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ABSTRACT

In drug discovery, researchers make sequential decisions to schedule experiments,
aiming to maximize probability of success towards drug candidates while simul-
taneously minimizing expected costs. However, such tasks pose significant chal-
lenges due to complex trade-offs between uncertainty reduction and allocation
of constrained resources in a high-dimensional state-action space. Traditional
methods based on simple rule-based heuristics or domain expertise often result
in either inefficient resource utilization due to risk aversion or missed opportuni-
ties arising from reckless decisions. To address these challenges, we developed a
Implicit Bayesian Markov Decision Process (IB-MDP) algorithm that constructs
an implicit MDP model of the environment’s dynamics by integrating historical
data through a similarity-based metric, and enables effective planning by simulat-
ing future states and actions. To enhance the robustness of the decision-making
process, the IB-MDP also incorporates an ensemble approach that recommends
maximum likelihood actions to effectively balance the dual objectives of reducing
state uncertainty and optimizing expected costs. Our experimental results demon-
strate that the IB-MDP algorithm offers significant improvements over traditional
rule-based methods by identifying optimal decisions that ensure more efficient use
of resources in drug discovery.

1 INTRODUCTION

In drug discovery, strategic planning and selection of experiments play a pivotal role in impacting
the pace and expenses of R&D activities. The identification of potential drug candidates requires
conducting numerous assays at various stages of preclinical studies. The process often begins with
limited information, creating significant challenges for achieving optimized outcomes due to time
and budget constraints. Optimizing the use of resources to achieve targeted goals within these lim-
itations is among the most demanding tasks in creating effective Research Operation Plans (ROP).
Conventional appoarches, often relying on simple rule-based heuristics or domain expertise, struggle
to adapt as new data emerges and typically fail to address state, model, and parameter uncertainties
effectively. Consequently, this results in suboptimal decision-making and inefficient allocation of
resources Puterman (2014).

To address these challenges, we propose the Implicit Bayesian Markov Decision Process (IB-
MDP) algorithm, a model-based approach that constructs an implicit model of the environment’s
dynamics by integrating historical data through a distance-based similarity metric. Unlike traditional
MDP methods that require explicit modeling of transition probabilities, the IB-MDP leverages his-
torical data to build a flexible model of the environment without the need for precise parameteriza-
tion Rainforth et al. (2024); Bellet et al. (2013). This implicit model captures complex, nonlinear
relationships within the data manifold, enabling efficient planning by simulating future states and
actions Alagoz et al. (2010).

Moreover, to improve the robustness and reliability of decision-making, we incorporate an ensemble
approach into the IB-MDP. Ensemble methods aggregate multiple policies derived from independent
algorithm runs, reducing variance and mitigating bias in policy estimation Dietterich (2000); Osband
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et al. (2016); Zhou (2012). This approach ensures more stable and generalizable policies, particu-
larly in high-dimensional and resource-constrained environments Lakshminarayanan et al. (2017).

Our algorithm is demonstrated in the context of assay scheduling and ROP optimization, where it
significantly improves resource utilization and decision quality compared to traditional heuristic-
based approaches. The IB-MDP framework is broadly applicable to various resource-constrained
decision-making tasks in drug discovery, making it a valuable tool for optimizing sequential deci-
sions in preclinical studies.

Summary of Contributions:

• We introduce the Implicit Bayesian Markov Decision Process (IB-MDP), a model-based
algorithm that integrates historical data using a distance-based similarity metric within the
MDP framework, enabling efficient planning in sequential decision-making tasks.

• We incorporate an ensemble approach to enhance policy estimation, providing theoreti-
cal justification for its effectiveness in variance reduction, bias mitigation, and improved
generalization.

• We validate our approach through experiments in assay scheduling, demonstrating signif-
icant improvements in resource utilization and decision quality over traditional heuristic
methods. However, our algorithm is broadly applicable across a range of decision-making
problems.

2 RELATED WORK

The optimization of decision-making under uncertainty has been a central focus in various domains,
including drug discovery.

Markov Decision Processes and Model-Based Reinforcement Learning: Markov Decision Pro-
cesses (MDPs) provide a mathematical framework for modeling sequential decision-making where
outcomes are partly random and partly under the control of a decision-maker (Puterman, 1994;
2014). In drug discovery, MDPs have been applied to tasks such as clinical trial optimization (Ben-
nett & Hauser, 2013; Eghbali-Zarch et al., 2019; Abbas et al., 2007; Fard et al., 2018). However,
applying MDPs to experimental scheduling has remained limited due to the difficulty of accurately
specifying transition probabilities and reward functions. Model-based reinforcement learning (RL)
offers an alternative by learning models of the environment to improve sample efficiency and plan-
ning accuracy (Sutton, 2018; Kaiser et al., 2019). In the drug discovery field, model-based RL
has been used for molecule generation (Wang et al., 2021; Bengio et al., 2021; You et al., 2018;
Zhou et al., 2019), synthesis planning (Segler et al., 2018), and experimental design (Schneider
et al., 2020). These methods typically require accurate environment models, a challenge in high-
dimensional and complex biological systems such as those found in preclinical studies.

Incorporating Historical Data and Similarity Metrics: Leveraging historical data is crucial for
improving decision-making in contexts with limited experimental data. Bayesian approaches, in-
cluding Bayesian reinforcement learning and optimization, maintain a posterior distribution over pa-
rameters or value functions, updating beliefs based on new data (Ghavamzadeh et al., 2015; Shahriari
et al., 2015). In drug discovery, Bayesian optimization has been applied to optimize molecular prop-
erties (Griffiths & Hernández-Lobato, 2020; Gómez-Bombarelli et al., 2018), but such methods are
often less effective in sequential decision-making scenarios. Using similarity metrics within MDPs
can further enhance the integration of historical data. Kernel-based methods, which use similar-
ity functions to generalize across states, have been explored in reinforcement learning to estimate
transition dynamics more accurately (Ormoneit & Sen, 2002; Kveton & Theocharous, 2012; Xu
et al., 2007). Our approach extends this by incorporating a variance-normalized distance metric to
dynamically integrate historical data into the MDP transition function.

Ensemble Methods in Reinforcement Learning (RL): Ensemble methods have gained popularity
for improving the robustness and reliability of decision-making. By aggregating multiple models
or policies, ensemble techniques reduce the variance and bias inherent in individual estimates (Di-
etterich, 2000; Osband et al., 2016; Wiering & Van Hasselt, 2008; Zhou, 2012). In RL, ensemble
methods are particularly effective in improving exploration and generalization, as demonstrated by
their successful application in model-based RL (Lakshminarayanan et al., 2017). Our IB-MDP
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framework incorporates ensemble methods to enhance decision robustness, where multiple policies
derived from independent algorithm runs are aggregated to produce more reliable decision paths.

Applications in ADME Studies and Comparison to Existing Methods: ADME studies focus
on the absorption, distribution, metabolism, and excretion (ADME) of drugs to understand their
pharmacokinetic properties and impact on effectiveness and safety (Hoffman, 1998; Hoffman et al.,
2004; Hughes et al., 2011). Decision-making in ADME studies requires balancing information gain
with constrained resources. Although RL has been applied to clinical trial optimization (Coronato
et al., 2020; Escandell-Montero et al., 2014; Martı́n et al., 2020), its application to preclinical ex-
perimental scheduling is underexplored. Our IB-MDP framework addresses this gap by providing
a flexible and scalable decision-making approach that integrates historical data and real-time ex-
perimental results. Unlike traditional methods, the IB-MDP does not require manual specification
of transition probabilities, instead leveraging a similarity-based metric to model the environment’s
dynamics implicitly. This, combined with the ensemble approach, distinguishes our method from
existing techniques, ensuring both adaptability and robustness in decision-making.

3 A SEQUENTIAL DECISION-MAKING PROBLEM STATEMENT

In ADME studies, a primary challenge is the optimal scheduling of multiple experimental assays
that contribute to evaluating a drug’s ADME profile. Critical ADME assays for central nervous
system (CNS) drugs involve assessing whether the drug acts as a substrate for transporters such as
P-glycoprotein (PgP) and Breast Cancer Resistance Protein (BCRP). The goal is to plan in vitro
PgP and BCRP assays to maximize information gain towards the drug’s brain penetration potential,
which can be evaluated through in vivo unbound brain-to-plasma partition coefficient (kpuu), while
minimizing operational costs and adhering to resource limitations.

The focus here is on reducing state uncertainty, which refers to the incomplete knowledge about the
final target feature, such as kpuu, rather than model uncertainty. Ensuring these features fall within
desirable ranges is key to determining a drug’s efficacy and safety.

The problem can be formulated as finding an optimal policy π∗ that minimizes cost and reduces
state uncertainty, subject to constraints ensuring the likelihood of achieving experimental outcomes.
This can be expressed as: minπ Eπ

[∑T
t=0 γ

tR(st, π(st))
]

subject to:

1. State uncertainty at the terminal stage H(sT ) must be below a threshold ϵ: H(sT ) ≤ ϵ.

2. The likelihood of achieving desirable outcomes L(sT ) must exceed a minimum value τ :
L(sT ) ≥ τ.

3. At each intermediate step t, the likelihood L(st) must also exceed the threshold τ : L(st) ≥
τ, ∀t = 0, . . . , T − 1.

Checking the likelihood at each intermediate step ensures that the decision-making process stays
aligned with the final goal, maintaining a high probability of achieving desired experimental out-
comes. This dynamic constraint helps the policy continuously adapt as new data emerge, enforcing
the likelihood requirement throughout the MDP decision process and preventing early decisions
from compromising long-term objectives. By consistently ensuring both cost efficiency and target
feature accuracy, the policy remains robust and focused until the end of the search, aligning with the
principles of constraint optimization in MDP frameworks.

4 IMPLICIT BAYESIAN MARKOV DECISION PROCESS (IB-MDP) FOR
RESOURCE-EFFICIENT DECISION MAKING

4.1 FRAMEWORK DESCRIPTION

The IB-MDP algorithm is designed to optimize experimental scheduling in resource-constrained
settings by leveraging historical data through a distance-based similarity metric. This framework
aims to strategically select assays to minimize costs and maximize information gain, particularly
in high-dimensional decision spaces, such as assays scheduling in preclinical pharmacokinetics and
pharmacodynamics (PKPD) space.
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The algorithm starts with a partially known initial state and a collection of potential experimental
configurations (i.e., action sets in an MDP framework). As it explores the state-action space, the
IB-MDP dynamically adjusts its strategy based on emerging evidence, ensuring that the policies
remain optimal under given constraints. By constructing an implicit model of the environment’s
dynamics, IB-MDP eliminates the need for a parameterized transition probabilities. Instead, the
transition dynamics are inferred from historical data using a variance-normalized similarity metric.
This method significantly reduces computational complexity while retaining the flexibility to refine
decisions as new data become available.

A key feature of IB-MDP is its use of Monte Carlo Tree Search with Double Progressive Widen-
ing (MCTS-DPW), which enables efficient navigation through large state spaces without exhaustive
data collection. This approach is particularly suited for experimental planning, where the goal is to
balance exploration and exploitation in a computationally efficient manner. Furthermore, the frame-
work incorporates a Bayesian sampling method, continuously refining the policy to incorporate new
information, thus ensuring that the decision-making process adapts to changes in state uncertainty
and target feature values over time.

To further enhance robustness and accuracy, IB-MDP integrates an ensemble method. By aggre-
gating multiple policies generated from independent runs, the ensemble method mitigates inference
bias and reduces variance, ensuring that the decision-making process is both reliable and adaptive.
This combination of implicit modeling, dynamic policy adjustment, and ensemble learning offers a
powerful tool for optimizing resource usage in complex experimental designs.

4.2 IB-MDP FORMULATION

The IB-MDP (Implicit Bayesian Markov Decision Process) framework can be defined as a tuple
⟨S,A, T ,R, γ⟩, where:

• States (S): The state space represents the knowledge about the drug candidate or system
at each decision point.

• Actions (A): A set of actions, where each action corresponds to selecting assays or exper-
iments to perform.

• Transition Function (T ): Transition probabilities between states, implicitly derived from
historical data D using a similarity-based metric.

• Reward Function (R): The reward function that penalizes resource costs and rewards
uncertainty reduction and goal achievement.

• Discount Factor (γ): A scalar discount factor that determines the present value of future
rewards.

4.2.1 SIMILARITY WEIGHT FUNCTION

The transition function relies on a similarity weight wi(s) for each historical data point Dsi . This is
computed based on the distance between the current state s and the historical data point Dsi using a
variance-normalized distance metric: wi(s) = exp (−λw · d(s,Dsi)) ,

where λw is a scaling factor, and the distance metric d(s,Dsi) is:

d(s,Dsi) =

n∑
k=1

λk · (sk − (Dsi)k)
2

σ2
k

,

with λk representing feature-specific scaling factors, and σ2
k being the variance of the k-th feature

in D.

4.2.2 IMPLICIT TRANSITION MODELING VIA SAMPLING

In the IB-MDP framework, the transition function T (s, a, s′) is not explicitly defined through a
known analytical function. Instead, it is implicitly modeled using a weighted sampling process that
leverages historical data D and the similarity weights vector W . This process allows the transition
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to a new state s′ to be based on past data points most similar to the current state s, according to a
variance-normalized distance metric.

The transition probability from state s to state s′ given action a is defined as:

P (s′|s, a) =
N∑
i=1

wi(s)∑N
j=1 wj(s)

· I[s′ = s⊕∆s(a,Dsi)],

where:

• wi(s) is the similarity weight between the current state s and the historical data point Dsi .
• ∆s(a,Dsi) is the change in state resulting from action a applied to the historical data point
Dsi .

• ⊕ denotes the state update operation, combining the current state s with the effect of action
a based on the sampled historical data.

• I[·] is an indicator function that ensures the state update conforms to the sampled transition.
• N denotes the total number of historical data points.

This transition is realized through a weighted sampling process. Specifically, a historical state
Dssampled is selected with probability proportional to its similarity weight wi(s). The sampling func-
tion δ(W, s) selects a data point Dssampled from the historical dataset D: Dssampled = δ(W, s) ·D, where
δ(W, s) uses the similarity weights W to sample a historical state Dsi from D. Once the histori-
cal state is sampled, the new state s′ is updated as: s′ = β(s,D, a) = s ⊕ ∆s(a,Dssampled), where
∆s(a,Dssampled) represents the change in state resulting from action a applied to the sampled data
point Dssampled . The β function is considered as the implicit Bayesian update for the state via sam-
pling. This update mechanism allows the system to dynamically evolve by incorporating the effects
of historical actions, without needing an explicit transition function.

4.2.3 BAYESIAN UPDATE MECHANISM

After the transition to a new state s′, the similarity weights W are updated based on the new state
and historical data. The updated weights W ′ are computed as: W ′ = update(W, s′,D) where the
update mechanism reflects how the similarity weights are adjusted based on the new state s′, the
action a, and the historical data D.

This process dynamically adjusts the state transition based on the updated belief about the system,
providing a probabilistic framework for modeling uncertainties.

4.2.4 REWARD FUNCTION

The reward function is defined to balance cost minimization and uncertainty reduction:

R(s, a) =

{
−c(s, a) · λ, if a ̸= eox,
−M, if a = eox,

where c(s, a) represents the cost vector for action a, λ is a vector of trade-off parameters, and M is
a large penalty for premature termination.

4.2.5 STATE UNCERTAINTY AND LIKELIHOOD

Uncertainty in state s, denoted as H(s), is computed as: H(s) =
∑N

i=1 wi(s)(ki−k̄w(s))
2∑N

i=1 wi(s)
where

ki is the value of the target feature in Dsi and k̄w(s) is the weighted mean of the feature:

k̄w(s) =
∑N

i=1 wi(s)·ki∑N
i=1 wi(s)

The likelihood of achieving the desired outcome is computed as: L(s) =∑N
i=1 wi(s)·I[ki∈[kmin,kmax]]∑N

i=1 wi(s)
where ki is the value of the target feature k in the i-th historical data point,

wi(s) is the similarity weight for Dsi , and I is the indicator function. kmin and kmax are the user-
defined lower and upper bound values of the target features.
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4.2.6 TERMINAL CONDITION

The state s is considered terminal when: H(s) ≤ ϵ and L(s) ≥ τ where ϵ is the state uncertainty
threshold, and τ is the likelihood threshold.

4.3 THE IB-MDP ALGORITHM

The IB-MDP framework models sequential decision-making within resource-constrained environ-
ments, such as drug discovery, where an optimal sequence of experiments needs to be chosen under
uncertainty. The action set at each state, represented as the power set of available assays P(A),
may be constrained by the maximum number of assays m (i.e., Am). Transitions between states are
modeled using historical data and similarity weights, as outlined in the formulation section.

4.3.1 SOLVING IB-MDP WITH MCTS-DPW

To solve the IB-MDP problem, we employ Monte Carlo Tree Search (MCTS) with Double Pro-
gressive Widening (DPW). MCTS is a powerful search algorithm used to explore large state-action
spaces by building a search tree through iterative simulations Browne et al. (2012). DPW is utilized
to handle large and continuous action spaces by initially restricting the number of explored actions
at each state and progressively widening the action set as more iterations are performed Couëtoux
et al. (2011).

MCTS operates in four main steps: Selection, Expansion, Simulation, and Backpropagation. The
Upper Confidence Bound (UCB) policy is used in the selection phase to balance exploration and

exploitation: a = argmaxa′∈A(s)

(
Q(s, a′) + c

√
lnN(s)
N(s,a′)

)
where Q(s, a′) is the estimated value of

action a′ in state s, and N(s) and N(s, a′) represent the number of visits to state s and action a′ in
state s, respectively.

The state transitions during the simulation phase are modeled implicitly via weighted sampling
based on historical data, using the Bayesian update mechanism described earlier. This allows the
IB-MDP to adapt dynamically to new information while maintaining computational efficiency.

4.3.2 PARETO FRONT GENERATION

After solving the IB-MDP problem and obtaining a set of optimal policies π∗
j from the MCTS-DPW

runs, the next step is to generate the Pareto front. This front helps to discern optimal trade-offs
between competing objectives, such as minimizing cost and reducing state uncertainty.

The Pareto front consists of non-dominated points in the objective space, where each point repre-
sents a policy that is optimal under certain constraints. Mathematically, this can be formulated as:
minimize {(C(s),H(s)) | s ∈ S} where C(s) is the cost associated with state s and H(s) represents
state uncertainty. A state s′ dominates state s if:H(s′) < H(s) and C(s′) < C(s) indicating that
s′ has lower uncertainty and lower cost. The Pareto front is the set of states that are not dominated
by any other state, ensuring that each point on the front represents a trade-off between cost and
uncertainty.

4.4 ENSEMBLE METHOD FOR IB-MDP

The ensemble method addresses the inherent variability in single runs of the IB-MDP algorithm,
especially when using Monte Carlo Tree Search with Double Progressive Widening (MCTS-DPW).
Stochasticity and sensitivity to initial conditions can lead to different Pareto fronts and optimal
policies. By executing the IB-MDP algorithm N times, each run generates an optimal policy π∗

j and
a corresponding Pareto front Pj . Aggregating the results across multiple runs improves robustness,
reduces bias, and enhances the reliability of decision-making.

Advantages of Ensemble IB-MDP: The ensemble IB-MDP methodology provides several advan-
tages: Improved Robustness: By aggregating results from multiple simulations, the ensemble ap-
proach reduces the impact of variability and randomness in individual runs, enhancing the stability
of decision outcomes. Bias Reduction: Exploring diverse decision trajectories across runs mini-
mizes inference bias and yields more accurate estimates of optimal policies. Predictive Power: The
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ensemble method helps identify patterns across multiple runs. The aggregation of these results in-
forms the construction of a Maximum Likelihood Action Sets Path (MLASP), providing a candidate
metric that can guide decision-making by assessing decisions under different likelihood thresholds
τ .

4.4.1 MAXIMUM LIKELIHOOD ACTION SETS PATH (MLASP)

The MLASP is a key outcome of the ensemble approach. It is constructed by identifying the most
frequently occurring optimal action set at each uncertainty level u across multiple runs. Specif-
ically, for each uncertainty level, the action set A∗

u that occurs most frequently is chosen as:
A∗

u = argmaxA
∑N

j=1 I(A ∈ Pj(u)) where I is the indicator function that counts whether the
action set A is part of the Pareto front Pj(u) for the j-th run. By connecting all A∗

u across varying
uncertainty levels, we form the MLASP, ensuring robust decision-making across different scenarios.

Figure 2 illustrates the construction of the MLASP by showing a histogram of actions proposed
across an ensemble of 50 independent runs of the IB-MDP algorithm. For a given state at the
uncertainty threshold τ = 0.2, the height of each bar represents the frequency with which a particular
action was chosen by the ensemble. The action that appears most frequently across the runs for that
threshold is considered the majority-voted action and is included in the MLASP.

The histogram provides a clear visual of how often each action was selected, and the bar with the
highest frequency corresponds to the optimal action under the given uncertainty. The key insight
from this figure is how the ensemble method ensures more robust and stable decision-making by
leveraging majority voting across multiple runs. It demonstrates that, even with variability across
different runs, the MLASP method converges on a reliable decision, enhancing both predictive
power and robustness in the decision-making process.

Figure 1: Exemplary Monetary-prioritized
MLASP for two τ thresholds for the data
point with 50 ensembles, QSARmrt value
of 1.56, QSAR100nM BCRP of 0.87, and
QSAR1uM PgP of 0.513. Different L likeli-
hood result in different MLASP leading to
distinct decision paths. A general trend is
that the higher liklihood threshold τ value,
the lower left MLASP will be.

Figure 2: Example of 50 ensemble IB-MDP pro-
posed action in a histgram plot for the state uncer-
tainty level = 0.2, and τ = 0.9

4.5 ALGORITHM

For the detailed and complete description of the algorithm, see Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our experimental setup utilizes a dataset of 220 compounds, each characterized by both in silico
predictions and physical properties. The in silico features include Quantitative Structure-Activity

7
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Algorithm 1 Ensemble IB-MDP Algorithm
Require: Initial state s0, historical data D, similarity function W , Bayesian update function β, horizon H ,

number of iterations nitr, number of ensemble runs N
Ensure: Pareto front of state uncertainty vs. expected utility costs
1: Initialize an array P to store Pareto fronts
2: for j = 1 to N do
3: Initialize MCTS-DPW tree with root node representing s0
4: for i = 1 to nitr do
5: s← s0
6: while not terminal and within horizon H do
7: Select action a using UCB policy: a = argmaxa′∈A(s) Q(s, a′) + c

√
lnN(s)
N(s,a′)

8: Simulate next state s′ using Bayesian update via sampling: s′ = β(s,D, a)
9: Update similarity weights W based on new state s′

10: Update tree with s′ and reward R(s, a)
11: s← s′

12: end while
13: Backpropagate rewards and update Q values along the path
14: end for
15: π∗

j ← Extract optimal policy from tree
16: Pj ← Compute Pareto front from π∗

j

17: Append Pj to P
18: end for
19: for each uncertainty level u do
20: A∗

u = argmaxA

∑N
j=1 I(A ∈ Pj(u))

21: end for
22: Construct Maximum Likelihood Action Sets Path (MLASP) from A∗

u

23: return MLASP

Relationship (QSAR) predictions, such as QSAR1uM PgP, QSAR100nM BCRP, and QSARmrt. In addi-
tion to these predictions, transporter activity data such as 100nM PgP, 1uM PgP, and 100nM BCRP
are also considered. The financial and time costs associated with these transporter activities are esti-
mated at $400 per assay with a turnaround of 7 days, while kpuu measurements incur a higher cost
of $4000 and take 21 days. These values highlight the substantial resource investment required for
these tests.

To generate the Maximum Likelihood Action Sets Path (MLASP), we conduct up to three paral-
lel assays, allowing simultaneous experimental operations. This setup helps reduce state uncer-
tainty more efficiently while maximizing information gain, both of which are essential for effective
decision-making. A computational threshold of 10 is applied to assess state uncertainty, ensuring
that the algorithm captures meaningful differences in uncertainty levels.

We employ the IB-MDP algorithm, integrated with a Monte Carlo Tree Search (MCTS) solver using
Double Progressive Widening (DPW). This solver runs for 20,000 iterations, with an exploration
constant of 5.0, 50 ensembles, providing a balance between exploring new actions and exploiting
known outcomes.

The primary goal is to identify the actions that achieve the greatest reduction in state uncertainty,
comparable to performing the final target assay (kpuu), while minimizing both costs and resource
use throughout the decision-making process.

Experimental Computing Resources:

We performed the IB-MDP simulations on an Apple M1 Pro chip with 16GB of memory. For each
ensemble run, with 100 iterations of the IB-MDP per τ value, the estimated completion time was
approximately 1 hour.

5.2 TRADITIONAL HEURISTIC DECISION RULES

The decision-making process for brain penetration assays typically relies on heuristic rules, primar-
ily using QSAR (Quantitative Structure-Activity Relationship) predictions and the unbound brain-
to-plasma partition coefficient (kpuu). These rules can be summarized as follows:

8
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A compound is considered promising if: QSAR1uM PgP < 2, QSAR100nM BCRP < 2, and 0.5 ≤
kpuu ≤ 1. A compound is considered non-promising if either: QSAR1uM PgP or QSAR100nM BCRP
exceeds 4, regardless of the kpuu value.

5.3 SELECTIVE CASE STUDY FOR COMPOUND SELECTION DECISION-MAKING

We tested the framework using three scenarios, designed to reflect different QSAR conditions. These
case studies demonstrate the flexibility and robustness of our decision-making framework, showing
its potential to improve the drug discovery process by identifying promising compounds that might
be missed by traditional methods.:

Baseline Confirmation: This scenario tests compounds where both QSAR1uM PgP and
QSAR100nM BCRP are below 2, and kpuu values fall within normal ranges. It serves to validate tradi-
tional decision-making processes.

Heuristic Challenge: In this scenario, compounds present borderline or conflicting QSAR data,
with at least one QSAR value exceeding 4. This scenario tests the framework’s ability to interpret
complex signals and identify viable candidates.

Opportunity Discovery: This scenario evaluates compounds with high QSAR1uM PgP and
QSAR100nM BCRP values, but acceptable kpuu. It aims to discover overlooked compounds that could
be promising despite failing traditional heuristics.

Figure 3: Monetary-prioritized IB-MDP results with MLASPs for four representative compounds,
ordered by kpuu values to illustrate variations in QSAR metrics and corresponding recommended
actions. For kpuu = 0.529, QSAR1uM PgP = 5.0, QSAR100nM BCRP = 9.6, and QSARmrt = 0.99.
The IB-MDP recommends action is [100nM BCRP]. For kpuu = 0.534, QSAR1uM PgP = 0.903,
QSAR100nM BCRP = 8.5, and QSARmrt = 2.64. The recommended action is [100nM BCRP]. For
kpuu = 0.5407, QSAR1uM PgP = 1.68, QSAR100nM BCRP = 1.3, and QSARmrt = 1.82. The IB-MDP
suggests actions are either [100nM PgP, 100nM BCRP] or [1uM PgP, 100nM BCRP]. For kpuu =
0.6400, QSAR1uM PgP = 21.4, QSAR100nM BCRP = 0.73, and QSARmrt = 1.2. Recommended ac-
tions include [1uM PgP], indicating a high probability of effectiveness under the given experimental
conditions.

5.4 EXPERIMENTAL RESULTS : COST COMPARISON BETWEEN CONVENTIONAL AND
IB-MDP DECISIONS

The results of the IB-MDP exploration for the representative cases in Table 1 are shown in Figure
3. In the baseline scenario, the IB-MDP recommends actions involving [1uM PgP, 100nM BCRP],
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[100nM PgP, 100nM BCRP], or 1uM PgP, resulting in monetary costs ranging from $400 to $800,
compared to the traditional cost of $5200.

In the heuristic challenge scenario, the IB-MDP still proposes a single action along the MLASP
with a $400 cost, whereas traditional heuristic rules completely miss the opportunity to identify this
promising compound. For the opportunity discovery scenario where all QSAR values are greater
than 4, the IB-MDP successfully identifies a unique set of actions [100nM PgP, 1uM PgP] that
significantly reduce state uncertainty. In contrast, the traditional rules fail to recognize this specific
compound as a promising candidate.

Table 1: Comparison of Traditional Approach and IB-MDP Generated Costs for Selected Com-
pounds
QSAR1uM PgP QSAR100nM BCRP QSARmrt kpuu 100nM PgP 1uM PgP 100nM BCRP Traditional Cost IB-MDP Cost

1.68 1.3 1.82 0.5407 1.06 0.79 1.32 $5200 $400 - $800
0.903 8.5 2.64 0.5343 2.16 1.14 14.16 $5200 $400
21.4 0.73 1.2 0.6400 17.42 19.69 0.83 $5200 $400 - $800
5.0 9.6 0.99 0.5289 15.92 12.86 8.23 $5200 $800

6 CONCLUSIONS

In this study, we present the Implicit Bayesian Markov Decision Process (IB-MDP), a framework
designed to improve decision making under uncertainty in resource-constrained environments. By
dynamically integrating historical data using a similarity-based metric, the IB-MDP refines beliefs
about the current state in relation to target features. This refinement is achieved through implicit
Bayesian updates with a sampling approach, ensuring the policy search maximizes information gain,
minimizes costs, and achieves key experimental objectives within an optimal range.

A key advantage of the IB-MDP is its ability to significantly reduce state uncertainty without the
need to perform the most expensive and resource-intensive assays, such as the target assay (kpuu).
This not only enhances cost-efficiency but also accelerates decision-making by bypassing less criti-
cal, high-cost experiments.

Furthermore, IB-MDP benefits from an ensemble approach that aggregates policies across multiple
runs, reducing variance, and improving robustness. By aligning maximum likelihood action sets
with predefined probability bounds for target features, the methodology ensures consistent decision
quality. Through its comprehensive and data-driven approach, the IB-MDP outperforms traditional
heuristic methods, offering enhanced adaptability, precision, and resource optimization in experi-
mental planning. It demonstrates significant potential in streamlining decision-making tasks in drug
discovery and other fields requiring strategic resource management under uncertainty.

7 BROADER IMPACTS

The IB-MDP framework provides a versatile approach to adaptive decision making, offering benefits
beyond preclinical assay scheduling. By integrating historical data, dynamic Bayesian updates, and
ensemble methods, the framework enhances decision-making efficiency in various fields such as
healthcare, logistics, and financial risk management. Its ability to handle uncertainty and resource
constraints ensures robust, data-driven decisions, making it a valuable tool to improve outcomes in
diverse industries.

8 LIMITATIONS

Increasing the number of runs N enhances the accuracy and robustness of the optimal action set
estimation but also increases computational costs. While the ensemble method helps reduce variance
and bias, its efficiency decreases as N grows, with diminishing returns typical in ensemble-based
decision-making frameworks. The optimal value of N depends on the problem’s complexity and the
available computational resources, as larger ensembles may be necessary to fully explore complex
state-action spaces. In particularly intricate environments, more iterations may be required to ensure
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reliable convergence, although the ensemble approach generally stabilizes after a sufficient number
of runs.

Another important limitation lies in the framework’s reliance on historical data. Although leveraging
historical data helps to integrate similarity-based metrics for decision-making, it may not sufficiently
account for novel scenarios in real-world experiments. Future extensions of the IB-MDP framework
could incorporate more flexible strategies, such as adaptive kernel-based methods or deep learning
approaches, to extrapolate to states not represented in the existing dataset.

Moreover, while thresholds for decision-making tend to converge toward a maximum likelihood ac-
tion path, further exploration of how state uncertainty reduction influences the likelihood of achiev-
ing desired outcomes could offer additional insights. This might enable more effective ensemble
adjustments, ultimately improving policy reliability and performance in dynamic environments.
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