
One-Pass to Reason: Token Duplication and Block-Sparse Mask for
Efficient Fine-Tuning on Multi-Turn Reasoning

Anonymous ACL submission

Abstract001

Fine-tuning Large Language Models(LLMs)002
on multi-turn reasoning datasets requires N003
(number of turns) separate forward passes per004
conversation due to reasoning token visibility005
constraints, as reasoning tokens for a turn are006
discarded in subsequent turns. We propose007
duplicating response tokens along with a cus-008
tom attention mask to enable single-pass pro-009
cessing of entire conversations. We prove our010
method produces identical losses to the N-pass011
approach while reducing time complexity from012
O
(
N3

)
to O

(
N2

)
and maintaining the same013

memory complexity for a transformer-based014
model. Our approach achieves significant train-015
ing speedup while preserving accuracy. Our016
implementation is available online1.017

1 Introduction018

Recent progress in LLMs has sparked a shift from019

models that directly generate final responses to020

those that perform explicit intermediate reasoning021

before generating responses (referred to as reason-022

ing models). Open-source reasoning models, such023

as DeepSeek-R1 (Guo et al., 2025), demonstrate024

high performance on several benchmarks. How-025

ever, these existing reasoning models were trained026

primarily on single-turn reasoning data.027

While numerous studies have investigated fine-028

tuning LLMs for multi-turn dialogues to improve029

coherence, context awareness, tool-calling (Wang030

et al., 2025; Rebedea et al., 2024), these approaches031

assume non-reasoning dialogues.032

Training LLMs for multi-turn reasoning conver-033

sations presents novel challenges in managing to-034

ken visibility. Following industry-standard prac-035

tices for multi-turn conversations (OpenAI, 2024;036

Anthropic, 2025), reasoning models generate in-037

ternal reasoning tokens, produce a response, and038

then discard the reasoning tokens from the context039

1https://anonymous.4open.science/r/
one-pass-to-reason-F6CB/

in subsequent turns. This creates two fundamental 040

constraints that cannot be addressed with standard 041

multi-turn optimization techniques: (1) Visibility 042

Constraints: Reasoning tokens must be visible 043

during generation but hidden from subsequent con- 044

versation turns, requiring conditional visibility that 045

static attention masks cannot satisfy. (2) Position 046

ID Discrepancy: Response tokens follow reason- 047

ing tokens during generation but directly follow 048

human messages in a later context, creating posi- 049

tional misalignment. 050

While prior works have explored masking tech- 051

niques and position ID assignments to control infor- 052

mation flow and enable selective attention within 053

sequences for various pre-training objectives or ef- 054

ficiency gains (Wang and Hegde, 2024; Du et al., 055

2022; Raffel et al., 2020), none address the specific 056

challenges of multi-turn reasoning conversations 057

where reasoning tokens must be conditionally visi- 058

ble across turns. 059

This paper addresses these challenges with two 060

primary contributions. (1) We present a theoreti- 061

cal framework featuring a block-sparse visibility 062

mask and strategic position ID assignment scheme 063

that enables processing an entire multi-turn reason- 064

ing conversation in a single forward pass while 065

maintaining training correctness (Theorem 2.1). 066

(2) Due to the absence of a publicly available 067

multi-turn reasoning dataset (to the best of our 068

knowledge), we create and release a novel dataset, 069

MathChatsyncReasoning, in which each assistant 070

message is augmented with synthetically gener- 071

ated reasoning. (3) We provide comprehensive 072

empirical validation for the proposed framework 073

on Qwen3 models. 074

Notation. We use D to denote a multi-turn rea- 075

soning dataset where each conversation c ∈ D 076

consists of alternating human messages hi and as- 077

sistant messages ai such that c = (hi, ai)
N
i=1 for N 078

turns. Each assistant message ai comprises think- 079

ing tokens ti and response tokens ri. We denote 080

1

https://anonymous.4open.science/r/one-pass-to-reason-F6CB/
https://anonymous.4open.science/r/one-pass-to-reason-F6CB/

H<i = (hj , rj)
i−1
j=1 as conversation history before081

turn i. For token sequence x, sx, and ex repre-082

sent starting and ending position IDs. The notation083

x → A(·) indicates sequences that x attends to,084

and L(·) denotes language modeling loss (detailed085

in Appendix A.1).086

2 Single Pass Fine-tuning on Multi-Turn087

Reasoning088

In this section, we highlight the challenges asso-089

ciated with fine-tuning language models on multi-090

turn reasoning datasets. We present an optimized091

approach to process an entire conversation in a092

single forward pass. In multi-turn reasoning data,093

response tokens ri must attend to reasoning tokens094

ti during the generation of ai. However, these095

reasoning tokens must not be visible during subse-096

quent generation of assistant messages aj>i. As a097

result, it is not possible to construct a single static098

attention mask that supports both conditions in a099

conversation within a single forward pass—a ca-100

pability that is often feasible with non-reasoning101

datasets.102

2.1 N-Pass Approach103

A straightforward solution is to perform a sepa-104

rate forward pass for every turn (H<i, hi, ai) of105

a given conversation c. While functionally cor-106

rect, this approach is computationally inefficient:107

a conversation with N assistant turns results in N108

separate training examples. Consequently, the ef-109

fective size of the dataset increases from |D| to110

|D|×N , inflating training time proportionally. Fig.111

2 in Appendix B shows attention masks for N-Pass112

Approach. Fig. 2(a) shows causal attention mask at113

the time of generation of ith turn response tokens,114

and Fig. 2(b) shows causal attention mask for ith115

turn response tokens when they are part of context116

during j > i turns.117

2.2 1-Pass Approach118

The primary challenge in applying a single forward119

pass during training due to discrepancy in the atten-120

tion behavior of ri can be illustrated as follows2:121

ri →

{
A(H<i, hi, ti) generation
A(H<i, hi) context

122

We can resolve this issue through the following123

steps:124

2For ease of understanding, we omit the detail that each
token within a token sequence also attends to all its preceding
tokens, which must be encoded in the attention mask.

Duplicating response tokens of each assistant 125

message. We duplicate the response tokens of 126

each assistant message so that one sequence (routi) 127

is used during generation and attends to its asso- 128

ciated reasoning tokens. In contrast, the other se- 129

quence (rini) is used only as context and does not 130

attend to reasoning tokens. 131

Custom Attention Mask. Duplication of re- 132

sponse tokens makes it possible to have a single 133

attention mask that satisfies visibility constraints. 134

We define a custom masking strategy for each type 135

of token sequence (hi, ti, r
in
i , r

out
i), ensuring that 136

each token only attends to the appropriate subse- 137

quence: 138

hi → A(Hin
<i) rini → A(Hin

<i, hi) 139

ti → A(Hin
<i, hi) routi → A(Hin

<i, hi, ti) 140

Assigning Consistent Position IDs. After dupli- 141

cation of response tokens, we need to assign consis- 142

tent position IDs to tokens to maintain the correct 143

relative positions—as if multiple forward passes 144

were performed for each turn in the conversation. 145

If they are assigned sequentially, or the duplicated 146

assistant response tokens share the same position 147

IDs, it will lead to incorrect relative positions. We 148

need a strategic way of assigning position IDs. The 149

following assignment of the first position ID for 150

each token sequence ensures the relative positions 151

are correct and equivalent to N-Pass approach3: 152

sti = srini
= ehi

+ 1 153

srouti
= eti + 1 shi+1

= erini
+ 1 154

Label Mask. Duplication of the response tokens 155

also raises the question of which tokens should 156

be included in the loss calculation. The following 157

label mask outlines the inclusion criteria for each 158

token type: 159

hi ← 0 ti ← 1 rini ← 0 routi ← 1 160

Fig. 3 in Appendix B shows custom attention 161

mask for ith turn in the 1-Pass Approach. It com- 162

bines masks for generation and context from the 163

N-Pass Approach into a single mask with position 164

IDs and a label mask consistent with N-Pass Ap- 165

proach. 166

Theorem 2.1. Consider a language model with 167

output distributions determined solely by attention 168

3Position IDs are assigned sequentially based on the order
of tokens within each sequence.

2

patterns, positional encodings, and input represen-169

tation. For any conversation c as input to the model,170

the sum of the N-Pass language modeling losses is171

equivalent to the 1-Pass loss:172

L1-Pass(c) =
N∑
i=1

LN-Pass
i (H<i, hi, ai)173

Proof is in the Appendix C.1174

2.3 Complexity Analysis175

We compare the computational complexity of176

our 1-Pass method against N-Pass approach for177

transformer-based models with hidden dimension178

d (Vaswani et al., 2017). Table 1 summarizes the179

time and memory complexities for a conversation180

c, where ℓ denotes its characteristic turn length.181

N-Pass 1-Pass
T (c) O

(
N3ℓ2d

)
O
(
N2ℓ2d

)
M(c) O

(
N2ℓ2

)
O
(
N2ℓ2

)
Table 1: Time and Memory Complexity for N-Pass and
1-Pass Approach.

The 1-Pass approach yields an asymptotic time182

complexity improvement of one order in N , of-183

fering significant speedups at scale. While it in-184

troduces a higher constant memory overhead due185

to token replication, both methods share the same186

asymptotic memory complexity. Full derivations187

are provided in Appendix D.188

2.4 Efficient Mask Generation189

While our custom attention mask (illustrated in190

Figure 3) enables single-pass training, generating191

it involves computing complex visibility patterns192

across token types and conversation turns. At scale,193

this computation could become non-trivial, particu-194

larly for longer conversations or larger batch sizes.195

To ensure this remains efficient, we develop an op-196

timized mask generation algorithm that performs197

all operations on GPU using vectorized tensor op-198

erations. Additionally, we simplify the boolean199

logic for visibility constraints using Karnaugh map200

reduction, minimizing the number of logical opera-201

tions required. We provide the complete algorithm202

in Appendix E.2 for practitioners seeking to imple-203

ment our method efficiently.204

3 Experiments205

We evaluate our single-pass fine-tuning on Qwen-206

3 models (4B, 8B, 32B) with QLoRA (Dettmers207

et al., 2023). All experiments were run 208

on a 8×H100 instance (CUDA 12.8, PyTorch 209

2.7.0), with our method implemented in LLaMA- 210

Factory (Zheng et al., 2024) and benchmarked 211

against multi-pass baselines. See Appendix E.3 212

for experimental setup. 213

3.1 Dataset Creation 214

Addressing lack of a public multi-turn dataset 215

with explicit per-turn reasoning, we intro- 216

duce MathChatsyncReasoning4, derived from 217

MathChatsync (Liang et al., 2024)5. Assistant turns 218

are augmented with explicit reasoning generated 219

using gpt-4.1-mini, conditioned on dialogue history 220

and current assistant response. Refer to Appendix 221

E.1 for more details. All our experiments are con- 222

ducted on this dataset. 223

3.2 Experimental Setup 224

We use FlashAttention2 (FA2) (Dao, 2024) and 225

FlexAttention (Dong et al., 2024) backends. Our 226

1-Pass method requires a custom attention mask, 227

thus using FlexAttention, as FA2 lacks support for 228

passing custom attention mask; FA2’s speed mo- 229

tivates reporting baselines on both for fair com- 230

parison. We compare our 1-Pass method (with 231

response token duplication) against a standard N- 232

Pass baseline (requiring N forward passes). Both 233

are evaluated with and without sequence pack- 234

ing6 (Krell et al., 2022). When packing is enabled, 235

we use llama-factory’s neat_packing implementa- 236

tion: FA2 baselines rely on position IDs to separate 237

packed sequences (Kundu et al., 2024), while our 238

1-pass method combines the contamination-free 239

packing mask with our custom attention mask via 240

logical AND. 241

3.3 Results: 242

Training Speedup. Figure 1a shows training 243

speedups. Our 1-Pass method with packing (Flex- 244

Pack-1-Pass) is 1.05×, 1.21×, and 1.22× faster 245

than FA2-N-Pass baseline with packing (FA2-Pack- 246

N-Pass) on 4B, 8B, and 32B models, respectively. 247

Despite FlexAttention’s inherent slowness versus 248

FA2, our method’s single-pass efficiency compen- 249

sates. Compared to N-Pass FlexAttention with 250

packing (Flex-Pack-N-Pass), our Flex-Pack-1-Pass 251

4The dataset is provided in the supplementary material.
5LLaMA-Factory and MathChatSync are distributed under

Apache-2.0 license, which allows modification and redistribu-
tion. Our updates are aligned with the terms of use.

6We set the cutoff length to the maximum number of tokens
in any datapoint in the dataset for all our experiments.

3

(a)
Speed Analysis across model

sizes
(relative to FA2-N-Pass)

(b)
K-pass Analysis

(relative to N-pass)
Flex-Pack configuration

(c)
Conversation Depth Analysis

on Qwen3-8B
(relative to FA2-N-Pass)

Figure 1: Training-time experiments

yields 1.44×, 1.54×, and 1.46× speedups for 4B,252

8B, and 32B models, respectively. Without pack-253

ing, our 1-pass method (Flex-1-Pass) lags FA2-N-254

Pass baseline for 8B and 32B models. We hypothe-255

size that this is because response-token duplication256

widens the length disparity between conversations,257

making the method more sensitive to the absence of258

packing than the N-Pass baseline. Across all exper-259

iments, the 1-Pass variants consume roughly 33%260

more GPU memory than their N-Pass counterparts.261

K-Pass Trade-offs. The 1-Pass and N-Pass ap-262

proaches represent two extremes: processing the263

entire conversation in a single pass or in as many264

passes as there are turns. We therefore also inves-265

tigate intermediate settings, processing each con-266

versation in K passes. Concretely, we split every267

dialogue into K contiguous chunks and apply our268

single-pass mask only to the current chunk, dupli-269

cating response tokens and computing loss exclu-270

sively for that portion (see Appendix E.4.1 for full271

details). Figure 1b reveals a speed-memory trade-272

off for K∈1,2,4,6,N. Our 1-Pass method maximizes273

speed with∼33% more memory (vs. N-Pass). K=2274

offers a balance (1.30×–1.37× speedups, ∼20% ex-275

tra memory). Gains diminish for K > 4 because,276

beyond K = 4, the extra time incurred by the277

longer sequences created through token duplica-278

tion outweighs the savings from processing a few279

turns together.280

Conversation Scalability. The dataset contains281

conversations with depths from 1 to 16 turns. To282

analyse the effect of depth, we partition it into three283

groups: G1 (1–5 turns), G2 (6–7 turns), and G3284

(8–16 turns)7. Figure 1c shows our Flex-Pack-1-285

7This uneven distribution stems from the MathChatsync

Pass speedups (vs. FA2-Pack-N-Pass) grow with 286

conversation depth (0.93×, 1.19×, 1.23× for G1, 287

G2, G3 respectively). A similar trend appears when 288

comparing our method without packing (Flex-1- 289

Pass) to the FA2-N-Pass baseline: speedups of 290

0.69×, 1.05×, and 1.56× for G1, G2, and G3, 291

respectively. This supports the theoretical complex- 292

ity reduction from O
(
N3

)
to O

(
N2

)
, as efficiency 293

gains become more pronounced with depth. 294

These results confirm single-pass training yields 295

significant computational savings, aligning with 296

theoretical advantages, making multi-turn reason- 297

ing fine-tuning practical at scale. Please refer Ap- 298

pendix E.4 for comprehensive results of the experi- 299

ments conducted. 300

4 Conclusion 301

We presented an optimized 1-Pass training method 302

for multi-turn reasoning that reduces time com- 303

plexity from O(N3) to O(N2) via strategic token 304

duplication and custom attention mask. Our the- 305

oretical analysis confirms loss equivalence with 306

the N-Pass method, enabling efficient training for 307

longer conversations. As multi-turn reasoning be- 308

comes central to complex AI tasks, our method 309

offers a scalable and broadly applicable solution. 310

Future work includes exploring adaptive strategies 311

to balance memory-efficiency trade-offs. Addition- 312

ally, we aim to benchmark performance on latest 313

back-ends such as FlashAttention3 (Shah et al., 314

2024) and port our masking logic to these faster 315

implementations. 316

dataset, which is heavily skewed toward 5–7 turn conversa-
tions, a bias that propagates to our reasoning corpus.

4

Limitations317

While our single-pass approach significantly ac-318

celerates training for multi-turn reasoning, it also319

introduces certain constraints. First, duplicating320

response tokens leads to higher memory usage,321

which can pose challenges for GPUs with lim-322

ited capacity. Second, our current implementation323

supports only FlexAttention, whereas FlashAtten-324

tion—known for its superior speed—still requires325

porting our masking logic to make full use of it.326

Finally, although we have benchmarked N-pass per-327

formance on FlashAttention 2, assessing it on the328

newest iteration, FlashAttention 3, remains future329

work.330

References331

Anthropic. 2025. Anthropic extended think-332
ing. https://docs.anthropic.com/en/docs/333
build-with-claude/extended-thinking. Ac-334
cessed: 2025-04-17.335

Tri Dao. 2024. Flashattention-2: Faster attention with336
better parallelism and work partitioning. In Proceed-337
ings of the 12th International Conference on Learn-338
ing Representations. Version 1.339

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and340
Luke Zettlemoyer. 2023. Qlora: efficient finetuning341
of quantized llms. In Proceedings of the 37th Interna-342
tional Conference on Neural Information Processing343
Systems, NIPS ’23, Red Hook, NY, USA.344

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo345
Liang, and Horace He. 2024. Flex attention: A pro-346
gramming model for generating optimized attention347
kernels. arXiv preprint arXiv:2412.05496. Version348
1.349

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,350
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:351
General language model pretraining with autoregres-352
sive blank infilling. In Proceedings of the 60th An-353
nual Meeting of the Association for Computational354
Linguistics (Volume 1: Long Papers), pages 320–335,355
Dublin, Ireland. Association for Computational Lin-356
guistics.357

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao358
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-359
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.360
Deepseek-r1: Incentivizing reasoning capability in361
llms via reinforcement learning. arXiv preprint362
arXiv:2501.12948. Version 1.363

Mario Michael Krell, Matej Kosec, Sergio P. Perez, and364
Andrew Fitzgibbon. 2022. Efficient sequence pack-365
ing without cross-contamination: Accelerating large366
language models without impacting performance.367
arXiv preprint arXiv:2107.02027. Version 2.368

Achintya Kundu, Rhui Dih Lee, Laura Wynter, 369
Raghu Kiran Ganti, and Mayank Mishra. 2024. En- 370
hancing training efficiency using packing with flash 371
attention. arXiv preprint arXiv:2407.09105. Version 372
6. 373

Zhenwen Liang, Dian Yu, Wenhao Yu, Wenlin Yao, Zhi- 374
han Zhang, Xiangliang Zhang, and Dong Yu. 2024. 375
Mathchat: Benchmarking mathematical reasoning 376
and instruction following in multi-turn interactions. 377
arXiv preprint arXiv:2405.19444. Version 1. 378

OpenAI. 2024. Openai reasoning. https://platform. 379
openai.com/docs/guides/reasoning. Accessed: 380
2025-04-17. 381

Alec Radford, Karthik Narasimhan, Tim Salimans, and 382
Ilya Sutskever. 2018. Improving language under- 383
standing by generative pre-training. Technical report, 384
OpenAI. Accessed: 10-11-2023. 385

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 386
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 387
Wei Li, and Peter J. Liu. 2020. Exploring the limits 388
of transfer learning with a unified text-to-text trans- 389
former. J. Mach. Learn. Res., 21(1). 390

Traian Rebedea, Makesh Sreedhar, Shaona Ghosh, Jiaqi 391
Zeng, and Christopher Parisien. 2024. CantTalk- 392
AboutThis: Aligning language models to stay on 393
topic in dialogues. In Findings of the Association 394
for Computational Linguistics: EMNLP 2024, pages 395
12232–12252, Miami, Florida, USA. Association for 396
Computational Linguistics. 397

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay 398
Thakkar, Pradeep Ramani, and Tri Dao. 2024. 399
Flashattention-3: Fast and accurate attention with 400
asynchrony and low-precision. In Advances in Neu- 401
ral Information Processing Systems. Version 2. 402

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 403
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 404
Kaiser, and Illia Polosukhin. 2017. Attention is all 405
you need. Advances in neural information processing 406
systems, 30. 407

Franklin Wang and Sumanth Hegde. 2024. Accelerating 408
direct preference optimization with prefix sharing. 409
arXiv preprint arXiv:2410.20305. Version 2. 410

Zezhong Wang, Xingshan Zeng, Weiwen Liu, Liangyou 411
Li, Yasheng Wang, Lifeng Shang, Xin Jiang, Qun 412
Liu, and Kam-Fai Wong. 2025. ToolFlow: Boost- 413
ing LLM tool-calling through natural and coherent 414
dialogue synthesis. In Proceedings of the 2025 Con- 415
ference of the Nations of the Americas Chapter of the 416
Association for Computational Linguistics: Human 417
Language Technologies (Volume 1: Long Papers), 418
pages 4246–4263, Albuquerque, New Mexico. Asso- 419
ciation for Computational Linguistics. 420

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 421
Ye, and Zheyan Luo. 2024. LlamaFactory: Unified 422
efficient fine-tuning of 100+ language models. In 423

5

https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://docs.anthropic.com/en/docs/build-with-claude/extended-thinking
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.48550/arXiv.2307.08691
https://dl.acm.org/doi/10.5555/3666122.3666563
https://dl.acm.org/doi/10.5555/3666122.3666563
https://dl.acm.org/doi/10.5555/3666122.3666563
https://doi.org/10.48550/arXiv.2412.05496
https://doi.org/10.48550/arXiv.2412.05496
https://doi.org/10.48550/arXiv.2412.05496
https://doi.org/10.48550/arXiv.2412.05496
https://doi.org/10.48550/arXiv.2412.05496
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.18653/v1/2022.acl-long.26
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2407.09105
https://doi.org/10.48550/arXiv.2407.09105
https://doi.org/10.48550/arXiv.2407.09105
https://doi.org/10.48550/arXiv.2407.09105
https://doi.org/10.48550/arXiv.2407.09105
https://doi.org/10.48550/arXiv.2405.19444
https://doi.org/10.48550/arXiv.2405.19444
https://doi.org/10.48550/arXiv.2405.19444
https://platform.openai.com/docs/guides/reasoning
https://platform.openai.com/docs/guides/reasoning
https://platform.openai.com/docs/guides/reasoning
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.18653/v1/2024.findings-emnlp.713
https://doi.org/10.18653/v1/2024.findings-emnlp.713
https://doi.org/10.18653/v1/2024.findings-emnlp.713
https://doi.org/10.18653/v1/2024.findings-emnlp.713
https://doi.org/10.18653/v1/2024.findings-emnlp.713
https://doi.org/10.48550/arXiv.2407.08608
https://doi.org/10.48550/arXiv.2407.08608
https://doi.org/10.48550/arXiv.2407.08608
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://doi.org/10.48550/arXiv.2410.20305
https://doi.org/10.48550/arXiv.2410.20305
https://doi.org/10.48550/arXiv.2410.20305
https://doi.org/10.18653/v1/2025.naacl-long.214
https://doi.org/10.18653/v1/2025.naacl-long.214
https://doi.org/10.18653/v1/2025.naacl-long.214
https://doi.org/10.18653/v1/2025.naacl-long.214
https://doi.org/10.18653/v1/2025.naacl-long.214
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38
https://doi.org/10.18653/v1/2024.acl-demos.38

Proceedings of the 62nd Annual Meeting of the As-424
sociation for Computational Linguistics (Volume 3:425
System Demonstrations), pages 400–410, Bangkok,426
Thailand. Association for Computational Linguistics.427

A Background428

A.1 Language Modeling Loss429

For a token sequence (H<i, hi, ai), the language430

modeling loss (Radford et al., 2018) for assistant431

message ai can be expressed as:432

L(H<i, hi, ai) = −log(PΘ(ai|(H<i, hi)) (1)433

where language model is parameterized by Θ.434

B Masking Schemes for N-Pass and435

1-Pass Approaches436

Figures 2 and 3 complement the main discussion437

in Section 2 by illustrating, in greater detail, how438

attention masks are structured under our N-Pass439

and 1-Pass training paradigms.440

Figure 2 shows the standard causal masks for441

the N-Pass approach—first, when generating the442

ith turn’s response tokens, and second, when these443

tokens become part of the context in subsequent444

turns (j > i).445

Figure 3 then demonstrates how we incorporate446

token duplication and a custom visibility mask to447

enable a single forward pass, while ensuring that448

each token attends only to the appropriate subse-449

quence. These visualizations clarify the differences450

between the two methods and underscore why the451

1-Pass approach requires careful token and mask452

design to achieve loss equivalence with the N-Pass453

baseline.454

C Proofs455

C.1 Proof for Theorem 2.1456

We establish the equivalence by demonstrating that457

both approaches yield identical probability distribu-458

tions over sequences, which directly implies equal459

language modeling losses.460

The proof proceeds in three parts: we show that461

(1) position encodings are equivalent, (2) attention462

patterns are identical, and (3) the resulting loss463

functions are mathematically equivalent.464

Part I: Position Encoding Equivalence. Consider465

the position ID assignments for turn i as defined in466

Section 2.2. In the 1-Pass approach, output tokens467

receive positions: 468

sti = ehi
+ 1 469

srouti
= eti + 1 470

while input tokens from previous turns j < i re- 471

ceive: 472

srinj
= ehj

+ 1 473

shj+1
= erinj

+ 1 474

This assignment ensures that tokens maintain 475

the same relative positional relationships as in the 476

N-Pass approach, where each turn processes tokens 477

sequentially within separate forward passes. 478

Part II: Attention Pattern Preservation. The cus- 479

tom attention mask defined in Section 2.2 ensures 480

causal dependencies are preserved. For turn i, the 481

attention patterns are: 482

Output tokens: 483

ti → A
(
Hin

<i, hi
)

484

routi → A
(
Hin

<i, hi, ti
)

485

Input tokens from previous turns j < i: 486

hj → A
(
Hin

<j

)
487

rinj → A
(
Hin

<j , hj
)

488

These patterns exactly replicate the causal atten- 489

tion available in the N-Pass approach. 490

Part III: Loss Function Equivalence. The lan- 491

guage modeling loss for turn i in the N-Pass ap- 492

proach is: 493

LN-Pass
i (H<i, hi, ai) = − logPθ (ti, ri | H<i, hi)

(2) 494

By the autoregressive factorization: 495

LN-Pass
i (H<i, hi, ai) = − logPθ (ti | H<i, hi)

− logPθ (ri | H<i, hi, ti)

(3)
496

The total loss across all turns is: 497

LN-Pass(c) =

N∑
i=1

LN-Pass
i (H<i, hi, ai) (4) 498

For the 1-Pass approach, the loss is computed 499

as: 500

L1-Pass(c) =−
N∑
i=1

[
logPθ

(
ti | Hin

<i, hi
)

+ logPθ

(
rout
i | Hin

<i, hi, ti
)] (5) 501

6

Position IDs

0 1 1

Label Mask

0 0 0

(a) (b)

Figure 2: Causal Attention Masks for N-Pass Approach represents non-zero attention. (a) Attention Mask for
generation of response tokens. (b) Attention Mask when response tokens are in context.

Position IDs

Duplicate
Token

Sequences

0 1 0 1 0

Label Mask

Figure 3: Custom Attention Mask for 1-Pass Approach. represents non-zero attention.

7

Key insight: Since rj = rin
j = rout

j (identical502

content in different positions) and the position en-503

codings and attention patterns are equivalent as504

established in Parts I and II, the internal representa-505

tions are identical. Therefore:506

Pθ (ti | H<i, hi) = Pθ

(
ti | Hin

<i, hi
)

(6)507

Pθ (ri | H<i, hi, ti) = Pθ

(
rout
i | Hin

<i, hi, ti
)

(7)508

Combining equations (4), (5), (6), and (7):509

LN-Pass(c) = L1-Pass(c) (8)510

D Complexity Analysis511

D.1 Input Length512

D.1.1 N-Pass Approach513

In the N-Pass approach, each turn i is processed in514

a separate forward pass. The input to the model at515

turn i is:516

H<i, hi, ti, ri517

because human and assistant response tokens from518

previous turns remain in the conversation history,519

while earlier reasoning tokens are discarded.520

Let LN-Pass denote the maximum input length521

possible for the N-Pass approach for a conversation522

c. It can be defined by:523

LN-Pass =
N∑
i=1

(|hi|+ |ri|) +maxNi=1|ti|, (9)524

which is sum of all the human messages and re-525

sponse tokens for entire conversation and maxi-526

mum length of thinking tokens across turns. To527

simplify further, assume:528

|hi|, |ti|, |ri| ∈ O(ℓ).529

where ℓ denote the characteristic turn530

component length, defined as ℓ =531

P95(|hi|, |ti|, |ri| : i ∈ [1, N], c ∈ D), where532

P95 is the 95th percentile operator. Then:533

LN-Pass ∈ O
(
(2N + 1)ℓ

)
= O(Nℓ). (10)534

D.1.2 1-Pass Approach535

Our 1-Pass approach processes the entire conver-536

sation c in a single forward pass. The input length537

L1−Pass can be calculated as:538

L1-Pass =
N∑
i=1

(
|hi|+ |ti|+ 2|ri|

)
∈ O

(
4Nℓ

)
= O

(
Nℓ

)
.

(11)

539

D.2 Time Complexity Analysis 540

For a transformer with hidden dimension d and 541

context length n, each layer requires O(n2d) oper- 542

ations when n≫ d (Vaswani et al., 2017). 543

N-Pass Approach: Under the N-Pass approach, 544

each of the N turns requires a forward pass, each 545

operating on O(LN-Pass) = O(Nℓ) tokens. Thus, 546

for conversation c: 547

TN-Pass(c) ∈ O
(
N × (Nℓ)2d

)
= O

(
N3ℓ2d

)
.

(12) 548

1-Pass Approach: In the 1-Pass approach, all the 549

conversation tokens are given as input at once, thus 550

operating on L1-Pass tokens yielding a cost of: 551

T1-Pass(c) ∈ O
(
(4Nℓ)2d

)
= O

(
N2ℓ2d

)
. (13) 552

This represents a factor of N improvement in 553

asymptotic complexity, with substantial gains for 554

large N . 555

D.3 Memory Complexity Analysis 556

A transformer layer with input context length n has 557

memory complexity O(n2) assuming n≫ d. 558

N-Pass Approach: Peak Memory requirement 559

for N-Pass approach is at LN-Pass input. Thus for 560

conversation c: 561

MN-Pass(c) ∈ O
(
(2N+1)2ℓ2

)
= O

(
N2ℓ2

)
. (14) 562

1-Pass Approach: Memory requirement for 1- 563

Pass approach can be given by: 564

M1-Pass(c) ∈ O
(
(4N)2ℓ2

)
= O

(
N2ℓ2

)
. (15) 565

Though 1-Pass incurs a higher constant factor due 566

to response token replication, both approaches ex- 567

hibit identical asymptotic memory complexity. 568

E Experiments 569

E.1 Dataset Creation 570

To enable supervised training with explicit step- 571

by-step reasoning, we construct and release 572

MathChatsyncReasoning along with its generation 573

script. The dataset is obtained by augmenting the 574

original MathChatsync corpus (Liang et al., 2024) 575

with a synthetically-generated rationale for every 576

assistant turn. The procedure comprises three 577

stages. 578

8

Figure 4: Dataset depth distribution: before vs. after sampling

1. Source corpus. MathChatsync is a synthetic,579

dialogue-based mathematics tutoring dataset con-580

taining 144,978 conversations with alternating581

human and assistant messages but no reasoning582

traces.583

2. Depth-balanced sampling. Conversation584

depth in MathChatsync is highly skewed toward585

six-turn dialogues (69 % of all conversations; see586

Figure 4). To mitigate this bias, we first down-587

sample depth-6 dialogues from 100,443 to 30,000588

instances. From the resulting pool we draw a strati-589

fied sample of 8,000 conversations.590

• For each depth d, we calculate the proportion591

of the pool that depth represents.592

• We allocate to that depth the corresponding593

proportion of the 8,000-conversation budget,594

rounding up to the nearest whole conversation.595

• If the resulting number is below 200, we raise596

it to (i) 200 or (ii) the total number of con-597

versations available at that depth, whichever598

is smaller. This guarantees broad coverage599

across conversation depths.600

The final split contains 8,797 conversations. Fig-601

ure 4 compares the depth distribution before and602

after sampling.603

3. Reasoning augmentation. For every assistant604

turn we generate an intermediate reasoning string605

using gpt-4.1-mini. The model is provided with606

(i) the dialogue history up to the current human607

utterance and (ii) the assistant’s reply, and is in- 608

structed to output only the hidden rationale that 609

could have produced that reply. These rationales 610

are concatenated to the original conversations to 611

form MathChatsyncReasoning. 612

E.2 Efficient mask generation 613

Algorithm 1 is an efficient algorithm for generating 614

the custom attention mask required by our 1-Pass 615

training method. The algorithm leverages vector- 616

ized GPU operations to compute visibility patterns 617

without explicit loops. 618

Implementation Notes: 619

• All operations are performed on GPU using Py- 620

Torch’s vectorized tensor operations 621

• Role IDs: 0 = padding, 1 = human, 2 = thinking, 3 622

= response (first copy), 4 = response (second copy) 623

• The boolean expression in Step 3 is optimized 624

using Karnaugh map reduction to minimize logical 625

operations 626

• The algorithm avoids explicit loops by leveraging 627

broadcasting and logical operations 628

• For CPU tensors, we temporarily move computa- 629

tion to GPU before returning results to the original 630

device 631

E.3 Experimental Setup 632

All training runs are initiated using llamafactory- 633

cli in SFT mode. We apply QLoRA with 4-bit 634

NF4 quantization, using a LoRA rank of 32 and a 635

scaling factor of α = 64. Training is performed for 636

three epochs with bfloat16 (bf16) precision. 637

9

Algorithm 1 Efficient Custom Attention Mask Generation

Require: Role IDs tensor R ∈ {0, 1, 2, 3, 4}B×L where B is batch size, L is sequence length
Ensure: 4D attention mask M ∈ RB×1×L×L

1: // Step 1: Compute turn IDs via cumulative sum
2: Rshift ← roll(R, shift = 1, dim = 1)
3: Rshift[:, 0]← 0
4: turn_increment← (R ̸= 0) ∧ (R = 1) ∧ (Rshift ̸= 1)
5: T← cumsum(turn_increment, dim = 1)
6: T[R = 0]← 0 {Zero out padding positions}
7:

8: // Step 2: Create base causal non-padding mask
9: i← [0, 1, . . . , L− 1]

10: non_pad← (R ̸= 0)
11: Mbase ← (i[:,None] ≥ i[None, :]) ∧ non_pad[:, :,None] ∧ non_pad[:,None, :]
12:

13: // Step 3: Apply role-specific visibility constraints (K-map optimized)
14: turn_equal← (T[:, :,None] = T[:,None, :])
15: Ri ← R[:, :,None]; Rj ← R[:,None, :]
16: Mfinal ←Mbase ∧

[
(Rj = 1) ∨ (Rj = 4 ∧ turn_equal)

17: ∨(Rj = 3 ∧Ri ̸= 4) ∨ (Rj = 3 ∧ ¬turn_equal)
18: ∨(Rj = 2 ∧ turn_equal ∧Ri ̸= 3)

]
19:

20: // Step 4: Convert to 4D attention weights
21: M← where(Mfinal.unsqueeze(1), 0,−∞)
22: return M

We enable the Liger kernel for improved effi-638

ciency. Each GPU processes a batch size of 2, with639

gradient accumulation over 4 steps. This setup640

yields an effective batch size of 64 across the 8-641

GPU node.642

E.4 Comprehensive Results643

We report the complete numerical results that sup-644

port the figures in Section 3 in Tables 2, 3 and 4.645

We report two metrics for every configuration:646

• Throughput (“samples per sec.”) — the aver-647

age number of full conversations processed per648

second.649

• Peak GPU memory — the peak memory650

recorded during training.651

E.4.1 Implementing K-Pass Processing652

To obtain the results in Table 3 we extend our Op-653

timised 1-Pass scheme to an intermediate K-Pass654

schedule. Assume a conversation contains N assis-655

tant turns (h1, t1, r1), . . . , (hN , tN , rN).656

(a) Chunking the dialog. We partition the con-657

versation into K contiguous chunks, each con-658

taining ⌈N/K⌉ turns (the last chunk may be 659

shorter). 660

(b) Selective token duplication. Within the cur- 661

rent chunk we apply the same response-token 662

duplication as in Section 2.2: rin
i , r

out
i . All ear- 663

lier chunks act purely as context and therefore 664

retain their original, non-duplicated responses. 665

This progressively lowers the number of du- 666

plicated tokens as K increases, which is the 667

main source of the memory savings reported 668

in Table 3. 669

(c) Attention and position IDs. The custom at- 670

tention mask and position-ID assignment de- 671

scribed in Section 2.2 are applied only to the 672

duplicated tokens of the active chunk. Context 673

tokens keep the standard causal mask. 674

(d) Loss computation. The label mask is set to 675

1 for ti and rout
i inside the active chunk and 0 676

elsewhere, so each pass trains only on the new 677

turns while reusing earlier content as fixed 678

context. 679

Conceptually, the K-Pass schedule interpolates 680

between the extremes: 681

10

Model Size Run Setting Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
4B FA2-N-Pass(Baseline) 1.985 9 1.0 1.00

FA2-Pack-N-Pass 6.241 9 3.1 1.00
Flex Atten-N-Pass 1.286 9 0.6 1.00

Flex Atten+Packing-N-Pass 4.550 9 2.3 1.00
Flex-1-Pass 2.107 12 1.1 1.33

Flex-Pack-1-Pass 6.552 12 3.3 1.33

8B FA2-N-Pass(Baseline) 2.307 14 1.0 1.00
FA2-Pack-N-Pass 4.522 14 2.0 1.00

Flex-N-Pass 1.365 14 0.6 1.00
Flex-Packing-N-Pass 3.561 14 1.5 1.00

Flex-1-Pass 1.736 18.8 0.8 1.34
Flex-Pack-1-Pass 5.484 18.8 2.4 1.34

32B FA2-N-Pass(Baseline) 0.601 34 1.0 1.00
FA2-Pack-N-Pass 1.299 34 2.2 1.00

Flex-N-Pass 0.465 34 0.8 1.00
Flex-Packing-N-Pass 1.078 34 1.8 1.00

Flex-1-Pass 0.521 44 0.9 1.29
Flex-Pack-1-Pass 1.578 44 2.6 1.29

Table 2: Throughput and peak memory across execution strategies. FA2 = FlashAttention 2; Flex = FlexAttention.
Pack denotes dynamic sequence-packing; “1-Pass” is our proposed approach. Relative columns are computed with
respect to the corresponding FA2–N-Pass baseline.

Model Size K Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
4B N-Pass(baseline) 4.55 9 1.00 1.00

6-Pass 3.89 10.8 0.85 1.20
4-Pass 4.76 11.5 1.05 1.28
2-Pass 5.91 11.8 1.30 1.31
1-Pass 6.55 12 1.44 1.33

8B N-Pass(baseline) 3.56 14 1.00 1.00
6-Pass 3.13 16 0.88 1.14
4-Pass 3.87 16.4 1.09 1.17
2-Pass 4.87 17 1.37 1.21
1-Pass 5.48 18.8 1.54 1.34

32B N-Pass(baseline) 1.08 34 1.00 1.00
6-Pass 0.88 39 0.82 1.15
4-Pass 1.08 40 1.00 1.18
2-Pass 1.37 41 1.27 1.21
1-Pass 1.58 44 1.46 1.29

Table 3: Speed–memory trade-off as a function of K. Each dialogue is split into K equal-length chunks that are
processed sequentially in a single forward/backward pass. K=N corresponds to the per-turn baseline, while K=1
is our single-pass method. All experiments use the FlexAttention backend with sequence packing (Flex-Pack), the
configuration that achieved the best overall speed in our primary evaluation.

11

Run Setting Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
Group 1 FA2-N-Pass(Baseline) 2.54 14 1.00 1

FA2-Pack-N-Pass 6.93 14 2.73 1
Flex-N-Pass 2.32 14 0.91 1

Flex-Packing-N-Pass 4.94 14 1.94 1
Flex-1-Pass 1.74 18.8 0.69 1.34

Flex-Pack-1-Pass 6.43 18.8 2.53 1.34

Group 2 FA2-N-Pass(Baseline) 1.02 14 1 1
FA2-Pack-N-Pass 2.39 14 2.34 1

Flex-N-Pass 0.87 14 0.86 1
Flex-Packing-N-Pass 2.10 14 2.06 1

Flex-1-Pass 1.07 18.8 1.05 1.34
Flex-Pack-1-Pass 2.86 18.8 2.80 1.34

Group 3 FA2-N-Pass(Baseline) 1.06 14 1 1
FA2-Pack-N-Pass 2.28 14 2.15 1

Flex-N-Pass 0.65 14 0.61 1
Flex-Packing-N-Pass 1.75 14 1.65 1

Flex-1-Pass 1.66 18.8 1.56 1.34
Flex-Pack-1-Pass 2.81 18.8 2.65 1.34

Table 4: Impact of conversation depth (Qwen-3 8B). Group 1 (1–5 turns), Group 2 (6–7 turns), and Group 3 (8–16
turns). Our 1-Pass approach gains more speed as depth increases, in line with the theoretical O(N2) vs. O(N3)
complexity gap.

• K = N reproduces the per-turn baseline (no682

response duplication, minimal memory, maxi-683

mal passes);684

• K = 1 is our 1-Pass method (maximum du-685

plication, single pass, fastest).686

12

	Introduction
	Single Pass Fine-tuning on Multi-Turn Reasoning
	N-Pass Approach
	1-Pass Approach
	Complexity Analysis
	Efficient Mask Generation

	Experiments
	Dataset Creation
	Experimental Setup
	Results:

	Conclusion
	Background
	Language Modeling Loss

	Masking Schemes for N-Pass and 1-Pass Approaches
	Proofs
	Proof for Theorem 2.1

	Complexity Analysis
	Input Length
	N-Pass Approach
	1-Pass Approach

	Time Complexity Analysis
	Memory Complexity Analysis

	Experiments
	Dataset Creation
	Efficient mask generation
	Experimental Setup
	Comprehensive Results
	Implementing K-Pass Processing

