n, dv, k, ϵ) is sub-linear in n when dv, k, ϵ are fixed, then the expected amortized
runtime of our algorithm is also sub-linear in n.

• Many ϵ-Approximate k-Nearest Neighbor search algorithms have k-ANN (n, d, k, ϵ) sub-
linear and concave in n.

• In practice, the number of distinct functions τ is typically very small – often just one.

Proof of Proposition 5.

Fix any ϵ > 0. Let δ > 0 be a parameter such that

δ ≤ 1

140max{∥Q∥2,∞, ∥K∥2,∞}
and ϵ ≥ 34δmax{∥Q∥2,∞, ∥K∥2,∞}(V u)max + δ. (1)

First we partition the rows of Q and K. Because we can cover a ball with radius ∥Q∥2,∞ in Rdkq using
⌈4∥Q∥2,∞/δ⌉dkq number of balls with radius δ/2 (see e.g. [47, 14, 42]), we can create a partition
of the index set [n] such that the size of the partition is ⌈4∥Q∥2,∞/δ⌉dkq , and ∥qi − qi′∥2 ≤ δ
for every i, i′ in the same partition. 7 Similarly, we can create a partition of the index set [n]
such that the size of the partition is ⌈4∥K∥2,∞/δ⌉dkq , and ∥kj − kj′∥2 ≤ δ for every j, j′ in the
same partition. Let I = {I1, . . . , Iℓ} be the product partition of the above two partitions. Then
ℓ = ⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq , and for every ℓ′ ∈ [ℓ] and i, i′ ∈ Iℓ′ , we have ∥qi−qi′∥2 ≤ δ
and ∥ki − ki′∥2 ≤ δ. Therefore, for any i, i′ ∈ Iℓ′ and j, j′ ∈ Iℓ′′ , we have

|q⊤i kj − q⊤i′ kj′ | = |q⊤i (kj − kj′) + k⊤j′(qi − qi′)|
≤ |q⊤i (kj − kj′)|+ |k⊤j′(qi − qi′)|
≤ ∥qi∥2∥kj − kj′∥2 + ∥kj′∥2∥qi − qi′∥2
≤ 2δmax{∥Q∥2,∞, ∥K∥2,∞}.

Then, because 2δmax{∥Q∥2,∞, ∥K∥2,∞} ≤ 1, we have∣∣∣∣ exp(q⊤i kj)exp(q⊤i′ kj′)
− 1

∣∣∣∣ ≤
∣∣exp(|q⊤i kj − q⊤i′ kj′ |)− 1

∣∣
≤ |exp(2δmax{∥Q∥2,∞, ∥K∥2,∞})− 1|
≤ 4δmax{∥Q∥2,∞, ∥K∥2,∞},

7We can create such a partition via the packing-covering duality in the following way (see e.g. Theorem 14.1,
Theorem 14.2, and Example 14.1 of [52]). First we create a maximal packing of the ball B(⃗0, ∥Q∥2,∞) ⊂ Rdkq

using balls with radius δ/4 greedily, where we greedily choose points x1, x2, . . . such that the balls B(xi, δ/4)

are disjoint. We stop when no more such points can be added in B(⃗0, ∥Q∥2,∞) ⊂ Rdkq . Then, by the packing-
covering duality, the balls B(xi, δ/2) cover B(⃗0, ∥Q∥2,∞). This is because any uncovered point can be added
to the packing we created before, which contradicts the maximality of the packing.

22



where the last inequality follows by exp(x) ≤ 1 + 2x for 0 ≤ x ≤ 1. Therefore, because
4δmax{∥Q∥2,∞, ∥K∥2,∞} ≤ 1/35, we have

∣∣∣∣ wij

wi′j′
− 1

∣∣∣∣ =

∣∣∣∣ exp(q⊤i kj)/
∑n

m=1 exp(q
⊤
i km)

exp(q⊤i′ kj′)/
∑n

m′=1 exp(q
⊤
i′ km′)

− 1

∣∣∣∣
≤

∣∣(1 + 4δmax{∥Q∥2,∞, ∥K∥2,∞})2/(1− 4δmax{∥Q∥2,∞, ∥K∥2,∞})2 − 1
∣∣

≤ 4 · 352

342
· 4δmax{∥Q∥2,∞, ∥K∥2,∞}

≤ 17δmax{∥Q∥2,∞, ∥K∥2,∞},

where the first inequality follows since 1−4δmax{∥Q∥2,∞, ∥K∥2,∞} ≤ exp(q⊤i kj)/ exp(q
⊤
i′ kj′) ≤

1 + 4δmax{∥Q∥2,∞, ∥K∥2,∞}, and the second inequality follows since (1 + x)2/(1 − x)2 ≤
1 + (4a2/(a− 1)2)x for every a > 1 and 0 ≤ x ≤ 1/a.

Now we construct our desired index set I . Let {S1, . . . , Sτ} be a partition of the index set [n] such
that fi = fj for every τ ′ ∈ [τ ] and i, j ∈ Sτ ′ . We first construct an index set Jτ ′ ⊂ Sτ ′ for each
τ ′ ∈ [τ ], and then combine them to obtain I .

Fix any τ ′ ∈ τ . For each index set Iℓ′ , we only choose k indices out of it to include in Jτ ′ , namely
the k indices that are approximately the k highest indices in {(V u)i}i∈Sτ′∩Iℓ′ .

8 Specifically, for
each ℓ′ ∈ [ℓ], we run the given δ-Approximate k-Nearest Neighbor oracle with given set of points⋃

i∈Sτ′∩Iℓ′
{Vi} ⊂ Rdv , and query u, numbers k and δ as inputs. We let Jτ ′ be the collection of all

output indices for each ℓ′ ∈ [ℓ]. Then because ℓ = ⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq , we have

|Jτ ′ | = k⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq ,

and the expect amortized runtime of constructing each Jτ ′ is

⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq · k-ANN(|Sτ ′ |, dv, k, δ).

Let I = ∪τ ′∈[τ ]Jτ ′ . Then we have

|I| = τk⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq ,

and the expect amortized runtime of constructing I is

τ∑
τ ′=1

⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkq · k-ANN(|Sτ ′ |, dv, k, δ)

≤ ⌈4max{∥Q∥2,∞, ∥K∥2,∞}/δ⌉2dkqτ · k-ANN
(n
τ
, dv, k, δ

)
.

The inequality follows since
∑τ

τ ′=1 |Sτ ′ | = n and k-ANN(n, d, k, ϵ) is concave in n.

Finally, we show that OPTP(I) ≥ (1− g(ϵ))OPTP−kh(ϵ) with our choice of δ. Let i∗1, . . . , i
∗
k be the

non-zero coordinates of an optimal solution x∗ to the original problem (for simplicity we assume x∗

has k non-zero entries, and other cases can be handled similarly). For each m = 1, . . . , k, let im be the
index such that im and i∗m are in the same Sτ ′ ∩Iℓ′ and (V u)im ≥ (V u)i∗m −δ. Then fim = fi∗m . Let
x ∈ {0, 1}n such that xim = 1, then x is feasible to P(I). We prove that the objective value of P(I) at
x is at least (1−g(ϵ))OPTP−kh(ϵ). Indeed, because ϵ ≥ 34δmax{∥Q∥2,∞, ∥K∥2,∞}(V u)max+δ,
then for each m = 1, . . . , k we have

8For simplicity we assume |Sτ ′ ∩ Iℓ′ | ≥ k. Otherwise we simply choose all indices in Sτ ′ ∩ Iℓ′ .
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fim

(
(wim ⊙ V u)⊤x

w⊤
im
x

)
= fim

(∑k
j=1(wim)ij (V u)ij∑k

j=1(wim)ij

)

≥ fim

(∑k
j=1(wim)ij (V u)i∗j∑k

j=1(wim)ij
− δ

)

≥ fi∗m

(
(1− ϵ)

∑k
j=1(wi∗m

)i∗j (V u)i∗j

(1 + ϵ)
∑k

j=1(wi∗m
)i∗j

− δ

)

≥ fi∗m

(∑k
j=1(wi∗m

)i∗j (V u)i∗j∑k
j=1(wi∗m

)i∗j

− 34δmax{∥Q∥2,∞, ∥K∥2,∞}(V u)max − δ

)

≥ fi∗m

(∑k
j=1(wi∗m

)i∗j (V u)i∗j∑k
j=1(wi∗m

)i∗j

− ϵ

)

≥ (1− g(ϵ))fi∗m

(∑k
j=1(wi∗m

)i∗j (V u)i∗j∑k
j=1(wi∗m

)i∗j

)
− h(ϵ),

where the first inequality follows since (V u)ij ≥ (V u)i∗j + δ, the second inequality follows since
1− ϵ ≤ (wi∗m

)i∗j /(wim)ij ≤ 1 + ϵ for every im, i∗m that are in the same partition in I and ij , i
∗
j that

are in the same partition in I, and the third inequality follows since (1− ϵ)/(1 + ϵ) ≥ 1− 2ϵ and∑k
j=1(wi∗m

)i∗j (V u)i∗j /
∑k

j=1(wi∗m
)i∗j ≤ (V u)max. Then

OPTP(I) ≥
k∑

m=1

ximfim

(
(wim ⊙ V u)⊤x

w⊤
im
x

)

≥
k∑

m=1

x∗
i∗m

(
g(ϵ)fi∗m

(∑k
j=1(wi∗m

)i∗j (V u)i∗j∑k
j=1(wi∗m

)i∗j

)
− h(ϵ)

)
≥ (1− g(ϵ))OPTP − kh(ϵ)

as desired. By our choice of δ, we have

|I| = k

⌈
140(max{∥Q∥2,∞, ∥K∥2,∞})2

(V u)max · ϵ

⌉2dkq

,

and the expected amortized runtime of finding I is⌈
140(max{∥Q∥2,∞, ∥K∥2,∞})2(V u)max

ϵ

⌉2dkq

τ

· k-ANN
(
n

τ
, dv, k,

ϵ

35max{∥Q∥2,∞, ∥K∥2,∞}(V u)max

)
.

C.2 Phase Two (Ranking)

In phase two, our algorithm approximately solves P(I), which is P over the retrieved subset of items
I ⊂ [n]. Without loss of generality, assume I = [m]. By the first remark of Proposition 5, we may
treat m = kno(1) under mild assumptions. Then since xi = 0 for i > m, we may consider only
the first m entries of V u and the top-left m×m principal sub-matrix of W . Therefore, with slight
abuse of notation, we redefine V u ∈ Rm to include its first m entries, and W,W ′ ∈ Rm×m

+ to be the
top-left m×m principal sub-matrices of the corresponding matrices, respectively. Moreover, note
that the quantity

(wi ⊙ V u)⊤x

w⊤
i x
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remains unchanged if the vector wi is multiplied by a non-zero constant. Thus, rescaling the rows of
W does not change P(I). Because W ∈ Rm×m

+ is now the m×m principal sub-matrix, the sum of
its rows is not normalized to 1. So for simplicity of exposition, we assume each row of W is rescaled
so that

∑m
j=1 Wij = 1, and each row of W ′ is rescaled accordingly so that 1−γ ≤ Wij/W

′
ij ≤ 1+γ

for all i, j. Then we may rewrite P(I) as

max fP(I)(x) =

m∑
i=1

xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

)
(P(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.

From this point onward, we will work with this new form of P(I).

Our algorithm begins by replacing W with a low non-negative rank surrogate W ′ and showing that
solving the problem under this approximation is sufficient. Rather than exhaustively enumerating all
possible solutions, our algorithm then focuses on a restricted collection of partial solutions that retain
the key structural information. The nonlinear terms in the objective are handled by introducing a
family of auxiliary linearized problems, which can be further simplified through discretization. This
reduction ensures that only a small number of auxiliary linearized problems need to be solved.

To address each auxiliary linearized problem, our algorithm employs a rounding procedure that
converts fractional linear-programming solutions into valid discrete ones. At this stage, the central
trade-off emerges: exploring too many partial solutions increases runtime beyond practical limits,
while exploring too few places excessive burden on the rounding step, leading to higher approximation
error. By carefully balancing this trade-off, the ranking phase achieves both computational efficiency
– through controlled exploration – and strong accuracy – by minimizing the loss introduced during
rounding.

Proposition 6 Suppose there exists W ′ ∈ Rn×n
+ such that 1 − γ ≤ Wij/W

′
ij ≤ 1 + γ for all i, j,

and W ′ has non-negative rank r+ with an explicit non-negative factorization. Given any ϵ > 0, our
algorithm ALG achieves

ALGP(I) ≥ (1− g(2γ(V u)max))
2(1− g(cϵ,γ,W ′

min
))2OPTP(I)

− k(1− g(2γ(V u)max))(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)

+ (1− g(cϵ,γ,W ′
min

))2h(2γ(V u)max) + h(2γ(V u)max)),

where

cϵ,γ,W ′
min

=
(1 + γ)ϵ

W ′
min

,

with runtime

r+m log2 m+ λmλ + λr2+m
λr+

+

⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
·
⌈
(V u)max −min{0, (V u)min}

ϵ

⌉r+
·
⌈
maxi∈[m]{fi((V u)max)}

ϵ

⌉
· λ′mλr++λ′

TLP,

where λ = ⌈(2r+ + 2)(V u)max/ϵ⌉ and λ′ = ⌈(2r+ + 2)maxi∈[m]{fi((V u)max)}/ϵ⌉. Here,
TLP = LP(m, 3m + r+ + 2) + LP(m, 2m + 2r+ + 2) and LP(m,n) is the runtime of solving a
linear program with m variables and n constraints.

The proof is completed according to the following steps:

1. Low Non-negative Rank Approximation: In Lemma 3, we prove that in order to approxi-
mately solve P(I), it is sufficient to approximately solve P′(I), where P′(I) is obtained by
replacing W with W ′.

2. Enumeration of Partial Solutions: We took guesses on some index sets X1, . . . , Xr+ ,
which corresponds to the non-negative factorization of W ′. Let X = (X1, . . . , Xr+) and
let P(X) denote the problem where P′(I) has additional constraints that xi = 1 for all
i ∈ ∪jXj . We showed that the total number of guesses X is bounded above, so it is
sufficient to solve P(X) for each guess X .
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3. Linearization of Fractional Objective Terms: In order to solve P(X), we linearize the
fractional terms in the objective function by defining a set of auxiliary problems P(X, t) for
each t ∈ Rm

+ . These problems are parameterized by the denominator terms in the objective
function of P(X). In Lemma 5, we prove it suffices to find a t∗ for which P(X, t∗) has the
highest optimal value among all P(X, t)’s, as the corresponding optimal x∗ is an optimal
solution to P(X).

4. Dimensionality Reduction and Discretization of Auxiliary Problems: In order to approx-
imately solve P(X, t) for all t ∈ Rm

+ , we discretize t-space and show in Lemma 6 that it
suffices to solve P(X, t) for a small number of t’s.

5. Complete Linearization of Auxiliary Problems: Fix a given t, the objective functions of
P(X, t) inside f has rank r+. We discretized the value space of those objective functions.
In Lemma 7, we showed that in order to solve P(X, t), it is sufficient to give an oracle that,
for each discretization of the value space, identify whether there exists a feasible solution to
P(X, t) with objective values that are approximately inside the discretization.

6. Approximation of Linearized Auxiliary Problems via LP Rounding: Finally, we gave
such an oracle by a rounding procedure. Lemma 8 and Lemma 9 proved that the oracle is
correct by using the properties of our guess X .

C.3 Step 1: Low Non-negative Rank Approximation

First we bound the loss incurred by replacing W with W ′:

Lemma 3 Let Problem P′(I) be defined as

max fP′(I) =

m∑
i=1

xifi

(
(w′

i ⊙ V u)⊤x

w′
i
⊤x

)
(P′(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.

Let x be a feasible solution to P′(I) (and hence also a feasible solution to P(I)), and suppose x
satisfies

fP′(I)(x) ≥ (1− α)OPTP′(I) − β.

Then we have

fP(I)(x) ≥ (1− α)(1− g(2γ(V u)max))
2OPTP(I)

− kh(2γ(V u)max)(1 + (1− α)(1− g(2γ(V u)max))− β(1− g(2γ(V u)max)).

Proof of Lemma 3. Let x be a feasible solution to P′(I). Because 1− γ ≤ Wij/W
′
ij ≤ 1 + γ, we

have
(w′

i ⊙ V u)⊤x

w′
i
⊤x

≥ (1− γ)

(1 + γ)

(wi ⊙ V u)⊤x

wi
⊤x

≥ (1− 2γ)
(wi ⊙ V u)⊤x

wi
⊤x

.

Therefore, for any feasible solution x, we have

fP′(I)(x) =

m∑
i=1

xifi

(
(w′

i ⊙ V u)⊤x

w′
i
⊤x

)

≥
m∑
i=1

xifi

(
(1− 2γ)

(wi ⊙ V u)⊤x

w⊤
i x

)

≥
m∑
i=1

xifi

(
(wi ⊙ V u)⊤x

w⊤
i x

− 2γ(V u)max

)
≥ (1− g(2γ(V u)max))fP(I)(x)− kh(2γ(V u)max), (2)

where the third inequality follows since (wi ⊙ V u)⊤x∗/w⊤
i x

∗ ≤ (V u)max.

Similarly, we also have
(wi ⊙ V u)⊤x

wi
⊤x

≥ (1− 2γ)
(w′

i ⊙ V u)⊤x

w′
i
⊤x

,
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which gives
fP(I)(x) ≥ (1− g(2γ(V u)max))fP′(I)(x)− kh(2γ(V u)max). (3)

Now Let x∗
P(I) be an optimal solution to P(I). Then by Eq. (2), we have

OPTP′(I) ≥ fP′(I)(x
∗
P′(I))

≥ (1− g(2γ(V u)max))fP(I)(x
∗
P(I))− kh(2γ(V u)max)

= (1− g(2γ(V u)max))OPTP(I) − kh(2γ(V u)max).

Finally, applying Eq. (3), we conclude that

fP(I)(x) ≥ (1− g(2γ(V u)max))fP′(I)(x)− kh(2γ(V u)max)

≥ (1− α)(1− g(2γ(V u)max))OPTP′(I) − kh(2γ(V u)max)− β(1− g(2γ(V u)max))

≥ (1− α)(1− g(2γ(V u)max))
2OPTP(I)

− kh(2γ(V u)max)(1 + (1− α)(1− g(2γ(V u)max))− β(1− g(2γ(V u)max)).

Lemma 3 shows that, in order to approximately solve P(I), it is enough to approximately solve P′(I).

Let W ′ = AB⊤ be the known non-negative factorization, where A,B ∈ Rm×r+
≥0 . Let a⊤i ∈ Rr+

≥0 be
the i-th row of A and bj ∈ Rm

≥0 be the j-th column of B. Then w′
i =

∑r+
j=1 aijbj . Let

dj = bj ⊙ (V u). (4)

Then P′(I) can be rewritten as:

max fP′(I) =

m∑
i=1

xifi

(∑r+
j=1 aijd

⊤
j x

w′
i
⊤x

)
(P′(I))

s.t. x ∈ {0, 1}m, 1 ≤ e⊤x ≤ k.

C.4 Step 2: Enumeration of Partial Solutions

Our algorithm enumerates a set of partial solutions (where a “partial solution” fixes the values of a
subset of variables), and then for each partial solution, solves the remaining problem near-optimally.
In this step we bound the total number of partial solutions, and in the next steps we show that for
each partial solution, the remaining problem can be solved sufficiently fast.

Let
λ = ⌈(2r+ + 2)(V u)max/ϵ⌉. (5)

Each partial solution that our algorithm considers is specified by a tuple (X1, . . . , Xr+), where each
Xj ⊂ [m] is an index set such that 1 ≤ |X1| = · · · = |Xr+ | ≤ λ. For each j ∈ [r+], let

X̂j = {i ∈ [m] \Xj | dji > min
i′∈Xj

{dji′}}. (6)

In words, X̂j consists of the indices outside of Xj whose coefficients in dj are strictly greater than
the minimum coefficient in dj across indices in Xj .

We say a tuple (X1, . . . , Xr+), with corresponding index sets X̂1, . . . , X̂r+ defined according to
(6), is valid if |∪jXj | ≤ k and (∪jXj)

⋂
(∪jX̂j) = ∅. Then every feasible solution z to P′(I)

corresponds to a valid tuple (X1, . . . , Xr+) in the following way: Let Z = {i ∈ [m] | zi = 1}.
For each j ∈ [r+], we define Xj ⊂ Z to be the set of indices i ∈ Z such that dji is among the
min{λ, |Z|} highest values in Z. That is, let πj : [|Z|] → Z be a sorting of Z according to dj such
that dj,πj(1) ≥ · · · ≥ dj,πj(|Z|). Then Xj = {πj(1), . . . , πj(min{λ, |Z|})}. Notice that |Z| ≤ k,
so |∪jXj | ≤ k. Also, we claim that Z ∩ X̂j = ∅ for each j ∈ [r+]. Supposing otherwise that
i ∈ Z ∩ X̂j , then by construction dji > dj,πj(min{λ,|Z|}). Because i ∈ Z, we have that i is in the
image of πj , so there exists i′ such that πj(i

′) = i. Therefore πj(i
′) ≥ πj(min{λ, |Z|}), which

shows i ∈ Xj . This contradicts Xj ∩ X̂j = ∅. Therefore Z ∩ X̂j = ∅ for each j ∈ [r+]. Hence we
have (∪jXj)

⋂
(∪jX̂j) = ∅. Therefore (X1, . . . , Xr+) is indeed a valid tuple.
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The notion of correspondence to valid tuples forms a partition of the set of feasible solutions to P′(I),
so it suffices to solve P′(I) separately for each subset of this partition. This is formally stated in the
following result:

Lemma 4 Suppose we are given an oracle ALG′ that takes P′(I), any valid tuple (X1, . . . , Xr+),
and any δ > 0 as inputs, and outputs a solution x′

(X1,...,Xr+) of P′(I) that satisfies

1. x′
(X1,...,Xr+) corresponds to (X1, . . . , Xr+), and

2. for any x(X1,...,Xr+) that corresponds to (X1, . . . , Xr+), we have

fP′(I)(x
′
(X1,...,Xr+)) ≥ (1− g′(δ))fP′(I)(x(X1,...,Xr+))− h′(δ),

where 0 ≤ g′(δ) ≤ 1 and h′(δ) ≥ 0,

with runtime T (δ). Then there exists an algorithm ALG that takes P′(I) and any δ > 0 as inputs,
and outputs a solution of P′(I) that satisfies

ALGP′(I) ≥ (1− g′(δ))OPTP′(I) − h′(δ)

with runtime
r+m log2 m+ λmλ + λr2+m

λr+ +mλr+T (δ).

Proof of Lemma 4. We will construct ALG explicitly. Now because every feasible solution z to
P′(I) corresponds to exactly one valid tuple, we can solve P′(I) by enumerating all valid tuples, and
applying ALG′ to each valid tuple. It turns out that pre-sorting the vectors dj allows for more-efficient
enumeration. Let ALG take the following steps:

1. Sort dj for each j ∈ [r+]. This takes runtime r+m log2 m.
2. Enumerate all valid tuples with |X1| < λ, and record the unique corresponding feasible

solutions. We will show momentarily that when |X1| < λ, there is a unique corresponding
feasible solution, and as a result this step takes runtime λmλ.

3. Enumerate all valid tuples with |X1| = λ, and record the solution output by ALG′
P′(I)

for each such valid tuple. We will show that it takes runtime λr2+m
λr+ to enumerate

all such valid tuples, and then because there are at most mλr+ such valid tuples, the total
runtime of this step is λr2+m

λr+ +mλr+T (δ).

4. Output a solution that is recorded with the highest objective value in P′(I).

Therefore the total runtime of ALG is

r+m log2 m+ λmλ + λr2+m
λr+ +mλr+T (δ).

Finally, let x∗
(X∗

1 ,...,X
∗
r+) be an optimal solution of P′(I) where (X∗

1 , . . . , X
∗
r+) is the valid tuple that

it corresponds to. Let x′
(X∗

1 ,...,X
∗
r+) be the solution that ALG′

P′(I) outputs with input P′(I), valid
tuple (X∗

1 , . . . , X
∗
r+), and δ > 0. Then

ALGP′(I) ≥ fP′(I)(x
′
(X∗

1 ,...,X
∗
r+))

≥ (1− g′(δ))fP′(I)(x
∗
(X∗

1 ,...,X
∗
r+))− h′(δ)

= (1− g′(δ))OPTP′(I) − h′(δ).

It remains to analyze Steps 2 and 3 of ALG.

Step 2: Fix any valid tuple (X1, . . . , Xr+) such that |X1| < λ. Assume there exists a feasible
solution z to P′(I) that corresponds to the valid tuple, and let Z = {i ∈ [m] | zi = 1}. Then
because |X1| = min{λ, |Z|} = |Z| and X1 ⊂ Z, we have X1 = Z. Similarly, Xj = Z for all
j ∈ [r+]. Therefore, there exists a feasible solution to P′(I) that corresponds to (X1, . . . , Xr+) only
if X1 = · · · = Xr+. There are at most

∑λ−1
i=1

(
m
i

)
≤ λmλ such tuples. Moreover, there is a unique

feasible solution z that corresponds to (X1, . . . , Xr+), namely zi = 1 for every i ∈ X1 and zi = 0
for every i /∈ X1. Thus, the runtime of enumerating all corresponding feasible solutions is bounded
by λmλ.

28



Step 3: Fix any valid tuple (X1, . . . , Xr+) such that |X1| = λ. Then by construction we must have
zi = 1 for every i ∈ ∪jXj , and zi = 0 for every i ∈ ∪jX̂j . Therefore every feasible solution z that
corresponds to (X1, . . . , Xr+) must lie in the following set:

{z ∈ {0, 1}m |zi = 1 ∀i ∈ ∪jXj ,

zi = 0 ∀i ∈ ∪jX̂j ,

1 ≤ e⊤z ≤ k}.

There are
(
m
λ

)r+ ≤ mλr+ tuples such that |X1| = λ. We enumerate all such tuples, and check each
for validity according to the following procedure:

0. From Step 1 of ALG, let πj : [m] → [m] be a sorting of [m] according to dj such that
dj,πj(1) ≥ · · · ≥ dj,πj(m).

1. Fix any given tuple (X1, . . . , Xr+). For each j ∈ [r+], let i(j) ∈ [m] be an index such that
dj,i(j) ∈ Xj and dj,i(j) ≤ dji for all dji ∈ Xj . Without loss of generality, if dj,i(j) = dji′

and dji′ /∈ Xj for some index i′, we let πj(i(j)) > πj(i
′) for tie-breaking in the sorting.

Also, if dj,i(j) = dji′ and dji′ ∈ Xj for some index i′, we let πj(i(j)) < πj(i
′) for

tie-breaking in the sorting. Then by our construction

X̂j = {i ∈ [m] \Xj | dji > min
i′∈Xj

{dji′}}

= {i ∈ [m] \Xj | dji > dj,i(j)}}
= {i ∈ [m] \Xj | πj(i) > πj(i(j))}.

Therefore Xj ∪ X̂j = {i ∈ [m] | πj(i) ≥ πj(i(j))}.

2. Note that
∑r+

j=1|Xj | = λr+. Therefore, in order to check whether | ∪j Xj | ≤ k, we just
need to count the number of overlaps among all Xj’s. Set a counter c = 0 to count the
overlaps. For each j ∈ [r+] and for each i ∈ Xj , we check if πj′(i) ≥ πj′(i(j

′)), and do
the following:

• If πj′(i) < πj′(i(j
′)), then we have i /∈ Xj′ ∪ X̂j′ . We do nothing in this case.

• If πj′(i) ≥ πj′(i(j
′)) and πj′(i) ∈ Xj′ , then i appears in both Xj and Xj′ . Therefore

we increase c by 1.

• If πj′(i) ≥ πj′(i(j
′)) and πj′(i) /∈ Xj′ , then we must have πj′(i) ∈ X̂j′ . Therefore

(∪jXj)
⋂
(∪jX̂j) ̸= ∅, so we can terminate the process and declare that (X1, . . . , Xr+)

is not a valid tuple.

We iterate all j ∈ [r+] and i ∈ Xj . Notice that c counts the number of overlaps (with
multiplicity) of elements in Xj , we have |∪jXj | =

∑r+
j=1|Xj |−c = λr+−c. Therefore we

can check if | ∪j Xj | ≤ k. Also, if the above procedure never encounters πj′(i) ∈ X̂j′ , then
we have (∪jXj)

⋂
(∪jX̂j) = ∅. Therefore this procedure allows us to check the validity of

(X1, . . . , Xr+).

Because each dj′ is sorted, the above procedure takes a constant runtime for each j′ ∈ [r+], so
the runtime for each fixed j ∈ [r+] and i ∈ Xj is r+. Because

∑r+
j=1|Xj | = λr+, there are λr+

combinations of j ∈ [r+] and i ∈ Xj . Therefore the runtime to check the validity is λr2+ for any
given tuple (X1, . . . , Xr+). Because there are at most mλr+ such tuples, the runtime of enumerating
all such tuples is λr2+m

λr+ .

The consequence of this result is that we have reduced to the task of, for each valid tuple X =
(X1, . . . , Xr+) with |X1| = λ, solving P′(I) with the additional constraint that the solution must
correspond to the valid tuple, as stated in Problem P(X) below:
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max fP(X)(x) =

m∑
i=1

xifi

(∑r+
j=1 aijd

⊤
j x

w′
i
⊤x

)
(P(X))

s.t. x ∈ {0, 1}m,

1 ≤ e⊤x ≤ k,

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .

C.5 Step 3: Linearization

In order to solve P(X), we define the following auxiliary problem P(X, t) for each t ∈ Rm
+ :

max fP(X,t)(x) =

m∑
i=1

xifi

(∑r+
j=1 aijd

⊤
j x

ti

)
(P(X, t))

s.t. x ∈ {0, 1}m,

e⊤x ≤ k,

w′
i
⊤x ≤ ti ∀i ∈ [m],

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .

Note that we have dropped the constraint 1 ≤ e⊤x in P(X, t). This is inconsequential: because we
assume OPTP is positive, the solution x with all entries equal to zero is not an optimal solution to P.
Indeed, the only reason we have maintained the 1 ≤ e⊤x constraint until now has been to rule out
notational edge cases (such as dividing by zero).

We prove an important property regarding the relationship between optimal solutions of P(X) and
those of P(X, t).

Lemma 5 Fix any valid tuple X . Let t∗ ∈ argmaxt∈Rm
+

OPTP(X,t), and let x∗ be an optimal
solution to P(X, t∗). Then W ′x∗ = t∗, and x∗ is an optimal solution to P(X).

Proof of Lemma 5. First, we show that W ′x∗ = t∗. Suppose otherwise, and let t′ = W ′x∗. Then
t′i ≤ t∗i for every i ∈ [m] and t′i < t∗i for some i. Therefore

OPTP(X,t∗) =

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd

⊤
j x

∗

t∗i

)
<

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd

⊤
j x

∗

t′i

)
≤ OPTP(X,t′),

contradicting the definition of t∗.

Now we show that x∗ is an optimal solution to the P(X). For the sake of contradiction, suppose that
x′ gives a higher objective value than x∗ to P(X), that is,

m∑
i=1

x′
ifi

(∑r+
j=1 aijd

⊤
j x

′

w′
i
⊤x′

)
>

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd

⊤
j x

∗

w′
i
⊤x∗

)
= OPTP(X,t∗).

Let t′ = Wx′. Then x′ is a feasible solution to P (X, t′). Therefore, we have

OPTP(X,t′) ≥
m∑
i=1

x′
ifi

(∑r+
j=1 aijd

⊤
j x

′

w′
i
⊤x′

)
> OPTP(X,t∗),

contradicting the definition of t∗.

Because t∗ = W ′x∗ and
∑m

j=1 wij ≤ 1 + γ for each i ∈ [m], we have t∗ ∈ [W ′
min, 1 + γ]m. Thus,

from here on we will only consider the problems P(X, t) with t ∈ [W ′
min, 1 + γ]m.
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C.6 Step 4: Dimensionality Reduction and Discretization of Auxiliary Problems:

Lemma 5 shows that, in order to solve P(X), it is enough to solve for argmaxt∈Rm
+

OPTP(X,t).
Below we show that it suffices to solve the auxiliary problem P(X, t) for a smaller, discretized set of
t’s.

Lemma 6 Suppose we are given an oracle ALG′ that takes P(X, t) with any t ∈ [W ′
min, 1 + γ]m

and any δ > 0 as inputs, and outputs a solution of P(X, t) that satisfies
ALG′

P(X,t) ≥ (1− g′(δ))OPTP(X,t) − h′(δ)

with runtime T (δ), where 0 ≤ g′(δ) ≤ 1 and h′(δ) ≥ 0. Then there exists an algorithm ALG that
takes P(X) and any δ > 0 as inputs, and outputs a solution of P(X) that satisfies

ALGP(X) ≥ (1− g′(δ))

((
1− g

(
(1 + γ)δ

W ′
min

))
OPTP(X) + kh

(
(1 + γ)δ

W ′
min

))
− h′(δ)

with runtime ⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
T (δ).

Proof of Lemma 6.

Recall that we have known non-negative factorization W ′ = AB⊤, where A,B ∈ Rm×r+
≥0 . First, we

make the following observation on the scale of A and B:

Observation 1 There exists A′, B′ ∈ Rm×r+
≥0 where W ′ = A′B′⊤, such that ∥a′i∥1 ≤ 1 + γ for

every i ∈ [m] and ∥b′j∥1 = 1 for every j ∈ [r+].

Proof of Observation 1. We construct A′ and B′ explicitly. Let the rows of B′ be the rows of
B that are rescaled so that ∥bj∥1 = 1. That is, let b′jk = bjk/

∑m
k′=1 bjk′ for every j ∈ [r+] and

k ∈ [m]. Let the columns of A′ be the columns of A that are rescaled accordingly. That is, let
a′ij = aij

∑m
k′=1 bjk′ for every i ∈ [m] and j ∈ [r+]. Then we have a′ijb

′
jk = aijbjk. Therefore

W ′ = A′B′⊤. Finally, since 1− γ ≤ Wij/W
′
ij ≤ 1 + γ and

∑m
j=1 wij = 1 for every i ∈ [m], we

have
∑m

j=1 w
′
ij ≤ 1 + γ for every i ∈ [m]. Therefore for every i ∈ [m], we have

1 + γ ≥
m∑
j=1

w′
ij =

r+∑
j=1

a′ij

m∑
k=1

b′jk =

r+∑
j=1

a′ij = ∥a′i∥1.

By Observation 1, we may assume ∥ai∥1 ≤ 1+γ for every i ∈ [m] and ∥bj∥1 = 1 for every j ∈ [r+]
from now on. Let

Y = {B⊤x | x is a feasible solution to P′(I)} ⊂ Rr+ . (7)
We will partition the t-space [W ′

min, 1 + γ]m by partitioning Y . Let δ′ be the quantity

δ′ =
W ′

minδ

(1 + γ)
√
k
, (8)

where the reason for this choice will be specified momentarily. Notice that ∥y∥2 ≤
√
k for every

y ∈ Y . As seen in the proof of Proposition 5, we can create a cover of a ball with radius
√
k in

Rr+ using ⌈(4
√
k/δ′)r+⌉ number of balls with radius δ′/2. Therefore we can create a partition

Y = {Y1, . . . , Yℓ} of Y such that ℓ = ⌈(4
√
k/δ′)r+⌉, and ∥y − y′∥2 ≤ δ′ for every ℓ′ ∈ [ℓ] and

y, y′ ∈ Yℓ′ .

Fix any row a⊤i of A. For every ℓ′ ∈ [ℓ] and i, i′ ∈ Iℓ′ , we have∣∣∣∣ a⊤i ya⊤i y
′ − 1

∣∣∣∣ = ∣∣∣∣a⊤i (y − y′)

a⊤i y

∣∣∣∣
≤ ∥ai∥2∥y − y′∥2

|a⊤i y|

≤ δ′(1 + γ)
√
k

W ′
min

.
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Thus, for our particular choice of δ′, we have that |a⊤i y/a⊤i y′ − 1| ≤ δ for every ℓ′ ∈ [ℓ] and
y, y′ ∈ Yℓ′ .

For every ℓ′ ∈ [ℓ], let Tℓ′ = {Ay | y ∈ Yℓ′} ⊂ Rm. Then for every ℓ′ ∈ [ℓ] and t, t′ ∈ Tℓ′ , we have
that |(ti/t′i)− 1| ≤ δ for every i ∈ [m]. Fix any t1 ∈ T1, . . . , tℓ ∈ Tℓ. The algorithm ALG will use
the given oracle ALG′ to obtain a solution for each P(X, tℓ′), and then output the solution that has
the highest objective value of P(X, tℓ′). That is,

ALGP(X) = max
ℓ′∈[ℓ]

ALG′
P(X,tℓ′ )

.

Because ℓ = ⌈(4
√
k/δ)r+⌉ = ⌈(4(1 + γ)k/ϵW ′

min)
r+⌉, the runtime of ALG is

⌈(4(1 + γ)k/ϵW ′
min)

r+⌉T (δ).

Finally, we prove the performance guarantee for ALG. Let t∗ ∈ argmaxt∈Rm
+

OPTP(X,t). Assume
t∗ ∈ Tℓ′ . Then |(t∗i /(tℓ′)i)− 1| ≤ δ. Let x∗ be the corresponding optimal solution to P(X, t∗). Then
by Lemma 5, x∗ is an optimal solution to P(X). Let x′ be an optimal solution of P(X, tℓ′). Because
tℓ′ ∈ [W ′

min, 1+γ]m, we have
∑r+

j=1 aijd
⊤
j x

∗/(tℓ′)i = w′
i
⊤
x∗/(tℓ′)i ≤ (1+γ)/W ′

min. Also, since
fi(x− ϵ) ≥ (1− g(ϵ))fi(x)− h(ϵ) for all x, we have fi(x+ ϵ) ≤ (fi(x) + h(ϵ))/(1− g(ϵ)) for all
x. As a consequence of Lemma 5, we have OPTP(X) = OPTP(X,t∗). Then

OPTP(X) = OPTP(X,t∗)

=

m∑
i=1

x∗
i fi

(∑r+
j=1 aijd

⊤
j x

∗

t∗i

)

≤
m∑
i=1

x∗
i fi

(
(1 + δ)

∑r+
j=1 aijd

⊤
j x

∗

(tℓ′)i

)

≤

∑m
i=1 x

∗
i fi

(∑r+
j=1 aijd

⊤
j x∗

(tℓ′ )i

)
+ kh(δ(1 + γ)/W ′

min)

1− g(δ(1 + γ)/W ′
min)

≤
OPTP(X,tℓ′ )

+ kh(δ(1 + γ)/W ′
min)

1− g(δ(1 + γ)/W ′
min)

.

Rearranging the above, we have
OPTP(X,tℓ′ )

≥ (1− g(δ(1 + γ)/W ′
min))OPTP(X) − kh(δ(1 + γ)/W ′

min).

Therefore,
ALGP(X) ≥ ALG′

P(X,tℓ′ )

≥ (1− g′(δ))OPTP(X,tℓ′ )
− h′(δ)

≥ (1− g′(δ))

((
1− g

(
(1 + γ)δ

W ′
min

))
OPTP(X) − kh

(
(1 + γ)δ

W ′
min

))
− h′(δ).

C.7 Step 5: Complete Linearization of Auxiliary Problems

Lemma 6 shows that, to approximately solve P(X), it suffices to construct an oracle that approx-
imately solves P(X, t) for any given t ∈ [W ′

min, 1 + γ]m. Below we give such an oracle. Let
ci = ai/ti ∈ Rr+

≥0 for each i ∈ [m]. Then P(X, t) can be equivalently formulated as

max fP(X,t)(x) =

m∑
i=1

xifi

 r+∑
j=1

cijd
⊤
j x

 (P(X, t))

s.t. x ∈ {0, 1}m,

e⊤x ≤ k,

w′
i
⊤x ≤ ti ∀i ∈ [m],

xi = 1 ∀i ∈ ∪jXj ,

xi = 0 ∀i ∈ ∪jX̂j .
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To solve P(X, t), we partition the space of possible values (d⊤1 x, . . . , d
⊤
r+x) ∈ Rr+ , as well as the

space of the objective value fP(X,t)(x).

Lemma 7 Fix any t ∈ [W ′
min, 1 + γ]m. Suppose we are given an oracle with runtime T (δ1, δ2) that

takes P(X, t), any θ = (θ1, . . . , θr+) ∈ Rr+ , any ζ ≥ 0, and any δ1, δ2 > 0 as inputs, and either

1. Scenario one: correctly declares that there is no feasible x to P(X, t) such that d⊤j x ≥ θj
for every j ∈ [r+] and

∑m
i=1 xifi(c

⊤
i θ) ≥ ζ, or

2. Scenario two: outputs a feasible x to P(X, t) such that d⊤j x+ δ1 ≥ θj for every j ∈ [r+]

and
∑m

i=1 xifi(c
⊤
i θ) + δ2 ≥ ζ.

Then there exists an algorithm that satisfies

ALGP(X,t) ≥
(
1− g

(
δ1(1 + γ)

W ′
min

))
(OPTP(X,t) − 2δ2)− kh

(
δ1(1 + γ)

W ′
min

)
with runtime

⌈((V u)max −min{0, (V u)min)}/δ1⌉r+ ·
⌈
k max

i∈[m]
{fi((V u)max)}/δ2

⌉
T (δ1, δ2).

Proof of Lemma 7. Let (V u)min be the minimum entry of V u (possibly negative). Because ∥bj∥1 =
1 and dj = bj ⊙ (V u) for every j ∈ [r+], we have d⊤j x

∗ ∈ [min{0, (V u)min}, (V u)max] for every
j ∈ [r+]. Also, because each fi is non-decreasing, OPTP(X,t) ∈ [0, kmaxi∈[m]{fi((V u)max)}].
Similar to the proof of Lemma 6, we will create a partition of the space of possible values
(d⊤1 x, . . . , d

⊤
r+x) ∈ Rr+ , as well as the space of the objective value fP(X,t)(x). We then show

that it is sufficient to solve P(X, t) in each subset of the partition. Let ∆ℓ = min{0, (V u)min} +
δ1(ℓ − 1) for ℓ = 1, . . . , ⌈((V u)max − min{0, (V u)min})/δ1⌉. Let ∆′

s = δ2(s − 1) for
s = 1, . . . , ⌈kmaxi∈[m]{fi((V u)max)}/δ2⌉. Consider all tuples (ℓ1, . . . , ℓr+ , s). There are in
total

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈
k max

i∈[m]
{fi((V u)max)}/δ2

⌉
such tuples. Moreover, there exists a tuple (ℓ∗1, . . . , ℓ

∗
r+ , s

∗) such that ∆ℓ∗i
≤ x∗

i ≤ ∆ℓ∗i +1 for each
i ∈ [m] and ∆′

s∗ ≤ OPTP(X,t) ≤ ∆′
s∗+1.

For each tuple (ℓ1, . . . , ℓr+ , s), our desired algorithm uses the given oracle to determine whether
there exists a feasible x to P(X, t) that satisfies the conditions in scenario two with θi = ∆ℓi for
each i ∈ [r+] and ζ = ∆′

s. Then our desired algorithm returns the x with the highest objective
value of P(X, t) among all tuples. Note that x∗ satisfies the conditions in scenario two on the
tuple (ℓ∗1, . . . , ℓ

∗
r+ , s

∗). Therefore the given oracle would return some feasible x′ to P(X, t) that
satisfies the conditions in scenario two with θi = ∆ℓ∗i

for each i ∈ [r+] and ζ = ∆′
s∗ . Notice that

cij = aij/ti ≤ (1 + γ)/W ′
min. Then by the conditions in scenario two we have

ALGP(X,t) ≥
m∑
i=1

x′
ifi

 r+∑
j=1

cijd
⊤
j x

′


≥

m∑
i=1

x′
ifi

 r+∑
j=1

cij(θj − δ1)


≥

m∑
i=1

x′
ifi

 r+∑
j=1

cijθj − δ1(1 + γ)/W ′
min


≥ (1− g(δ1(1 + γ)/W ′

min))

m∑
i=1

x′
ifi

 r+∑
j=1

cijθj

− kh(δ1(1 + γ)/W ′
min)

≥ (1− g(δ1(1 + γ)/W ′
min))(∆

′
s∗ − δ2)− kh(δ1(1 + γ)/W ′

min)

≥ (1− g(δ1(1 + γ)/W ′
min))(OPTP(X,t) − 2δ2)− kh(δ1(1 + γ)/W ′

min),
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where the second and the fifth inequalities follow from the conditions in scenario two, and the last
inequality follows since ∆′

s∗ ≤ OPTP(X,t) ≤ ∆′
s∗+1.

Because there are in total

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈
k max

i∈[m]
{fi((V u)max)}/δ2

⌉
number of tuples (ℓ1, . . . , ℓr+ , s), the runtime of our algorithm is

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈
k max

i∈[m]
{fi((V u)max)}/δ2

⌉
T (δ1, δ2).

C.8 Step 6: Approximation of Linearized Auxiliary Problems via LP Rounding

Lemma 7 shows that, to solve P (X, t) for any given t ∈ [W ′
min, 1 + γ]m, it is enough to give an

oracle described in Lemma 7. Similar to the idea of enumerating partial solutions by constructing
valid tuples based on the values of each dj , we further construct index sets based on the values of
fi(c

⊤
i θ) and enumerate all possible index sets. Recall that via the valid tuple (X1, . . . , Xr+), we

have already fixed at least λ indices of any feasible solution to P(X, t) to be equal to 1, namely the
indices in ∪jXj . Fix

λ′ = ⌈(2r+ + 2) max
i∈[m]

{fi((V u)max)}/ϵ⌉. (9)

Let X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) be an index set such that 0 ≤ |X ′| ≤ λ′. Let

X̂ ′ = {i ∈ [m] \X ′ ∪ (∪jXj) ∪ (∪jX̂j) | fi(c⊤i θ) > min
i′∈X′

{fi′(c⊤i′ θ)}}. (10)

In words, X̂ ′ consists of the indices outside of X ′ ∪ (∪jXj) ∪ (∪jX̂j) whose corresponding values
of fi(c

⊤
i′ θ) are strictly greater than the minimum value of fi(c

⊤
i θ) across indices in X ′. Then

every feasible solution z to P(X, t) corresponds to an index set X ′ in the following way: let
Z = {i ∈ [m] \ (∪jXj) ∪ (∪jX̂j) | zi = 1}. We define X ′ ⊂ Z to be the set of indices i ∈ Z
such that fi(c⊤i θ) is among the min{λ′, |Z|} highest values in Z. That is, let π′ : [|Z|] → Z be
a sorting of Z according to fi(c

⊤
i θ) such that fπ′(1)(c

⊤
π′(1)θ) ≥ · · · ≥ fπ′(|Z|)(c

⊤
π′(|Z|)θ). Then

X ′ = {π′(1), . . . , π′(min{λ′, |Z|})}. Similar to before, if z corresponds to X ′, we must have zi = 1

for i ∈ X ′ and zi = 0 for i ∈ X̂ ′.

As in Lemma 4, the notion of correspondence to index sets forms a partition of the set of feasible
solutions to P(X, t). Therefore, in order to give an oracle described in Lemma 7, it suffices to give
an oracle described in Lemma 7 separately for each subset of this partition. This is formally stated in
the following result:

Observation 2 Suppose we are given an oracle with runtime T (δ1, δ2) that takes P(X, t), any
θ = (θ1, . . . , θr+) ∈ Rr+ , any ζ ≥ 0, any δ1, δ2 > 0, and any index set X ′ ⊂ [m]\(∪jXj)∪(∪jX̂j)
such that 0 ≤ |X ′| ≤ λ′ as inputs, and either

1. Scenario one: correctly declares that there is no feasible x to P(X, t) that corresponds to
X ′ such that d⊤j x ≥ θj for every j ∈ [r+] and

∑m
i=1 xifi(c

⊤
i θ) ≥ ζ, or

2. Scenario two: outputs a feasible x to P(X, t) that corresponds to X ′ such that d⊤j x+δ1 ≥ θj
for every j ∈ [r+] and

∑m
i=1 xifi(c

⊤
i θ) + δ2 ≥ ζ.

Then there exists an oracle described in Lemma 7 with runtime λ′mλ′
T (δ1, δ2).

Proof of Observation 2. Because every feasible solution x to P(X, t) corresponds to exactly one
index set X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) such that 0 ≤ |X ′| ≤ λ′, we can give an oracle described in
Lemma 7 by enumerating all such index sets X ′ and applying the oracle in Observation 2.

More specifically, for the oracle described in Lemma 7 with inputs θ, ζ, δ1, δ2:

• If the oracle in Observation 2 outputs an x in scenario two with inputs θ, ζ, δ1, δ2, X ′ for
some X ′, then the oracle described in Lemma 7 also outputs this x in scenario two.
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• If the oracle in Observation 2 declares scenario one with inputs θ, ζ, δ1, δ2, X ′ for all X ′,
then the oracle described in Lemma 7 also declares scenario one.

We can enumerate all index sets X ′ ⊂ [m] \ (∪jXj) ∪ (∪jX̂j) such that 0 ≤ |X ′| ≤ λ′ by simply
enumerating all combinations of |X ′| indices from [m] \ (∪jXj) ∪ (∪jX̂j). Because there are at
most

∑λ′

k=0

(
m
λ′

)
≤ λ′mλ′

such index sets X ′, the runtime of the oracle described in Lemma 7 is
λ′mλ′

T (δ1, δ2).

By Observation 2, it suffices to give an oracle as described. Below we give such an oracle.

First, suppose |X ′| < λ′. Assume there exists a feasible solution z to P(X, t) that corresponds to
X ′. Let Z = {i ∈ [m] \ (∪jXj) ∪ (∪jX̂j) | zi = 1}. Then because |X ′| = min{λ′, |Z|} = |Z|
and X ′ ⊂ Z, we have X ′ = Z. Therefore, there is a unique feasible solution z of P(X, t) that
corresponds to X ′, namely zi = 1 for every i ∈ X ′ ∪ (∪jXj) and zi = 0 for every i /∈ X ′ ∪ (∪jXj).
Therefore, if |X ′| < λ′, the oracle in Observation 2 can directly check this unique feasible solution
of P(X, t) that corresponds to X ′, and outputs the correct scenario accordingly.

From now on, we assume |X ′| = λ′. Fix any θ ∈ Rr+ , any ζ ∈ R+, any δ1, δ2 > 0, and any X ′.
The oracle essentially needs to determine the existence of a feasible binary solution to a system of
linear inequalities, which is NP-hard in general. However, the linear constraints of P(X, t) lie in a
lower-dimensional subspace, a structure we can exploit by solving a relaxation of the system, obtained
by replacing binary variables with continuous ones, and rounding its solution back to a binary solution.
Because of the rounding, it is possible that the values (d⊤1 x, . . . , d

⊤
r+x) and

∑m
i=1 xifi(c

⊤
i θ) of the

rounded solution are out of the desired ranges. However, the valid tuple X and the index set X ′

we fixed before ensures that the gaps between the values and the desired ranges are within small
constants.

We define a polyhedron PH ⊂ Rm as follows:

r+∑
j=1

aij b
⊤
j x ≤ ti for i = 1, . . . ,m,

e⊤x ≤ k,

d⊤j x ≥ θj for j = 1, . . . , r+,
m∑
i=1

xi fi(c
⊤
i θ) ≥ ζ,

xi = 1 for i ∈
(⋃

j

Xj

)
∪X ′,

xi = 0 for i ∈
(⋃

j

X̂j

)
∪ X̂ ′,

xi ∈ [0, 1] for i /∈
(⋃

j

Xj

)
∪
(⋃

j

X̂j

)
∪X ′ ∪ X̂ ′.

(PH)

Then PH is a polyhedron in Rm defined by at most 3m + r+ + 2 inequalities. Let LP(m,n)
be the runtime of solving a linear program with m variables and n constraints. Then checking
whether PH is non-empty and return a point in PH if PH is non-empty can be done in runtime
LP(m, 3m+ r+ + 2). For more on the runtime of solving a linear program, we refer the readers to
e.g. [22, 18] (ellipsoid methods) and [32, 45] (interior point methods). In what follows we assume
that PH ̸= ∅, otherwise the oracle outputs scenario one.

Lemma 8 If PH ̸= ∅, then we can find a point z ∈ PH with at most 2r++2 fractional components
in runtime LP(m, 3m+ r+ + 2) + LP(m, 2m+ 2r+ + 2).

Proof of Lemma 8. Let z∗ ∈ PH be an (arbitrary) point found in runtime LP(m, 3m + r+ + 2).
Let PH(z∗) ⊂ Rm−|(∪jXj)∪(∪jX̂j)∪X′∪X̂′| be the polyhedron on variable y, where the index set of
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y is taken to be Iy = [m] \ (∪jXj) ∪ (∪jX̂j) ∪X ′ ∪ X̂ ′, with the following constraints:∑
i∈Iy

bji yi ≤
∑
i∈Iy

bji z
∗
i for j = 1, . . . , r+,∑

i∈Iy

yi ≤
∑
i∈Iy

z∗i ,∑
i∈Iy

dji yi ≥ θj −
∑

i∈(
⋃

j Xj)∪X′

dji for j = 1, . . . , r+,

∑
i∈Iy

yi fi(c
⊤
i θ) ≥ ζ −

∑
i∈(

⋃
j Xj)∪X′

fi(c
⊤
i θ),

yi ∈ [0, 1] for i ∈ Iy.

(PH(z∗))

Note that PH(z∗) ̸= ∅ since the projection of z∗ on R|Iy| is in PH(z∗). Because PH(z∗) has
2r+ + 2 linear inequalities other than the inequalities yi ∈ [0, 1] for i ∈ Iy , we can compute a vertex
y∗ of PH(z∗) with at most 2r+ + 2 fractional components with runtime LP(m, 2m+ 2r+ + 2) (see
a standard textbook on linear programming, e.g., [41]).

Let z ∈ [0, 1]m where

zi =


1 if i ∈ (∪jXj) ∪X ′

0 if i ∈ (∪jX̂j) ∪ X̂ ′

y∗i if i ∈ Iy

.

Then z has at most 2r+ + 2 fractional components. We show that z ∈ PH . Because zi = z∗i = 1 for
i ∈ (∪jXj) ∪X ′ and zi = z∗i = 0 for i ∈ (∪jX̂j) ∪ X̂ ′, the last three sets of constraints of PH is
satisfied. By the first set of constraints of PH(z∗) we have

∑
i∈Iy

bjizi ≤
∑

i∈Iy
bjiz

∗
i . Because

aij ≥ 0 for every i, j, the first set of constraints of PH is satisfied. Similarly the second constraint of
PH is also satisfied. By the third set of constraints of PH(z∗) we have

d⊤j z =
∑

i∈(∪jXj)∪X′

dji +
∑
i∈Iy

djizi ≥
∑

i∈(∪jXj)∪X′

dji +

θj −
∑

i∈(∪jXj)∪X′

dji

 = θj ,

so the third set of constraints of PH is satisfied. Similarly the fourth constraint of PH is also
satisfied. Therefore z ∈ PH is the desired point.

Let z be the point obtained in Lemma 8. Then z satisfies all the constraints of P(X, t) except
the integrality constraints. We round z down to obtain a feasible solution: let z̄ ∈ {0, 1}m where
z̄i = ⌊zi⌋ for each i. Notice that since w′

ij > 0 for every i, j, we have e⊤z̄ ≤ e⊤z ≤ k and
w′

i
⊤
z̄ ≤ w′

i
⊤
z ≤ ti for every i ∈ [m]. Therefore z̄ is feasible to P(X, t). Moreover, since z̄ = 1 for

i ∈ X ′ and z̄ = 0 for i ∈ X̂ ′, we have that z̄ corresponds to X ′.

In the final step, we show that by setting λ, λ′ appropriately, z̄ satisfies the conditions in scenario two
of Observation 2, hence completing the oracle in Observation 2.

Lemma 9 Set λ = ⌈(2r+ + 2)(V u)max/δ1⌉ and λ′ = ⌈(2r+ + 2)kmaxi∈[m]{fi((V u)max)}/δ2⌉.
Then d⊤j z̄ + δ1 ≥ θj for every j ∈ [r+], and

∑m
i=1 z̄ifi(c

⊤
i θ) + δ2 ≥ ζ.

Proof of Lemma 9. Because z ∈ PH , we have d⊤j z ≥ θj for every j ∈ [r+] and
∑m

i=1 zifi(c
⊤
i θ) ≥

ζ. Fix j ∈ [r+] and let ℓ ∈ Xj be an index where djℓ = minℓ′∈Xj{djℓ′}. Then since |Xj | = λ, we
have

d⊤j z ≥
∑

ℓ′∈Xj

djℓ′zℓ′ ≥ λdjℓ.

On the other hand, z̄ is obtained by rounding z down. Notice that zℓ′ ∈ {0, 1} for all ℓ′ ∈ Xj ∪ X̂j ,
that is, for all ℓ′ such that djℓ′ > djℓ. Therefore for all ℓ′ such that djℓ′ > djℓ, we have zℓ′ = z̄ℓ′ . By
Lemma 8, z has at most 2r+ + 2 fractional components. Therefore, because θj ≤ d⊤j z ≤ (V u)max,
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we have

d⊤j z̄ ≥ d⊤j z − (2r+ + 2)djℓ

≥ d⊤j z − (2r+ + 2)d⊤j z/λ

≥ θj − (2r+ + 2)(V u)max/λ

≥ θj − δ1.

Similarly, let p ∈ X ′ be an index where fp(c⊤p θ) = minp′∈X′{fp′(c⊤p′θ)}. Then since |X ′| = λ′, we
have

m∑
i=1

zifi(c
⊤
i θ) ≥

∑
p′∈X′

zp′fp′(c⊤p′θ) ≥ λ′fp(c
⊤
p θ).

On the other hand, z̄ is obtained by rounding z down. Notice that zp′ ∈ {0, 1} for all p′ ∈ X ′ ∪ X̂ ′,
that is, for all p′ such that fp′(c⊤p′θ) > fp(c

⊤
p θ). Therefore for all p′ such that fp′(c⊤p′θ) > fp(c

⊤
p θ),

we have zℓ′ = z̄ℓ′ . By Lemma 8 z has at most 2r+ + 2 fractional components. Therefore, because
ζ ≤

∑m
i=1 zifi(c

⊤
i θ) ≤ kmaxi∈[m]{fi((V u)max)},
m∑
i=1

z̄ifi(c
⊤
i θ) ≥

m∑
i=1

zifi(c
⊤
i θ)− (2r+ + 2)fp(c

⊤
p θ)

≥
m∑
i=1

zifi(c
⊤
i θ)− (2r+ + 2)

m∑
i=1

zifi(c
⊤
i θ)/λ

′

≥ ζ − (2r+ + 2)k max
i∈[m]

{fi((V u)max)}/λ′

≥ ζ − δ2.

C.9 Completing the Proof

Finally, we analyze our algorithm’s overall performance and runtime. Let δ1 = ϵ and δ2 =
kϵ, and in order to apply Lemma 9, we set λ = (2r+ + 2)(V u)max/ϵ and λ′ = (2r+ +
2)maxi∈[m]{fi((V u)max)}/ϵ. We will treat the performance guarantee and runtime analysis sepa-
rately.

Performance Guarantee: Let

cϵ,γ,W ′
min

=
(1 + γ)ϵ

W ′
min

.

The algorithm ALG (for solving P(X, t)) in Lemma 7 satisfies

ALGP(X,t) ≥
(
1− g

(
δ1(1 + γ)

W ′
min

))
(OPTP(X,t) − 2δ2)− kh

(
δ1(1 + γ)

W ′
min

)
= (1− g(cϵ,γ,W ′

min
))OPTP(X,t) − k(2ϵ(1− g(cϵ,γ,W ′

min
)) + h(cϵ,γ,W ′

min
)).

This gives the ALG′ (for solving P(X, t)) in Lemma 6 with

g′(ϵ) = g(cϵ,γ,W ′
min

)

and
h′(ϵ) = k(2ϵ(1− g(cϵ,γ,W ′

min
)) + h(cϵ,γ,W ′

min
)).

Therefore, the algorithm ALG (for solving P(X)) in Lemma 6 satisfies

ALGP(X) ≥ (1− g′(ϵ))((1− g(cϵ,γ,W ′
min

))OPTP(X) + kh(cϵ,γ,W ′
min

))− h′(ϵ)

= (1− g(cϵ,γ,W ′
min

))((1− g(cϵ,γ,W ′
min

))OPTP(X) + kh(cϵ,γ,W ′
min

))

− k(2ϵ(1− g(cϵ,γ,W ′
min

)) + h(cϵ,γ,W ′
min

))

= (1− g(cϵ,γ,W ′
min

))2OPTP(X) − k(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)).

Therefore, the algorithm ALG (for solving P′(I)) in Lemma 4 satisfies

ALGP′(I) ≥ (1− g(cϵ,γ,W ′
min

))2OPTP′(I) − k(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)).
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Finally, we apply Lemma 3 by plugging in 1 − α = (1 − g(cϵ,γ,W ′
min

))2 and β = −k(2ϵ(1 −
g(cϵ,γ,W ′

min
)) + g(cϵ,γ,W ′

min
)h(cϵ,γ,W ′

min
)). This gives

ALGP(I) ≥ (1− g(2γ(V u)max))
2(1− g(cϵ,γ,W ′

min
))2OPTP(I)

− k(1− g(2γ(V u)max))(2ϵ(1− g(cϵ,γ,W ′
min

)) + g(cϵ,γ,W ′
min

)h(cϵ,γ,W ′
min

)

+ (1− g(cϵ,γ,W ′
min

))2h(2γ(V u)max) + h(2γ(V u)max)).

Runtime Analysis: By Lemma 8, we give an oracle described in Observation 2 with runtime

TLP := LP(m, 3m+ r+ + 2) + LP(m, 2m+ 2r+ + 2).

Therefore, by Observation 2, we give an oracle described in Lemma 7 with runtime

λ′mλ′
TLP.

Therefore, the algorithm ALG′ (for solving P(X, t)) in Lemma 6 has runtime

⌈((V u)max −min{0, (V u)min})/δ1⌉r+ ·
⌈
k max

i∈[m]
{fi((V u)max)}/δ2

⌉
· λ′mλ′

TLP

= ⌈((V u)max −min{0, (V u)min})/ϵ⌉r+ ·
⌈
max
i∈[m]

{fi((V u)max)}/ϵ
⌉
· λ′mλ′

TLP.

Therefore, the algorithm ALG′ (for solving P(X)) in Lemma 4 has runtime⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
· ⌈((V u)max −min{0, (V u)min})/ϵ⌉r+ ·

⌈
max
i∈[m]

{fi((V u)max)}/ϵ
⌉
· λ′mλ′

TLP.

Finally, by Lemma 4, our algorithm’s runtime is

r+m log2 m+ λmλ

+ λr2+m
λr+ +

⌈(
4(1 + γ)k

ϵW ′
min

)r+⌉
·
⌈
(V u)max −min{0, (V u)min}

ϵ

⌉r+
·
⌈
maxi∈[m]{fi((V u)max)}

ϵ

⌉
· λ′mλr++λ′

TLP.
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