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Abstract

Fine-tuning Large Language Models(LLMs)
on multi-turn reasoning datasets requires N
(number of turns) separate forward passes per
conversation due to reasoning token visibility
constraints, as reasoning tokens for a turn are
discarded in subsequent turns. We propose
duplicating response tokens along with a cus-
tom attention mask to enable single-pass pro-
cessing of entire conversations. We prove our
method produces identical losses to the N-pass
approach while reducing time complexity from
O(N?) to O(N?) and maintaining the same
memory complexity for a transformer-based
model. Our approach achieves significant train-
ing speedup while preserving accuracy. Our
implementation is available online'.

1 Introduction

Recent progress in LLMs has sparked a shift from
models that directly generate final responses to
those that perform explicit intermediate reasoning
before generating responses (referred to as reason-
ing models). Open-source reasoning models, such
as DeepSeek-R1 (Guo et al., 2025), demonstrate
high performance on several benchmarks. How-
ever, these existing reasoning models were trained
primarily on single-turn reasoning data.

While numerous studies have investigated fine-
tuning LL.Ms for multi-turn dialogues to improve
coherence, context awareness, tool-calling (Wang
etal., 2025; Rebedea et al., 2024), these approaches
assume non-reasoning dialogues.

Training LLMs for multi-turn reasoning conver-
sations presents novel challenges in managing to-
ken visibility. Following industry-standard prac-
tices for multi-turn conversations (OpenAl, 2024;
Anthropic, 2025), reasoning models generate in-
ternal reasoning tokens, produce a response, and
then discard the reasoning tokens from the context

1https://anonymous.4open.science/r/
one-pass-to-reason-F6CB/

in subsequent turns. This creates two fundamental
constraints that cannot be addressed with standard
multi-turn optimization techniques: (1) Visibility
Constraints: Reasoning tokens must be visible
during generation but hidden from subsequent con-
versation turns, requiring conditional visibility that
static attention masks cannot satisfy. (2) Position
ID Discrepancy: Response tokens follow reason-
ing tokens during generation but directly follow
human messages in a later context, creating posi-
tional misalignment.

While prior works have explored masking tech-
niques and position ID assignments to control infor-
mation flow and enable selective attention within
sequences for various pre-training objectives or ef-
ficiency gains (Wang and Hegde, 2024; Du et al.,
2022; Raftel et al., 2020), none address the specific
challenges of multi-turn reasoning conversations
where reasoning tokens must be conditionally visi-
ble across turns.

This paper addresses these challenges with two
primary contributions. (1) We present a theoreti-
cal framework featuring a block-sparse visibility
mask and strategic position ID assignment scheme
that enables processing an entire multi-turn reason-
ing conversation in a single forward pass while
maintaining training correctness (Theorem 2.1).
(2) Due to the absence of a publicly available
multi-turn reasoning dataset (to the best of our
knowledge), we create and release a novel dataset,
MathChatgyncReasoning, in which each assistant
message is augmented with synthetically gener-
ated reasoning. (3) We provide comprehensive
empirical validation for the proposed framework
on Qwen3 models.

Notation. We use D to denote a multi-turn rea-
soning dataset where each conversation ¢ € D
consists of alternating human messages h; and as-
sistant messages a; such that ¢ = (h;, a;)Y; for N
turns. Each assistant message a; comprises think-
ing tokens t; and response tokens ;. We denote
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Hei = (hy, rj)é;ll as conversation history before
turn ¢. For token sequence z, s,, and e, repre-
sent starting and ending position IDs. The notation
x — A(-) indicates sequences that x attends to,
and L(-) denotes language modeling loss (detailed
in Appendix A.1).

2 Single Pass Fine-tuning on Multi-Turn
Reasoning

In this section, we highlight the challenges asso-
ciated with fine-tuning language models on multi-
turn reasoning datasets. We present an optimized
approach to process an entire conversation in a
single forward pass. In multi-turn reasoning data,
response tokens 7; must attend to reasoning tokens
t; during the generation of a;. However, these
reasoning tokens must not be visible during subse-
quent generation of assistant messages a;~;. As a
result, it is not possible to construct a single static
attention mask that supports both conditions in a
conversation within a single forward pass—a ca-
pability that is often feasible with non-reasoning
datasets.

2.1 N-Pass Approach

A straightforward solution is to perform a sepa-
rate forward pass for every turn (H;, h;, a;) of
a given conversation c. While functionally cor-
rect, this approach is computationally inefficient:
a conversation with [V assistant turns results in NV
separate training examples. Consequently, the ef-
fective size of the dataset increases from |D| to
|D| x N, inflating training time proportionally. Fig.
2 in Appendix B shows attention masks for N-Pass
Approach. Fig. 2(a) shows causal attention mask at
the time of generation of ith turn response tokens,
and Fig. 2(b) shows causal attention mask for ith
turn response tokens when they are part of context
during j > ¢ turns.

2.2 1-Pass Approach

The primary challenge in applying a single forward
pass during training due to discrepancy in the atten-
tion behavior of r; can be illustrated as follows?:

A(H<i7 h’iv tl)
A<H<i7 h’L)

generation
ri
context

We can resolve this issue through the following
steps:
2For ease of understanding, we omit the detail that each

token within a token sequence also attends to all its preceding
tokens, which must be encoded in the attention mask.

Duplicating response tokens of each assistant
message. We duplicate the response tokens of
each assistant message so that one sequence (r?*')
is used during generation and attends to its asso-
ciated reasoning tokens. In contrast, the other se-
quence (") is used only as context and does not
attend to reasoning tokens.

Custom Attention Mask. Duplication of re-
sponse tokens makes it possible to have a single
attention mask that satisfies visibility constraints.
We define a custom masking strategy for each type
of token sequence (h;,t;, 7", 79"Y), ensuring that
each token only attends to the appropriate subse-
quence:

rf“ — A( Z’i, hi)
TiOUt — .A( igi’ hi,ti)

hi — A( le)
t; — A( le,hl)

Assigning Consistent Position IDs. After dupli-
cation of response tokens, we need to assign consis-
tent position IDs to tokens to maintain the correct
relative positions—as if multiple forward passes
were performed for each turn in the conversation.
If they are assigned sequentially, or the duplicated
assistant response tokens share the same position
IDs, it will lead to incorrect relative positions. We
need a strategic way of assigning position IDs. The
following assignment of the first position ID for
each token sequence ensures the relative positions
are correct and equivalent to N-Pass approach?:

St; = Spin = €p; + 1

87.2‘out = eti + 1 Shi+1 = 67‘%” + 1

Label Mask. Duplication of the response tokens
also raises the question of which tokens should
be included in the loss calculation. The following
label mask outlines the inclusion criteria for each
token type:

in

ti<—1 T

i 0 r

Fig. 3 in Appendix B shows custom attention
mask for ith turn in the 1-Pass Approach. It com-
bines masks for generation and context from the
N-Pass Approach into a single mask with position
IDs and a label mask consistent with N-Pass Ap-
proach.

Theorem 2.1. Consider a language model with
output distributions determined solely by attention

3Position IDs are assigned sequentially based on the order
of tokens within each sequence.



patterns, positional encodings, and input represen-
tation. For any conversation c as input to the model,
the sum of the N-Pass language modeling losses is
equivalent to the 1-Pass loss:

N
EI—PaSS(C) — Z E{Ly-PaSS (H<i, hi7 a/i)
i=1

Proof is in the Appendix C.1
2.3 Complexity Analysis

We compare the computational complexity of
our 1-Pass method against N-Pass approach for
transformer-based models with hidden dimension
d (Vaswani et al., 2017). Table 1 summarizes the
time and memory complexities for a conversation
¢, where ¢ denotes its characteristic turn length.

N-Pass 1-Pass
T(c) O(N3€2d) O(N2£2d)
M(c) O(N2?)  O(N?)

Table 1: Time and Memory Complexity for N-Pass and
1-Pass Approach.

The 1-Pass approach yields an asymptotic time
complexity improvement of one order in IV, of-
fering significant speedups at scale. While it in-
troduces a higher constant memory overhead due
to token replication, both methods share the same
asymptotic memory complexity. Full derivations
are provided in Appendix D.

2.4 Efficient Mask Generation

While our custom attention mask (illustrated in
Figure 3) enables single-pass training, generating
it involves computing complex visibility patterns
across token types and conversation turns. At scale,
this computation could become non-trivial, particu-
larly for longer conversations or larger batch sizes.
To ensure this remains efficient, we develop an op-
timized mask generation algorithm that performs
all operations on GPU using vectorized tensor op-
erations. Additionally, we simplify the boolean
logic for visibility constraints using Karnaugh map
reduction, minimizing the number of logical opera-
tions required. We provide the complete algorithm
in Appendix E.2 for practitioners seeking to imple-
ment our method efficiently.

3 Experiments

We evaluate our single-pass fine-tuning on Qwen-
3 models (4B, 8B, 32B) with QLoRA (Dettmers

et al., 2023). All experiments were run
on a 8xHI100 instance (CUDA 12.8, PyTorch
2.7.0), with our method implemented in LLaMA-
Factory (Zheng et al., 2024) and benchmarked
against multi-pass baselines. See Appendix E.3
for experimental setup.

3.1 Dataset Creation

Addressing lack of a public multi-turn dataset
with explicit per-turn reasoning, we intro-
duce MathChatSyncReasoning4, derived from
MathChatgy,. (Liangetal., 2024)>. Assistant turns
are augmented with explicit reasoning generated
using gpt-4.1-mini, conditioned on dialogue history
and current assistant response. Refer to Appendix
E.1 for more details. All our experiments are con-
ducted on this dataset.

3.2 Experimental Setup

We use FlashAttention2 (FA2) (Dao, 2024) and
FlexAttention (Dong et al., 2024) backends. Our
1-Pass method requires a custom attention mask,
thus using FlexAttention, as FA2 lacks support for
passing custom attention mask; FA2’s speed mo-
tivates reporting baselines on both for fair com-
parison. We compare our 1-Pass method (with
response token duplication) against a standard N-
Pass baseline (requiring N forward passes). Both
are evaluated with and without sequence pack-
ing® (Krell et al., 2022). When packing is enabled,
we use llama-factory’s neat_packing implementa-
tion: FA2 baselines rely on position IDs to separate
packed sequences (Kundu et al., 2024), while our
1-pass method combines the contamination-free
packing mask with our custom attention mask via
logical AND.

3.3 Results:

Training Speedup. Figure la shows training
speedups. Our 1-Pass method with packing (Flex-
Pack-1-Pass) is 1.05x, 1.21x, and 1.22x faster
than FA2-N-Pass baseline with packing (FA2-Pack-
N-Pass) on 4B, 8B, and 32B models, respectively.
Despite FlexAttention’s inherent slowness versus
FA2, our method’s single-pass efficiency compen-
sates. Compared to N-Pass FlexAttention with
packing (Flex-Pack-N-Pass), our Flex-Pack-1-Pass

*The dataset is provided in the supplementary material.

LLaMA-Factory and MathChatSync are distributed under
Apache-2.0 license, which allows modification and redistribu-
tion. Our updates are aligned with the terms of use.

®We set the cutoff length to the maximum number of tokens
in any datapoint in the dataset for all our experiments.
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Figure 1: Training-time experiments

yields 1.44x,1.54x,and 1.46 x speedups for 4B,
8B, and 32B models, respectively. Without pack-
ing, our 1-pass method (Flex-1-Pass) lags FA2-N-
Pass baseline for 8B and 32B models. We hypothe-
size that this is because response-token duplication
widens the length disparity between conversations,
making the method more sensitive to the absence of
packing than the N-Pass baseline. Across all exper-
iments, the 1-Pass variants consume roughly 33%
more GPU memory than their N-Pass counterparts.

K-Pass Trade-offs. The 1-Pass and N-Pass ap-
proaches represent two extremes: processing the
entire conversation in a single pass or in as many
passes as there are turns. We therefore also inves-
tigate intermediate settings, processing each con-
versation in K passes. Concretely, we split every
dialogue into K contiguous chunks and apply our
single-pass mask only to the current chunk, dupli-
cating response tokens and computing loss exclu-
sively for that portion (see Appendix E.4.1 for full
details). Figure 1b reveals a speed-memory trade-
off for K€1,2,4,6,N. Our 1-Pass method maximizes
speed with ~33% more memory (vs. N-Pass). K=2
offers a balance (1.30x-1.37x speedups, ~20% ex-
tra memory). Gains diminish for K > 4 because,
beyond K = 4, the extra time incurred by the
longer sequences created through token duplica-
tion outweighs the savings from processing a few
turns together.

Conversation Scalability. The dataset contains
conversations with depths from 1 to 16 turns. To
analyse the effect of depth, we partition it into three
groups: G1 (1-5 turns), G2 (6-7 turns), and G3
(8-16 turns)’. Figure Ic shows our Flex-Pack-1-

"This uneven distribution stems from the MathChatqync

Pass speedups (vs. FA2-Pack-N-Pass) grow with
conversation depth (0.93x,1.19x,1.23x for G1,
G2, G3 respectively). A similar trend appears when
comparing our method without packing (Flex-1-
Pass) to the FA2-N-Pass baseline: speedups of
0.69x, 1.05%, and 1.56x for G1, G2, and G3,
respectively. This supports the theoretical complex-
ity reduction from O (N 3) to O (N 2), as efficiency
gains become more pronounced with depth.

These results confirm single-pass training yields
significant computational savings, aligning with
theoretical advantages, making multi-turn reason-
ing fine-tuning practical at scale. Please refer Ap-
pendix E.4 for comprehensive results of the experi-
ments conducted.

4 Conclusion

We presented an optimized 1-Pass training method
for multi-turn reasoning that reduces time com-
plexity from O(N?3) to O(N?) via strategic token
duplication and custom attention mask. Our the-
oretical analysis confirms loss equivalence with
the N-Pass method, enabling efficient training for
longer conversations. As multi-turn reasoning be-
comes central to complex Al tasks, our method
offers a scalable and broadly applicable solution.
Future work includes exploring adaptive strategies
to balance memory-efficiency trade-offs. Addition-
ally, we aim to benchmark performance on latest
back-ends such as FlashAttention3 (Shah et al.,
2024) and port our masking logic to these faster
implementations.

dataset, which is heavily skewed toward 5-7 turn conversa-
tions, a bias that propagates to our reasoning corpus.



Limitations

While our single-pass approach significantly ac-
celerates training for multi-turn reasoning, it also
introduces certain constraints. First, duplicating
response tokens leads to higher memory usage,
which can pose challenges for GPUs with lim-
ited capacity. Second, our current implementation
supports only FlexAttention, whereas FlashAtten-
tion—known for its superior speed—still requires
porting our masking logic to make full use of it.
Finally, although we have benchmarked N-pass per-
formance on FlashAttention 2, assessing it on the
newest iteration, FlashAttention 3, remains future
work.
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A Background

A.1 Language Modeling Loss

For a token sequence (H;, h;, a;), the language
modeling loss (Radford et al., 2018) for assistant
message a; can be expressed as:

L(H<iyhiyai) = —log(Pe(a;|(H<i, hi)) (1)
where language model is parameterized by ©.

B Masking Schemes for N-Pass and
1-Pass Approaches

Figures 2 and 3 complement the main discussion
in Section 2 by illustrating, in greater detail, how
attention masks are structured under our N-Pass
and 1-Pass training paradigms.

Figure 2 shows the standard causal masks for
the N-Pass approach—first, when generating the
tth turn’s response tokens, and second, when these
tokens become part of the context in subsequent
turns (5 > ).

Figure 3 then demonstrates how we incorporate
token duplication and a custom visibility mask to
enable a single forward pass, while ensuring that
each token attends only to the appropriate subse-
quence. These visualizations clarify the differences
between the two methods and underscore why the
1-Pass approach requires careful token and mask
design to achieve loss equivalence with the N-Pass
baseline.

C Proofs
C.1 Proof for Theorem 2.1

We establish the equivalence by demonstrating that
both approaches yield identical probability distribu-
tions over sequences, which directly implies equal
language modeling losses.

The proof proceeds in three parts: we show that
(1) position encodings are equivalent, (2) attention
patterns are identical, and (3) the resulting loss
functions are mathematically equivalent.

Part I: Position Encoding Equivalence. Consider
the position ID assignments for turn ¢ as defined in
Section 2.2. In the 1-Pass approach, output tokens

receive positions:

sy, =ep, +1

S,,,lz_)ut = €, +1

while input tokens from previous turns j < ¢ re-
ceive:

ST;'_n = ép, +1
Shjy1 = €,r,;_n +1

This assignment ensures that tokens maintain

the same relative positional relationships as in the
N-Pass approach, where each turn processes tokens
sequentially within separate forward passes.
Part II: Attention Pattern Preservation. The cus-
tom attention mask defined in Section 2.2 ensures
causal dependencies are preserved. For turn 7, the
attention patterns are:

Output tokens:

T;)Ut — A ( Zlia hutz)
Input tokens from previous turns j < i:
rit — A(HZ;, hy)
These patterns exactly replicate the causal atten-
tion available in the N-Pass approach.
Part III: Loss Function Equivalence. The lan-

guage modeling loss for turn ¢ in the N-Pass ap-
proach is:

ﬁéY—Pass(H<i7 hi, ai) = —log Py (ti, i | Hei, h2>
(2)
By the autoregressive factorization:
LY (H iy by a;) = —log Py (t; | Hei, hi)
—log Py (i | H<i, his ti)

3)
The total loss across all turns is:
N
ﬁN—PasS(c) _ Z ﬁy—Pass (H<’i7 hi7 ai) (4)
i=1

For the 1-Pass approach, the loss is computed
as:

M-

s
Il
_

E]-Pass(c) — [log Pg (ti | Hl<nzv hz)

)
+ log Py (’l";-)m | /ngm h;, tl)]
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Key insight: Since r; = r;.” = 7" (identical
content in different positions) and the position en-
codings and attention patterns are equivalent as
established in Parts I and II, the internal representa-

tions are identical. Therefore:
Py (ti | Heishi) = Py (t: | HZ hi) - (6)
Py (ri | Heishisti) = Py (r{™ | H2;, hiti) (7)
Combining equations (4), (5), (6), and (7):
LNPass (o) = £1-Pass ) (8)
D Complexity Analysis

D.1 Input Length
D.1.1 N-Pass Approach

In the N-Pass approach, each turn 7 is processed in
a separate forward pass. The input to the model at
turn % is:

Heis hiytiyri

because human and assistant response tokens from
previous turns remain in the conversation history,
while earlier reasoning tokens are discarded.

Let Ly.psss denote the maximum input length
possible for the N-Pass approach for a conversation
c. It can be defined by:

N
Lnpass = 3 _(|hal + [ril) + max]L ti],  (9)
i=1
which is sum of all the human messages and re-
sponse tokens for entire conversation and maxi-
mum length of thinking tokens across turns. To
simplify further, assume:

|hil, |til, 5| € O(L).

where ¢ denote the characteristic turn
component  length, defined as (¢ =
P95(|hi’,’ti’,‘7“i’ 11 € [1,N},C€D), where
Pos is the 95th percentile operator. Then:

Ly-pass € O((2N +1)¢) = O(N¥).  (10)

D.1.2 1-Pass Approach

Our 1-Pass approach processes the entire conver-
sation c in a single forward pass. The input length
L1_pass can be calculated as:

N
=> (|l + |t| + 2Iri]) € O(4N¥)

i=1

L 1-Pass

= O(N¥).
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D.2 Time Complexity Analysis

For a transformer with hidden dimension d and
context length n, each layer requires O(n?d) oper-
ations when n > d (Vaswani et al., 2017).

N-Pass Approach: Under the N-Pass approach,
each of the N turns requires a forward pass, each
operating on O(Ly.psss) = O(NY) tokens. Thus,
for conversation c:

Ti-pass(c) € O(N x (N€)*d) = O(N?¢*d).
(12)

1-Pass Approach: In the 1-Pass approach, all the
conversation tokens are given as input at once, thus
operating on L;_p,s tokens yielding a cost of:

Ty-pass(c) € O((AN0)?d) = O(N?¢*d). (13)
This represents a factor of N improvement in

asymptotic complexity, with substantial gains for
large N.

D.3 Memory Complexity Analysis

A transformer layer with input context length n has
memory complexity O(n?) assuming n > d.

N-Pass Approach: Peak Memory requirement
for N-Pass approach is at Ly.psss input. Thus for
conversation c:

MN-PLISS(C) S O((2N+1)2€2) = O(N2€2) (14)

1-Pass Approach: Memory requirement for 1-
Pass approach can be given by:

M/.pass(c) € O((4N)2?) = O(N?¢?).  (15)
Though 1-Pass incurs a higher constant factor due

to response token replication, both approaches ex-
hibit identical asymptotic memory complexity.

E Experiments

E.1 Dataset Creation

To enable supervised training with explicit step-
by-step reasoning, we construct and release
MathChatgyn.Reasoning along with its generation
script. The dataset is obtained by augmenting the
original MathChatgy,. corpus (Liang et al., 2024)
with a synthetically-generated rationale for every
assistant turn. The procedure comprises three
stages.
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Figure 4: Dataset depth distribution: before vs. after sampling

1. Source corpus. MathChatsy, is a synthetic,
dialogue-based mathematics tutoring dataset con-
taining 144,978 conversations with alternating
human and assistant messages but no reasoning
traces.

2. Depth-balanced sampling. Conversation
depth in MathChatgy,. is highly skewed toward
six-turn dialogues (69 % of all conversations; see
Figure 4). To mitigate this bias, we first down-
sample depth-6 dialogues from 100,443 to 30,000
instances. From the resulting pool we draw a strati-
fied sample of 8,000 conversations.

¢ For each depth d, we calculate the proportion
of the pool that depth represents.

* We allocate to that depth the corresponding
proportion of the 8,000-conversation budget,
rounding up to the nearest whole conversation.

* If the resulting number is below 200, we raise
it to (1) 200 or (ii) the total number of con-
versations available at that depth, whichever
is smaller. This guarantees broad coverage
across conversation depths.

The final split contains 8,797 conversations. Fig-
ure 4 compares the depth distribution before and
after sampling.

3. Reasoning augmentation. For every assistant
turn we generate an intermediate reasoning string
using gpt-4.1-mini. The model is provided with
(i) the dialogue history up to the current human

utterance and (ii) the assistant’s reply, and is in-
structed to output only the hidden rationale that
could have produced that reply. These rationales
are concatenated to the original conversations to
form MathChaty,.Reasoning.

E.2 Efficient mask generation

Algorithm 1 is an efficient algorithm for generating
the custom attention mask required by our 1-Pass
training method. The algorithm leverages vector-
ized GPU operations to compute visibility patterns
without explicit loops.

Implementation Notes:
o All operations are performed on GPU using Py-
Torch’s vectorized tensor operations
e Role IDs: 0 =padding, 1 =human, 2 = thinking, 3
= response (first copy), 4 = response (second copy)
e The boolean expression in Step 3 is optimized
using Karnaugh map reduction to minimize logical
operations
e The algorithm avoids explicit loops by leveraging
broadcasting and logical operations
e For CPU tensors, we temporarily move computa-
tion to GPU before returning results to the original
device

E.3 Experimental Setup

All training runs are initiated using llamafactory-
cli in SFT mode. We apply QLoRA with 4-bit
NF4 quantization, using a LoRA rank of 32 and a
scaling factor of av = 64. Training is performed for
three epochs with bfloat16 (bf16) precision.



Algorithm 1 Efficient Custom Attention Mask Generation

Require: Role IDs tensor R € {0, 1,2, 3, 4}B %L where B is batch size, L is sequence length

Ensure: 4D attention mask M € RB>1xLxL

1: // Step 1: Compute turn IDs via cumulative sum

2: Ragnife < l‘Oll(R,7 shift = 1,dim = 1)

3: Rshiﬁ[t, 0] —0

4: turn_increment <— (R # 0) A (R = 1) A (Rgnitt # 1)
5: T < cumsum(turn_increment, dim = 1)

6: T[R = 0] < 0 {Zero out padding positions}

7:

8: // Step 2: Create base causal non-padding mask

9 i< [0,1,...,L 1]

10: non_pad <+ (R # 0)

— e = =
O

: turn_equal < (T:, :,None|] = T|[:, None, :|)
: R; + R[:,:,None|; R; + RJ:, None, ]

DO = = e e
SN < e B AN

// Step 4: Convert to 4D attention weights
: M « where(Mjfpa.unsqueeze(1), 0, —oo)
: return M

NN
N =

: Mpase < (i[:, None] > i[None, :]) A non_pad][:, :, None] A non_pad|:, None, :]
: // Step 3: Apply role-specific visibility constraints (K-map optimized)
: Miinal ¢ Mipase A [(Rj = 1) V (R = 4 A turn_equal)

V(R; =3AR; #4) VvV (R; =3 A —turn_equal)
V(R; = 2 Aturn_equal A R; # 3)]

We enable the Liger kernel for improved effi-
ciency. Each GPU processes a batch size of 2, with
gradient accumulation over 4 steps. This setup
yields an effective batch size of 64 across the 8-
GPU node.

E.4 Comprehensive Results

We report the complete numerical results that sup-
port the figures in Section 3 in Tables 2, 3 and 4.
We report two metrics for every configuration:

e Throughput (“samples per sec.”) — the aver-
age number of full conversations processed per
second.

* Peak GPU memory — the peak memory
recorded during training.

E.4.1 Implementing K-Pass Processing

To obtain the results in Table 3 we extend our Op-
timised 1-Pass scheme to an intermediate K -Pass
schedule. Assume a conversation contains /N assis-
tant turns (hy,t1,71), ..., (hn,tN, TN).

(a) Chunking the dialog. We partition the con-
versation into K contiguous chunks, each con-

taining [ N/ K] turns (the last chunk may be
shorter).

(b) Selective token duplication. Within the cur-
rent chunk we apply the same response-token
duplication as in Section 2.2: r;“, roUt. All ear-
lier chunks act purely as context and therefore
retain their original, non-duplicated responses.
This progressively lowers the number of du-
plicated tokens as K increases, which is the
main source of the memory savings reported

in Table 3.

(c) Attention and position IDs. The custom at-
tention mask and position-ID assignment de-
scribed in Section 2.2 are applied only to the
duplicated tokens of the active chunk. Context
tokens keep the standard causal mask.

(d) Loss computation. The label mask is set to
1 for ¢; and r?‘“ inside the active chunk and @
elsewhere, so each pass trains only on the new
turns while reusing earlier content as fixed

context.

Conceptually, the K-Pass schedule interpolates
between the extremes:



Model Size Run Setting Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
4B FA2-N-Pass(Baseline) 1.985 9 1.0 1.00
FA2-Pack-N-Pass 6.241 9 3.1 1.00
Flex Atten-N-Pass 1.286 9 0.6 1.00
Flex Atten+Packing-N-Pass 4.550 9 23 1.00
Flex-1-Pass 2.107 12 1.1 1.33
Flex-Pack-1-Pass 6.552 12 33 1.33
8B FA2-N-Pass(Baseline) 2.307 14 1.0 1.00
FA2-Pack-N-Pass 4.522 14 2.0 1.00
Flex-N-Pass 1.365 14 0.6 1.00
Flex-Packing-N-Pass 3.561 14 1.5 1.00
Flex-1-Pass 1.736 18.8 0.8 1.34
Flex-Pack-1-Pass 5.484 18.8 24 1.34
32B FA2-N-Pass(Baseline) 0.601 34 1.0 1.00
FA2-Pack-N-Pass 1.299 34 2.2 1.00
Flex-N-Pass 0.465 34 0.8 1.00
Flex-Packing-N-Pass 1.078 34 1.8 1.00
Flex-1-Pass 0.521 44 0.9 1.29
Flex-Pack-1-Pass 1.578 44 2.6 1.29

Table 2: Throughput and peak memory across execution strategies. FA2 = FlashAttention 2; Flex = FlexAttention.
Pack denotes dynamic sequence-packing; “1-Pass” is our proposed approach. Relative columns are computed with
respect to the corresponding FA2—-N-Pass baseline.

Model Size K Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
4B N-Pass(baseline) 4.55 9 1.00 1.00
6-Pass 3.89 10.8 0.85 1.20
4-Pass 4.76 11.5 1.05 1.28
2-Pass 591 11.8 1.30 1.31
1-Pass 6.55 12 1.44 1.33
8B N-Pass(baseline) 3.56 14 1.00 1.00
6-Pass 3.13 16 0.88 1.14
4-Pass 3.87 16.4 1.09 1.17
2-Pass 4.87 17 1.37 1.21
1-Pass 5.48 18.8 1.54 1.34
32B N-Pass(baseline) 1.08 34 1.00 1.00
6-Pass 0.88 39 0.82 1.15
4-Pass 1.08 40 1.00 1.18
2-Pass 1.37 41 1.27 1.21
1-Pass 1.58 44 1.46 1.29

Table 3: Speed—-memory trade-off as a function of K. Each dialogue is split into K equal-length chunks that are
processed sequentially in a single forward/backward pass. K = N corresponds to the per-turn baseline, while K =1
is our single-pass method. All experiments use the FlexAttention backend with sequence packing (Flex-Pack), the
configuration that achieved the best overall speed in our primary evaluation.
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Run Setting Samples per sec. | Peak Memory(GB) | Relative Speedup | Relative Peak Memory
Group 1 | FA2-N-Pass(Baseline) 2.54 14 1.00 1
FA2-Pack-N-Pass 6.93 14 2.73 1
Flex-N-Pass 2.32 14 0.91 1
Flex-Packing-N-Pass 4.94 14 1.94 1
Flex-1-Pass 1.74 18.8 0.69 1.34
Flex-Pack-1-Pass 6.43 18.8 2.53 1.34
Group 2 | FA2-N-Pass(Baseline) 1.02 14 1 1
FA2-Pack-N-Pass 2.39 14 2.34 1
Flex-N-Pass 0.87 14 0.86 1
Flex-Packing-N-Pass 2.10 14 2.06 1
Flex-1-Pass 1.07 18.8 1.05 1.34
Flex-Pack-1-Pass 2.86 18.8 2.80 1.34
Group 3 | FA2-N-Pass(Baseline) 1.06 14 1 1
FA2-Pack-N-Pass 2.28 14 2.15 1
Flex-N-Pass 0.65 14 0.61 1
Flex-Packing-N-Pass 1.75 14 1.65 1
Flex-1-Pass 1.66 18.8 1.56 1.34
Flex-Pack-1-Pass 2.81 18.8 2.65 1.34

Table 4: Impact of conversation depth (Qwen-3 8B). Group 1 (1-5 turns), Group 2 (6-7 turns), and Group 3 (8-16
turns). Our 1-Pass approach gains more speed as depth increases, in line with the theoretical O(N?) vs. O(N?)
complexity gap.

* K = N reproduces the per-turn baseline (no
response duplication, minimal memory, maxi-
mal passes);

e K = 11is our 1-Pass method (maximum du-
plication, single pass, fastest).
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