
Under review as a conference paper at ICLR 2021

DIFFERENTIABLE OPTIMIZATION OF GENERALIZED
NONDECOMPOSABLE FUNCTIONS USING LINEAR PRO-
GRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a framework which makes it feasible to directly train deep neural
networks with respect to popular families of task-specific non-decomposable per-
formance measures such as AUC, multi-class AUC, F -measure and others. A
common feature of the optimization model that emerges from these tasks is that
it involves solving a Linear Programs (LP) during training where representations
learned by upstream layers influence the constraints. The constraint matrix is not
only large but the constraints are also modified at each iteration. We show how
adopting a set of influential ideas proposed by Mangasarian for 1-norm SVMs –
which advocates for solving LPs with a generalized Newton method – provides
a simple and effective solution. In particular, this strategy needs little unrolling,
which makes it more efficient during backward pass. While a number of specialized
algorithms have been proposed for the models that we describe here, our module
turns out to be applicable without any specific adjustments or relaxations. We
describe each use case, study its properties and demonstrate the efficacy of the
approach over alternatives which use surrogate lower bounds and often, specialized
optimization schemes. Frequently, we achieve superior computational behavior
and performance improvements on common datasets used in the literature.

1 INTRODUCTION

Commonly used losses such as cross-entropy used in deep neural network (DNN) models can be
expressed as a sum over the per-sample losses incurred by the current estimate of the model. This
allows the direct use of mature optimization routines, and is sufficient for a majority of use cases.
But in various applications ranging from ranking/retrieval systems to class imbalanced learning, the
most suitable losses for the task do not admit a “decompose over samples” form. Examples include
Area under the ROC curve (AUC), multi-class variants of AUC, F -score, Precision at a fixed recall
(P@R) and others. Optimizing such measures in a scalable manner can pose challenges even in
the shallow setting. Since the compromise involved in falling back on a decomposable loss when a
non-decomposable objective may be more appropriate for the task at hand can range from negligible
to concerning depending on the application, the last few years have seen a number of interesting
approaches proposed to efficiently deal with such structured and non-decomposable losses. To this
end, recent algorithms for AUC maximization have been developed based on convex surrogate losses
Liu et al. (2018); Natole et al. (2018) in a linear model or in conjuction with a deep neural network Liu
et al. (2019) as well as stochastic and online variations (Ataman et al. (2006); Cortes & Mohri (2004);
Gao et al. (2013); Liu et al. (2018; 2019)) are available. Methods for measures other than the AUC
have also been studied – exact algorithms for optimizing F -score Nan et al. (2012); Dembczynski
et al. (2011), optimizing average precision through direct optimization Song et al. (2016), scalable
methods for non-decomposable objectives Eban et al. (2017); Venkatesh et al. (2019) and using a
structured hinge-loss upper bound to optimize average precision and NDCG Mohapatra et al. (2018).
Recently, the AP-Perf method Fathony & Kolter (2020) showed how custom non-decomposable
performance measures can be conveniently incorporated into differentiable pipelines.

It is known that a number of these non-decomposable objectives can be expressed in the form of an
integer program that can be relaxed to a linear program (LP). Earlier approaches adapted methods
for structured SVMs Joachims et al. (2009) or cutting plane techniques Yue et al. (2007) and were
interesting but had difficulty scaling to larger datasets. More recently, strategies have instead focused

1

Under review as a conference paper at ICLR 2021

on the stochastic setting where we operate on a mini-batch of samples. A common strategy, which is
generally efficient, is to study the combinatorial form of one or more losses of interest and derive
surrogate lower bounds. These are then tackled via specialized optimization routines. The arguably
more direct alternative of optimizating as a module embedded in a DNN architecture remained
difficult until recently – but OptNet Amos & Kolter (2017) and CVXPY now offer support for solving
certain objectives as differentiable layers within a network. Further, methods based on implicit
differentiation have been applied to various problems, showing impressive performance.

Our approach is based on the premise that tackling the LP form of the non-decomposable objective as
a module within the DNN, one which permits forward and reverse mode differentiation and can utilize
in-built support for specialized GPU hardware in modern libraries such as PyTorch, is desirable. First,
as long as a suitable LP formulation for an objective is available, the module may be directly used.
Second, based on which scheme is used to solve the LP, one may be able to provide guarantees for the
non-decomposable objective based on simple calculations (e.g., number of constraints, primal-dual
gap). The current tools, however, do not entirely address all these requirements, as we briefly describe
next. A specific characteristic of the LPs that arise from the losses mentioned above is that the
constraints are modified at each iteration – as a function of the updates to the representations of the
data in the upstream layers. Further, the mini-batch of samples changes at each iteration. Solvers
within CVXPY, are effective but due to their general-purpose nature, rely on interior point methods.
OptNet is quite efficient but designed for quadratic programs (QP): the theoretical results and its
efficiency depends on factorizing a matrix in the quadratic term in the objective (which is zero/non-
invertible for LPs). The primal-dual properties and implicit differentiation for QPs do not easily
translate to LPs, and efficient ways of dealing with constraints that are iteratively updated are not
widely available at this time. In principle, of course, backpropagating through a convex optimization
model (and in particular, LPs) is not an unsolved problem. For LPs, we can take derivatives of the
optimal value (or the optimal solution) of the model with respect to the LP parameters, and this
can be accomplished by calling a powerful external solver. Often, this would involve running the
solver on the CPU, which introduces overhead. . The ideas in Meng et al. (2020) are relevant in that
the optimization steps for the LP are unrolled and only involve simple linear algebra operations but
the formulation is applicable when the number of constraints are about the same as the number of
variables – an assumption that does not hold for the models we will study.

In §3, we show that the modified Newton’s algorithm in Mangasarian (2004) can be used for deep
neural network (DNN) training in an end-to-end manner without requiring an external solvers where
support for GPUs remains limited. Specifically, by exploiting self-concordance of the objective, we
show that the algorithm can converge globally without line search strategies. On the practical side, we
analyze the gradient properties, and some modifications to improve stability during backpropagation.
We show that this scheme based on Mangasarian’s parametric exterior penalty formulation of the
primal LP can be a computationally effective and scalable strategy to solve LPs with a large number
of constraints.

2 NONDECOMPOSABLE FUNCTIONS AND CORRESPONDING LP MODELS

We first present a standard LP form and then reparameterize several generalized nondecomposable
objectives in this way, summarized in Table 5 in the appendix. We start with the binary AUC, extend
it to multi-class AUC, and then later, show a ratio objective, F -score. Some other objectives are
described in the appendix.

2.1 NOTATIONS AND GENERALIZED LP FORMULATION

Notations. We use the following notations:
(i) n: number of samples used in training.
(ii) X ∈ Rn×d : the explanatory features fed to a classifier (e.g., parameterized by w);
(iii) f(xi) (or f(i)): a score function for the classifier where xi ∈ X such that f(X) = wX;
(iv) Y ∈ {0, 1}: target label and Ŷ ∈ {0, 1}: predicted label for binary classification, both in Rn;
(v) φ(·): non linear function applied on f(X);
(vi) A⊗B: Kronecker product of matrices A and B.
(vii) Ir: Identity matrix of size r and 1 is the indicator function.
(viii) Bk, p (and B|,k′) gives the k-th row (and k′-th) column of B.

2

Under review as a conference paper at ICLR 2021

LP formulation. We consider a general linear program (LP) that contains nonnegative variables as
well as inequality and equality constraints. The form of the LP is given as

max
u,v

gTu+ hT v s.t Eu+ Fv ≤ p, Bu+Gv = q u, v ≥ 0 (1)

We can write it more succinctly as

variable x = [u v] ; coefficient c = [−g − h] ; constraints A =

[
E B −B
F G −G

]T

; constants b = [p q − q]T

The corresponding primal LP becomes minx cTx s.t Ax ≤ b, x ≥ 0.

2.2 MAXIMIZING AUC
The Area under the ROC Curve (AUC) calculates the probability that a classifier f(·) will rank a
randomly chosen positive sample higher than a randomly chosen negative sample. Since AUC varies
between 0 and 1, where 1 represents all positives being ranked above the negatives. AUC may be
estimated using the Wilcoxon-Mann-Whitney (WMW) Statistic Hanley & McNeil (1982), as
Definition 2.1 (AUC). Let n be the number of samples. Let X+ (and X− resp.) be the set of positive
(and negative resp.) samples such that |X+|+ |X−| = n where | · | is the cardinality of the set. Then,
AUC is given as

(∑|X+|
i=1

∑|X−|
i=1 1f(xi)>f(xj)

)/(
|X+| |X−|

)
for xi : i ∈ {1, · · · , n}.

Here, we follow Ataman et al. (2006) to calculate the AUC based on the WMW statistic as follows.

min
zij

|X+|∑
i=1

|X−|∑
j=1

zij s.t. f(xi)− f(xj) ≥ ε− zij where xi ∈ X+, xj ∈ X−; zij ≥ 0, (2)

where ε is a given constant. The model in (2), maximizes AUC indirectly, by minimizing the number
of pairs (one each from the positive and negative classes) where the positive sample is not ranked
higher than the negative sample: so, the number of zero entries in z equals the number of pairs where
this condition is not true. To compute the AUC, we do:

AUC = (n− ‖z‖0)
/
(|X+| |X−|) =

(
n−

∑
i

∑
j

ε−1relu(0,−zij + ε)
)/

(|X+| |X−|) . (3)

If zij is 0, then ε−1relu(0,−zij + ε) equals 1. Otherwise zij > 0, it follows from the first constraint
in (2), that zij ≥ ε, so ε−1relu(0,−zij + ε) equals 0. Observe that in (2), the number of constraints
is |X||X−|, which is quadratic in n.

2.3 MAXIMIZING MULTI-CLASS AUC
An extension of AUC to the multi-class setting, AUCµ, is defined in Kleiman & Page (2019). The
AUCµ objective optimizes an indicator matrix computed on the orientation function, Oi,j defined as,
Definition 2.2 (Orientation Function; Kleiman & Page (2019)). Assume we have K classes
{y1, · · · , yK}. Let f(xi, p) ∈ RK indicate the model’s prediction on xi for each of the K classes
(class-specific probability)1. Let x∗i provide the index of xi’s true class label. Let P ∈ Rk×k be a
partition matrix where Pk,k′ is the cost of classifying a sample as class k when it should be k′. Define
vkk′ = Pk, p−Pk′, p and ṽ = vx∗i x∗j ∈ RK . Then,Oi,j = (ṽx∗i −ṽx∗j)(〈ṽ, f(xi, p)〉−〈ṽ, f(xj , p)〉).

Here, vkk′ ranks the instances by their cost difference between assignments to class k and k′. For
two classes, say indexed by 1 and 2, v1,2 · f = 0 is the decision boundary between the classes. The
ranking is correct for xi and xj (with correct labels 1 and 2 resp.) if the orientation of the points w.r.t.
the decision boundary is the same as those of the class labels (converted to one-hot vectors).

Then AUCµ =
∑
k<k′ gk,k′

∑
i∈Dk,j∈D′k

1Oi,j≥0, where Dk is the index set of samples having
same class label k and g is a constant derived from class sizes. In formulating the linear program,
we observe that the model is dictated on how P is defined. One way is to set P(k, k) = 0 ∀k
and 1 for all other entries. We can also define a P with arbitary entries or formulate AUC in a
one-vs-all setting. Here, we show the model in the first case (the other two cases are discussed in

1extension of f(.) to multi-class setting

3

Under review as a conference paper at ICLR 2021

Appendix A.1). Similar to our previous formulation, the goal is to minimize the sum of negative
values of the orientation function, rather than maximize the sum of positive values. Let f̃(i, j) =
f(xi, x

∗
i)− f(xj , x

∗
i) + f(xj , x

∗
j)− f(xi, x

∗
i). Then the LP formulation is.

AUCbin
µ : min

zij

n∑
i=1

n∑
j=1:x∗i<x

∗
j

zij s.t. d̃ij f̃(i, j) ≥ ε− zij , ∀i, j : x∗i < x∗j zij ≥ 0 (4)

Here d̃ij = ṽx∗i − ṽx∗j . This can be seen as an extension of our binary AUC model, where the zij is
the ranking between a pair of points defined for multiple classes.

2.4 MAXIMIZING F -SCORE

The F -score (or F -measure) is a representative of objectives expressed as ratios of some combination
of True positives (TP), False positives (FP), True negatives (TN) and False negatives (FN). The
general form of the ratio functions and formulations for other objectives is in the Appendix A.2.
Specifically, F -score is defined as follows:

Definition 2.3 (F -score). F -score = 2(Precision×Recall)
Precision+Recall = 2TP

2TP+FP+FN = 2(Y T×Ŷ)

1TY+1T Ŷ

The second part of the equality comes from simplying the precision (TP
TP+FP) and recall (TP

TP+FN)
based formula Dembczynski et al. (2011). The last part is obtained by replacing TP with (Y T × Ŷ),
FP with (1 − Y)T × Ŷ and FN with (Y)T × (1 − Ŷ) as functions of Y and Ŷ . This leads to the
following integer fractional optimization model,

F -score = max
Ŷ

cT Ŷ

1T Ŷ + b
s.t. Ŷi ∈ [0, 1], i = 1, . . . , n where c = 2Y and b =

n∑
i=1

Yi. (5)

To solve this, we first relax the constraint on Ŷ and reformulate the model as the following LP, by
introducing two variables z ∈ Rn and t ∈ R1 where z = bŶ

1T Ŷ+b
, t = b

1T Ŷ+b
and i ∈ {1, · · · , n}:

max
z,t

cT z

b
s.t 1T z + bt = b︸ ︷︷ ︸

(a)

; zi ≤ t︸ ︷︷ ︸
(b)

; φ(f(xi))t ≤ zi ≤ (1 + φ(f(xi)))t︸ ︷︷ ︸
(c)

; 1 ≥ zi, t ≥ 0,

Remark 1. (a) ensures the appropriate relation between z, t and Ŷ and is essentially a reformulaton
of the ratio objective as a linear function with a fixed denominator. Ŷ is recovered from the solution
to the linear program by computing Ŷi = zi

t when t > 0 and Ŷi = zi otherwise. (b) sets an
upper bound for Ŷi ≤ 1. (c) ties the output of the previous layer φ(f(xi)) (a classifier score for
Ŷi, see the definition in Section 2.1) as a input in this layer. Assume φ(.) ∈ {−1, 1} (ensured if φ
is sigmoid or tanh) is the indicator of the class label (based on sign). We want Ŷi ≥ φ(f(xi)) and
Ŷi ≤ 1 + φ(f(xi)). If Ŷi is {0, 1}, these two constraints ensures that Ŷi = 0 when φ(f(xi)) ≤ 0

and Ŷi = 1 when φ(f(xi)) > 0. When Ŷi is relaxed and replaced with z and t, we get the equivalent
form (c).

This model imposes 4n constraints for n samples. Since this is a maximization, a solution to the LP,
OŶ , is an upper bound on the integer objective opt∗, and serves as the loss.

3 BACKPROPAGATION VIA FAST EXTERIOR PENALTY OPTIMIZATION

Unlike traditional feedforward networks, where the output of each layer is a relatively simple (though
non-linear) function of the previous layer, a LP layer must solve a constrained optimization problem,
therefore implementing scalable and efficient backpropagation schemes that minimizes computational
overhead requires more care and as reviewed in §1, is an active topic of research. This problem is, of
course, not unique to LPs and manifests in differentiable sorting Mena et al. (2018) and formulating
quadratic or cone programs Amos et al. (2017). One may unroll gradient descent steps Amos et al.
(2017); Goodfellow et al. (2013); Metz et al. (2016) or use projections Zeng et al. (2019). Recently

4

Under review as a conference paper at ICLR 2021

Agrawal et al. (2019) introduced a package for differentiable constrained convex programming, which
includes LPs as a special case. For LPs, Meng et al. (2020) presents an unrolled scheme and Blondel
et al. (2020) shows that we can differentiate through LP formulations of sorting/ranking exactly
by using smooth approximations of projection steps. Berthet et al. (2020) describes an interesting
approach where one computes approximate gradients through ranking/shortest path problems by
stochastic perturbation techniques.
Remark 2. Some previous works Zeng et al. (2019) have considered LPs where the constraints are
deterministic (for a fixed input dimension), i.e., do not depend on the data X , which is different from
the LPs in §2.2–2.4.

Note that such perturbation techniques in Berthet et al. (2020) are applicable to our LPs as well. For
example, the Fenchel Young losses as defined in Berthet et al. (2020) is attractive because there is
no need to compute the Jacobian. From the implementation standpoint, one could simply think of
the backward pass as a function given the input and output of the forward pass. But the gradient
expressions of the losses is an expectation and hence may require multiple calls to a LP solver in order
to approximate the expectation. although parallelization and warm starts were shown to alleviate this
dependency by sampling in parallel.

Rationale. Consider a LP with a large m number of constraints in fixed dimensions n (n � m).
This assumption holds in all formulations in §2. This is because we assume that the architecture is
fixed whereas minibatch size depends on the complexity of the task (stable gradient or when noise
in gradient is high). Hence, solving such LPs using off-the-shelf solvers as in Berthet et al. (2020)
may slow down the training process. The strategy in Agrawal et al. (2019) does offer benefits over
Amos & Kolter (2017) for sparse QPs. Our strategy is to run Mangasarian’s Newton’s method on an
exterior penalty function of the LP. There are two advantages: (i) during forward pass, quadratic
local convergence of Newton’s method indicates that unrolling the method may be a reasonable
choice; and further (ii) based on the relationship between dual and primal variables, and the exactness
of the exterior penalty we can show that backward pass is independent of m. We will discuss both
these results and some modifications to deal with discontinuous Hessian (and its inverse) that is
required for Newton’s method. A similar approach is proposed in Amos & Kolter (2017) in which
Primal-Dual Interior Point methods with implicit differentiation is used for differentiation purposes.
But the exterior penalty in (6) satisfies an interesting property: primal and dual solutions are related
by a closed form expression which can be exploited for efficient backpropagation.

3.1 FORWARD PASS USING NEWTON’S ALGORITHM

A key requirement for fast automatic (forward or reverse mode) differentiation is that we can perform
the forward pass efficiently. In our setting, we seek to solve and backpropagate through an LP. We
will focus on reverse mode differentiation since it is the most suitable for DNN training.

Given a primal LP, for a fixed accuracy ε > 0, Mangasarian (2004) solves an unconstrained problem,

min
y
g(y) :=

1

2
‖σ(Ay − b)‖2 + εcT y, (6)

where σ(·) = max(·, 0) represents the elementwise relu function. A modified Newton’s method can
be use to solve equation 6 that performs the following iterations:

y = y + λd where d = H̃(y)−1∇g(y) := (∇2g(y) + ρI)−1∇g(y). (7)

In large scale settings of A, b, such Newton methods are known to perform empirically better than
gradient descent Mangasarian (2006); Keerthi et al. (2007). We will discuss if this holds for our
purposes shortly.

Why is Newton’s method applicable for minibatches? In general, the convergence of Newton’s
method depends strongly on initialization, i.e., we can only provide local convergence results.
However, this is not the case for our problems since in our examples, either the level sets are bounded
from below; or the feasible set is compact, as noted in Mangasarian (2004). There are two reasons why
the result, by itself, is insufficient for our purposes: (i) it assumes that we can perform line search to
satisfy Armijo condition; (ii) even with line search, the result does not provide a rate of convergence.
In DNN training, such line search based convergence results can be prohibitively expensive. The
main difficulty is handling the discontinuity in the Hessian. As a remedy, we use self concordance of

5

Under review as a conference paper at ICLR 2021

(6) to guarantee global convergence of (7) iterations for the exterior penalty formulation in (6). To do
so, we first show a result (proof in Appendix) that characterizes the discrepancy between the actual
Hessian of (6) and the modified one in (7) when A is randomly distributed.

Lemma 1. Assume that A is a random matrix, and fix some y ∈ Rn. Then with probability one, g in
equation 6 is constant (given by H̃,∇g(y)) over a sufficiently small neighborhood of y.

Intuitively, Lemma 1 states that with probability one, each y has a neighborhood in which the Hessian
is constant. In addition, the modified Hessian is nonsingular at all points (in particular the optimal
y∗), and so we can then show the following global convergence result.

Theorem 2. Newton’s method converges globally at a linear rate with local quadratic convergence.

Proof. (Sketch) First, we use the fact that the objective in equation 6 is piecewise quadratic, and
hence self concordant. Second, observe that the possible choice of Hessian are finite, and so we can
choose ρ > 0 so that there is a descent direction without line search, that is, there exist a step size
λ > 0 such that λ∇g(x)T d < 0. Finally, we use Theorem 4.1.12 in Nesterov (2013) to claim the
result.

Please see Appendix for the proof. The loss function is almost surely quadratic in the neighborhood
of any y, thus intuitively suggests local quadratic convergence independent of the starting point.

Remark 3. Convergence in Thm. 2 is guaranteed under standard constraint qualification assump-
tions. Linear Independent Constraint Qualification (LICQ) is satisfied for AUC, and Multi-class AUC
formulations in §2. But the F -score formulation does not satisfy LICQ, hence we need safeguarding
principles in the initial iterations (until iterates get close to the optimal solution).

3.2 BACKWARD PASS USING OPTIMAL DUAL VARIABLES AIDED BY UNROLLING

The advantage of optimizing the exterior penalty in (6) is that given an iterate yt, accuracy ε, we
can extract the optimal dual solution vt by simple thresholding, that is, vt = 1/ε(ATσ(Ay − b)).
By complementarity slackness, the nonzero coordinates of vt specify the set of active constraints in
Ax ≤ b. So, given an approximate solution yt such that ∇g(yt)H̃(yt)

−1∇g(yt) ≤ ε, to compute
the primal solution x∗, we solve the “active" linear system given by Ãb̃, where Ã denotes the active
rows of A and the corresponding subvector b̃. Hence, backpropagation through the layer reduces to
computing derivatives of Ã−1b̃ which is simple via automatic differentiation.

How to choose ε? If we can successfully retrieve the active constraints at the optimal solution, we
do not need to store the intermediate iterates yt at all during the forward pass (memory efficient).
However, setting ε correctly can be tricky for arbitrary polyhedra since it depends on the geometric
properties such as facets and vertices that may be difficult to enumerate. One possible way to get
around this is to use a “burn-in” period in which we increase ε slightly in each iteration (of deep
network training) and backpropagate through the unrolled Newton’s iterations during this period.
Once we see that the convergence profile has stabilized, we can fix ε at that value and start using the
complementarity conditions and derive the active linear system Ã−1b̃ as discussed above.

How to backpropagate through unrolled iterations? We assume that the chain rule is applicable
up to this LP layer and is ∂L

∂x
∂x
∂A (for one of the parameters A), and note that it is possible to find ∂L

∂x

(either directly or using a chain rule). Therefore we focus our attention on ∂x
∂A , which involves the LP

layer. Indeed, unrolling each iteration in (7) is equivalent to a “sublayer". So in order to backpropagate
we have to show the partial derivatives of each operation or step wrt to the LP parameters A, b, and c.

Our goal is to ∂d
∂A where d = Q−1q, Q = H̃ and u = ∇g(y). We can use the product rule to arrive

at: ∂d = −
(
uTQ−1 ⊗Q−1

)
∂Q + Q−1∂u. To see this, note that we have used the chain rule to

differentiate through the inverse in the first term. The second term is easy to compute similar to the
computation of Hessian. For each of these terms we eventually have to compute ∂Q

∂z or ∂u
∂z where

z ∈ {c, A, b} which can also be done by another application of chain rule. Please see Appendix A.4
for empirical verification of unrolled gradient and the one provided by Ã−1b̃.

Before proceeding, we should note an issue that comes up when differentiating each step of the
unrolled algorithm due to the fact that the Hessian is piecewise linear (constant) as a function of

6

Under review as a conference paper at ICLR 2021

the input to that particular layer. Here, some possible numerical approximations are needed, as we
describe below.

Remark 4. Note that the diagonal matrix term in ∂Q
∂A is nondifferentiable due to the presence of

the step function. However, the step function is a piecewise constant function, and hence has zero
derivative almost surely, that is, in any bounded set S, x ∈ S, if a ball (of radius r > 0,) Br(x) ⊆ S,
then the Lebesgue measure of the set of nondifferentiable points on S is zero. Please see Appendix
B.3 for a formal justification where we show this by approximating the step function using a sequence
of logistic functions with increasing slope parameter at the origin.

Therefore, in this setting, Remark 4 provides a way to compute an approximate sub-gradient when
using Newton’s method based LP layers. The function is a piece-wise quadratic function and
differentiable everywhere, and the inverse of the Hessian acts as a preconditioner.

Summary. Our forward pass involved three steps: 1. finite steps of Newton’s method using which we
2. computed the dual variable by a thresholding operation, and 3. finally, to get the primal solution,
these dual variables are first used to identify the active constraints followed by solving a linear
system. In order to backpropagate through these three steps, we must differentiate through each layer
of our procedure including Ã−1b̃, independent of whether we use unrolling or Danskin’s theorem.
Using Danskin’s theorem in this setting would involve differentiating through the fixed point of the
Newton’s iterations similar to (regularized) gradient descent iterations considered in the iMAML
work Rajeswaran et al. (2019).

4 EXPERIMENTS

In this section, we conduct experiments on commonly used benchmarks to show that our framework
can be used to optimize multiple different objectives within deep neural networks and lead to
performance gain. We start with binary AUC optimization, and then extend to multi class AUC
optimization and F -score optimization. We also show that nonnegative matrix factorization can be
optimized in linear programming form in our framework.

Optimizing Binary AUC

We follow the current state-of-the-art work on AUC optimization Liu et al. (2019) to conduct
experiments on optimizing AUC score directly with deep neural networks. The baseline algorithms
we compare with for binary AUC are cross-entropy loss and two algorithm (PPD-SG and PPD-
AdaGrad) from Liu et al. (2019).

Datasets: Cat&Dog, CIFAR10, CIFAR100, and STL10. Cat&Dog is a dataset from Kaggle which
contains 25000 images of cats and dogs. 80% of the dataset is used as training set and the rest 20%
as test set. STL10 is inspired by the CIFAR-10 dataset but with some modifications. Each class in
STL10 has fewer labeled training examples than in CIFAR-10. We follow Liu et al. (2019) to use
19k/1k, 45k/5k, 45k/5k, 4k/1k training/validation split on Cat&Dog, CIFAR10, CIFAR100, STL10
respectively.

Table 1: Binary AUC optimization results on four benchmark datasets.

AUC(%) Cat&Dog CIFAR10
Positive Ratio 91% 83% 71% 50% 91% 83% 71% 50%
Cross-Entropy 67.6 74.6 85.1 87.4 65.2 73.3 78.1 83.7
PPD-SG 79.1 81.5 85.5 87.1 69.8 73.9 79.1 82.6
PPD-AdaGrad 77.3 80.6 83.7 86.3 69.7 74.1 78.4 83.1
Ours 78.6 81.3 85.6 87.8 72.5 74.4 78.3 82.7

AUC(%) CIFAR100 STL10
Positive Ratio 91% 83% 71% 50% 91% 83% 71% 50%
Cross-Entropy 57.8 58.4 62.2 66.3 63.5 67.1 72.7 80.8
PPD-SG 56.5 58.9 61.6 65.2 70.7 71.6 75.1 77.4
PPD-AdaGrad 56.2 59.0 62.6 67.6 68.5 72.4 76.7 78.5
Ours 58.2 60.5 64.5 69.0 68.4 71.1 76.7 81.6

Construction of imbal-
anced datasets: We
construct imbalanced
binary classification task
by using half classes as
positive class and another
half as negative class, and
dropping samples from
negative class by a certain
ratio, which is reflected by
the positive ratio (the ratio
of the majority class to the
minority class) in Table 1.

Experimental setting. We use a Resnet-18 He et al. (2016) as the deep neural network for all
algorithms. During optimization, the batch size is set to 64. The initial learning rate is tuned in {0.1,
0.01, 0.001} and decays 2/3 at 2k, 10k, 25k-th iteration. We train 40k iterations in total. The ε in

7

Under review as a conference paper at ICLR 2021

Newton’s method is 0.001. We use the same random seed, learning rate and total number of iterations
in all of our experiments including multi class AUC and F -score experiments.

Table 2: Ablation study of ε on Cat&Dog dataset.

Positive Ratio 91% 83% 71% 50%
Ours(ε = 0.1) 71.3 77.0 84.4 87.3
Ours(ε = 0.01) 78.6 81.3 85.6 87.8
Ours(ε = 0.001) 65.9 71.3 71.8 76.1

Results. The results are shown in Table 1. We
can see that our method slightly outperforms
Liu et al. (2019) and outperforms cross-entropy
loss by a large margin, especially on imbalanced
datasets, where AUC objective shows superior-
ity over cross-entropy loss.

Influence of ε. We report the influence of ε on our algorithm in Table 2, where we choose Cat&Dog
as an example to test different ε. We can see that ε = 0.1 gets slightly worse performance than
ε = 0.01, while ε = 0.001 performs much worse. To choose ε, we follow the approach proposed by
Mangasarian (2004). If for two successive values of ε1 > ε2, the value of the ε perturbed quadratic
function is the same, then it is the least 2-norm solution of the dual. Therefore, we simply choose an
ε that satisfies this property, which is chosen to be 0.01 in our experiments.

Table 3: Multiclass AUC optimization results on STL10 and CIFAR100.
Drop rate is the proportion used when dropping samples from two of
three classes.

AUCova(%) CIFAR100 STL10
Drop rate 90% 80% 60% 0% 90% 80% 60% 0%
Cross-Entropy 54.3 59.4 62.7 63.5 66.9 68.0 74.8 81.0
Ours 58.4 59.2 64.1 65.7 72.9 72.5 75.7 82.7

AUCbin
µ (%) CIFAR100 STL10

Drop rate 90% 80% 60% 0% 90% 80% 60% 0%
Cross-Entropy 55.1 60.6 65.0 64.0 68.9 69.6 75.8 82.2
Ours 60.1 61.2 66.0 67.2 76.1 74.4 77.7 84.5

Optimizing Multiclass
AUC

We further demonstrate our
method for optimizing mul-
ticlass AUC. Similar to
previous section on binary
AUC, we construct imbal-
anced multiclass datasets
by dividing datasets into 3
classes and drop samples
from 2 of them and report
the one-versus-all AUC (de-
noted as AUCova) and AUCbin

µ score . For STL10, we group class 0− 2, 3− 5, 6− 9 into the three
classes, and drop samples from the first two classes. For CIFR100, we group class 0− 32, 33− 65,
66− 99 into three classes, and also drop samples from the first two classes.

Results. Results are in Table 3. In addition to one-versus-all AUC metric, we also report the
performance in terms of AUCµ Kleiman & Page (2019) which is specifically designed for measuring
multiclass AUC and keeps nice properties of binary AUC such as being insensitive to class skew. We
can see that our method outperforms cross-entropy loss on all four datasets and under all different
skewed ratios. Specifically, the performance gain tends to be larger when the dataset becomes more
imbalanced.

(a) Positive class: 0 (b) Positive class: 1 (c) Positive class: 2

Figure 1: ROC curve of multiclass AUC optimization on STL10 with 90% drop rate. We divide
STL10 into 3 classes and use one as positive class and other two as negative class to plot the ROC.

Table 4: F -score on four datasets.

F -score(%) Cat&Dog CIFAR10 CIFAR100 STL10
Cross-Entropy 76.0 70.3 60.4 71.8
CVXPY-SCS 70.1 66.6 66.7 66.6
AP-Perf 65.3 66.7 66.4 67.2
Ours 77.8 72.6 63.4 72.7

Optimizing F -score

We show that by directly op-
timizing F -score, we can
achieve a better perfor-
mance on this than when us-
ing cross entropy loss. In
addition to cross entropy
loss, we perform evalua-

8

Under review as a conference paper at ICLR 2021

tions with two other methods that can also directly optimize the F1-score. First, we replace our
solver with CVXPY-SCS Agrawal et al. (2019), which is a differentiable general purpose linear
programming solver; second, we perform comparisons with AP-Perf Fathony & Kolter (2020) which
offers differentiable optimization of F -score using an adversarial prediction framework. The datasets
and our setup to group them into two classes remain the same as in binary AUC section. The results
in Table 4 shows that our method generally yields improvement over cross-entropy loss in terms of
F -score. Note that different from optimizing cross entropy loss, when we optimize F -score directly,
there exists a local optimal point where assigning all examples to the positive class leads to F -score
of 66.7%. We see this behavior on CIFAR10, CIFAR100, and STL10.

5 CONCLUSIONS

We demonstrated that various non-decomposable objectives can be optimized within deep neural
networks in a differentiable way under the same general framework of LPs using a modified Newton’s
algorithm proposed by Mangasarian. A number of recent papers have studied the general problem of
backpropagating through convex optimization modules, and this literature provides several effective
approaches although scalability remains a topic of active research. Our work complements these
results and shows that the operations needed can be implemented to utilize the capabilities of modern
deep learning libraries. While our experimental results suggest that promising results on binary AUC,
multi-class AUC and F -score optimization within DNNs is achievable, we believe that the module
may have other applications where the number of constraints are large and data-dependent.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. In Advances in neural information processing systems,
pp. 9562–9574, 2019. 5, 9

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
arXiv preprint arXiv:1703.00443, 2017. 2, 5

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International Conference
on Machine Learning, pp. 146–155, 2017. 4

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond svd. In 2012
IEEE 53rd annual symposium on foundations of computer science, pp. 1–10. IEEE, 2012. 14

Kaan Ataman, W Nick Street, and Yi Zhang. Learning to rank by maximizing auc with linear
programming. In The 2006 IEEE International Joint Conference on Neural Network Proceedings,
pp. 123–129. IEEE, 2006. 1, 3

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676, 2020.
5

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, 2020. 5

Mike Brookes. The matrix reference manual. Imperial College London, 3, 2005. 16

Edo Collins, Radhakrishna Achanta, and Sabine Susstrunk. Deep feature factorization for concept
discovery. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 336–352,
2018. 13, 14

Corinna Cortes and Mehryar Mohri. Auc optimization vs. error rate minimization. In Advances in
neural information processing systems, pp. 313–320, 2004. 1

Krzysztof J. Dembczynski, Willem Waegeman, Weiwei Cheng, and Eyke Hüllermeier. An ex-
act algorithm for f-measure maximization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 24,
pp. 1404–1412. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/
4389-an-exact-algorithm-for-f-measure-maximization.pdf. 1, 4, 12

9

http://papers.nips.cc/paper/4389-an-exact-algorithm-for-f-measure-maximization.pdf
http://papers.nips.cc/paper/4389-an-exact-algorithm-for-f-measure-maximization.pdf

Under review as a conference paper at ICLR 2021

Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, and Gal Elidan. Scalable
learning of non-decomposable objectives. In Artificial Intelligence and Statistics, pp. 832–840,
2017. 1

Rizal Fathony and Zico Kolter. Ap-perf: Incorporating generic performance metrics in differentiable
learning. In International Conference on Artificial Intelligence and Statistics, pp. 4130–4140.
PMLR, 2020. 1, 9

Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization. In International
conference on machine learning, pp. 906–914, 2013. 1

Alexander I Golikov and Igor E Kaporin. Inexact newton method for minimization of convex
piecewise quadratic functions. In Numerical Geometry, Grid Generation and Scientific Computing,
pp. 139–155. Springer, 2019. 15

Ian Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Multi-prediction deep boltzmann
machines. In Advances in Neural Information Processing Systems, pp. 548–556, 2013. 4

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 7

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural
svms. Machine learning, 77(1):27–59, 2009. 1

S Sathiya Keerthi, Vikas Sindhwani, and Olivier Chapelle. An efficient method for gradient-based
adaptation of hyperparameters in svm models. In Advances in neural information processing
systems, pp. 673–680, 2007. 5

Ross Kleiman and David Page. Aucµ: A performance metric for multi-class machine learning models.
In International Conference on Machine Learning, pp. 3439–3447, 2019. 3, 8, 12

Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. Fast stochastic auc
maximization with o(1/n)-convergence rate. In International Conference on Machine Learning,
pp. 3189–3197, 2018. 1

Mingrui Liu, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. Stochastic auc maximization with
deep neural networks. arXiv preprint arXiv:1908.10831, 2019. 1, 7, 8

OL Mangasarian. A newton method for linear programming. Journal of Optimization Theory and
Applications, 121(1):1–18, 2004. 2, 5, 8

Olvi L Mangasarian. Exact 1-norm support vector machines via unconstrained convex differentiable
minimization. Journal of Machine Learning Research, 7(Jul):1517–1530, 2006. 5

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
with gumbel-sinkhorn networks. arXiv preprint arXiv:1802.08665, 2018. 4

Zihang Meng, Sathya N Ravi, and Vikas Singh. Physarum powered differentiable linear programming
layers and applications. arXiv preprint arXiv:2004.14539, 2020. 2, 5

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016. 4

Pritish Mohapatra, Michal Rolinek, CV Jawahar, Vladimir Kolmogorov, and M Pawan Kumar.
Efficient optimization for rank-based loss functions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3693–3701, 2018. 1

Ye Nan, Kian Ming Chai, Wee Sun Lee, and Hai Leong Chieu. Optimizing f-measure: A tale of two
approaches. arXiv preprint arXiv:1206.4625, 2012. 1

10

Under review as a conference paper at ICLR 2021

Michael Natole, Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for auc maximization.
In International Conference on Machine Learning, pp. 3710–3719, 2018. 1

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013. 6, 15

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Advances in Neural Information Processing Systems, pp. 113–124, 2019. 7

Ben Recht, Christopher Re, Joel Tropp, and Victor Bittorf. Factoring nonnegative matrices with
linear programs. In Advances in Neural Information Processing Systems, pp. 1214–1222, 2012. 14

Yang Song, Alexander Schwing, Raquel Urtasun, et al. Training deep neural networks via direct loss
minimization. In International Conference on Machine Learning, pp. 2169–2177, 2016. 1

George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and Bjoern Schuller. A deep semi-
nmf model for learning hidden representations. In International Conference on Machine Learning,
pp. 1692–1700, 2014. 13

Sathya N Ravi Abhay Venkatesh, Glenn M Fung, and Vikas Singh. Optimizing nondecomposable
data dependent regularizers via lagrangian reparameterization offers significant performance and
efficiency gains. arXiv preprint arXiv:1909.12398, 2019. 1

Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support vector method
for optimizing average precision. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 271–278, 2007. 1

Xiaohui Zeng, Renjie Liao, Li Gu, Yuwen Xiong, Sanja Fidler, and Raquel Urtasun. Dmm-net:
Differentiable mask-matching network for video object segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 3929–3938, 2019. 4, 5

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 LP FORMULATION FOR MULTI-CLASS AUC

One way to extend binary AUC to multi-class is by considering multiple one-versus-all pairs. This
leads us to the following formulation:

AUC :min
zij

n∑
i=1

n∑
j=1:x∗i 6=x∗j

zij (8)

s.t. (f(xi, x
∗
i)− f(xj , x

∗
i)) ≥ ε− zij ∀i, j : x∗i 6= x∗j , zij ≥ 0

In our multi-class AUC experiment, we use this one-versus-all AUC as training loss and report
performance in both one-versus-all AUC and AUCbin

µ . In addition, we can also consider the setting of
AUCµ where P is set arbitarily. In this case, the exact terms in orientation function O proposed by
Kleiman & Page (2019) can be written as follows:

AUCarbit
µ :min

zij

n∑
i=1

n∑
j=1:x∗i<x

∗
j

zij (9)

s.t. d̃ij

K∑
k=1

ṽ(k)(f(xi, k)− f(xj , k)) ≥ ε− zij ∀i, j : x∗i < x∗j , zij ≥ 0

Note that AUCarbit
µ has the same number of constraints and variables as AUCbin

µ . Once the LPs are
solved, the loss function is calculated the same way as binary AUC.

A.2 FORMULATING RATIO OBJECTIVES

In this section, we study a subset of non-decomposable metrics, which are typically expressed as
ratios of some combination of True Positive(TP), False Positives(FP), True Negatives(TN) and False
Negatives(FN). These can be expressed in a general form as a11TP+a12

a21TP+a22FP+a23FN+a24
, where apq

are constants/cofficients which if set to 0, means the term is absent and not equal to zero in other
cases. This formulation can used to define Fscore, Fβ , Jaccard, IOU and Precision at fixed recall.
In the following section, we describe the formulation of Fscore as a representative of this approach,
other metrics can be formulated similarly.

Given Y the groud truth, our goal is to compute Ŷ both of length n, which aligns with Y based on
the specific metric. We first show how to write TP, FP, TN and FN wrt to these vectors.

TP = Y T × Ŷ FP = (1− Y)T × Ŷ
TN = (1− Y)T × (1− Ŷ) FN = (Y)T × (1− Ŷ)

A.2.1 FORMULATING F -SCORE

The F -score or F -measure is routinely used as a performance metric for different types of prediction
problems, including binary classification and, multi-label classification. Compared to measures
like error rate in binary classification and Hamming loss, it enforces a better balance between
performance on the minority and the majority classes, and, therefore, it is more suitable in the case of
imbalanced data Dembczynski et al. (2011). F -score is defined as follows:

F -score(Y, Ŷ) =
2P (Y, Ŷ)×R(Y, Ŷ)

P (Y, Ŷ) +R(Y, Ŷ)
(10)

where P is the measure of precision defined as

P (Y, Ŷ) =
TP

TP + FP

12

Under review as a conference paper at ICLR 2021

and R stands for the measure of recall, given as

R(Y, Ŷ) =
TP

TP + FN

Plugging this in Eq(1), and replacing the formulations for TP, FP and FN(from Eq A.2) we get

F -score(Y, Ŷ) =
2TP

2TP + FP + FN
=

2(Y T × Ŷ)∑n
i=1 yi +

∑n
i=1 ŷi

=
2(Y T × Ŷ)

1TY + 1T Ŷ
(11)

where yi refers to the ith element of Y (same for ŷi). 1 represents an all one vector in Rn. Note that
in training, since Y is generally provided, we can assume 1TY = β which is constant (the number of
examples in the positive class in the ground truth). We can also represent the the values of 2Y as a
coefficient matrix c, then the optimization problem for finding F -score can be written as

maximize
Ŷ

cT Ŷ

1T Ŷ + b
(12)

subject to Ŷi ∈ [0, 1], i = 1, . . . , n.

A.2.2 MAXIMIZING JACCARD COEFFICIENT AND Fβ

The Jaccard Coefficient and Dice Index lead to similar formulation as F -score. The Jaccard coefficient
can be expressed as:

Jacc(Y, Ŷ) =
TP

TP + FP + FN
=

(Y T × Ŷ)∑n
i=1 yi +

∑n
i=1 ŷi −

∑n
i=1 yi × ŷi

=
(Y T × Ŷ)

1TY + (1− Y)T Ŷ
(13)

This can be equivalently written as a linear factional program as shown in Model(10) where c = Y ,
d = (1− Y) and b = 1TY . The rest of the construction is similar to F -score.
Note that Fβ which is defined as

Fβ(Y, Ŷ) = (1 + β2)
P (Y, Ŷ)×R(Y, Ŷ)

β2P (Y, Ŷ) +R(Y, Ŷ)
(14)

where β is a user specified parameter (balancing the importance of precision and recall) also permits
a similar formulation. Here we simply set c = (1 + β2)Y , d = 1 and b = β21TY .

A.2.3 MAXIMIZING P@R

We begin by defining the maximum precision at fixed minimum recall problem as

P@Rα = maximize P s.t.R ≥ α (15)

= maximize
(Y T Ŷ)

1T Ŷ
s.t. Y T Ŷ ≥ α1TY (16)

This is again a linear fractional objective with a linear constraint. So we can write it as an equivalent
Linear program using the same transformation where c = Y , d = 1 and b = 0. R@P on the other
hand directly leads to a linear program.

A.3 OPTIMIZING NON-NEGATIVE MATRIX FACTORIZATION (NMF)
Nonnegative matrix factorization is different from the other objectives we presented in that it is
primarily used in unsupervised learning and does not satify the criteria for a metric loss function. It
can still be formulated in a generalized non-decomposable form because (i) cannot be written as a
sum over individual samples, (ii) leads to a model where the constraints depend on learned features.

Note that purpose of discussing NMF in this context, is not to provide a general purpose solver for
the problem, and instead to assess whether NMF layers can serve as a regularizer or a clustering
module, e.g., learning more interpretable attributes, co-segmentation and a substitute for clustering,
see Trigeorgis et al. (2014) and Collins et al. (2018). The following description in this section and the
experimental validation in the following section is a proof of principle instantiation of this idea.

13

Under review as a conference paper at ICLR 2021

We briefly review from Arora et al. (2012) and Recht et al. (2012), how NMF is written as a LP.

We know from Arora et al. (2012) that a NMF decomposition V = FW where F is s× s′ and W is
s′×w and V and W have a row sum of 1, is ‘separable’ if the rows of W are simplicial and there is a
permutation matrix R ∈ Rs×s such that RF = [Ir M]

T . The top r rows of F contains so-called
anchor words. Recht et al. (2012) proposed a data-driven model where the most salient features in
the data are used to express the remaining features, given as V ∼ CV , where C is of size s × s.

Assuming V admits a rank-r separable factorization, then V = RT
[
Ir 0
M 0

]
RV = CV . To show

that thsis factorization is possible, we need to first make F square, which is why it is zero-padded to
make it a size s× s matrix. Let p̃ be any vector which is used as the coefficient in the objective in the
following model. According to Recht et al. (2012), any value for the entries of p̃ should suffice as
long as they are distinct. with distinct values. Then the LP formulation is as follows:

min
C

p̃T diag(C) s.t. CV = V, tr(C) = r, Cjj ≤ 1 ∀j, Cij ≤ Cjj ∀ij, C ≥ 0 (17)

With C in hand, W is constructed by extracting rows of V for those indices k where Ckk = 1. F is
constructed by extracting rows of C which correspond to k where Ckk = 1.

A.3.1 EXPERIMENTAL RESULTS ON NONNEGATIVE MATRIX FACTORIZATION

Figure 2: NMF example. Three
rows correspond to original im-
ages, k = 1 and k = 2 respec-
tively.

We demonstrate applicability of our strategy to nonnegative ma-
trix factorization (NMF) by performing a rank k factorization on
Convolutional Neural Network (CNN) activations as an example,
following Collins et al. (2018). Recall that the activation tensor of
an image at some layer in CNN has the shape V ∈ Rc×h×w where
h,w are the spatial sizes and c is the number of channels. We can
reshape it into V ∈ Rc×(h·w) and calculate a rank k NMF for V :
V = FW . Each row Wj of the resultant W ∈ Rk×(h·w) can be
reshaped into a heat map of dimension h × w which highlights
regions in the image that correspond to the factor Wj . We show
an example for k = 1, 2 in Fig. 2. We can see that heatmap
consistently captures a meaningful part/concept in the examples.
Currently, our memory consumption increases quickly with c
here since the constraint matrix in our LP formulation is of size
O(c2)×O(c2). This makes our method only work for small c on
a GPU with 11GB memory (here, we use c = 20). This scaling
issue can be possibly solved by utilizing sparsity in the constraint
matrix, but the sparse matrix operations are currently not well supported on mainstream deep learning
platforms like PyTorch and Tensorflow. Since our method provides backward gradients for the NMF
operation, the heatmap generated here can, in fact, be used to construct a loss function during training
in order to learn a interpretable models.

Objective g h E F p B G q
AUC 1 ∈

Z|T |×|N |
- -1 ∈

Z|T |×|N |
- pij =

(f(xi) −
f(xj)− ε)

- - -

AUCbinµ 1†, - -1† - pij =

(f‡ij − ε)
- - -

F -score c 0

[1
-1
1

]§ [-1
φ(f(xi))

−(1 + φ(f(xi)))

]§
0 d b b

Table 5: Table showing the general LP coefficients for each model. †: length based on problem
setting; ‡: f‡ij = d̃ij(f(xi, yC(xi)) − f(xj , yC(xi)) + f(xj , yC(xj)) − f(xi, yC(xj)));

§: one block
for each i ∈ [1, ..n]. We do not include NMF in this table, as its formulation as a general LP is more
verbose including vectorization of matrices and kronecker product calculations.

14

Under review as a conference paper at ICLR 2021

A.4 VERIFICATION OF UNROLLING GRADIENT AND THE ONE PROVIDED BY Ã−1b̃

We use Fscore formulation as an example. For input sample x, the neural network predicts a score
f(x), and then the scores of a batch of samples will be used in solving the linear programming form
of Fscore and be used to construct the loss function. We compute the gradient from the final loss
function back to the predicted scores from the neural network and compare two approaches: one is
that we use z = Ã−1b̃ as the solution (the one we used in our experiment) where we can compute
gradient by only one step, another one is that we directly use yt resulting from the Newton iterations
as the solution and compute gradients by unrolling those iterations. We then compute the cosine
value between these two gradient vectors. By experiments on 100 randomly sampled batches, the
average cosine value is 0.9991, which means the two gradients are highly consistent.

B PROOFS AND DETAILS OF RESULTS IN SECTION 3

In this section, we will provide the missing proofs and additional calculations in Section 3.

B.1 PROOF OF LEMMA 1.

Lemma 1 is restated here for convenience.
Lemma 3. Assume that A ∈ Rm×n is a random matrix, and fix some y ∈ Rn. Then with probability
one, g in equation 6 is quadratic (given by H̃,∇g(y)) over a sufficiently small neighborhood of y.

Proof. Using the integral form of second order Taylor’s expansion of σ2(y) = (max(0, y))
2, we can

show that,

g(y + h)− g(y)− hT∇g(y) = 1

2
hTAT diag (d)Ah (18)

where

d =

∫ 1

0

(∫ 1

0

(σ (Ay − b))∗ ds
)
2dt. (19)

See Remark 1 in Golikov & Kaporin (2019) for details. Without loss of generality, we can assume
b = 0 by simply translating the origin. Following the same remark, the diagonal matrix coincides
with the step function based diagonal in H̃ under the following condition on h:

eTj Ah · eTj (Ay) < 0 =⇒ |eTj Ah| ≤ |eTj (Ay)|. (20)
Since y is fixed, assuming that the entries of A are chosen from a continuous distribution such that
eTj A is uniformly distributed over the sphere, then (eTj Ah)

2 follows a Beta
(
1
2 ,

n−1
2

)
when h is

drawn uniformly at random from the unit sphere, independent of A. This means that no matter what y
is, there exists sufficiently small h such that the left hand side of equation 20 is false with probability
one, and in that neighborhood diag(d) = H̃ .

B.2 PROOF OF THEOREM 2

Theorem 4. Assume that the primal LP has a unique optimal solution, and that the level set
{x : Ax ≤ b, cTx ≤ α} is bounded for all α (for dual feasibility). Then short step (no line search)
Newton’s method converges globally at a linear rate with local quadratic convergence.

Proof. First, since the objective function is piecewise quadratic since it is a sum of piecewise quadratic
functions. In particular, it is self concordant since its third derivative zero everywhere. Now setting
ρ < ε, we see that an approximate solution of the problem with the modified Hessian is also an
approximate solution to equation 6. Moreover, since the possible values of H̃ is finite, the local norm
(also known as Newton’s decrement)∇g(y)T H̃(y)−1∇g(y) is finite. Hence, we can choose ρ > 0
so that there is a descent direction d, that is, there exist a step size λ > 0 such that λ∇g(x)T d < 0.
Finally, we use Theorem 4.1.12 in Nesterov (2013) to claim the desired result.

The assumptions in Theorem 4 are standard: 1. uniqueness can easily be satisfied by randomly
perturbing the cost vector; 2. in most of our formulations, we explicitly have bound constraints on the
decision variables, hence level sets are bounded.

15

Under review as a conference paper at ICLR 2021

B.3 DIFFERENTIATING THE STEP FUNCTION IN REMARK 4

We will use a slightly modified “suffix" notation as in Brookes (2005) in our calculations. That is, for
a matrix A, ~A is the same as vec(A), vectorization of A obtained by concatenating all the columns.
The following three properties relating the Kronecker product,~·, and differentials will be used often:

1. Fact 1: For two vectors a, b, a⊗ b =
−−→
baT .

2. Fact 2: If A is p × q matrix, and B is a m × n matrix, then
−→
∂B = (∂B/∂A)

−→
∂A where

∂B/∂A is the (mn)× (pq) Jacobian matrix of ~B with respect to ~A. If A or B is a column
vector or scalar, then~· has no effect.

3. Fact 3:
−−−−−−→
∂(AXB) =

(
BT ⊗A

)−→
∂X .

Using the above two facts, we can compute all the gradients needed to backpropagate through
the unrolled iterations. We will show the computation for the gradient of Q−1u with respect to
A ∈ Rm×n for a fixed u ∈ Rn. We can apply chain rule to the following composition:

A
(
AT H̃A+ ρI

)−1
u

AT H̃A+ ρI

f1◦f2

f1 f2

to get, Jf2◦f1 = Jf2 ◦ Jf1 . Now using Fact 2 on ∂
(
X−1

)
= −X−1(∂X)X−1 and some algebraic

manipulation, we obtain,

−−−→
Jf2◦f1 = −

(
uT
(
AT H̃A+ ρI

)−1
⊗
(
AT H̃A+ ρI

))−→
Jf1 . (21)

We will now compute
−→
Jf1 . Note that H̃ is also a function of A, so using product rule, we can write

−→
Jf1 as a sum of three derivatives – with respect to each of A,AT , H̃ . The derivatives with respect
to A and AT are fairly straightforward to compute, so will focus on computing the derivative with
respect to H̃ . To that end, we will use Fact 3, and show to compute the derivative of the step function
by approximating it using the logistic function.

∂

∂A
diag ((Ay − b)∗) ≈

∂

∂A
diag (1� (1 + exp (κ (−Ay + b)))) , κ > 0. (22)

Note that these derivatives are used in computing derivatives of upstream network, so using distribu-
tional derivatives, and another application of chain rule to the left hand side of equation 22 results in
the dirac delta function which is atomic, that is, has all its mass in a measure zero set. Hence this
calculation provides an mathematical justification that the set of nondifferentiable points has measure
zero for our training purposes. It is easy to formally verify this argument using differentiable tent
functions as approximations to the heaviside step function.

16

