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Abstract

In this paper, we focus on the research of feder-
ated multi-armed bandit (FMAB) problems where
agents can only communicate with their neighbors.
All agents aim to solve a common multi-armed
bandit (MAB) problem to minimize individual re-
grets, while group regret can also be minimized.
In a federated bandit problem, an agent fails to
estimate the global reward means of arms by only
using local observations, and hence, the bandit
learning algorithm usually adopts a consensus esti-
mation strategy to address the heterogeneity. How-
ever, up to now, the existing algorithms with fully
distributed communication graphs only achieved
a suboptimal result for the problem. To address
that, a fully distributed online consensus estima-
tion algorithm (CES) is proposed to estimate the
global mean without bias. Integrating this consen-
sus estimator into a distributed successive elimina-
tion bandit algorithm framework yields our feder-
ated bandit algorithm. Our algorithm significantly
improves both individual and group regrets over
previous approaches, and we provide an in-depth
analysis of the lower bound for this problem.

1 INTRODUCTION

Online learning problems in federated settings, where a set
of agents complete a common learning task via perform-
ing individual learning algorithms and keeping data locally
used, are broadly researched due to plenty of motivating
applications in the real world. For example, in the fields of
finance, medicine and data processing, federated learning is
a potential method for solving local training and individual
privacy problems [Yang et al., 2019, Li et al., 2020, Liu
et al., 2022]. In this paper, we study the FMAB problem,
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where multiple instances of the MAB problem are imple-
mented on a set of agents communicating with each other.
Recently, efforts have been invested in designing distributed
bandit algorithms for federated learning problems [Féraud
et al., 2019, Shi and Shen, 2021, Agarwal et al., 2022],
where agents can only communicate with neighbors without
a suitable end-to-end communication protocol due to the
limitations in practical systems. FMAB with consensus com-
munication has many real-world applications. For instance,
it is common for multiple agents to collaborate on large-
scale tasks in broadcasting sensor networks, which consist
of several wireless sensors that communicate only with their
neighbors [Li et al., 2019, Kolla et al., 2018]. For exam-
ple, selecting an appropriate time to conduct an outdoor
experiment requires consideration of various environmen-
tal factors such as humidity, temperature, wind speed, and
others. To capture this information, a variety of sensors are
deployed, viewed as agents in this context. At different time
steps, these agents provide feedback based on their local
observations, which serve as local samples. The ultimate
objective is to integrate these local samples to identify the
optimal time for the outdoor experiment. In other scenar-
ios, data heterogeneity may arise from privacy protection
policies, which require training data to be processed locally.

The major obstacles that prevent FMAB from achieving
optimal learning performance are heterogeneous feedback
among agents and fully distributed communication. To-
gether, these factors make it difficult for agents to accu-
rately track the global mean. To effectively learn the global
mean, the implemented learning algorithm needs to collect
the estimates or observations in each agent, as well as their
number of samples. One can imagine that simply merging
the global estimate of each agent without knowing the num-
ber of samples will result in unexpected bias. Furthermore,
fully distributed communication indicates that each agent
has a different ability to acquire information, leading to
errors in tracking sample counts. These errors accumulate
over time, ultimately degrading the performance of FMAB
algorithms. As a result, all previous works have failed to
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Table 1: A comparison summary of prior literature and this work.

Algorithm Individual Regret Group Regret
Gossip_UCB [Zhu et al., 2021] O(

∑
i:∆i>0 N∆−1

i log T ) O(
∑

i:∆i>0 N
2∆−1

i log T )

Dis_UCB [Zhu and Liu, 2023] O(
∑

i:∆i>0 N
−1
min∆

−1
i log T ) O(

∑
i:∆i>0 NN−1

min∆
−1
i log T )

DRRB-bandit (our work) O(
∑

i:∆i>0 N
−1∆−1

i log T ) O(
∑

i:∆i>0 ∆
−1
i log T )

General regret lower bound Ω(
∑

i:∆i>0 N
−2∆−1

i log T ) Ω(
∑

i:∆i>0 N
−1∆−1

i log T )

Regret lower bound for special algorithms Ω(
∑

i:∆i>0 N
−1∆−1

i log T ) Ω(
∑

i:∆i>0 ∆
−1
i log T )

achieve optimal regrets.

In the presence of heterogeneous feedback, a distributed
estimation approach has been proposed. This approach pri-
marily collects information from neighboring agents and
estimates the global mean of each arm to determine whether
the selection is optimal. However, because of the absence of
a central server in a fully distributed communication setup,
real-time information remains inaccessible to individual
agents. According to the above explanation, two obstacles
are coupled, i.e., fully distributed communication makes het-
erogeneous feedback more difficult to deal with. To address
the FMAB problem with only hop-by-hop communication, a
kind of gossip-based communication was proposed [Kempe
et al., 2003, Boyd et al., 2006], which does not need a cen-
tral server or a fully connected communication graph. These
methods eliminate the need for a central server or a fully con-
nected communication graph, allowing agents to exchange
information efficiently. Building on foundational research in
communication methods, several scholars have developed
algorithms to tackle the FMAB problem [Zhu et al., 2021,
Zhu and Liu, 2023, Xu and Klabjan, 2024]. These studies
employed gossip-based communication and refined the se-
lection strategy using the Upper Confidence Bound (UCB)
algorithm [Auer and Ortner, 2010]. Additionally, they in-
troduced mechanisms to regulate agent behavior, ensuring
consensus on sampling frequency across the network.

However, due to inherent limitations in the framework of
UCB-based algorithms, certain challenges remain in the pro-
posed approach, potentially leading to suboptimal results.
Among those, the core challenge is to obtain unbiased global
estimates from biased local observations and limited infor-
mation from neighbors. Specifically, traditional UCB-based
algorithms tend to select the arm with the maximum upper
confidence bound, without accounting for the heterogene-
ity of agents. This can result in biased estimates of reward
means, thereby leading to suboptimal regret performance.
While previous works [Zhu et al., 2021, Zhu and Liu, 2023,
Xu and Klabjan, 2024] propose estimation mechanisms to
address this issue, the weight assigned to each reward in
the global estimate varies. This inconsistency creates an
unfair mechanism, leading to suboptimal convergence of
the estimates.

Related works. The federated bandit problem can be di-
vided into two categories from the perspective of reward,
called homogeneous reward and heterogeneous reward set-
tings. In the homogeneous reward setting [Hillel et al., 2013,
Wang et al., 2019, 2020], agents pull the same arm and
achieve rewards from the same distribution, which implies
that their sampling directly helps them estimate the global
means of the arms. In the heterogeneous reward setting [Shi
and Shen, 2021, Zhu et al., 2021, Zhu and Liu, 2023, Xu and
Klabjan, 2024], agents have their local reward distributions,
which means that agents obtain different rewards even if
they pull the same arm. The main challenge is to obtain an
unbiased global estimate because local sampling is useless
to learn the global mean.

From the classification of the communication network, the
network can be divided into the fully distributed graph and
the fully connected graph [Shamma, 2008]. A fully con-
nected graph means that any two agents are directly con-
nected, while a fully distributed graph, means that there is
a path between two agents that may be connected through
other agents. For a fully connected graph (end-to-end com-
munication), the time delay is the 1 time slot, which can be
seen as a central server because all agents have access to all
agents’ information. For a fully distributed graph (hop-by-
hop communication), the time delay is at most D time slots,
which is the diameter of the communication graph.

From the perspective of the sampling method, it can be di-
vided into synchronous setting [Wang et al., 2019, Dubey
and Pentland, 2020, Huang et al., 2021] and asynchronous
setting [He et al., 2022, Wang et al., 2023b]. In the syn-
chronous setting, each agent samples and communicates at
the same frequency, which makes concentration easier than
with asynchronous methods. In an asynchronous setting,
agents can not implicitly coordinate their actions through
time, making it difficult to cooperate. Agents pull arms and
exchange information without a common rule, while each
agent could act in their own interests.

Contributions. In the article, we investigate the above-
mentioned federated bandit learning problem and make the
following contributions.

In Section 3, we propose two algorithms called CES and
DRRB-bandit. (a) DRRB-bandit leverages the strat-
egy of round-robin sampling to ensure the agents’ sam-



ples in a synchronized manner [Wang et al., 2023a, Perchet
and Rigollet, 2013]. Specifically, the agents communicate
with one another to maintain a consistent candidate set and
explore the arms within that set in a round-robin manner.
(b) CES uses a novel estimation mechanism, which is first
presented in the literature, to estimate the global mean of
each arm. CES combines the global estimates from other
agents with its own latest samples in a dynamic proportion,
even when agents are not directly connected. This mecha-
nism fairly allocates the weight of each sample reward in
the global estimates, effectively mitigating the effects of het-
erogeneity and producing a more accurate global estimate.

In Section 4, through theoretical analysis, DRRB-bandit
is proved to achieve a near-optimal individual regret
O(
∑

i:∆i>0 N
−1∆−1

i log T ) for each agent, where N is
the number of agents, ∆i is the gap between the op-
timal global mean and the global mean of arm i, and
T is the time horizon. As a straightforward result, the
group regret is O(

∑
i:∆i>0 ∆

−1
i log T ). We also pro-

vide two kinds of lower individual regret bounds: the
first one, which is Ω(

∑
i:∆i>0 N

−2∆−1
i log T ), is general

and holds for all algorithms; the second one, which is
Ω(
∑

i:∆i>0 N
−1∆−1

i log T ), holds for all algorithms with
round-robin sampling, implying that DRRB-bandit is
near-optimal among all round-robin-based algorithms. Ad-
ditionally, the total communication cost is bounded by
O(K∆−1

min log T ), where ∆min is the minimal non-zero
gap. The above results dramatically outperform existing
results in previous works, among which the best one
is O(

∑
i:∆i>0 N

−1
min∆

−1
i log T ) for the individual regret

(O(
∑

i:∆i>0 NN−1
min∆

−1
i log T ) for group regret), where

Nmin denotes the smallest number of neighbors for any
agent, including the agent itself. We provide a simple ac-
count of the results in Table 1.

The improvement in this work is practically significant. Con-
sidering a practical case where Nmin ≪ N , the individ-
ual and group regrets in previous works can be as large as
O(
∑

i:∆i>0 ∆
−1
i log T ) and O(

∑
i:∆i>0 N∆−1

i log T ), re-
spectively. Clearly, these results lead to linear regret with
respect to the number of agents (or system size), whereas
our approach eliminates the dependence on the number of
agents, making it more practically significant for real-world
applications of cooperative learning.

Finally, we will introduce the organization of the paper
below. Firstly, we introduce the necessary notations and the
problem formulation in Section 2. Secondly, we describe the
framework of both DRRB-bandit and CES in Section 3.
In Section 4, we provide theoretical results on the regret
for DRRB-bandit, with missed details deferred to the
appendix. In Section 5, we provide experimental results
with varying settings.

2 PROBLEM DESCRIPTION

In the MAB problem, a player repeatedly selects an arm
from a given set K = {1, . . . ,K} over time. At each time
slot t ∈ {1, . . . , T}, the player chooses an arm to pull and
obtain a reward associated with the selected arm. The re-
wards for each arm are drawn from an independent and
identically distributed (i.i.d.) process, with values in the in-
terval [0, 1] 1. This reward serves as real-time feedback to
the player regarding the chosen arm.

In this article, we focus on federated bandit problems. Differ-
ent from general MAB problems, this setting introduces two
additional elements: multiple players and heterogeneous
feedback. Specifically, we consider a stochastic bandit set-
ting containing N agents, represented by the agent set N .
At each time slot t, agent j selects an arm Aj(t) ∈ K to pull
and receives a random reward XAj(t),j(t). The decision-
making strategy primarily depends on the agents’ past ac-
tions and observed rewards.

In this scenario, agent j could only observe a random reward
Xi,j(t), which consists of both the mean and noise com-
ponents. The reward Xi,j(t) follows an independent and
identically distributed (i.i.d.) process with a reward mean
µi,j , bounded within [0, 1]. If agent j selects arm i at time
step t, i.e., Aj(t) = i, the global reward at time t is defined
as XAj(t)(t) = Xi(t) := 1

N

∑N
j=1 Xi,j(t). Similarly, the

global mean of Xi(t) is given by µi :=
1
N

∑N
j=1 µi,j . With-

out loss of generality, denote i⋆ by the unique optimal arm
with the highest global mean among all arms in the set K,
i.e., i⋆ = argmaxi µi. The reward gap between any arm i
and the optimal arm i⋆ is then defined as ∆i = µi⋆ − µi.

After sampling, agents exchange information with their
neighbors. The neighborhood of agent j is defined as Nj ,
which consists of all agents connected to agent j, excluding
j itself. To represent the relationships among all agents, we
use a communication matrix W = [ωa,b]N×N to describe
the connectivity structure of the multi-agent system. Fur-
ther details about this matrix are provided in Appendix B.
We assume that there are no collisions; that is, when mul-
tiple agents pull the same arm, each agent independently
receives a reward sample drawn from the arm’s reward dis-
tribution. It is important to note that the problem is set in
a heterogeneous environment, meaning that the expected
reward of arm i varies across different agents. Specifically,
µi,j1 ̸= µi,j2 for j1 ̸= j2.

Group regret: In this paper, group regret is defined as the
cumulative loss of reward incurred by selecting a suboptimal
arm instead of the optimal arm. This metric serves as the
primary measure for evaluating federated bandit algorithms.
The optimal strategy for all agents is to consistently pull the
optimal arm throughout the entire time horizon T . Therefore,

1Via Lemma 5, the results in this work also hold for other
distributions, such as sub-Gaussian distributions, etc.



for a distributed algorithm A, the expected group regret of
the system is defined as follows:

E[RT (A)] := NTµi⋆ −
T∑

t=1

N∑
j=1

E[XAj(t),j(t)]. (1)

Individual regret: While group regret is a key performance
metric for distributed algorithms, minimizing individual
regret is also a crucial challenge in the federated bandit
problem. In a heterogeneous setting, agents may pull the
same arm but receive different local rewards, leading to
variations in their global estimates. Moreover, an agent’s
ability to access information depends on the structure of its
neighborhood, resulting in disparities in decision-making.
Therefore, considering individual regret is essential to pre-
vent overly aggressive behavior from any single agent. In
practical applications, optimizing individual regret becomes
even more critical. For instance, in cooperative systems like
drone swarms, the failure of a single agent can significantly
impact overall performance—a phenomenon known as the
"cask effect." To quantify the impact of individual decision-
making, individual regret is defined as follows:

E[RT
j (A)] := Tµi⋆ −

T∑
t=1

E[XAj(t)(t)]. (2)

Communication cost: In our setting, we do not impose
any restrictions on the type or size of messages exchanged
during each communication round. When one agent sends
one message, the communication round incurs a unit cost.
For algorithm A, the communication cost of the global
systems is defined as

E[CT (A)] =
T∑

t=1

N∑
j=1

I{Ij(t)}, (3)

where I{·} is an indicator function and Ij(t) represents the
event that agent j send messages to its neighbors at time
slot t.

3 ALGORITHM

The first core challenge in the federated bandit problem is es-
timating the global mean based on biased local observations.
During the game, each agent maintains its own observa-
tions or estimates of the local arms, which deviate from the
global mean due to heterogeneous feedback. Consequently,
to learn the global reward mean, agents have to aggregate
the estimates or observations of all agents, and each agent is
responsible for sampling the arms of themselves in the het-
erogeneous setting. During the above procedure, insufficient
sampling by any agent will result in an imprecise estimate
of the global mean. Upon revisiting previous works [Zhu
et al., 2021, Zhu and Liu, 2023, Xu and Klabjan, 2024], we

identify a key limitation that leads to suboptimal results: the
UCB-based algorithm framework typically favors selecting
the arm with the largest upper confidence bound, which
leads to biased global estimates. Although these algorithms
reduce some bias in decision-making at each round, they
still produce biased decisions overall, which leads to uneven
learning. As a result, they must rely on the worst-case sce-
nario to compute concentration errors, which limits their
effectiveness.

To optimize algorithms for federated bandit problems, it is
crucial to fully leverage the sample information from each
agent. In a homogeneous bandit setting [Hillel et al., 2013,
Shahrampour et al., 2017, Zhu and Liu, 2021], the samples
from one agent can directly benefit the learning process of
other agents through communication, as all agents share the
same learning objectives. However, in heterogeneous bandit
problems, additional challenges arise in algorithm design.
Specifically, in a heterogeneous setting, simply aggregating
information from other agents does not ensure that it benefits
an agent, as the reward distributions or environments may
differ across agents. To achieve optimal performance, agents
need to accurately track both the observations/estimates and
the sample counts associated with the observations from all
other agents. Given that the setting is fully distributed, with
each agent only able to communicate with its neighbors, it
becomes challenging for agents to learn the global mean.
Therefore, addressing the heterogeneity in federated bandit
problems is the second key challenge explored in this paper.

To address the first challenge, we adopt a round-robin-based
algorithm framework, where each agent uniformly explores
its local arms at each round. We apply this framework to
federated bandit problems and introduce the Distributed
Round-Robin-Based Bandit Algorithm (DRRB-bandit)
in Section 3.1. In the algorithm framework, each agent can
maintain a dynamic candidate arm set and sample arms in
the set equally until one arm is judged as suboptimal and
eliminated from the set. The agents can receive real-time im-
plicit information, i.e., the concrete sample counts of other
agents, equal to the sample counts themselves. All agents
share the confidence interval for the same arm because all
agents uniformly explore these arms. Hence, the worst case
can be avoided and the algorithm obtains a near-optimal
result.

For the second challenge, one intuition is to design a suit-
able online estimation algorithm based on the quality of
networks. We provide an estimation policy called consensus
estimation subroutine (CES) in Section 3.2. In CES, each
agent combines other agents’ global estimates and its latest
sampling in a dynamic proportion. These global estimates
contain information about other unconnected agents. Hence,
the policy can counter the information congestion caused by
the incomplete communication graph. Over a few rounds,
the latest global estimate can gradually get rid of the effects
of heterogeneity.



Based on the two ideas, the exploration efficiency will in-
crease by N times, as each single agent can fully utilize the
exploration of all agents and the influence of the heteroge-
neous feedback could be reduced.

3.1 DISTRIBUTED ROUND-ROBIN-BASED
BANDIT ALGORITHM (DRRB-BANDIT)

We present a federated bandit learning algorithm called
DRRB-bandit, which employs round-robin sampling as
the underlying arm-pulling policy. A key idea behind
DRRB-bandit is that agents uniformly sample arms to
track the global mean of each arm. Using DRRB-bandit,
agents select arms through round-robin sampling and elimi-
nate suboptimal arms by comparing the upper confidence
bounds of each suboptimal arm with the lower confidence
bound of the optimal arm. By incorporating time labels on
the suboptimal arms, the algorithm ensures that all agents
avoid asynchronous elimination, which is typically caused
by time delays in a fully distributed communication graph.

To ensure synchronous sampling, the algorithm maintains
a candidate arm set, containing arms to be explored in a
round-robin manner. The candidate arm set is initialized as
the arm set K. As the sample count increases, the algorithm
gradually identifies suboptimal arms and removes them from
the candidate arm set until only one remains. When an agent
identifies a suboptimal arm, it will notify its neighbors of
this information. To ensure all agents eliminate a suboptimal
arm synchronously, a time label will be transmitted along
with this arm. The time label indicates the time slot at which
all agents have received the suboptimal arm, accounting for
the time delay caused by fully distributed communication.
The design of the time label ensures that all agents update
the candidate arm set simultaneously. The pseudocode of
DRRB-bandit is summarized in Algorithm 1.

Round-Robin Policy for Exploration. In successive
elimination algorithms, each agent pulls arms from the arm
set using round-robin sampling. Each agent j maintains a
dynamic candidate arm set Sj(t), which initially includes
all arms, i.e., Sj(0) = K. Over time, this set updates based
on the agent’s exploration and the information it shares with
neighbors. The bandit algorithm operates on the candidate
arm set, with agents using round-robin sampling to learn the
local reward distribution and estimate the global mean for
each arm. By learning the global means, agents can identify
suboptimal arms. In addition, each agent shares information
about suboptimal arms with its neighbors. Based on the
identified suboptimal arms, agents update their candidate
arm set accordingly. Arms identified as suboptimal are elim-
inated from the candidate arm set at a predetermined time,
as specified in Lines 14 and 15 of Algorithm 1. The policy
for arm elimination will be further explained below.

Arm Elimination. To manage the candidate arm set based
on information from other agents, we introduce an elimi-
nation arm set, denoted as Bj , which stores the indices of
arms identified as suboptimal and slated for elimination. At
the beginning of each round, the algorithm selects the arm
with the highest global estimate, µ̃imax,j , as the benchmark.
Then it compares the global estimates of the arms in the
candidate set to this maximum value. If one arm’s global
estimate is lower than the benchmark by a threshold related
to the radius of its confidence interval, that arm is consid-
ered suboptimal and is added to the elimination arm set Bj
(Line 8, Algorithm 1).

In a fully distributed communication graph, each agent has
distinct capabilities for collecting and processing informa-
tion. To manage the updates of the candidate sets across all
agents, a time label ti is assigned to each suboptimal arm
i. This label incorporates both the communication delay
inherent in the distributed system and the time at which the
arm is identified as suboptimal. Using the predetermined
time label ti, agents can synchronize the elimination of the
suboptimal arm, ensuring that all agents remove it from their
candidate sets at the same time.

At each time slot t, agent j samples all arms in the candidate
set Sj(t). Let τi,j(t) denote the number of samples of arm
i by agent j up to time slot t. Since all agents update their
candidate set synchronously, the number of observations of
all agents on arm i is equal. Thus, the total sample count for
arm i is τi(t) = Nτi,j(t). Let µ̃i,j(t) denote the estimate
of the global mean on arm i by the j-th agent (A detailed
explanation is given in CES (Algorithm 2)). Based on the
global estimate µ̃i,j and the sample count τi,j , we can con-
struct a confidence interval for the global reward mean µi,
which typically follows the Hoeffding’s inequality [Hoeffd-
ing, 1994]. Define Ui,j(t, δ) as the radius of the confidence
interval for the rewarding process with τi,j(t) samples and
confidence level 1− 2δ, which is written as

Ui,j(t, δ) :=

√
log δ−1

2Nτi,j(t)
+

Q

(1− λ2)(τi,j(t) + 1)
, (4)

where δ specifies the violation probability that the true
mean lies outside the above confidence interval (The de-
tails and analysis are introduced in Lemma 1). The global
reward mean µi is contained within the confidence inter-
val (µ̃i,j(t) − Ui,j(t, δ), µ̃i,j(t) + Ui,j(t, δ)) with at least
1−2δ probability. For simplicity, we use UCBi,j and LCBi,j

to represent the upper and lower confidence bounds of µi,
respectively.

For any arm i in the candidate set Sj(t), it will be considered
suboptimal if the global estimate of arm i and imax satisfies

µ̃i,j(t) + Ui,j(t, δ)︸ ︷︷ ︸
UCBi,j

≥ µ̃imax,j(t)− Ui,j(t, δ)︸ ︷︷ ︸
LCBimax,j

,
(5)

where imax is the arm with the maximum global mean es-
timate among all arms in Sj(t) and is determined at the



Algorithm 1 Distributed Round-Robin-based Bandit Algo-
rithm (DRRB-bandit) (for agent j)
Input: The time horizon T , the diameter D and the arm set
K
Initialization: t = 0, τi,j = 0, Ui,j = 1, Sj = K, Bj = ∅

1: Pull each arm one time and receive a local reward Xi,j

2: µ̃i,j ← Xi,j , τi,j ← τi,j + 1, t← t+K, i ∈ K
3: while t ≤ T do
4: imax ← argmaxi{µ̃i,j : i ∈ Sj}
5: for i ∈ Sj do
6: Pull arm i and obtain the reward Xi,j

7: t← t+ 1, τi,j ← τi,j + 1
8: if µ̃i,j < µ̃imax,j − 2Ui,j then
9: ti ← t+ |Sj |D, Bj ← Bj ∪ {i}

10: end if
11: Update Ui,j via equation (4)
12: end for
13: Operate Subroutine 2 for the latest global estimates
14: for each arm i in Bj whose t ≥ ti do
15: if |Sj | > 1 then Sj ← Sj\{i}; else Sj ← Sj
16: end for
17: end while

beginning of each round (Line 4, Algorithm 1).

In DRRB-bandit, once agent j identifies arm i as subop-
timal, it will add the arm to the elimination arm set Bj and
broadcast its index to all other agents. For each arm i, a
predetermined time label ti is assigned, which indicates the
time at which the arm will be removed. The value of ti is
set according to the following equation:

ti = t+ |Sj(t)|D, (6)

where D is the diameter of the communication graph G,
and t represents the time slot when the arm is identified as
suboptimal. |Sj(t)| represents the element number in Sj(t).
Given the indexes of suboptimal arms, an elimination arm
set Bj(t) of agent j at time t is constructed, which contains
all arms identified as suboptimal, i.e.,

Bj(t) = {i, i ∈ Sj : ∃i′ ∈ Sj \ {i} such that
µ̃i,j(t) ≤ µ̃i′,j(t)− 2Ui,j(t, δ)}.

(7)

By continuously monitoring the elimination set, the algo-
rithm iteratively updates the candidate set until the optimal
arm is identified.

3.2 CONSENSUS ESTIMATION SUBROUTINE
(CES)

To mitigate the biased estimation arising from the heteroge-
neous setting, we propose a novel consensus estimation sub-
routine in the federated bandit setting with fully distributed

Algorithm 2 Consensus Estimation Subroutine (CES) (for
agent j)
Input: The local reward Xi,j , the candidate arm set Sj , the
function of weight coefficient σi(τ) = 1

τ+1 , the sample
count τi,j and the weight matrix W = [ωj,j′ ]N×N

Output: The latest estimate µ̃i,j and elimination arm set Bj

1: Send µ̃i,j , ti, i ∈ Sj and Bj to neighbors
2: Receive µ̃i,j′ , ti and Bj′ from neighbors j′ ∈ Nj

3: for i ∈ Sj do
4: Update the weight coefficient σi and compute the

latest global estimate as follows

µ̃i,j ← (1− σi)
∑

j′∈Nj∪{j}

ωj,j′ µ̃i,j′ + σiXi,j

5: end for
6: for j′ ∈ Nj do
7: Update the elimination arm set via Bj ← Bj ∪ Bj′
8: end for

communication, which can be integrated to DRRB-bandit
(Introduced in Section 3.1).

The key idea of CES is synthesizing the information ex-
changed from each agent’s neighborhood and estimating the
global mean without bias. In this section, we propose a fair
mechanism where the samples of all agents are equally used
to estimate the global mean. By properly configuring CES,
each agent ensures a fair global estimate, which identifies
suboptimal arms more accurately and rapidly.

In CES, agent j combines the historical data from its neigh-
borhood and its own real-time reward to obtain biased global
estimates. As an example, we focus on demonstrating the
consensus process in estimating the global mean of arm i.
Up to time slot t, agent j has sampled arm i for τi,j(t) times
and the reward obtained at τi,j(t)-th sample is defined as
X

τi,j(t)
i,j . The global estimate of agent j on arm i is also

defined as µ̃
τi,j(t)
i,j . In the communication phase, agent j

exchanges its previous estimate µ̃
τi,j(t)−1
i,j among its neigh-

borhoodNj (Line 1-2, Algorithm 2). Based on the historical
observations from the neighborhood and the real-time re-
ward X

τi,j(t)
i,j , each agent j updates its latest global estimate

µ̃
τi,j(t)
i,j as follows

µ̃
τi,j(t)
i,j :=(1− σi(τi,j(t)))

∑
j′∈Nj∪{j}

ωj,j′ µ̃
τi,j′ (t)−1

i,j′

+ σi(τi,j(t))X
τi,j(t)
i,j ,

(8)

where σi(τi,j(t)) represents the weight coefficient that ad-
justs the contribution of each piece of information in the
global estimate µ̃

τi,j(t)
i,j . Additionally, the elimination arm

set Bj(t) is also updated in CES (Lines 6-7, Algorithm 2).



Algorithm 2 provides the latest global estimates and the
updated elimination arm set to DRRB-bandit.

4 REGRET ANALYSIS

In this section, we summarize the theoretical results for the
FMAB problem and present the near-optimal results from
the perspectives of both individual and group regret. To
derive these regret bounds, we first introduce the following
lemma, which characterizes a tighter confidence interval
for the estimates compared to the previous work. Then, we
present the results for FMAB in the form of Theorems.

The following lemma demonstrates the performance of CES,
which achieves a bounded estimation error, with the upper
bound of the error decreasing as the agent number N based
on limited samples.

Lemma 1. Assume that Xi,j is an i.i.d. reward process with
unknown mean µi,j . Set σi(τi,j(t)) =

1
τi,j(t)+1 . Then, for

any arm i ∈ K, agent j ∈ N and time slot t ∈ {1, . . . , T},
with probability 1− 2δ, δ ∈ (0, 0.5), we have

|µ̃τi,j(t)
i,j − µi| ≤

√
log δ−1

2Nτi,j(t)
+

Q

(1 + τi,j(t))(1− λ2)
,

where Q is determined by the communication graph G and
λ2 is the second largest eigenvalue of matrix W . We have
Q = 1 if the graph G is balanced, otherwise, Q =

√
N .

Proof Sketch of Lemma 1. The term |µ̃τi,j(t)
i,j − µi| can

be upper bounded by |µ̂τi,j(t)
i,j −µi|+ |µ̃

τi,j(t)
i,j − µ̂

τi,j(t)
i | via

the triangle inequality. The variable µ̂
τi,j(t)
i represents the

global estimate under the full information communication,
i.e., the sample rewards of the arm i of all agents are accessi-
ble. The first term |µ̂τi,j(t)

i,j − µi| is bounded by Hoeffding’s
inequality (Lemma 4). For the second term, it is obtained
by exploiting the properties of graph theory (Lemma 2): It-
erating equation (8) yields the relation between µ̃

τi,j(t)
i,j and

X
τi,j(t)
i,j , where each part matches that in µ̂

τi,j(t)
i . Detailed

proofs are provided in Appendix D.1.

Lemma 1 provides a better confidence interval for the global
estimates µ̃i,j compared to previous works. The radius of
the confidence interval is N2 and N times smaller than that
in Zhu et al. [2021] and Xu and Klabjan [2024], respectively.
While Zhu and Liu [2023] achieved similar performance,
their results only hold for fully connected communication
graphs, i.e., each agent is directly connected to all others.
The superiority of our interval is clearly reflected in equa-
tion (8), which ensures that the proportion of each reward
X

τi,j(t)
i,j in the global estimate µ̃

τi,j(t)
i,j is 1

Nτi,j(t)
, allowing

agents to estimate the global mean more accurately.

4.1 UPPER BOUNDS

Theorem 1 (Regret upper bound). Let Ui,j(t, δ) in equa-
tion (4) with δ = T−2 be the radius of the confidence in-
terval of a random [0, 1]-valued i.i.d. process. Given γ > 0,
DRRB-bandit for FMAB problems achieves the following
performance, with a probability of at least 1− 2TKNδ.

(i) Individual regret:

E[RT
j (A)] ≤

∑
i:∆i>0

16 log T

N∆i
+
∑

i:∆i>0

(D + 1)∆i

+
8Q(K − 1)

1− λ2
+ 1,

(ii) Group regret:

E[RT (A)] ≤
∑

i:∆i>0

16 log T

∆i
+
∑

i:∆i>0

N(D + 1)∆i

+
8NQ(K − 1)

1− λ2
+ 1.

Proof Sketch of Theorem 1. To bound the individual re-
gret RT

j (A), we first need to determine an upper bound for
the sample counts. Based on equation (5), we can derive
an instance-dependent upper bound for the sample counts.
However, in distributed networks, communication delays be-
tween agents cause the upper bound derived from equation
(5) to be inaccurate. To ensure synchronization in sampling,
agents will additionally sample suboptimal arms. Therefore,
we bound the sample count by considering the diameter of
the communication graph and the theoretical result from
equation (5). Subsequently, by performing a regret decom-
position, we combine the regrets for each arm sampled by
agent j to obtain the individual regret RT

j (A). Detailed
proofs are provided in Appendix D.4.

In Theorem 1, there exists an uncertain term 1
1−λ2

which is
bounded in the following corollary.

Corollary 1 (An extension of Theorem 1). Under the con-
dition of Theorem 1, the further bound of the regret is

(i) Individual regret:

E[RT
j (A)] ≤

∑
i:∆i>0

16 log T

N∆i
+ 8KQDN2

+
∑

i:∆i>0

(D + 1)∆i + 1,

(ii) Group regret:

E[RT (A)] ≤
∑

i:∆i>0

16 log T

∆i
+ 8KQDN3

+
∑

i:∆i>0

N(D + 1)∆i + 1.



Corollary 2 (Instance-independent regret bound). Under
the conditions of Theorem 1, the instance-independent upper
bound of DRRB-bandit for FMAB problems achieves the
following performance:

(i) Individual regret:

E[RT
j (A)] ≤8

√
KT log T

N
+K(D + 1)

+
8QK

1− λ2
+ 1,

(ii) Group regret:

E[RT (A)] ≤8
√
KNT log T +KN(D + 1)

+
8NQK

1− λ2
+ 1.

Theorem 2 (Communication cost). Under the conditions
of Theorem 1, DRRB-bandit suffers the communication
cost at most

E[CT (A)] ≤ 16K log T

∆2
min

+
8KNQ

(1− λ2)∆min
+KN(D+1),

where ∆min = mini:∆i>0 ∆i.

Proof Sketch of Theorem 2. In the proof of Theorem 1,
one can deduce that the suboptimal arm i is sampled by
agent j at most 8 log δ−1

N∆2
i

+ 8Q
(1−λ2)∆i

+ D + 1 times. In

Theorem 1, the violation probability is denoted by δ = 1
T 2 ,

then the sample count is bounded by

τi,j ≤
16 log T

N∆2
i

+
8Q

(1− λ2)∆i
+D + 1.

In each round, DRRB-bandit collects information about
all arms and communicates it with other agents in a sin-
gle batch. Therefore, to determine the maximum number
of communications, it suffices to consider the number of
samples of the arm that remain in the candidate set for the
second longest period.

Remark 1. Although the proposed algorithm requires
knowledge of the time horizon T to set δ and achieve near-
optimal regret performance, in practice, when T is unknown,
the algorithm can still perform similarly when designing δ
as a tunable function, such as δ = 1/t2.

4.2 LOWER BOUNDS

Besides the upper bounds, we also present lower bounds for
FMAB problems. We investigate the lower bounds of both
individual and group regrets. For the regret lower bound,
we derive two separate lower bounds corresponding to two
distinct cases (Theorems 3 and 4).

Theorem 3 (General regret lower bound). For FMAB prob-
lems with any number of agents, arms, and stochastic re-
wards satisfying a 1-Gaussian distribution, if the graph G
is connected, any federated bandit algorithm must incur
regrets at least:

(i) Individual regret:

lim inf
T→∞

E[RT
j (A)]

log T
≥

∑
i:∆i>0

2

N2∆i
.

(ii) Group regret:

lim inf
T→∞

E[RT (A)]
log T

≥
∑

i:∆i>0

2

N∆i
.

Theorem 4 (Regret lower bound for algorithms with
round-robin sampling). For FMAB problems with any num-
ber of agents, arms, and stochastic rewards satisfying a
1-Gaussian distribution, if the graph G is connected, any
federated bandit algorithm using round-robin sampling must
incur regrets at least:

(i) Individual regret:

lim inf
T→∞

E[RT
j (A)]

log T
≥

∑
i:∆i>0

2

N∆i
.

(ii) Group regret:

lim inf
T→∞

E[RT (A)]
log T

≥
∑

i:∆i>0

2

∆i
.

Remark 2. In Section 4.2, we present two types of
lower bounds for FMAB problems: one general bound
in Theorem 3, and a specific bound for the class
of round-robin-based algorithms in Theorem 4. The-
orem 3 provides general lower bounds for individ-
ual regret Ω(

∑
i:∆i>0 N

−2∆−1
i log T ) and group regret

Ω(
∑

i:∆i>0 N
−1∆−1

i log T ) under the strict assumption
that all other agents’ reward means are equal. This
implies that each agent only needs to learn its local
reward means. Theorem 4 gives the individual regret
bound Ω(

∑
i:∆i>0 N

−1∆−1
i log T ) and group regret bound

Ω(
∑

i:∆i>0 ∆
−1
i log T ) for all round-robin-based algo-

rithms.

Remark 3. According to Theorems 1 and 3, we have shown
that the lower and upper bounds match in terms of agent
number N , reward gap ∆i, and time horizon T for the class
of algorithms based on round-robin sampling. However, for
general algorithms, we have been unable to prove the opti-
mality of DRRB-bandit due to the complexity of decision-
making in multi-agent systems. Recalling the algorithms
from previous works, we have improved both the individual
and group regret bounds to O(

∑
i:∆i>0 N

−1∆−1
i log T )

and O(
∑

i:∆i>0 ∆
−1
i log T ), respectively.



Remark 4. In the special case of homogeneous FMAB
problems (µi,j = µi for all agents), the regret up-
per bounds of Theorem 1 match the known individual
and group lower bounds, Ω(

∑
i:∆i>0 N

−1∆−1
i log T ) and

Ω(
∑

i:∆i>0 ∆
−1
i log T ) [Wang et al., 2020, Wang and Yang,

2023]. Therefore, our algorithm, reduced to the easier ho-
mogeneous setting, is near-optimal.

5 EXPERIMENTS

In this section, we conduct a series of numerical experiments
to evaluate the performance of DRRB-bandit. All exper-
iments are repeated for 50 trials, with the means plotted
as lines and the standard deviations represented by shaded
regions.

Setups and Baselines. In DRRB-bandit, we set the pa-
rameters as N = 8, K = 10, Q =

√
N and δ = 1/T 2. To

ensure a fair comparison, we use a ring graph, which is a con-
nected graph with a second-largest eigenvalue λ2 = 0.5713.
Each agent is connected to four neighbors with whom it
exchanges information. We compare both individual and
group regrets of DRRB-bandit against two baselines,
Gossip-UCB Zhu et al. [2021] and Dis-UCB Zhu and
Liu [2023], as outlined in Table 1. Both algorithms tackle
the federated bandit problem within the UCB framework but
fail to exploit the advantages of distributed learning fully.
Consequently, the individual regret of Dis-UCB remains
independent of the number of agents N . In contrast, the
group regret grows linearly with N , highlighting a funda-
mental limitation in their distributed learning design. This
shortcoming stems from the fact that these algorithms do
not effectively utilize the multi-agent system’s collabora-
tive potential, and their consensus-based decision-making
overlooks the benefits that can arise from coordinated ex-
ploration.

Observations. Figure 1 reports regrets for the proposed
algorithm and the baselines. Figures (1a) and (1b) show in-
dividual and group regrets for the three algorithms. These
figures demonstrate that DRRB-bandit does not per-
form well during the initial phase, as it performs uniform
sampling across all arms. However, after sufficient sam-
pling, all agents successfully eliminate the suboptimal arms,
and the regret stabilizes, remaining almost unchanged for
the remainder of the period. In Figure (1c), it is obvious
that the increasing trend aligns with the individual regret
bound O(

∑
i:∆i>0 N

−1∆−1
i log T ), which increases with

the number of arms K. This phenomenon can be easily
explained: as the number of arms increases, the task of
learning each arm’s reward becomes more difficult, lead-
ing to higher regret. Finally, when varying the number of
agents, we observe a decreasing trend that corresponds to
the O(

∑
i:∆i>0 N

−1∆−1
i log T ) individual regret bounds,

which decrease with the number of agents N . In contrast,

Gossip-UCB shows increasing regret, consistent with
its regret bound O(

∑
i:∆i>0 N∆−1

i log T ). For Dis-UCB,
since the number of neighbors for each agent remains fixed
when the number of agents changes, we also observe in-
creasing regret, as shown in Figure (1d). We also provide
additional simulations of the homogeneous setting in Ap-
pendix E.

(a) Individual regrets (b) Group regrets

(c) Regrets with different num-
bers of arms

(d) Regrets with different num-
bers of agents

Figure 1: Performance comparison with different arms and
agents.

6 CONCLUSION

This work focuses on the study of FMAB problems
and introduces a fully distributed algorithm called
DRRB-bandit. To address the challenge of heterogeneous
feedback, we propose a consensus estimation subroutine that
allows agents to estimate the global mean of each arm by
only communicating with their neighbors. This approach
improves convergence speed compared to previous methods
by effectively balancing the contribution of each agent’s
data. According to the works above, the proposed algorithm
reduces individual and group upper regrets. Additionally,
we discuss the lower bounds for the heterogeneous feder-
ated bandit problem, proving that our algorithm achieves
near-optimal performance among those using Round-Robin
sampling.
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A APPENDIX / SYMBOL EXPLANATION

For all symbols in this article, we give explanations of them in Table 2.

B APPENDIX / SOME KNOWLEDGE OF GRAPHS

Throughout this paper, we consider FMAB problems with N agents operating in a time-invariant network. The network is
represented by a communication graph G(N , E ,X ), which consists of three components:

1. N = {1, . . . , N} is the set of agents in the network, corresponding to the number of agents in the distributed system.

2. E ⊂ N ×N is the edge set, which determines the connectivity between agents.

3. X = [aj,j′ ]N×N is the adjacency matrix of the graph G, where aj,j′ denotes the weight of the edge between agents j
and j′.

Notably, the adjacency matrix represents the importance of one agent to its neighbors and encodes neighborhood information
in G. Specifically, aj,j′ is the weight from agent j′ to agent j. Since the graph is directed, we have aj,j′ ̸= aj′,j .

The graph has no self-loops, meaning that aj,j = 0 for all j ∈ N . An edge between agents j and j′ exists if and only if
aj,j′ ̸= 0, i.e., (j, j′) ∈ E .

For each agent j, its neighborhood is denoted as Nj = {j′ | j′ ∈ N , aj,j′ ̸= 0, j′ ̸= j}. Finally, we define the diameter of
the graph G as D, which represents the longest distance between any two agents in the network.

For graph G, its corresponding Laplacian matrix L is defined as follows

Lj,j′ =


− aj,j′ , j ̸= j′

N∑
k=1

aj,k. j = j′

The maximum degree of graph G is defined as ϵ = maxi(
∑

j′ ̸=j aj,j′). Then, for any constant β ∈ (0, 1/ϵ], the Perron
matrix W = I − βL could be obtained. The Perron matrix W = [ωi,j ]N×N is a doubly random matrix and both the sum of
row elements and column elements in W is 1. In the multi-agent bandit setting, it is widely used to solve the consensus
problem [Olfati-Saber et al., 2007].

*Corresponding author: linyang@nju.edu.cn
†Corresponding author: linyang@nju.edu.cn
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Symbol/Term Definition
G(N , E ,A) A graph to describe a multi-agent system

N = {1, . . . , N} Set of agents in a multi-agent system
E ⊂ N ×N The edge set in graph G
X = [ai,j ]N×N The weight matrix to describe the relations between agents

Nj Neighborhood of agent j, excluding agent j
W = [ωa,b]N×N Communication matrix

D The diameter of graph G
λ2 The second largest eigenvalue of W
Q A symbol to describe whether the graph is balanced

K = {1, . . . ,K} Set of arms in a multi-armed bandit (MAB) problem
T Total number of time slots

Aj(t) Arm chosen by agent j at time slot t
XAj(t),j(t) Random reward received by agent j after pulling arm Aj(t) at time slot t
Xi,j(t) Random reward of arm i observed by agent j at time slot t
µi,j Mean reward of arm i observed by agent j, bounded in [0, 1]
Xi(t) Global reward of arm i at time slot t
µi Global mean reward of arm i

µ̃i,j(t) The global estimate of agent j of arm i at time slot t
i⋆ The unique optimal arm with the largest global mean reward
Sj(t) The candidate arm set of agent j at time slot t
Bj(t) The elimination arm set of agent j at time slot t
ti The time label attached to arm i

∆i = µi⋆ − µi Reward gap between the optimal arm and arm i
τi,j(t) The sample count of agent j on arm i until time slot t
τi(t) The global sample count on arm i
δ The violation probability of confidence interval

Ui,j(t, δ) The radius of confidence interval
UCBi,j The upper confidence bound of agent j on arm i
LCBi,j The lower confidence bound of agent j on arm i

E[RT (A)] Expected group regret for a distributed algorithm A
E[RT

j (A)] Expected individual regret for agent j in a distributed algorithm A

Table 2: Summary of symbols and Definitions

C APPENDIX / PRELIMINARIES OF THE PROBLEM

Lemma 2. [Yan et al., 2012] For a doubly random matrix W , it is an irreducible, doubly stochastic matrix with strictly
positive diagonal entries. Then, there exists a positive constant Q such that

N∑
j=1

∣∣∣∣ωk
i,j −

1

N

∣∣∣∣ < Qλk
2 ,

where ωk
i,j represents the element in the i-th row and j-th column of the matrix W k, k represents the iteration step, and λ2

is the second largest eigenvalue of matrix W . Q is equal to 1 if the graph G is balanced; otherwise, Q =
√
N .

Lemma 3. [Lattimore and Szepesvári, 2020] Suppose that Xi is σ2
i sub-Gaussian and Xi are all independent for

i ∈ {1, . . . , N}. Then we have 1
N

∑N
i=1 Xi is

∑N
i σ2

i

N2 sub-Gaussian.

Lemma 4. [Molloy and Reed, 2002] Assume that X(t)− µ is independent, σ2 sub-Gaussian random variable. Then for
any ϵ ≥ 0,

P(µ̂ ≥ µ+ ϵ) ≤ exp(−nϵ2

2σ2
),

P(µ̂ ≤ µ− ϵ) ≥ exp(−nϵ2

2σ2
),



where µ̂ = 1
n

∑n
t=1 X(t) and n is the sample count.

Lemma 5. [Dubhashi and Panconesi, 2009] If a random variable X has a finite mean and a ≤ X ≤ b almost surely, then
X is 1

4 (b− a)2 sub-Gaussian.

Lemma 6. [Gross and Yellen, 2003] For a strong connected graph G with N nodes and diameter D, the second largest
eigenvalue of Perron matrix W is bounded by

λ2 ≤ 1− β

ND
,

with β ∈ (0, 1/ϵ] and ϵ = maxi(
∑

j′ ̸=j aj,j′).

Lemma 7. Lattimore and Szepesvári [2020] In FMAB problems, let Dj(i) denote the event that agent j eliminates the
optimal arm i⋆ in favor of some suboptimal arm i. Then, the probability of this event is bounded by

P(Dj(i)) ≤ δ.

Assuming the violation probability is δ = 1
T 2 , the regrets incurred from the erroneous elimination of the optimal arm are of

O(1) order.

D APPENDIX / MISSED PROOFS

D.1 PROOF OF LEMMA 1

Proof. To clearly illustrate the relationship between the sampling count and the global estimate, let Xτi,j(t)
i,j represent the

reward, and µ̃
τi,j(t)
i,j the global estimate, both for agent j when pulling arm i at the τi,j(t)-th sample. Here, τi,j(t) denotes

the number of times agent j has pulled arm i up to time slot t. Benefiting from the design of Algorithm 1, all agents sample
arm i at the same frequency. In the proof, we focus on arm i and use τ to represent the sampling count τi,j for simplicity.

For the sake of computation, stack the value of µ̃τ
i,j and Xτ

i,j into vectors as follows

µ̃τ
i := [µ̃τ

i,1, . . . , µ̃
τ
i,N ]T ,

Xτ
i := [Xτ

i,1, . . . , X
τ
i,N ]T .

Stacking all global estimates µ̃τ
i,j , equation (8) can be rewritten as

µ̃τ
i = (1− σi(τ))Wµ̃τ−1

i + σi(τ)X
τ
i . (9)

Substituting σi(τ) =
1

τ+1 into (9) and iterating it, we have

µ̃τ
i =

1

τ + 1
W τ µ̃0

i +
1

τ + 1

τ∑
k=1

W τ−kXk
i .

In Algorithm 1, when t = 0, there is no communication between agents. Hence, we denote µ̃0
i,j = X0

i,j (Line 2, Algorithm 1).
Then, the above equation could be rewritten as

µ̃τ
i =

1

τ + 1

τ∑
k=0

W τ−kXk
i .

Spitting the elements from µ̃τ
i , the global estimate µ̃τ

i,j of agent j for arm i is as follows

µ̃τ
i,j =

1

τ + 1

τ∑
k=0

N∑
j′=1

ωτ−k
j,j′ X

k
i,j′ .



Meanwhile, the global estimate under the full information communication is written as

µ̂τ
i =

1

N

N∑
j=1

X̄τ
i,j , (10)

where

X̄τ
i,j =

1

τ + 1

τ∑
k=0

Xk
i,j .

Subtracting µ̂τ
i from µ̃τ

i,j , we have

µ̃τ
i,j − µ̂τ

i =
1

τ + 1

τ∑
k=0

N∑
j′=1

ωτ−k
j,j′ X

k
i,j′ −

1

τ + 1

τ∑
k=0

N∑
j=1

1

N
Xk

i,j

=
1

τ + 1

τ∑
k=0

N∑
j′=1

(ωτ−k
j,j′ −

1

N
)Xk

i,j′ .

Then, substituting Lemma 2 into µ̃τ
i,j − µ̂τ

i , we have

|µ̃τ
i,j − µ̂τ

i | <
1

τ + 1

τ∑
k=0

Qλτ−k
2 =

1− λτ+1
2

1− λ2
· Q

τ + 1
≤ Q

(1− λ2)(τ + 1)
, (11)

where the constant Q depends on the matrix W . When the doubly random matrix W is symmetric, we have Q = 1.
Otherwise, we have Q =

√
N . The details are also shown in Lemma 8 in Zhu and Liu [2023].

The goal is to obtain an unbiased estimation µ̃τ
i,j on the global mean µi. To achieve the goal, we could divide the problem

into two parts: µ̃τ
i,j − µ̂τ

i and µ̂τ
i − µi. According to the triangle inequality, we have

|µ̃τ
i,j − µi| ≤ |µ̃τ

i,j − µ̂τ
i |+ |µ̂τ

i − µi|. (12)

From equation (12) we have completed the bound between µ̃τ
i,j and µ̂τ

i . How to prove the bound of µ̂τ
i − µi is what we

require to consider in the following proof. According to the definition of µ̂τ
i in (10), µ̂τ

i could be rewritten as

µ̂τ
i =

1

N

N∑
j=1

X̄τ
i,j =

1

N(τ + 1)

N∑
j=1

τ∑
k=0

Xk
i,j ,

For arm i, the global reward Xτ
i = 1

N

∑N
j=1 Xi,j is considered as a linear combination reward of Xτ

i,j , j ∈ N . According
to Lemma 5, the [0, 1]-valued variable Xi,j could be considered as a 1

4 sub-Gaussian variable. Since that Xτ
i,j , i ∈ K are all

independent sub-Gaussian variables, we could deduce that Xτ
i is a 1

4N sub-Gaussian variable from Lemma 3.

Assume that arm i is pulled by N agents for τ times, then it follows from Lemma 4 that

P(µ̂τ
i ≥ µi + ε) ≤ exp

(
−τε2

2σ2

)
,

P(µ̂τ
i ≤ µi − ε) ≤ exp

(
−τε2

2σ2

)
.

(13)

where ε =
√

log δ−1

2Nτ and σ2 =
∑N

i=1 σ2
i

4N2 = 1
4N . Make a transformation on (13), we have

P

(
µ̂i(t) ≥ µi +

√
log δ−1

2Nt

)
≤ δ,

P

(
µ̂i(t) ≤ µi −

√
log δ−1

2Nt

)
≤ δ.

(14)



Furthermore, combining the two inequalities in (14) yields

P

(
µi −

√
log δ−1

2Nt
≤ µ̂τ

i ≤ µi +

√
log δ−1

2Nt

)
≥ 1− 2δ.

With probability at least 1− 2δ, equation (12) can be written as

|µ̃τ
i,j − µi| ≤

√
log δ−1

2Nτ
+

Q

(1− λ2)(τ + 1)
. (15)

D.2 PROOF OF LEMMA 6

Proof. Due to that the relationship between the Laplacian matrix and the Perron matrix is W = I − βL, the second largest
eigenvalue of W is equal to the smallest nonzero eigenvalue of L, which is the algebraic connectivity of graph G. From
reference [Gross and Yellen, 2003], the smallest nonzero eigenvalue λ̂2 of L is bounded by λ̂2 ≥ 1

ND . Then, one can deduce
that the second largest eigenvalue λ2 of the Perron matrix W is

λ2 ≤ 1− βλ̂2 ≤ 1− β

ND
.

D.3 PROOF OF LEMMA 7

Proof. According to the definition of arm elimination, the emergence of event Dj(i) implies equation (5). Based on
Lemma 4, the probability of event Dj(i) is as follows

P(Dj(i)) ≤ exp

(
−4τi,jU2

i,j(t, δ)

2× 1
4N

)
≤ exp

(
−2Nτi,j

log δ−4

2Nτi,j

)
≤ δ4 ≤ δ.

In Theorem 1, the violation probability of the confidence interval is δ = 1
T 2 . The expected regret caused by erroneous

elimination is bounded by
N∑
j=1

T∑
t=1

∑
i:∆i>0

∆iP(Dj(i)) ≤ NTKδ ≤ NK

T
,

which is in order O(1).

D.4 PROOF OF THEOREM 1

Proof. Step 1: Bound the sample count of each arm i for agent j

Recall that for all arms i ∈ K \ {i⋆}, ∆i > 0. For the two regrets defined in equations (1) and (2), the practical sample count
τi,j(T ) is of primary interest. However, in the case of DRRB-bandit, τi,j(t) is difficult to determine directly because
additional sample counts may exist, even if the arm does not satisfy the condition in equation (8). This is because agents
with strong learning capabilities need to maintain the same update of the candidate arm set as other agents, which could lead
to an increase in regrets.

To address this, we introduce an auxiliary variable, τ̂i,j(t), representing the theoretical sample count for agent j when
sampling arm i. This can be computed using equation (8). The variable τ̂i,j(t) corresponds to the sample count when arm i
has been included in the set Bj , while τi,j(t) represents the time when arm i is excluded from the set Sj . Therefore, when
computing the upper bound of the sample count, we can replace τi,j(t) with τ̂i,j(t) as described in equation (8). For the two
sample counts mentioned above, the relationship between them is

τ̂i,j(t) ≤ τi,j(t) ≤ τ̂i,j(t) +D. (16)



According to the explanation above, the sample counts of all arms in candidate set Sj are the same for all agents in agent set
N . Since that µ̃i,j estimates µi, the reward gap ∆i for each agent j ∈ N is related to Ui,j(t, δ). Equation (5) is equal to

2Ui,j(t, δ) ≥ µ̃imax,j(t)− µ̃i,j(t)
(a)

≥ ∆i − 2Ui,j(t, δ), (17)

where inequality (a) is from µ̃imax,j(t) ≥ µ̃i⋆,j(t) ≥ µi⋆ − Ui,j(t) and µ̃i,j(t) ≤ µi + Ui,j(t).

Let Ai,j,t denote the event in which agent j pulls arm i at time slot t, then we have

P

⋂
i,j,t

Ai,j,t

 = 1− P

⋃
i,j,t

¬Ai,j,t

 ≥ 1−
∑
i,j,t

P (¬Ai,j,t) ≥ 1− 2tNKδ.

Replacing τi,j(t) with τ̂i,j(t) in functions Ui,j(t, δ) and σi(t), equation (17) can be written as

4

(√
log δ−1

2Nτ̂i,j(t)
+

Q

(1− λ2)(1 + τ̂i,j(t))

)
≥ ∆i, (18)

i.e., √
log δ−1

2Nτ̂i,j(t)
+

Q

(1− λ2)(1 + τ̂i,j(t))
≥ ∆i

4
,

log δ−1

2Nτ̂i,j(t)
≥ (

∆i

4
− Q

(1− λ2)(1 + τ̂i,j(t))
)2,

log δ−1

2Nτ̂i,j(t)
≥ ∆2

i

16
− Q∆i

2(1− λ2)τ̂i,j(t)
,

τ̂i,j(t) ≤
8 log δ−1

N∆2
i

+
8Q

(1− λ2)∆i
.

Define τ⋆ as the maximum satisfying equation (18), then the maximum theoretic sample count τ̂i,j of agent j pulling arm i
is

τ̂i,j ≤ ⌈τ⋆⌉ ≤ τ⋆ + 1 ≤ 8 log δ−1

N∆2
i

+
8Q

(1− λ2)∆i
+ 1, (19)

with probability at least 1− 2tNKδ.

Step 2: Bound the individual regret of agent j

In the design of Algorithm 1, agents refrain from using the most recent information to ensure consensus on the candidate set.
There is a time delay in updating the candidate set because agent j requires a few rounds to ensure that all other agents
receive the information. The diameter of the communication graph G is denoted as D, which means that any agent can
obtain the information initially learned by agent j after at most D communication rounds. Therefore, the practical sample
count τi,j(t) is bounded by:

τ̂i,j ≤ τi,j(T ) ≤ τ̂i,j +D. (20)

Therefore, the cumulative regret for agent j could be decomposed as follows

E[RT
j (A)] = Tµi⋆ −

T∑
t=1

E[XAj(t)(t)] = Tµi⋆ −
∑

i:∆i>0

µiτi,j(T )

=
∑

i:∆i>0

∆iτi(t) ≤
∑

i:∆i>0

∆i(τ̂i,j +D).

(21)

The regret consists of two parts: large probability events (The optimal arm persists in the candidate arm set) and small
probability events (The optimal arm is eliminated). The regret caused by large probability events is bounded by the sample



counts, while the regret caused by small probability events is bounded by Lemma 7. According to the equation (21), the
total regret is bounded by

E[RT
j (A)] = E[RT

j (large probability events)] + E[RT
j (small probability events)]

≤
∑

i:∆i>0

∆i(τ̂i,j +D) + 1 ≤
∑

i:∆i>0

16 log T

N∆i
+K(D + 1)∆i +

8KQ

1− λ2
+ 1.

According to (1), the group regret RT (A) could be rewritten as follows

E[RT (A)] = E[RT (large probability events)] + E[RT (small probability events)]

= NTµi⋆ −
T∑

t=1

N∑
j=1

E[XAj(t),j(t)] + 1

= NTµi⋆ −
∑

i:∆i>0

N∑
j=1

µiτi,j(T ) + 1

(a)

≤
∑

i:∆i>0

N∑
j=1

(µi⋆,j − µi,j)(τ̂i,j +D) + 1

(b)
=

∑
i:∆i>0

N(µi⋆ − µi)(τ̂i,j +D) + 1

=
∑

i:∆i>0

N∆i(τ̂i,j +D) + 1

(c)

≤
∑

i:∆i>0

16 log T

∆i
+
∑

i:∆i>0

NKD∆i +
8KNQ

1− λ2
+ 1,

where inequality (a) arises due to the time delay discussed earlier, while equality (b) holds because each agent pulls each
arm at the same time, i.e., τ̂i,1 = τ̂i,2 = · · · = τ̂i,N . Inequality (c) follows primarily from equation (19).

D.5 PROOF OF COROLLARY 1

Proof. According to Lemma 6, we have

λ2 ≤ 1− β

ND
,

where β ∈ (0, 1/ϵ] is a given parameter corresponding to graph G and ϵ represents the largest neighbor number of any
agents, which is bounded by ϵ = maxi(

∑
j′ ̸=j aj,j′) ≤ N .

In this paper, define β as β = 1/ϵ ≥ 1
N . Then, one can deduce that λ2 is bounded by λ2 ≤ 1− 1

N2D and the upper bound
of 1

1−λ2
is

1

1− λ2
≤ N2D.

Then, the individual regret is bounded by

E[RT
j (A)] ≤

∑
i:∆i>0

16 log T

N∆i
+
∑

i:∆i>0

(D + 1)∆i + 8KQDN2 + 1.

The group regret is bounded by

E[RT (A)] ≤
∑

i:∆i>0

16 log T

∆i
+
∑

i:∆i>0

N(D + 1)∆i + 8KQDN3 + 1.



D.6 PROOF OF COROLLARY 2

The individual regret RT
j could be decomposed into

E[RT
j (A)] = E[RT

j (large probability events)] + E[RT
j (small probability events)]

≤
∑

i:∆i>0

∆iτi,j(T ) + 1

=
∑

i:∆i≥∆

∆iτi,j(T ) +
∑

i:∆i<∆

∆iτi,j(T ) + 1

≤
∑

i:∆i≥∆

∆iτi,j(T ) + ∆T + 1

≤
∑

i:∆i≥∆

16 log T

N∆i
+

∑
i:∆i≥∆

(D + 1)∆i +
8QK

1− λ2
+∆T + 1

≤ 16K log T

N∆
+∆T +K(D + 1) +

8QK

1− λ2
+ 1

≤ 2

√
16KT log T

N
+K(D + 1) +

8QK

1− λ2
+ 1,

where ∆ =
√

16K log T
NT . The group regret could also be transformed into

E[RT (A)] = E[RT (large probability events)] + E[RT (small probability events)]

≤
K∑
i=1

N∑
j=1

(µi⋆,j − µi,j)τi,j(T ) + 1

(a)
=

∑
i:∆i>0

N∆iτi,j(T ) + 1

≤
∑

i:∆i≥∆

N∆iτi,j(T ) +
∑

i:∆i<∆

N∆iτi,j(T ) + 1

≤
∑

i:∆i≥∆

N∆iτi,j(T ) +NT∆+ 1

≤
∑

i:∆i≥∆

N∆i(
16 log T

N∆2
i

+
8Q

(1− λ2)∆i
+ 1 +D) +NT∆+ 1

≤ 16K log T

∆
+NT∆+

8KNQ

1− λ2
+KN(D + 1) + 1

≤ 8
√
KNT log T +NT∆+

8KNQ

1− λ2
+KN(D + 1) + 1,

where equation (a) holds because all agents sample arms synchronously.

D.7 PROOF OF COROLLARY 2

In the proof of Theorem 1, one can deduce that the suboptimal arm i is sampled by agent j at most 8 log δ−1

N∆2
i

+ 8Q
(1−λ2)∆i

+D+1

times. In Theorem 1, the violation probability is denoted by δ = 1
T 2 , then the sample count is bounded by

τi,j ≤
16 log T

N∆2
i

+
8Q

(1− λ2)∆i
+D + 1.

In each round, DRRB-bandit collects information about all arms and communicates it with other agents in a single batch.
Therefore, to determine the maximum number of communications, it suffices to consider the number of samples of the arm



that remain in the candidate set for the second longest period.

CT (A) ≤ 16K log T

∆2
min

+
8KNQ

(1− λ2)∆min
+KN(D + 1).

D.8 PROOF OF THEOREM 3

Proof. Assume that
∑

j′ ̸=j µi,j′ are the same for all arm i ∈ K; under this assumption, the problem reduces to a single-agent
regret minimization problem, where only agent j’s observations matter. This assumption can be generalized to various
cases, which could result in the same lower bound of the regret. That is, agent j only needs to perform regret minimization
according to its own local observation. Therefore, the problem inherits the regret of classical multi-armed bandits.

According to the assumption above, define two reward distributions on arm i as follows

νj = (P1,j , . . . , Pi,j , . . . , PK,j),

ν′j = (P ′
1,j , . . . , P

′
i,j , . . . , P

′
N,j),

where Pk,j = P ′
k,j for all k ̸= i.

LetM be a set of distributions with finite means, and let µ :M→ R be the function that maps Pi,j ∈M to its mean. Let
µi⋆,j ∈ R and Pi,j ∈M have µ(Pi,j) < µi⋆,j and define

di,j = dinf(Pi,j , µi⋆,j ,M) = inf
P ′

i,j∈M
{D(Pi,j , P

′
i,j) : µ(P

′
i,j) > µi⋆,j},

where D(Pi,j , P
′
i,j) is the relative entropy between Pi,j and P ′

i,j . For arm i and µ(P ′
i,j) > µi⋆,j , there exists arbitrary ϵ > 0

such that D(Pi,j , P
′
i,j) ≤ di,j + ϵ.

According to Lemma 15.1 in reference Lattimore and Szepesvári [2020], the divergence between νj and ν′j is decomposed
into

D(Pνj ,Pν′
j
) =

K∑
k=1

E[τk,j(T )]D(Pk,j , P
′
k,j)

(a)
= E[τi,j(T )]D(Pi,j , P

′
i,j) ≤ E[τi,j(T )](di,j + ϵ),

where equation (a) is obtained based on D(Pk,j , P
′
k,j) = 0 if k ̸= i.

According to Bretagnolle–Huber inequality (Theorem 14.2 in Lattimore and Szepesvári [2020]), for any event Ai,j (agent j
pulls arm i), we have

Pνj
(Ai,j) + Pν′

j
(Ac

i,j) ≥
1

2
exp(−D(Pνj

,Pν′
j
))

≥ 1

2
exp(−Eνj

[τi,j(T )](di,j + ϵ))

Choose Ai,j = {τi,j(T ) > T/2}, and let RT
j = RT

j (A, νj) and RT
j′ = RT

j′(A, ν′j). Then

RT
j +RT

j′ ≥
T

2
(Pνj (Ai,j)∆i + Pν′

j
(Ac

i,j)(µ
′
i − µi⋆))

≥ T

2
min{∆i, µ

′
i − µi⋆}(Pνj

(Ai,j) + Pν′
j
(Ac

i,j))

≥ T

2
min{∆i, µ

′
i − µi⋆} exp(−Eνj

[τi,j(T )](di,j + ϵ)).

Rearranging and taking the limit inferior leads to

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di,j + ϵ
lim inf
T→∞

log
T min{∆i,µ

′
i−µi⋆}

4(RT
j +RT

j′ )

log T

≥ 1

di,j + ϵ
(1− lim inf

T→∞

log(RT
j +RT

j′)

log T
)

=
1

di,j + ϵ
,



where the last equality follows from the definition of consistency, which says that for any p > 0, there exists a constant Cp

such that for sufficiently large T , RT
j +RT

j′ ≤ CpT
p, which implies that

lim inf
T→∞

log(RT
j +RT

j′)

log T
≤ p.

Considering p > 0 was arbitrary and ϵ > 0 is limited to zero, we have

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di,j

(a)
=

2

N2∆2
i

, (22)

where equation (a) is obtained from Table 16.1 given in Lattimore and Szepesvári [2020]. We have di,j =
(µi,j−µi⋆,j)

2

2 .
Considering that

∑
j′ ̸=j µi,j′ and µi =

1
N

∑N
j=1 µi,j , we have µi⋆,j − µi,j = N(µi⋆ − µi) = N∆i.

The individual regret of the problem is lower bounded by

lim inf
T→∞

RT
j (A)
log T

≥ lim inf
T→∞

∑
i:∆i>0

∆iE[τi,j(T )]
log T

≥
∑

i:∆i>0

∆i

di,j
≥

∑
i:∆i>0

2

N2∆i
.

For the group regret, we consider it as the sum of all agents’ individual regret, and the lower bound of group regret could be
written as

lim inf
T→∞

E[RT (A)]
log T

= lim inf
T→∞

E[
∑N

j=1 R
T
j (A)]

log T
≥

∑
i:∆i>0

N∑
j=1

2

N2∆i
≥

∑
i:∆i>0

2

N∆i
.

D.9 PROOF OF THEOREM 4

Proof. In round-robin-based bandit algorithms, assume all agents sample the same arm at each time slot. Then, the global
reward of each arm is associated with a 1√

N
-Gaussian distribution, which follows from Lemma 3.

LetM be a set of distributions with finite means, and let µ :M→ R be the function that maps P ∈M to its mean. Let
µi⋆ ∈ R and P ∈M have µ(P ) < µi⋆ and define

di = dinf(P, µi⋆ ,M) = inf
P ′∈M

{D(P, P ′) : µ(P ′) > µi⋆},

where D(P, P ′) is the relative entropy between P and P ′.

Define two reward distributions as follows

ν = (P1, . . . , Pi, . . . , PK),

ν′ = (P1, . . . , P
′
i , . . . , PK).

Let all arms except arm i be the same in the two distributions. For arm i, let ϵ > 0 be arbitrary such that D(Pi, P
′
i ) ≤ di + ϵ

and µ(P ′
i ) > µi⋆ .

According to Lemma 15.1 in reference Lattimore and Szepesvári [2020], the divergence between ν and ν′ is decomposed
into

D(Pν ,Pν′) =

K∑
k=1

E[τk,j(T )]D(Pi, P
′
i )

(a)
= E[τi,j(T )](di + ϵ),

where equation (a) is obtained based on D(Pj , P
′
j) = 0 if j ̸= i.

According to Bretagnolle–Huber inequality (Theorem 14.2 in Lattimore and Szepesvári [2020]), for any event A, we have

Pµ(A) + Pµ′(Ac) ≥ 1

2
exp(−D(Pν ,Pν′)) ≥ 1

2
exp(−E[τi,j(T )](di + ϵ))



Choose A = {τi,j(T ) > T/2}, and let RT = RT (A, ν) and R′
T = R′

T (A, ν′). Then

RT +R′
T ≥

T

2
(Pµ(A)∆i + Pµ′(Ac)(µ′

i − µi⋆))

≥ T

2
min{∆i, µ

′
i − µi⋆}(Pµ(A)∆i + Pµ′(Ac))

≥ T

2
min{∆i, µ

′
i − µi⋆} exp(−E[τi,j(T )](di + ϵ)).

Rearranging and taking the limit inferior leads to

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di + ϵ
lim inf
T→∞

log
T min{∆i,µ

′
i−µi⋆}

4(RT+R′
T )

log T

≥ 1

di + ϵ
(1− lim inf

T→∞

log(RT +R′
T )

log T
)

=
1

di + ϵ
,

where the last equality follows from the definition of consistency, which says that for any p > 0, there exists a constant Cp

such that for sufficiently large T , RT +R′
T ≤ CpT

p, which implies that

lim inf
T→∞

log(RT +R′
T )

log T
≤ p.

Considering p > 0 was arbitrary and ϵ > 0 is limited to zero, we have

lim inf
T→∞

E[τi,j(T )]
log T

≥ 1

di
.

According to Table 16.1 given in Lattimore and Szepesvári [2020], we have di =
N∆2

i

2 . The individual regret of the problem
is lower bounded by

lim inf
T→∞

RT
j (A)
log T

≥ lim inf
T→∞

∑
i:∆i>0

∆iE[τi,j(T )]
log T

≥
∑

i:∆i>0

∆i

di
≥

∑
i:∆i>0

2

N∆i
.

According to the definition of group regret RT (A) in equation (1), the lower bound of group regret could be written as

RT (A) = NTµi⋆ −
∑

i:∆i>0

T∑
t=1

N∑
j=1

I{Aj(t) = i}E[Xi,j(t)]

= NTµi⋆ −
∑

i:∆i>0

T∑
t=1

N∑
j=1

I{Aj(t) = i}µi,j

= NTµi⋆ −
∑

i:∆i>0

N∑
j=1

µi,jτi,j(T ),

=
∑

i:∆i>0

N∑
j=1

(µi⋆,j − µi,j)τi,j(T )

=
∑

i:∆i>0

N∆iτi,j(T ).

Considering equation (22), we have

lim inf
T→∞

E[RT (A)]
log T

≥ lim inf
T→∞

∑
i:∆i>0

N∑
j=1

∆i,jE[τi,j(T )]
log T

≥
∑

i:∆i>0

N∑
j=1

2N∆i

N∆2
i

≥
∑

i:∆i>0

2

∆i
.



E ADDITIONAL EXPERIMENT

Our algorithm (DRRB-bandit) can also obtain a similar result compared to the optimal homogeneous bandit algo-
rithm (DPE2 [Wang et al., 2020]) in Figure 2. DPE2 contains a leader that could uniformly allocate resources and tasks.
DRRB-bandit relies entirely on fully distributed communication. Hence, DRRB-bandit has more regret compared with
DPE2 but is also better than other heterogeneous bandit algorithms.

(a) Individual regrets (b) Group regrets

(c) Regrets with different numbers of arms (d) Regrets with different numbers of agents

Figure 2: Performance comparison in the homogeneous setting.
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