
MMGP: a Mesh Morphing Gaussian Process-based
machine learning method for regression of physical

problems under non-parameterized geometrical
variability

Fabien Casenave Brian Staber Xavier Roynard
Safran Tech, Digital Sciences & Technologies

78114 Magny-Les-Hameaux, France
{fabien.casenave, brian.staber, xavier.roynard}@safrangroup.com

Abstract

When learning simulations for modeling physical phenomena in industrial designs,
geometrical variabilities are of prime interest. While classical regression techniques
prove effective for parameterized geometries, practical scenarios often involve the
absence of shape parametrization during the inference stage, leaving us with only
mesh discretizations as available data. Learning simulations from such mesh-based
representations poses significant challenges, with recent advances relying heavily
on deep graph neural networks to overcome the limitations of conventional ma-
chine learning approaches. Despite their promising results, graph neural networks
exhibit certain drawbacks, including their dependency on extensive datasets and
limitations in providing built-in predictive uncertainties or handling large meshes.
In this work, we propose a machine learning method that do not rely on graph
neural networks. Complex geometrical shapes and variations with fixed topology
are dealt with using well-known mesh morphing onto a common support, com-
bined with classical dimensionality reduction techniques and Gaussian processes.
The proposed methodology can easily deal with large meshes without the need
for explicit shape parameterization and provides crucial predictive uncertainties,
which are essential for informed decision-making. In the considered numerical
experiments, the proposed method is competitive with respect to existing graph
neural networks, regarding training efficiency and accuracy of the predictions.

1 Introduction

Many problems in science and engineering require solving complex boundary value problems. Most
of the time, we are interested in solving a partial differential equation (PDE) for multiple values of
input parameters such as material properties, boundary conditions, initial conditions, or geometrical
parameters. Traditional numerical methods such as the finite element method, finite volume method,
and finite differences require fine discretization of time and space in order to be accurate. As a result,
these methods are often computationally expensive, especially when the boundary value problem
needs to be repeatedly solved for extensive exploration of the input parameters space. To overcome
this issue, machine and deep learning have been leveraged for various tasks in computational physics,
namely, solving and learning solutions to PDEs [37, 56, 65, 81], accelerating linear solvers [5, 34],
reduced-order modeling [49], domain decomposition [41], closure modeling [52], and topology
optimization [74], to name a few. As reported in the review papers [13, 17, 75], most of the recent
advances have been relying on deep neural networks for their flexibility and expressiveness. In
this work, we focus on learning simulations of physical phenomena, that are discretized on a non-

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



parameterized unstructured mesh. In this situation, traditional machine learning approaches cannot
easily be leveraged as the inputs of the problem are given by graphs with different numbers of nodes
and edges. In contrast, deep learning models such as graph neural networks (GNNs) [67] can easily
overcome this limitation thanks to their ability to operate on meshes with different resolutions and
topologies. While GNNs show promising results and their flexibility is highly appealing, they still
suffer from a few shortcomings that prevent their deployement in engineering fields where decisions
involve high stakes. Training GNNs usually requires large datasets and computational resources, and
predicting their uncertainties is still an open and challenging problem of its own [32].

We propose a novel methodology, called Mesh Morphing Gaussian Process (MMGP), that relies on
standard and well-known morphing strategies, dimensionality reduction techniques and finite element
interpolation for learning solutions to PDEs with non-parameterized geometric variations. In contrast
to deep learning methods, such as GNNs, the model can easily and efficiently be trained on CPU
hardware and predictive uncertainties are readily available. Our method shares some limitations with
any machine learning regressor for PDE systems: (i) within the predictive uncertainties, our method
produces predictions with an accuracy lower than the reference simulations, (ii) unlike many methods
used in reference simulators, like the finite element method, our method provides no guaranteed
error bounds and (iii) our method requires a well sampled training dataset, which has a certain
computational cost, so that the workflow becomes profitable only for many-query contexts where
the inference is called a large number of times. Regarding (i), rough estimates may be sufficient
in preproject phases, and accuracy can be recovered by using the prediction as an initialization in
the reference simulator, or by allowing the designer to run the reference simulator on the identified
configuration if the regressor is used in an optimization task.

We start by providing the background and assumptions of our method while mentioning some related
works in Section 2. Then, the proposed methodology is detailed in Section 3. Three numerical
experiments are presented in Section 4. Finally, a conclusion is given in Section 5.

2 Preliminaries and related works

Notations. Vectors and matrices are denoted with bold symbols. The entries i of a vector v and i, j
of a matrix M are respectively denoted vi and Mi,j . The i-th row of a matrix M is denoted by Mi.

Background. Let U true : Ω → Rd be a solution to a boundary value problem, where Ω ⊂ RdΩ

denotes the physical domain of the geometry under consideration, and dΩ = 2 or 3. The domain Ω
is discretized into a conformal mesh M as M = ∪Ne

e=1Ωe. In traditional numerical approaches
such as the finite element method [82], an approximation U of the solution U true is sought in
the finite-dimensional space spanned by a family of trial functions, {φI(x)}NI=1, supported on the
mesh M:

Uk(x) =

N∑
I=1

Uk,IφI(x) , k = 1, . . . , d , (1)

where N is the total number of nodes in the mesh M, U ∈ Rd×N is the discretized solution (featuring
d fields), and x ∈ RdΩ denotes the spatial coordinates. For simplicity of the presentation and without
loss of generality, we consider the particular case of a Lagrange P1 finite element basis, so that the
solution is uniquely determined by its value at the nodes of M. In this setting, the basis {φI}NI=1
spans the space {v ∈ C0(M) : v|Ωe

∈ P1, ∀Ωe ∈ M}, and the discretized solution U is determined
by solving the discretized weak formulation of the underyling boundary value problem. This problem
also depends on some parameters µ ∈ Rp, such as material properties and boundary conditions. It
is assumed that there are scalar output quantities of interest w ∈ Rq that depend on the discretized
solution U, and possibly on M and µ. We restrict ourselves to stationary, time-independent, scalars
and fields of interest, which still falls in the scope of many industrial problems of interest. The
learning task that we consider herein consists in learning the mapping

F : (µ,M) 7→ (U,w). (2)

For this purpose, it is assumed that we are given a training set of size n made of input pairs (µi,Mi)
of parameters and meshes, and output pairs (Ui,wi) of discretized fields and scalars. Each input
mesh Mi has a number of nodes denoted by N i, and corresponds to a finite element discretization
of an input geometry Ωi. The associated discretized solution Ui is a matrix of size (d×N i). For

2



any i = 1, . . . , n, the mesh Mi can be represented as an undirected graph Gi = (V i, Ei), where V i

denotes the set of nodes and Ei is the set of edges.

Assumptions and limitations. We assume that the observed input geometries, Ω1, . . . ,Ωn, share a
common topology. The parameterization that generates the input geometries is unknown, and we
are left with the associated finite element meshes M1, . . . ,Mn. Being the discretization of physical
domains involved in a boundary value problem, the input meshes inherit important features such
as boundary conditions applied to subsets of nodes and elements. In finite element methods, error
estimates strongly depend on the quality of the mesh [66]. Hence, in our context, it is assumed that
the input meshes exhibit good quality in terms of elements aspect ratios and node densities, adapted
to the regularity of the fields of interest. Our focus centers on the design optimization of industrial
components with respect to specific physical phenomena. Consequently, we assume precise control
over the geometry, free from any noise. Additionally, the employed geometrical transformations are
constrained to avoid extreme distortions, as they are selected from sets of admissible designs that
adhere to limitations on mass, volume, and mechanical resistance.

Related works. In recent years, there has been a substantial focus on advancing neural networks to
emulate solutions to physical systems, either through the integration of domain-specific knowledge
[44] or by devising efficient architectures for GNNs [63]. GNNs learn the mapping F by relying on
the message passing framework introduced by Gilmer et al. [33] and extended by Battaglia et al. [11].
In the context of physical systems, only a few contributions address non-parameterized geometric
variabilities. The early work of Baque et al. [10] explores the use of GNNs to emulate physics-based
simulations in the presence of geometric variabilities by relying on geodesic convolutions [58, 61].
More recently, Pfaff et al. [63] develop the MeshGraphNets (MGNs) model, a GNN that updates
nodes and edges features in order to learn time-dependent simulations. Most notably, the model can
handle various physics, three-dimensional problems, and non-parameterized geometric variabilities.
Fortunato et al. [28] introduce MultiScale MGNs that relies on two different mesh resolutions in
order to overcome the computational cost of the message passing algorithm on dense meshes, and to
increase the accuracy of MGNs. The efficiency of MGNs has been illustrated by Allen et al. [7] for
inverse problems, and by Harsch et al. [39] for time-independent systems. There exist several variants
of such GNNs for learning mesh-based solutions. A multi-scale GNN that learns from multiple mesh
resolutions has been proposed in Lino et al. [53] and is illustrated on two dimensional PDEs with
geometric variabilities. Lino et al. [54] also devise a multi-scale and rotation-equivariant GNN that
extrapolates the time evolution of the fluid flow, and Cao et al. [19] propose a novel pooling strategy
that prevents loss of connectivity and wrong connections in multi-level GNNs. Regarding morphing
strategies, Gao et al. [30] and Li et al. [51] deform irregular meshes into a reference one in order
to learn solution of PDEs, but rely on complex coordinate transformation to compute a physical
residual-based loss in the reference domain, and on input meshes with equal number of nodes. It is
worth emphasizing that while the aforementioned works show promising results, they do not provide
predictive uncertainties. There exist several methods for quantifying the uncertainties of deep neural
networks [32], but it remains an open problem to provide well calibrated uncertainty estimates at a
reasonable computational cost.

3 MMGP methodology

The proposed methodology is based on two main ingredients that allow us to leverage classical
machine learning methods for regression tasks in the context of non-parameterized geometrical
variability: (i) the data is pretreated by morphing each input mesh into a reference shape, and
resorting to finite element interpolation to express all fields of interest on a common mesh of this
reference shape, and (ii) a low-dimensional embedding of the geometries is built by considering
the coordinates of the nodes as a continuous input field over the meshes. Formally, the proposed
methodology consists in constructing a graph kernel by relying on three well chosen transformations
such that the transformed inputs can be compared with any classical kernel functions defined over
Euclidean spaces. Figure 1 illustrates the proposed strategy for a two-dimensional problem where
we aim at predicting output fields of interest. The first transformation morphs the input mesh onto
a chosen common shape. The second transformation performs a finite element interpolation on
the chosen reference mesh of the common shape. Finally, a dimensionality reduction technique
is applied to obtain low-dimensional embeddings of the inputs and outputs. These three steps are

3



all deterministic and described in the following subsections. The proposed kernel function can be
plugged into any kernel method. Herein, we rely on Gaussian process regression in order to learn
steady-state mesh-based simulations in computational fluid and solid mechanics.

Z1
ℓ {

Z̃i
ℓ

} {
Ũi

k

} U1

k

Un

k Un
k

U1
k

GP

Z1

ℓ

Zn
ℓ Zn

ℓ

...
...

...
...

{
Ẑi
} {

Ûi
k

}

morphing to inverse morphing toFE interpolation FE interpolation

PCA

{
µi
}

inv. PCA

common shape sample shapeto common mesh to sample mesh

Figure 1: Illustration of the MMGP inference workflow for the prediction of an output field of interest.
The lower rectangle in the illustration of the input of the GP represents the scalar inputs µi.

3.1 Deterministic preprocessings of the input meshes and fields of interest

In this section, we describe the methodology for building low-dimensional representations of the
input meshes and output fields.

Mesh morphing into a reference shape Ω. Each input mesh Mi, i = 1, . . . , n, is morphed onto
a mesh Mi

associated to a fixed reference shape Ω. The morphed mesh has the same number of
nodes and same set of edges as the initial mesh Mi, but their spatial coordinates differ. In this work,
we consider two morphing algorithms, namely, Tutte’s barycentric mapping [71] onto the unit disk,
and the Radial Basis Function (RBF) morphing [9, 21] onto a chosen reference shape. Regardless of
the morphing algorithm, physical features inherited from the boundary value problem are carefully
taken into account. More precisely, points, lines and surfaces of importance in the definition of
the physical problem are mapped onto their representant on the reference shape. Doing so, rigid
body transformations that may occur in the database are corrected in the mesh morphing stage, and
boundary conditions of same nature are matched together.

Common mesh Mc of the reference shape Ω. At this stage, it should be noted that although the
morphed meshes Mi

are associated to a common reference shape Ω, they do not share the same
nodes and edges. This prevents us from measuring similarities between the input meshes and output
fields with classical techniques. A strong advantage of the finite element method is that it provides
accurate solution fields with a continuous description over the mesh, and a natural way to transfer
fields from one mesh to another. This motivates us to introduce a common mesh Mc of the reference
shape Ω, as a common support for all the sample fields data. A possibility is to choose an input mesh
in the training set, e.g. M1, and define Mc as its morphing onto the chosen reference shape. The
aim is twofold. First, it allows us to express the output fields on the common morphed mesh Mc,
leading to vector representations of same sizes. Second, the coordinates fields of the meshes Mi

are
also transferred onto this common mesh in order to build a shape embedding. These procedures rely
on classical finite element interpolation that is described in the rest of this section.

Transporting the fields of interest on the common mesh Mc. The discretized solution Ui,
i = 1, . . . , n, is first transferred on the morphed mesh Mi

as follows:

U i

k(x) =

Ni∑
I=1

U i
k,Iφ

i
I(x) , , k = 1, . . . , d , (3)

where {φi
I}N

i

I=1 is the finite element basis associated to the morphed mesh Mi
. The transported fields

U1

k, . . . ,U
n

k share the same geometric support (the reference shape). This implies that they can be

4



interpolated onto the common mesh Mc using the finite element interpolation operator P defined as:

P (U i

k)(x) =

Nc∑
J=1

U i

k(x
c
J)φ

c
J(x) =

Ni∑
I=1

Nc∑
J=1

U i
k,Iφ

i
I(x

c
J)φ

c
J(x) , (4)

where {φc
I}N

i

I=1 is the finite element basis associated to Mc, xc
J is the coordinates of the J-th node of

Mc and U i

k(x
c
J) is evaluated using Equation (3). We are now in the much more favorable situation

where all the fields of interest are expressed on a common mesh Mc. More specifically, for each field
of interest k and input mesh Mi, we let Ũi

k ∈ RNc be the transported output fields onto the common
mesh, such that Ũi

k,I = U i

k(x
c
I). In this setting, the vector representations of the output fields now

have the same sizes Nc. Notice that the derivation of the finite element interpolation is identical with
higher-order Lagrange finite elements.

Transporting the coordinates fields on the common mesh Mc. The same procedure can be
applied to the coordinate fields of the input meshes in order to build a shape embedding of the input
meshes. Let Zi

ℓ be the ℓ-th component of the coordinate field over the mesh Mi, ℓ = 1, . . . , dΩ.
Using the finite element basis associated to the mesh Mi, the coordinates fields can be written as

Zi
ℓ(x) =

Ni∑
I=1

Zi
ℓ,Iφ

i
I(x) ,

where Zi
ℓ,I denotes the ℓ-th of the coordinates of the node I in the mesh Mi. Notice that the notation

Zi
ℓ,I is preferred to xi

ℓ,I , since it denotes here the degrees of freedom of the coordinate fields defined
over Mi, whose continuity property is essential for the finite element interpolation stage. Then, in
the same fashion as for the fields of interest, the coordinates fields are transferred on the morphed
mesh Mi and interpolated on the common mesh Mc using the operator P given by Equation (4). For
each coordinate ℓ = 1, . . . , dΩ and input mesh Mi, we have the common representations Z̃i

ℓ ∈ RNc

of the coordinate fields on the common mesh Mc.

Dimensionality reduction. At this stage, the input coordinates fields of the meshes and the output
fields are expressed on the same common mesh Mc, and can be compared using standard machine
learning techniques. We propose to build low-dimensional embeddings of these quantities using
Principal Component Analysis (PCA). For each output field, PCA is applied to the set of observations
{Ũi

k}ni=1, leading to the fields low-dimensional embeddings that we denote by {Ûi
k}ni=1. Similarly,

PCA is applied to concatenated transported coordinate fields, {(Z̃i
1, . . . , Z̃

i
dΩ
)}ni=1, leading to low-

dimensional embeddings of the input geometries {Ẑi}ni=1, that we refer to as the shape embeddings.

3.2 MMGP training

Once the operations of mesh morphing, finite element interpolation on a common mesh and di-
mensional reduction described in the previous subsection have been carried out, we are left with
reduced-size objects of same dimension. Let {Xi}ni=1 ∈ RlZ+p, where p the number of nongeo-
metrical parameters and lZ is the size of shape embedding, be such that Xi = (Ẑi,µi). Denoting
lUk

the size of the embedding of field Uk, the machine learning task given by Equation (2) can be
approximated by the following set of scalar and vector regression problems:

F̂scalar,m : Xi 7→wi
m ∈ R, m = 1, . . . , q , (5a)

F̂vector,k : Xi 7→ Ûi
k ∈ RlUk , k = 1, . . . , d . (5b)

Gaussian processes can be trained in a classical fashion to address the regression problems (5a)-(5b).

MMGP for a scalar output. Let D = {(Xi, wi
m0

)}ni=1 be a training dataset for one of the problems
given by Equation (5a), i.e. for the m0-th output scalar. It can be shown by standard conditioning [76]
that the posterior mean and variance of the prediction on some given test input X⋆ are given by

E[w⋆] = kT
⋆ (K+ σ2I)−1wm0

,

V[w⋆] = K⋆⋆ − kT
⋆ (K+ σ2I)−1k⋆ ,

5



where wm0 = {wi
m0

}ni=1, and K is the Gram matrix such that Ki,j = c(Xi,Xj) for 1 ≤ i, j ≤ n,
the vector k⋆ such that k⋆j = c(X⋆,Xj), and the scalar K⋆⋆ = c(X⋆,X⋆), with c denoting the
chosen kernel function which lengthscales are optimized, and σ denotes the optimized nugget
parameter. This training procedure is repeated for the q scalar outputs.

MMGP for an output field. Let D = {(Xi, Ûi
k0
)}ni=1 be a training dataset for one of the problems

given by Equation (5b), i.e. for output field k0. A multioutput GP is first trained to predict the output
embeddings Ûk0

. The predictions of the GP are then decoded with the inverse PCA mapping, and
morphed back to the original input mesh Mi. Due to this last nonlinear operation, the posterior
distribution of the output field of interest Uk0 is no longer Gaussian. The predictive uncertainties are
thus obtained through Monte Carlo simulations. This training procedure is repeated for each of the d
output fields.

3.3 Properties of the methodology

The sequence of preprocessing operations, including mesh morphing, finite element interpolation,
and PCA, leads to a non-linear dimensionality reduction. Leveraging these deterministic processes
reduces the burden on the machine learning stage, potentially necessitating fewer training examples
to achieve robust model performance on complex mesh-based data. In the numerical experiments
presented in Section 4, the morphing technique is chosen a priori, with ongoing research focused on
optimizing this morphing to minimize the number of PCA modes, which leads to a highly nonlinear
dimensionality reduction stage that is finely tuned to the specific characteristics of the data.

Gaussian process regression between the input and output embeddings has several advantages. From
a theoretical perspective, there exists conditions on the features of a continuous kernel so that it
may approximate an arbitrary continuous target function [59]. Gaussian processes also come with
built-in predictive uncertainties, that are marginally valid under the a priori Gaussian assumption.
Nevertheless, the proposed methodology can be combined with any other regressor such as a deep
neural network instead of the Gaussian process.

For clarity of the presentation, the MMGP methodology is illustrated with very simple, if not the
simplest, morphing and dimensionality reduction techniques. Alternatives are possible for each
algorithm brick. In particular, the fixed topology restriction may be lifted with other morphing
algorithms, see Appendix B for more details.

4 Numerical experiments

Three regression problems are considered in order to assess the efficiency of the proposed methodol-
ogy. The chosen datasets are first described in Section 4.1. The experimental setup is summarized in
Section 4.2, and the results are discussed in Section 4.3.

4.1 Datasets

Three datasets in computational fluid and solid mechanics are considered, described below, and
summarized in Table 1. All the considered datasets involve geometric variabilities and meshes with
possibly different number of nodes and edges. Additional details can also be found in Appendix A.

Table 1: Summary of the considered datasets with dΩ: dimension of the physical problem, p: number
of input scalars, d: number of output fields, m: number of output scalars.

Datasets train/test sizes dΩ p d m Avg. # nodes

Rotor37 1000/200 3 2 2 4 29, 773
Tensile2d 500/200 2 6 6 4 9, 425
AirfRANS 800/200 2 2 3 2 179, 779

AirfRANS-remeshed 800/200 2 2 3 2 19, 527

Rotor37 dataset. We consider a 3D compressible steady-state Reynold-Averaged Navier-Stokes
(RANS) simulation solved with elsA [18] using the finite volumes method. The inputs are given

6



by a mesh representing the surface of a 3D compressor blade [8], and two additional parameters
that correspond to an input pressure and a rotation speed. The outputs of the problem are given by
4 scalars (massflow m, compression rate τ , isentropic efficiency η, polyentropic efficiency γ), and
2 fields on the surface of the input mesh (temperature T , pressure P ).

Tensile2d dataset. The second dataset corresponds to a 2D quasi-static problem in solid mechan-
ics. The geometrical support consists of a 2D square, with two half-circles that have been cut off in
a symmetrical manner. The inputs are given by a mesh, a pressure applied on the upper boundary,
and 5 material parameters modeling the nonlinear elastoviscoplastic law of the material [50]. The
boundary value problem is solved with the finite element method and the Z-set software [60]. The
outputs of the problem are given by 4 scalars (pmax, vmax, σmax

22 , and σmax
v ) and 6 fields of interest (u,

v, p, σ11, σ12, and σ22). For the sake of brevity, the reader is referred to Appendix A for a description
of these quantities.

AirfRANS dataset. The last dataset is made of 2D incompressible RANS around NACA profiles
and taken from Bonnet et al. [14]. The inputs are given by a mesh of a NACA profile and two
parameters that correspond to the inlet velocity and the angle of attack. The outputs are given by
2 scalars (drag CD and lift CL coefficients), and 3 fields (the two components of the fluid velocity u
and v, and the pressure field p). An additional version of this dataset is also considered, where the
input meshes have been coarsened using the MMG remesher [1], and the output fields have been
transferred to the coarsened meshes. The output scalars are unchanged. Illustrations of the input
meshes can be found in the original paper [14].

4.2 Experimental setup

Morphings. The Tutte’s barycentric mapping onto the unit disk is used for morphing the meshes in
the Rotor37 and Tensile2d datasets. The input meshes in the AirfRANS dataset are morphed onto
the first mesh using RBF.

PCA embeddings. Embeddings of sizes 32 and 64 are retained for respectively the spatial coordi-
nates and output fields in the Rotor37 and AirfRANS datasets. Smaller embeddings of sizes 8 are
considered for both the spatial coordinates and output fields in the Tensile2d dataset. Note that for
the Tensile2d and AirfRANS, a more effective variant of PCA has been used, which can easily deal
with very large meshes (see, e.g., [24, 36]), with up to hundreds of millions of degrees of freedom.
Details about this variant can be found in Appendix C.

Gaussian processes. Anisotropic Matern-5/2 kernels and zero mean functions are used for all the
Gaussian processes priors. The lengthscales and nugget parameter are optimized by maximizing the
marginal log-likelihood function with a L-BFGS algorithm and 10 random restarts using the GPy
package [35].

Baselines. The performance of MMGP is compared with two baselines, namely, a graph con-
volutional neural network (GCNN) with a UNet-type architecture [29] and the GeneralConv [79],
and MeshGraphNets (MGN) [63]. The hyperparameters of the GNNs are chosen by relying on a
grid search. The GCNN and MGN models are implemented with PyTorch Geometric [25] and
DGL [73], respectively. Additional details about the architectures and hyperparameters can be found
in Appendix D. Due to the sizes of the input meshes in the AirfRANS dataset, the considered GNN-
based baselines are prohibitively expensive. Similarly to the work of [28], the GNNs are trained
using coarsened input meshes as described in Section 4.1. The output fields predicted on the coarse
meshes are then transferred back on the original fine meshes thanks to finite element interpolation.

Evaluation metrics. Accuracy of the trained models is assessed by computing relative RMSE
errors. Let {Ui

ref}
n⋆
i=1 and {Ui

pred}
n⋆
i=1 be respectively test observations and predictions of a given

field of interest. The relative RMSE considered herein is defined as

RRMSEf (Uref ,Upred) =

(
1

n⋆

n⋆∑
i=1

1
Ni ∥Ui

ref −Ui
pred∥22

∥Ui
ref∥2∞

)1/2

,

7



where it is recalled that N i is the number of nodes in the mesh Mi, and max(Ui
ref) is the maximum

entry in the vector Ui
ref . Similarly for scalar outputs, the following relative RMSE is computed:

RRMSEs(wref ,wpred) =

(
1

n⋆

n⋆∑
i=1

|wi
ref − wi

pred|2

|wi
ref |2

)1/2

.

Given that the input meshes may have different number of nodes, the coefficients of determination Q2

between the target and predicted output fields are computed by concatenating all the fields together.
For each of the considered regression problems, training is repeated 10 times in order to provide
uncertainties over the relative RMSE and Q2 scalar regression coefficients.

4.3 Results and discussion

Predictive performance. The relative RMSE and Q2 scalar regression coefficients are reported in
Table 2 for all the considered experiments. While the GNN-based baselines achieve good performance,
the MMGP model consistently outperforms them with lower errors. It is worth emphasizing that
the field p and scalar pmax of the Tensile2d dataset are particularly challenging, see Appendix E.2
for more details. They represent the accumulated plasticity in the mechanical piece, which are
non-zero for a small fraction of the training set. Figure 2 shows the graphs of the output scalars
predictions versus the targets on test set for the Tensile2d case. Figure 3 also shows examples
of fields prediction in the case of the AirfRANS problem. The MMGP model is able to accurately
reproduce the output fields, with relative errors mostly located near the tips of the airfoils.

Table 2: Means and standard deviations (gray) of the relative RMSE and Q2 scalar regression
coefficients for all the considered datasets and quantities of interest (QoI) (best is bold).

RRMSE Q2

QoI GCNN MGN MMGP GCNN MGN MMGP

Rotor37 dataset

m 4.4e-3 (5e-4) 5.4e-3 (7e-5) 5.0e-4 (3e-6) 0.9816 (4e-3) 0.9720 (5e-4) 0.9998 (3e-6)
p 4.4e-3 (5e-4) 5.3e-3 (7e-5) 4.8e-4 (1e-6) 0.9803 (5e-3) 0.9710 (9e-4) 0.9998 (2e-6)
η 3.1e-3 (7e-4) 7.2e-3 (7e-5) 5.0e-4 (3e-6) 0.9145 (4e-2) 0.5551 (2e-3) 0.9979 (1e-6)
γ 2.9e-3 (6e-4) 6.5e-3 (2e-5) 4.6e-4 (2e-7) 0.9068 (4e-2) 0.5257 (2e-3) 0.9977 (2e-6)
P 1.7e-2 (8e-4) 1.7e-2 (2e-3) 7.2e-3 (5e-4) 0.9863 (1e-3) 0.9866 (3e-3) 0.9973 (4e-4)
T 3.9e-3 (1e-4) 1.4e-2 (2e-3) 8.2e-4 (1e-5) 0.9930 (5e-4) 0.9956 (1e-3) 0.9997 (1e-5)

Tensile2d dataset

pmax 1.6e-0 (7e-1) 2.7e-1 (4e-2) 6.6e-1 (3e-1) 0.4310 (2e-1) 0.6400 (2e-1) 0.9435 (2e-2)
vmax 4.4e-2 (7e-3) 5.8e-2 (2e-2) 5.0e-3 (3e-5) 0.9245 (3e-2) 0.9830 (1e-2) 0.9999 (2e-5)
σmax
22 3.1e-3 (7e-4) 4.5e-3 (1e-3) 1.7e-3 (2e-5) 0.9975 (1e-3) 0.9958 (1e-3) 0.9993 (2e-5)

σmax
v 1.2e-1 (4e-2) 2.4e-2 (9e-3) 5.0e-3 (3e-5) 0.9723 (2e-2) 0.9801 (1e-2) 0.9997 (7e-6)
u 4.5e-2 (1e-2) 1.5e-2 (1e-3) 3.4e-3 (4e-5) 0.9623 (2e-2) 0.9270 (1e-2) 0.9997 (6e-6)
v 7.4e-2 (2e-2) 9.7e-2 (7e-3) 5.5e-3 (8e-5) 0.9559 (3e-2) 0.9322 (1e-2) 0.9995 (1e-5)
p 1.3e-1 (7e-2) 1.1e-1 (2e-2) 4.4e-2 (1e-2) 0.5691 (1e-1) 0.2626 (1e-1) 0.7785 (9e-2)
σ11 1.0e-1 (4e-2) 2.8e-2 (3e-3) 3.7e-3 (1e-4) 0.9304 (4e-2) 0.8693 (3e-2) 0.9999 (2e-6)
σ12 4.5e-2 (4e-3) 7.5e-3 (4e-4) 2.4e-3 (2e-5) 0.9617 (5e-3) 0.9868 (1e-3) 0.9999 (1e-6)
σ22 3.3e-2 (3e-3) 2.7e-2 (1e-3) 1.4e-3 (1e-5) 0.9662 (6e-3) 0.9782 (2e-3) 0.9999 (1e-6)

AirfRANS dataset

CD 6.1e-2 (2e-2) 4.9e-2 (7e-3) 3.3e-2 (2e-3) 0.9596 (2e-2) 0.9743 (1e-2) 0.9831 (2e-3)
CL 4.1e-1 (1e-1) 2.4e-1 (8e-2) 8.0e-3 (6e-4) 0.9776 (8e-3) 0.9851 (1e-2) 0.9999 (2e-6)
u 5.6e-2 (3e-3) 8.3e-2 (2e-3) 1.8e-2 (9e-5) 0.9659 (3e-3) 0.9110 (3e-3) 0.9749 (8e-5)
v 4.2e-2 (2e-3) 1.2e-1 (2e-3) 1.5e-2 (3e-5) 0.9683 (3e-3) 0.7516 (5e-3) 0.9806 (3e-5)
p 8.5e-2 (7e-3) 9.9e-2 (1e-2) 5.1e-2 (2e-5) 0.9602 (8e-3) 0.9390 (2e-2) 0.9934 (1e-5)

Uncertainty estimates. Once trained, the MMGP model provides access to predictive uncertainties
for the output fields and scalars. Figure 4 shows an example of predicted pressure field for an

8



Figure 2: (Tensile2d) Test predictions versus test targets obtained for the output scalars of interest.

Figure 3: (AirfRANS) Test sample 787, fields of interest u (UX), v (UY ) and p: (left) reference,
(middle) MMGP prediction, (right) relative error.

arbitrary test input mesh of the Rotor37 experiment, together with the predictive variance and the
point-wise relative absolute error. High relative errors are localized where the pressure field exhibits
a discontinuity, known as a shock in compressor aerodynamics. The predictive variance is also higher
near this region, reflecting that the GP-based surrogate model is uncertain about its prediction of the
shock position. Figure 5 shows graphs of two output scalars with respect to the input pressure in the
Tensile2d problem. The predictive intervals of the MMGP model are discriminative: they get wider
as the input pressure falls out of the support of the training distribution. In order to assess the validity
of the prediction intervals, we compute the prediction interval coverage probability (PICP), i.e. the
average of test targets that fall into the 95% prediction interval. For the AirfRANS dataset, PICPs of
93.05% and 93.5% for respectively the outputs CL and CD are obtained by averaging the individual
PICPs of 10 independent MMGP models. The prediction intervals are slightly over-confident but this
could be corrected by e.g. conformalizing the Gaussian process [69].

Figure 4: (Rotor37) MMGP: prediction, predictive variance, and L1 relative error of the pressure
field for an arbitrary geometry in the test dataset.

9



Figure 5: (Tensile2d) MMGP: graphs of the predicted vmax and σmax
v with respect to the pressure,

for four different test input meshes, and 11 values of input pressure that go beyond the training range
(−50,−40), with 95% confidence intervals.

Computational times. The MMGP model can easily be trained on CPU hardware and with much
lower computational times, see Table 3.

Table 3: Training computational times: GCNN and MGN on a Nvidia A100 Tensor Core GPU
(neural network training), MMGP on a 48 cores Intel Xeon Gold 6342 CPU (Gaussian process
regressors training). Between parenthesis are indicated the numbers of trainings carried-out to
optimize hyperparameters (best is bold).

Dataset GCNN MGN MMGP

Rotor37 (200 ×) 24 h (6 ×) 13 h 14 min (10 ×) 2 min 49 s
Tensile2d (200 ×) 1 h 25 min (6 ×) 6 h 50 min (10 ×) 1 min 38 s
AirfRANS (200 ×) 5 h 15 min (6 ×) 5 h 00 min (10 ×) 5 min 47 s

5 Conclusion

In summary, our proposed method presents an innovative approach to approximating field and
scalar quantities of interest within the context of solving complex physics problems for design
optimization. Our work introduces two key contributions: firstly, the utilization of mesh morphing
pretreatment in conjunction with finite element interpolation, and secondly, the incorporation of shape
embedding through dimensional reduction of coordinates, treating them as continuous fields over
the geometric support. These innovations alleviate the machine learning task from the challenges of
handling variable-sized samples and the need to learn implicit shape embedding. By reducing the
dimensionality of inputs and outputs, our approach allows for the application of efficient Gaussian
process regression. Notably, our MMGP model exhibits several key advantages. It can seamlessly
handle very large meshes, is amenable to efficient CPU training, is fairly interpretable, demonstrates
high accuracy in our experimental results, and provides readily available predictive uncertainties.

Future works will explore the extension of our method to accommodate time-dependent quantities of
interest and investigate the optimization of the morphing process to enhance data compression and
overall performance. Our research opens exciting avenues for advancing the capabilities of machine
learning in the realm of physics-based design optimization.

10



References
[1] Mmg platform website. https://www.mmgtools.org/. Accessed: 2023-01-19.

[2] MMGP documentation. https://mmgp.readthedocs.io/. Accessed: 2023-10-16.

[3] MMGP github repository. https://gitlab.com/drti/mmgp. Accessed: 2023-10-16.

[4] Modulus package website. https://developer.nvidia.com/modulus. Accessed: 2023-10-05.

[5] J. Ackmann, P.D. Düben, T.N. Palmer, and P.K. Smolarkiewicz. Machine-learned precondition-
ers for linear solvers in geophysical fluid flows. arXiv preprint arXiv:2010.02866, 2020.

[6] M. Alexa. Recent advances in mesh morphing. In Computer graphics forum, volume 21, pages
173–198. Wiley Online Library, 2002.

[7] K.R. Allen, T. Lopez-Guevara, K. Stachenfeld, A. Sanchez-Gonzalez, P. Battaglia, J. Ham-
rick, and T. Pfaff. Physical design using differentiable learned simulators. arXiv preprint
arXiv:2202.00728, 2022.

[8] A. Ameri. Nasa rotor 37 cfd code validation glenn-ht code. In 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace Exposition, page 1060, 2009.

[9] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warping by radial basis functions:
Application to facial expressions. CVGIP: Graphical models and image processing, 56(2):161–
172, 1994.

[10] P. Baque, E. Remelli, F. Fleuret, and P. Fua. Geodesic convolutional shape optimization. In
International Conference on Machine Learning, pages 472–481. PMLR, 2018.

[11] P.W. Battaglia, J.B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[12] J. Besson, G. Cailletaud, J.-L. Chaboche, and S. Forest. Non-linear mechanics of materials,
volume 167. Springer Science & Business Media, 2009.

[13] F.E. Bock, R.C. Aydin, C.J. Cyron, N. Huber, S.R. Kalidindi, and B. Klusemann. A review
of the application of machine learning and data mining approaches in continuum materials
mechanics. Frontiers in Materials, 6:110, 2019.

[14] F. Bonnet, J. Mazari, P. Cinnella, and P. Gallinari. Airfrans: High fidelity computational fluid
dynamics dataset for approximating reynolds-averaged navier–stokes solutions. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 23463–23478. Curran Associates, Inc.,
2022.

[15] M. Botsch and L. Kobbelt. Real-time shape editing using radial basis functions. In Computer
graphics forum, volume 24, pages 611–621. Blackwell Publishing, Inc Oxford, UK and Boston,
USA, 2005.

[16] X. Bresson and T. Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553,
2017.

[17] S.L. Brunton, B.R. Noack, and P. Koumoutsakos. Machine learning for fluid mechanics. Annual
Review of Fluid Mechanics, 52:477–508, 2020.

[18] L. Cambier, M. Gazaix, S. Heib, S. Plot, M. Poinot, J.P. Veuillot, J.F. Boussuge, and M. Mon-
tagnac. An overview of the multi-purpose elsa flow solver. Aerospace Lab, (2):p–1, 2011.

[19] Y. Cao, M. Chai, M. Li, and C. Jiang. Efficient learning of mesh-based physical simulation with
bi-stride multi-scale graph neural network. 2023.

11

https://mmgp.readthedocs.io/
https://gitlab.com/drti/mmgp


[20] F. Casenave, N. Akkari, F. Bordeu, C. Rey, and D. Ryckelynck. A nonintrusive distributed
reduced-order modeling framework for nonlinear structural mechanics—application to elas-
toviscoplastic computations. International Journal for Numerical Methods in Engineering,
121(1):32–53, 2020.

[21] A. De Boer, M.S. Van der Schoot, and H. Bijl. Mesh deformation based on radial basis function
interpolation. Computers & structures, 85(11-14):784–795, 2007.

[22] C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression
data. Journal of bioinformatics and computational biology, 3(02):185–205, 2005.

[23] R.P. Dwight. Robust mesh deformation using the linear elasticity equations. In Computational
fluid dynamics 2006, pages 401–406. Springer, 2009.

[24] C. Farhat, T. Chapman, and P. Avery. Structure-preserving, stability, and accuracy properties
of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear
finite element dynamic models. International Journal for Numerical Methods in Engineering,
102(5):1077–1110, 2015.

[25] M. Fey and J.E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[26] M. Fey and J.E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[27] M. S. Floater. Parametrization and smooth approximation of surface triangulations. Computer
aided geometric design, 14(3):231–250, 1997.

[28] M. Fortunato, T. Pfaff, P. Wirnsberger, A. Pritzel, and P. Battaglia. Multiscale meshgraphnets.
arXiv preprint arXiv:2210.00612, 2022.

[29] H. Gao and S. Ji. Graph u-nets. In international conference on machine learning, pages
2083–2092. PMLR, 2019.

[30] H. Gao, L. Sun, and J.-X. Wang. Phygeonet: Physics-informed geometry-adaptive convolutional
neural networks for solving parameterized steady-state pdes on irregular domain. Journal of
Computational Physics, 428:110079, 2021.

[31] V. Garanzha, I. Kaporin, L. Kudryavtseva, F. Protais, N. Ray, and D. Sokolov. Foldover-free
maps in 50 lines of code. ACM Transactions on Graphics (TOG), 40(4):1–16, 2021.

[32] J. Gawlikowski, C.R.N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe, R. Triebel,
P. Jung, R. Roscher, et al. A survey of uncertainty in deep neural networks. arXiv preprint
arXiv:2107.03342, 2021.

[33] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, and G.E. Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[34] M. Götz and H. Anzt. Machine learning-aided numerical linear algebra: Convolutional neural
networks for the efficient preconditioner generation. In 2018 IEEE/ACM 9th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA), pages 49–56. IEEE,
2018.

[35] GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/
GPy, since 2012.

[36] S. Grimberg, C. Farhat, R. Tezaur, and C. Bou-Mosleh. Mesh sampling and weighting for the
hyperreduction of nonlinear petrov–galerkin reduced-order models with local reduced-order
bases. International Journal for Numerical Methods in Engineering, 122(7):1846–1874, 2021.

[37] X. Guo, W. Li, and F. Iorio. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 481–490, 2016.

12

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


[38] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

[39] L. Harsch and S. Riedelbauch. Direct prediction of steady-state flow fields in meshed domain
with graph networks. arXiv preprint arXiv:2105.02575, 2021.

[40] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[41] A. Heinlein, A. Klawonn, M. Lanser, and J. Weber. Combining machine learning and domain
decomposition methods–a review. 2020.

[42] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[43] V.R. Joseph, E. Gul, and S. Ba. Maximum projection designs for computer experiments.
Biometrika, 102(2), 3 2015.

[44] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed
machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[45] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[46] T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[47] B. Knyazev, G.W. Taylor, and M. Amer. Understanding attention and generalization in graph
neural networks. Advances in neural information processing systems, 32, 2019.

[48] M.A. Kramer. Nonlinear principal component analysis using autoassociative neural networks.
AIChE Journal, 37(2):233–243, 1991.

[49] K. Lee and K.T. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

[50] J. Lemaitre and J.-L. Chaboche. Mechanics of solid materials. Cambridge university press,
1994.

[51] Z. Li, D.Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned deforma-
tions for pdes on general geometries. arXiv preprint arXiv:2207.05209, 2022.

[52] J. Ling, R. Jones, and J. Templeton. Machine learning strategies for systems with invariance
properties. Journal of Computational Physics, 318:22–35, 2016.

[53] M. Lino, C. Cantwell, A.A. Bharath, and S. Fotiadis. Simulating continuum mechanics with
multi-scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021.

[54] M. Lino, S. Fotiadis, A.A. Bharath, and C.D. Cantwell. Multi-scale rotation-equivariant graph
neural networks for unsteady eulerian fluid dynamics. Physics of Fluids, 34(8), 2022.

[55] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[56] L. Lu, P. Jin, and G.E. Karniadakis. Deeponet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

[57] A.L. Maas, A.Y. Hannun, A.Y. Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, page 3. Atlanta, Georgia, USA, 2013.

[58] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural
networks on riemannian manifolds. In Proceedings of the IEEE international conference on
computer vision workshops, pages 37–45, 2015.

13



[59] C.A. Micchelli, Y. Xu, and H. Zhang. Universal kernels. Journal of Machine Learning Research,
7(12), 2006.

[60] Mines ParisTech and ONERA the French aerospace lab. Zset: nonlinear material & structure
analysis suite. http://www.zset-software.com, 1981-present.

[61] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M.M. Bronstein. Geometric deep
learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5115–5124, 2017.

[62] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1226–1238, 2005.

[63] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P.W. Battaglia. Learning mesh-based simula-
tion with graph networks. In International Conference on Learning Representations, 2021.

[64] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. Pointnet: Deep learning on point sets for 3d classifica-
tion and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[65] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[66] R. Rannacher and R. Scott. Some optimal error estimates for piecewise linear finite element
approximations. Mathematics of computation, 38(158):437–445, 1982.

[67] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[68] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural computation, 10(5):1299–1319, 1998.

[69] G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

[70] M.L. Staten, S.J. Owen, S.M. Shontz, A.G. Salinger, and T.S. Coffey. A comparison of mesh
morphing methods for 3d shape optimization. In Proceedings of the 20th international meshing
roundtable, pages 293–311. Springer, 2012.

[71] W.T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, 3(1):743–
767, 1963.

[72] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[73] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai, et al. Deep
graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

[74] D.A. White, W.J. Arrighi, J. Kudo, and S.E. Watts. Multiscale topology optimization using
neural network surrogate models. Computer Methods in Applied Mechanics and Engineering,
346:1118–1135, 2019.

[75] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating physics-based modeling with
machine learning: A survey. arXiv preprint arXiv:2003.04919, 2020.

[76] C.K.I. Williams and C.E. Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[77] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional
networks. In International conference on machine learning, pages 6861–6871. PMLR, 2019.

14



[78] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and simple stretch-minimizing mesh
parameterization. In Proceedings Shape Modeling Applications, 2004., pages 200–208. IEEE,
2004.

[79] J. You, R. Ying, and J. Leskovec. Design Space for Graph Neural Networks. November 2020.

[80] A. Zaharescu, E. Boyer, and R. Horaud. Topology-adaptive mesh deformation for surface
evolution, morphing, and multiview reconstruction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(4):823–837, 2010.

[81] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447,
2018.

[82] O.C. Zienkiewicz and P.B. Morice. The finite element method in engineering science, volume
1977. McGraw-hill London, 1971.

15



Appendix

Available dataset and code The code corresponding to the two-dimensional solid mechanics case
(Tensile2d) described in Section 4.1 is available at https://gitlab.com/drti/mmgp [3]. A
documentation is available at https://mmgp.readthedocs.io/ [2], where details are provided on
how to download the dataset Tensile2d and reproduce the corresponding numerical experiments.

Details regarding the datasets are provided in Appendix A. Morphing strategies and dimensionality
reduction techniques are described in Appendices B and C. Details about the GNNs baselines are
given in Appendix D. Finally, additional results about the considered experiments are gathered in
Appendix E.

A Datasets

This section provides additional details regarding the synthetic datasets Tensile2d and Rotor37.
Regarding the AirfRANS dataset, the reader is referred to [14].

A.1 Rotor37 dataset

Examples of input geometries are shown in Figure 6 together with the associated output pressure
fields. While the geometrical variabilities are moderate, it can be seen that they have a significant
impact on the output pressure field. A design of experiment for the input parameters of this problem
are generated with maximum projection LHS method [43]. For each input mesh and set of input
parameters, a three-dimensional aerodynamics problem is solved with RANS, as illustrated in, e.g. [8].
The output scalars of the problem are obtained by post-processing the three-dimensional velocity.

Figure 6: (Rotor37) Four geometries with their corresponding output pressure fields. The first panel
shows the mesh, and the second to last panels show a superposition of the corresponding geometry
and the mesh of the first one.

A.2 Tensile2d dataset

Examples of input geometries are shown in Figure 7. A two-dimensional boundary value problem
in solid mechanics is considered, under the assumption of small perturbations (see, e.g. [12]). The
partial differential equation is supplemented with Dirichlet and Neumann boundary conditions: the
displacement on the lower boundary is fixed, while a uniform pressure is applied at the top. The input
parameters of the problem are chosen to be the magnitude of the applied pressure and 5 parameters
involved in the elasto-visco-plastic constitutive law of the material [50]. The outputs of the problem
are chosen as the components of the displacement field, u and v, the entries of the Cauchy stress
tensor, σ11, σ22, σ12, and the cumulative plastic strain p. We also consider 4 output scalars obtained
by post-processing the fields of interest: the maximum plastic strain pmax accross the geometry, the
maximum vertical displacement vmax at the top of the geometry, and the maximum normal stress
σmax
22 and Von Mises stress σmax

v accross the geometry. It is worth emphasizing that the cumulative
plastic strain p is challenging to predict, as illustrated in Section E.

16

https://gitlab.com/drti/mmgp
https://mmgp.readthedocs.io/


Figure 7: (Tensile2d) Illustration of the four input meshes that are used in Figure 5.

B Morphing strategies

In this section, we briefly describe the Tutte’s barycentric mapping [71] and the radial basis function
morphing [9, 21] used in the considered experiments.

Tutte’s barycentric mapping. For this method, we are limited to connected triangular surface
meshes of fixed topology, either in a 2D or in a 3D ambient space. Tutte’s barycentric mapping starts
by setting the value of the displacement of the boundary points of the mesh (usually onto the unit
disk), and solve for the value at all the remaining nodes of the mesh. The physical features available
on the mesh, and inherited from the problem, are used in the specification of the displacement of the
boundary nodes.

We recall that xI , I = 1 . . . N , denote the mesh nodes coordinates. We assume that the numbering
of the nodes starts with the interior points of the mesh 1 . . . Nint, and ends with the Nb nodes on
its boundary Nint + 1 . . . N . The morphed mesh node coordinates are denoted by xI , I = 1 . . . N .
The coordinates of the boundary of the morphed mesh being known, we denote xbI = xI+Nint ,
I = 1 . . . Nb. Then the following sparse linear system is solved for the morphing of the interior
points:

xI −
1

d(I)

∑
J∈N (I)∩J1,NintK

xJ = − 1

d(I)

∑
J∈N (I)∩JNint,NK

xbJ−Nint
,

where N (I) and d(I) are respectively the neighbors and the number of neighbors of the node I in
the graph (or in the mesh following its connectivity).

In the 2D solid mechanics case Tensile2d, we know the rank of the point separating the left and
the bottom faces which we map onto the point (0, 1) of the target unit disk. The linear density of
nodes on the boundary of the target unit disk is chosen to be the same as the one of the mesh sample
(relative to the length of the boundary), see Figure 8 for an illustration.

Figure 8: (Tensile2d) Illustration of the Tutte’s barycentric mapping used in the morphing stage.

From [27, corollary 2], the morphing described above is called a parametrization, and defines an
isomorphic deterministic transformation of the considered triangular surface mesh M, into a plane
triangular mesh M of the unit disk. Notice that although these morphing techniques are called “mesh
parametrization”, this do not mean that we need to know any parametrization of the shape: these are
deterministic transformations of the meshes, requiring no other information than the nodes locations
and the triangles connectivities.

17



This method is taken from the computer graphics community and has been improved over the years.
In [78], a quality indicator called stretch metric is optimized during an iterative procedure, to obtain
more regular morphed mesh. Recently in [31], a procedure was proposed to drastically improve mesh
parametrization, even in difficult cases where some triangles are overlapping. It should be noted that
such iterative procedures come with the additional cost of solving a series of sparse linear systems.

Radial Basis Function morphing. In the same fashion as Tutte’s barycentric mapping, RBF
morphing methods start by setting the value of the displacement at some particular nodes of the mesh
(here the boundary points of the mesh, but interior points can be considered as well with RBF), and
solve for the location at all the remaining nodes of the mesh. The physical features available on the
mesh are also used in the specification of the displacement of the boundary points. RBF morphing
methods are compatible with 2D and 3D structured and unstructured meshes, do not require any mesh
connectivity information, and can be easily implemented in parallel for partitioned meshes.

We use the RBF morphing method as proposed in [21]. Once the mapping for the Nb boundary points
of ranks Nint + 1 . . . N is fixed, then the interior points 1 ≤ I ≤ Nint are mapped such as

xI =

Nb∑
J=1

αJϕ(∥xI − xbJ∥), 1 ≤ I ≤ Nint,

where ϕ is a radial basis function with compact support and αJ are determined by the interpolation
conditions. More precisely, we choose the radial basis function with compact support ϕ(ξ) =

(1− ξ)
4
(4ξ + 1) and support radius equal to half of the mesh diameter, and interpolation conditions

means that the morphing is known at the boundary points:
MRBFα = xb,

where MRBFI,J
= ϕ(∥xbI − xbJ∥), 1 ≤ I, J ≤ Nb.

For the AirfRANS dataset, we make use of the physical properties of the boundary condition to morph
each mesh onto the first geometry of the training set. Referring to Figure 9 (bottom), we know which
nodes lie the external boundary (in black), airfoil extrado (in red), airfoil intrado (in blue) and which
nodes define the leading and trailing points (green crosses). We choose to keep the points at the
external boundary fixed (zero mapping), map the leading and trailing edge to the ones of the mesh of
the first training sample, and map the points on the extrado and intrado along the ones of the mesh of
the first training sample while conserving local node density (relative to the length of the boundary).
A zoom of the RBF morphing close to the airfoil for test sample 787 is illustrated in Figure 10.

Figure 9: (AirfRANS) RBF morphing for test sample 787; (top) complete mesh morphing, (bottom)
illustration of the mapping of the boundary points.

Notice that while Tutte’s barycentric mapping requires solving a sparse linear system of rather large
size Nint, RBF morphing requires solving a dense linear system of smaller size Nb. RBF morphing
methods dealing with complex non-homogeneous domains have been proposed in [15].

18



Figure 10: (AirfRANS) Zoom of the RBF morphing close to the airfoil for test sample 787.

Other methods. In [23], the morphing is computed by means of solving an elastic problem.
See also [6, 70] for literature reviews on mesh morphing methods. Mesh deformation algorithms
compatible with topology changes have been proposed [80].

C Dimensionality reduction

The principal component analysis can be replaced by more effective dimensionality reduction
techniques such as the snapshot-POD. The latter is a variant where the underlying ℓ2-scalar product
used to compute the coefficients of the empirical covariance matrices is replaced by the L2(Mc

)-inner
product. Define the symmetric positive-definite matrix M ∈ RNc×Nc , such that

MIJ =

∫
Mc

φc
I(x)φ

c
J(x)dx .

In general, a quadrature formula, in the form of a weighted sum over function evaluations on the
common mesh, is chosen such that the integral are computed exactly for functions in the span of the
finite element basis. Then, the empirical covariance matrix is computed as(

(Ũi
k)

TMŨj
k

)
i,j

=

Nc∑
I,J=1

∫
Mc

U i

k(x
c
I)φ

c
I(x)U

j

k(x
c
J)φ

c
J(x)dx =

∫
Mc

P (U i

k)(x)P (U j

k)(x)dx ,

which corresponds to the continuous formula for the computation of the correlations of the fields of
interest transported and interpolated on the common morphed mesh. Hence, the empirical covariance
matrix can take into account any heterogeneity of the common morphed mesh, which may occur after
morphing. The same construction can be made for the spatial coordinate field, while its derivation
is more technical, because it involves vector fields instead of scalar fields. The computation of the
empirical covariance matrix can be easily be parallelized on numerous computer nodes, provided that
the common morphed mesh has been partitioned in subdomains, which enable efficient dimensionality
reduction for meshes up to millions of degrees of freedom, see [20].

Other linear or nonlinear dimension reduction techniques can be considered, like mRMR feature
selection [22, 62], kernel-PCA [68] or neural network-based autoencoders [48].

D Architectures and hyperparameters of GNN-based baselines

D.1 Graph convolutional neural network

A graph convolutional neural network (GCNN) [67] has been implemented using PyTorch
Geometric [26] with the Graph U-Net [29] architecture and the following specifications: (i) topk
pooling [29, 47] layers with a pooling ratio of 0.5 to progressively aggregate information over nodes
of the graph, (ii) feature sizes progressively increased after each topk pooling, i.e., 16, 32, 64, 96
and 128, (iii) between each pooling, residual convolution blocks [40] are added to combine two
consecutive normalization-activation-convolution layers, (iv) BatchNorm [42] layers are introduced,
and (v) LeakyReLU [57] activations are used with slope of 0.1 on negative values.

19



A weighted multi-loss L that combines scalars and fields is used, and defined as

L ((U,w) , (U′,w′)) = λscalarsLMSE (w,w′) + λfields

d∑
k=1

LMSE (Uk,U
′
k) ,

where λscalars and λfields are two positive hyperparameters. For gradient descent, an Adam opti-
mizer [45] is used with a cosine-annealing learning rate scheduler [55]. The following hyperparam-
eters are optimized by grid search: (i) the learning rate, 13 values between 1.0 and 0.0001, (ii) the
weight λfield ∈ {1, 10, 100, 1000}, and (iv) the type of convolution, chosen between GATConv [72],
GeneralConv [79], ResGatedGraphConv [16] and SGConv [77]. There are many other hyperparame-
ters that could be tuned, as the number of layers or the number of features on each layer. The chosen
hyperparameters are summarized in Table 4 for each experiment. In the case of the Rotor37 problem,

Table 4: Chosen hyperparameters for the GCNN architectures.
Dataset Learning rate λfield Convolution

Rotor37 0.02 10.0 GeneralConv
Tensile2d 0.01 100.0 GeneralConv
AirfRANS 0.005 10.0 GeneralConv

the outwards normals to the surface of the compressor blade are added as input features to input
graphs. Similarly, for the Tensile2d and AirfRANS problems, the signed distance function is added
as an input feature.

D.2 MeshGraphNets

The MGN model [63] is taken from Nvidia’s Modulus [4] package that implements various deep sur-
rogate models for physics-based simulations. The same set of hyperparameters is used for all the con-
sidered regression problems, which is chosen after conducting a grid search over the learning rate, the
number of hidden nodes and edges features, the number of processor steps. The learning rate is set to
0.001, the numbers of hidden features hidden_dim_node_encoder, hidden_dim_edge_encoder,
and hidden_dim_node_decoder are all set to 16. The number of processor steps is chosen as 10.
The rest of the MGNs hyperparameters are left to the default values used in the Modulus package.
The batch size is set to 1, the activation is chosen as the LeakyReLU activation with a 0.05 slope, and
1, 000 epochs are performed for training the network. For scalar outputs, a readout layer taken from
[46] is added to the model. The input nodes features are given by the spatial coordinates of the nodes,
and possible additional fields such as the signed distance function (for the Tensile2d and AirfRANS
problems), or the outward normals (for the Rotor37 problem). Given two node coordinates xi and
xj , the edges features are chosen as exp(−∥xi − xj∥22/(2h2)), where h denotes the median of the
edge lengths in the mesh.

For each considered regression problem, it is found that it is more effective to train two MGNs models,
one dedicated to handling output fields and the other specialized for output scalars, respectively.
Nevertheless, better hyperparameter tuning and more effective readout layers could lead to different
conclusions regarding this matter.

D.3 Training on AirfRANS

As mentioned in Section 4.1, training GNNs on the AirfRANS dataset is computationally expensive
due to the sizes of the input meshes. For this reason, the GNN-based baselines are trained on the
AirfRANS-remeshed dataset (see Table 1) obtained by coarsening the input meshes (see Figure 11)
and the associated output fields. Once trained, predictions on the initial fine meshes are obtained
through finite element interpolation. It should be underlined that this strategy may hinder the
performance of the GNN-based baselines, as the reconstructed fields are obtained by finite element
interpolation.

E Additional results

This section gathers additional results about the experiments considered in Section 4.

20



Figure 11: (AirfRANS) Example of an original mesh from the dataset (left) and the corresponding
coarsened mesh in the AirfRANS-remeshed dataset (right).

E.1 Out-of-distribution inputs

Figures 12, 13, and 14 show histograms of the logarithm of the predictive variance for the output
scalars of interest on different sets of samples. The aim is to empirically assess if the MMGP model
is able to identify out-of-distribution (OOD) inputs by attributing higher predictive variances. In
the case of the Rotor37 problem, three OODs samples are generated such that the support of the
covariates (µ1, µ2, and M) are disjoint with the support of the training distributions. It can be seen
that the variances of the OOD samples are higher than the ones of the in-distribution samples. Similar
observations are made for the Tensile2d and AirfRANS problems. While such an analysis can help
to identify OOD inputs, it should be underlined that the predictive uncertainties of Gaussian processes
are only valid under the Gaussian a priori assumption, which may not be verified in practice. For
instance, the ellipsoid geometry has a similar variance as the in-distribution samples in Figure 13.

E.2 Predicted output fields

Tensile2d dataset. For reproducibility matters, we mention that for the field p and the scalar pmax,
the denominators in the formulae RRMSEf and RRMSEs has been replaced by 1 when its value is
below 1e− 6 for preventing division by zero, which corresponds to replacing the relative error by the
absolute error for samples that do not feature plastic behaviors.

In Figures 15-18, we illustrate the MMGP prediction, variance and relative error for all the considered
fields: u, v, p (evrcum), σ11, σ12 and σ22, for respectively the first training inputs, first test inputs, and
two out-of-distribution geometries (ellipsoid and wedge). In particular, the wedge cut-off geometry
features stress concentrations that are not present in the training set. We notice that the predictions
for selected train and test inputs (Figures 15 and 16) are accurate, with small relative errors and
relatively small predictive variances, except for some small areas where the considered fields have
larger magnitudes. As expected, the predictions for the ellipsoid and wedge cases (Figures 17 and 18)
are less accurate than for in-distribution shapes, but the predictive variances are larger, which confirms
that MMGP informs that, locally, the prediction cannot be trusted. This phenomenon is particularly
strong for the wedge case, that largely differs from the training set shapes.

In Figures 19 and 20, we consider all the output interest fields. The 2D domain is visualized in 3D,
in the form of three surfaces: a transparent blue for the 0.025-quantile, a white for the reference
prediction and a transparent red for the 0.975-quantile. The point-wise 95% confidence interval is
the distance (along the out-of-plane axis) between the transparent blue and red surfaces. We notice
that the 95% confidence intervals are very small for the train and test inputs, larger for the ellipsoid
case, and much larger for the wedge case (in particular σ22). Not surprisingly, for the OOD shapes

21



Figure 12: (Rotor37) Histograms of log(variance) of MMGP predictions for the output scalars of
interest on four sets: in grey the testing set (in distribution), in green and red respectively two sets
where the input pressure µ1 and rotation speed µ2 are taken OOD, and in blue a set of geometry taken
OOD.

ellipsoid and wedge, some surfaces intersect, meaning that, locally, the reference solution is not
inside the 95% confidence interval.

In Figure 21, we illustrate the finite element error occurring when predicting σ11 with respect to the
95% confidence interval for samples taken from the training and testing sets. We notice that on the
training set, the finite element error magnitude is comparable to the 95% confidence interval, which
is very small on training samples. On the testing set, the 95% confidence interval is larger, and the
finite element error magnitude can be neglected.

AirfRANS dataset. Figures 22 and 23 illustrate reference, MMGP prediction and relative errors
for the fields of interest u, v and p on respectively test sample 430 and train sample 93. In the first
row, zooms are provided close to the trailing edge to illustrate the accuracy of the prediction in the
thin boundary layer. Relative errors have larger magnitudes on spatially restricted areas. We notice
that on train sample 93, the areas with low relative error are larger than for test sample 430.

In Table 5, we compare MMGP and our trained GCNN and MGN, as well as the four models
trained in [14], for the scalars of interest drag coefficient CD and lift coefficient CL, computed
by post-processing the predicted fields instead of directly predicting them as output scalars. This
post-processing consists in integrating the reference and predicted wall shear stress (from the velocity)
and pressure fields around the surface of the airfoil. The models from [14] are a MLP (a classical
Multi-Layer Perceptron), a GraphSAGE [38], a PointNet [64] and a Graph U-Net [29] and the
corresponding results are taken from [14, Table 19] (“full dataset” setting that we considered in
this work). Refer to [14, appendix L] for a description of the used architecture. The limits of this
comparison are (i) the mesh supporting the fields are not the same (they have been coarsen in [14] by
process different from ours), (ii) the scalar integration routine are not identical (we integrate using

22



Figure 13: (Tensile2d) Histograms of log(variance) of MMGP predictions in grey for the output
scalars of interest on the testing set (in distribution). The variance of the MMGP prediction is
identified for various configurations: the ellipsoid and wedge cases (where all the nongeometrical
parameters are taken at the center of the training intervals), and 5 settings where the same geometry
is taken in the testing set and the input pressure varies (the training interval is [−50,−40]).

finite element representations). Within these limits, MMGP appears competitive with respects to the
models of [14] and our trained GCNN and MGN.

Table 5: (AirfRANS) Relative errors (Spearman’s rank correlation) for the predicted drag coefficient
CD (ρD) and lift coefficient CL (ρD) for the four models of [14, Table 19], as well as GCNN, MGN
and MMGP. These scalars of interest are computed as a postprocessing of the predicted fields (best is
bold).

Model Relative error Spearman’s correlation
CD CL ρD ρL

MLP 6.2e+0 (9e-1) 2.1e-1 (3e-2) 0.25 (9e-2) 0.9932 (2e-3)
GraphSAGE 7.4e+0 (1e+0) 1.5e-1 (3e-2) 0.19 (7e-2) 0.9964 (7e-4)

PointNet 1.7e+1 (1e+0) 2.0e-1 (3e-2) 0.07 (6e-2) 0.9919 (2e-3)
Graph U-Net 1.3e+1 (9e-1) 1.7e-1 (2e-2) 0.09 (5e-2) 0.9949 (1e-3)

GCNN 3.6e+0 (7e-1) 2.5e-1 (4e-2) 0.002 (2e-1) 0.9773 (4e-3)
MGN 3.3e+0 (6e-1) 2.6e-1 (8e-2) 0.04 (3e-1) 0.9761 (5e-3)

MMGP 7.6e-1 (4e-4) 2.8e-2 (4e-5) 0.71 (1e-4) 0.9992 (2e-6)

23



Figure 14: (AirfRANS) Histograms of log(variance) of MMGP predictions in grey for the output
scalars of interest on the testing set (in distribution). The variance of the MMGP prediction is
identified for various configurations, where the same geometry is taken in the testing set and the inlet
velocity (iv) and angle of attack (aoa) varies (only iv=45, 70, 90 and aoa=-0.04, 0.07, 0.18 are in the
training intervals).

Figure 15: (Tensile2d) MMGP prediction for the first training input, where: U1, U2, evrcum, sig11,
sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

24



Figure 16: (Tensile2d) MMGP prediction for the first test input, where: U1, U2, evrcum, sig11,
sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

Figure 17: (Tensile2d) MMGP prediction for an OOD ellipsoid geometry, where: U1, U2, evrcum,
sig11, sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

25



Figure 18: (Tensile2d) MMGP prediction for an OOD wedge cut-off geometry, where: U1, U2,
evrcum, sig11, sig22, and sig12 correspond to u, v, p, σ11, σ22, and σ12, respectively.

Figure 19: (Tensile2d) MMGP: train0, test1, ellipsoid and wedge cases, confidence intervals for u,
v and p visualized as surfaces (for each field, the deformation factor is taken identical through the
cases).

26



Figure 20: (Tensile2d) MMGP: train0, test1, ellipsoid and wedge cases, confidence intervals for
σ11, σ12 and σ22 visualized as surfaces (for each field, the deformation factor is taken identical
through the cases).

Figure 21: (Tensile2d) Finite element interpolation error for the prediction of σ11 compared to the
95% confidence interval for a sample from (left): the training set, (right) the testing set.

27



Figure 22: (AirfRANS) Test sample 430, fields of interest u (UX), v (UY ) and p: (left) reference,
(middle) MMGP prediction, (right) relative error.

Figure 23: (AirfRANS) Train sample 93, fields of interest u (UX), v (UY ) and p: (left) reference,
(middle) MMGP prediction, (right) relative error.

28


	Introduction
	Preliminaries and related works
	MMGP methodology
	Deterministic preprocessings of the input meshes and fields of interest
	MMGP training
	Properties of the methodology

	Numerical experiments
	Datasets
	Experimental setup
	Results and discussion

	Conclusion
	Datasets
	Rotor37 dataset
	Tensile2d dataset

	Morphing strategies
	Dimensionality reduction
	Architectures and hyperparameters of GNN-based baselines
	Graph convolutional neural network
	MeshGraphNets
	Training on AirfRANS

	Additional results
	Out-of-distribution inputs
	Predicted output fields


